
11-411/11-611 Homework Assignment 4: Entity Recognition
Lara Marinov - Spring 2024

Abstract
In this report, I experiment with multiple different methods of constructing demonstrations and prompts for the
OpenAI large language model (LLM) to try to improve its performance on token classification. I first experimented
with changing the number of shots on a baseline model, trying to discover which value of shots performed best. I
then experimented with using three LLMs - Perplexity AI, ChatGPT 3.5, and Gemini - to create modified prompts
for the OpenAI LLM. I conclude that across both baseline approaches and approaches with modified prompts, using
40 shots and the baseline prompt worked best with an F1 score of 0.361. Of the three modified prompt approaches,
ChatGPT’s “fill-in-the-blank” prompt style worked best with an F1 score of 0.302.

Part 1: Methodology

Background and Justification

Prompt engineering has been an active area of NLP
research, focusing on techniques to improve the per-
formance of large language models (LLMs) on spe-
cific tasks by carefully crafting prompts. Many format-
ting and high-level techniques for prompt engineering
have been previously explored like few-shot prompting,
where the prompt includes examples of the desired task
to guide the LLM generation The New Stack (2023),
and chain-of-thought prompting, where the LLM is in-
structed to break down its reasoning process into multi-
ple steps Chen et al. (2023).

Along with high level formatting techniques, other re-
search has been done on smaller scale changes which
also improve LLM performance such as using affirma-
tive directives, incorporating examples, assigning roles
to LLMs, and using output primers Bsharat et al. (2024).

The techniques mentioned above have shown promise
in improving LLM performance, but they primarily fo-
cus on generating highly likely or factual outputs. There
has also been research into generating relevant, but less
probable prompts, which can be valuable in decision-
making scenarios where considering alternative possi-
bilities is important Tang et al. (2023).

While significant research has explored multiple prompt
engineering techniques, little research exists which has
explored utilizing LLMs themselves as auxiliary tools
within the overall prompt engineering process. Tradi-
tionally, research has focused on improving and refining
human-crafted prompts for direct LLM interaction. This
short report aims to investigate the potential of LLMs to
contribute to the development of effective prompts for
other LLMs.

Section 1.1: Baseline Experimentation

To start, I prompted the OpenAI LLM with the baseline
format given to us in the notebook which can be seen in
Figure 1. By varying only the number of shots and keep-
ing the same prompt structure, I could understand the ef-
fect of training data size on the model’s performance in
an isolated environment. This allowed me to assess how
OpenAI LLM’s ability to identify and classify entities
changed as the amount of labeled examples provided in-
creased. My subsequent runs then introduced variations
to the prompt structure itself, building upon the basic un-
derstanding of the model’s behavior using the baseline
format. The initial evaluation served as a sort of control
experiment, establishing a benchmark for how the Ope-
nAI LLM performed with a fixed prompt format before
introducing additional complexities.

The LLM performed reasonably well, with the F1 score
increasing as the number of shots increased. The highest
F1 score was 0.361, which was achieved using a 40-shot
approach. More results can be seen in Figure 4 in Sec-
tion 2. I wanted to run additional experiments, increas-
ing the number of shots to 100, but I also recognized
that it was important to experiment with different prompt
structures before I ran out of credits. Given the resource
limitation and lack of information regarding how many
credits I had left, I decided to switch focus to changing
the prompt structure and revisit the impact of higher shot
sizes if I still had credits. I unfortunately ran out of cred-
its before I could return to run with increased shot val-
ues. Section 3.4 discusses the limitations encountered
and how they affected the rest of my report in more de-
tail. With more credits, I would have increased the shot
size to at least 100, and if performance continued to im-
prove, I may have decided to further increase the shot
size to see how performance would change.

1 messages = [

2 {'role': SYSTEM_STR , MSG_STR:
3 """You will be given input text containing different types of entities that you will

label.

4 This is the list of entity types to label: Deity, Mythological_king ,

Cretaceous_dinosaur , Aquatic_mammal , Aquatic_animal , Goddess.

5 Label the enities by surrounding them with tags like '<Cretaceous_dinosaur >
Beipiaognathus </Cretaceous_dinosaur >'."""

6 },

7 {'role': USER_STR, MSG_STR: """Text: Once paired in later myths with her Titan brother
Hyperion as her husband, mild-eyed Euryphaessa , the far-shining one of the Homeric Hymn

to Helios, was said to be the mother of Helios (the Sun), Selene (the Moon), and Eos (

the Dawn)."""},

8 {'role': SYSTEM_STR , MSG_STR: """Labels: Once paired in later myths with her Titan
brother <Deity> Hyperion </Deity> as her husband, mild-eyed Euryphaessa , the far-shining

one of the Homeric Hymn to Helios, was said to be the mother of Helios (the Sun), <

Goddess> Selene </Goddess> (the Moon), and <Goddess> Eos </Goddess> (the Dawn)."""},

9 {'role': USER_STR, MSG_STR: """Text: From her ideological conception , Taweret was
closely grouped with (and is often indistinguishable from) several other protective

hippopotamus goddesses: Ipet, Reret, and Hedjet.\nLabels: """}

10]

Figure 1: The baseline prompt format provided in the notebook

Section 1.2: Modified Prompts Experimentation
In an effort to explore a unique prompt engineering
technique, I investigated the feasibility of utilizing an
LLM to generate prompt structures for the OpenAI LLM
backend. This approach involved getting prompt struc-
tures from three well-known conversational LLMs: Per-
plexity AI, ChatGPT, and Gemini. All three models re-

ceived the exact same sequence of two prompts. The
first prompt, seen in Figure 2, outlined the task and the
desired entity tags for classification. I included the base-
line prompt into the message so that the models could
understand the context of the current prompts.

I am working on prompt engineering for an LLM which is doing token

classification. This is the current structure of the prompt:

chat history =[{’role’: SYSTEM STR, MSG STR: ‘‘‘You will be given

input text containing different types of entities that you will label.

This is the list of entity types to label: Deity, Mythological king,

Cretaceous dinosaur, Aquatic mammal, Aquatic animal, Goddess. Label

the enities by surrounding them with tags like ’<Cretaceous dinosaur>

Beipiaognathus </Cretaceous dinosaur>’.’’’},

{’role’: USER STR, MSG STR: ‘‘‘Text: Once paired in later myths with her

Titan brother Hyperion as her husband, mild-eyed Euryphaessa, the far-shining

one of the Homeric Hymn to Helios, was said to be the mother of Helios (the

Sun), Selene (the Moon), and Eos (the Dawn).’’’},

{’role’: SYSTEM STR, MSG STR: ‘‘‘Labels: Once paired in later myths with

her Titan brother <Deity> Hyperion </Deity> as her husband, mild-eyed

Euryphaessa, the far-shining one of the Homeric Hymn to Helios, was said

to be the mother of Helios (the Sun), <Goddess> Selene </Goddess> (the Moon),

and <Goddess> Eos </Goddess> (the Dawn).’’’}]

Write a few options for different prompts I could give to the LLM

Figure 2: The prompt given to the three LLMs

Each LLM gave 3-4 suggestions for approaches with ex-
ample messages. All three responses shared some simi-
larities in the approaches they suggested, but there were
also considerable differences. Each LLM suggested ba-
sic methods such as zero shot and few shot prompt-
ing, which I already covered in the experiments with
the baseline prompts. To decide which prompt struc-
ture suggestion I would use from each model, I chose
the suggestion most dissimilar to the responses from the
other LLMs. I then prompted each LLM once more with
the message in Figure 3, only switching out the text
with {“examples with explanations”, “fill in the blank”,
‘error-augmented prompts‘} for the respective LLM.

Section 1.2.1: Perplexity AI – Examples with expla-
nations

The “examples with explanations” prompt engineering
technique is a powerful, intuitive approach where exam-
ples are provided along with correct answers and expla-
nations. The core idea is to influence the LLM by show-
ing it examples of the desired task along with the correct
outputs and, crucially, explanations for why those out-
puts are correct Weng (2023). This technique helps the
LLM better understand the task and the reasoning re-
quired to generate the desired classification. By seeing
the explanations of the correct answers, the model can
learn the patterns, logic, and context behind the inputs
and can apply that knowledge to future inputs.

For the specific entity recognition task of this assign-
ment, the input text and labels would be the same as in
the baseline approach. The explanation added to each
pair of input text and labels would include a description
of why the specific special tags were chosen for each
token. For example, a possible explanation could de-
scribe that “Athena” is a Greek goddess which is why
she is tagged with the “Goddess” tag. Appendix Sec-
tion A1 shows the complete output from Perplexity AI
which was used as the precedent to create the rest of the
message triples sent to the OpenAI backend.

Section 1.2.2: ChatGPT – Fill in the blank

The “fill-in-the-blank” prompt engineering technique for
token classification is a way to structure input prompts
so that the LLM is asked to identify and label specific en-
tities within a given text by replacing blank spaces with

the appropriate tags Liu et al. (2021).

Instead of providing the labeled text associated with
each input directly, the prompt presents the text with
blank spaces where the HTML tags should be inserted:
< > Hyperion < >.

By presenting the task in this “fill-in-the-blank” format,
the LLM is prompted to identify the relevant entities
within the text and replace the blank spaces with the ap-
propriate tags. One significant potential advantage of
this structure is that the LLM, instead of passively re-
ceiving the labeled text, is actively engaged in the task
of identifying and labeling the tokens. The hope is that
this active involvement leads the LLM to better under-
stand and remember the context and goal of the task.

There is also an extension of the “fill-in-the-blank” for-
mat where, in addition to examples with blank tags,
a few examples of correctly labeled texts are also in-
cluded. These correct examples could possibly improve
the LLM’s performance by helping it learn the desired
output format of the entity labeling.

Section 1.2.3: Gemini – Error-augmented prompts

The “error-augmented prompts” prompt engineering
technique for token classification involves intentionally
introducing errors, such as filler words, spelling mis-
takes, or inconsistent capitalization, into the prompts
provided to the LLM.

By including different types of errors in the input mes-
sages, the model is forced to learn to identify and extract
the relevant entities and their tags despite distractions
and irregularities being present in the input. This can
be particularly useful for real-world applications where
the input text may not always be perfectly formatted or
error-free Eliot (2023).

By training the model on prompts with various types of
errors, it can learn to extract relevant information better
and it can handle a wider range of inputs. The hope is
that because the model becomes less sensitive to minor
formatting issues, typos, or inconsistencies in the input
text, it is able to focus its attention on the accuracy of the
entity tags. The model may develop a better understand-
ing of the context, which would further help it differen-
tiate relevant entities.

Expand more on the <see above> approach and give an example prompt in code

using a structure like the one I provided in my previous message.

Figure 3: The follow-up prompt given to each LLM to receive uniform prompts to feed to the OpenAI backend

Part 2: Experimental Results

Approach Shots Accuracy Precision Recall F1

Finetune BERT - 0.948 0.410 0.509 0.454
Zero-shot LLM Baseline 0 0.965 0.460 0.239 0.296
One-shot LLM Baseline 1 0.959 0.322 0.300 0.311
Few-shot LLM Baseline 5 0.965 0.389 0.239 0.296
Few-shot LLM Baseline 10 0.965 0.329 0.212 0.258
Few-shot LLM Baseline 20 0.948 0.366 0.258 0.302
Few-shot LLM Baseline 40 0.946 0.441 0.306 0.361
Perplexity AI suggestion 5 0.964 0.363 0.242 0.298

ChatGPT suggestion 5 0.956 0.370 0.256 0.302
Gemini suggestion 5 0.958 0.347 0.263 0.290

Figure 4: Experimental results table, best result (excluding BERT) in each column is shown in bold

As discussed in Section 1, I chose to experiment with the
feasibility of utilizing an LLM to generate prompt struc-
tures for the OpenAI LLM for the token classification
task. My experimental results table is displayed above.
The first observation to note is that the approach with the
highest F1 score was using the LLM baseline with 40
shots. This result is not surprising considering the na-
ture of the specific labeling we are asking the model to
perform. Although, some discussion suggests that larger
models do not need as many shots because they have
seen more data in training and can thus generalize better

to a wide variety of tasks (Reynolds & McDonell (2021);
Weird Foundation5044 (2023)).

The second interesting result to note is that the accu-
racy across all runs is far higher than the score on any
other metric, regardless of approach. This result is dis-
cussed in depth in Section 3 of this report. All runs with
modified prompt structures were done using 5 shots.
More runs were planned with increased shots, but the
restricted number of API credits limited the number of
runs I was able to accomplish. These limitations are dis-
cussed further in Section 3.4.

Performance changes

(a) Performance changes plotted by metric (b) Performances changes plotted by shots

Figure 5: Performances changes with baseline prompt structure and changes to number of shots

Figure 6: Performances changes plotted by metric Figure 7: Performances changes plotted by run type

Figure 8: Performances changes with prompt structure modification

Figure 5 shows how the performance changes as a func-
tion of number of few-shot examples. Once again, accu-
racy is significantly higher across all of the shots, as can
be seen in Figure 5b. The run with 40 shots performed
better across all four metrics, although the zero-shot run
also had very similar precision to the 40-shot run. Fig-
ures 6 - 8 show the same performance changes, but on
the runs with modified prompt structures.

The performances across the different prompt structures
in comparison to each other are more similar than the
performances with different shots in comparison to each
other. The “fill in the blank” prompt style from Chat-
GPT marginally outperformed the two styles from Per-
plexity AI and Gemini. These results are discussed in
more depth in Section 3.

Part 3: Analysis and Discussion

‘O’ ‘Aquatic animal’ ‘Aquatic mammal’ ‘Cretaceous dinosaur’ ‘Deity’ ‘Goddess’ ‘Mythological king’

Tr
ai

n
se

t Raw Number 161563 1304 714 450 1092 997 313
Raw Number (B | I) – 739 565 451 263 438 12 969 123 852 145 247 66

Fraction of total 0.9699 0.0081 0.0044 0.0028 0.0068 0.0062 0.0019
Fraction of category (B | I) – 0.5667 0.4333 0.6317 0.3683 0.9733 0.0267 0.8874 0.1126 0.8546 0.1454 0.7891 0.2109

D
ev

se
t Raw Number 13311 101 49 39 128 78 16

Raw Number (B | I) – 60 41 34 15 36 3 114 14 68 10 14 2
Fraction of total 0.9700 0.0074 0.0036 0.0028 0.0093 0.0057 0.0012

Fraction of category (B | I) – 0.5941 0.4059 0.6939 0.3061 0.9231 0.0833 0.8906 0.1094 0.8718 0.1282 0.875 0.125

B
ot

h
se

ts Raw Number 170004 1405 763 489 1220 1075 329
Raw Number (B | I) – 799 606 485 278 474 15 1083 137 920 155 261 68

Fraction of total 0.9699 0.0080 0.0044 0.0028 0.0069 0.0061 0.0019
Fraction of category (B | I) – 0.5687 0.4313 0.6356 0.3644 0.9693 0.0307 0.8877 0.1123 0.8558 0.1442 0.7933 0.2067

Figure 9: Breakdown of entity type tag distribution across dev and training datasets

Section 3.1 Analysis The analysis of the experimen-
tal results revealed that while the performance improve-
ment for modifications to the prompt structure were
relatively minor, increasing the number of shots con-
sistently improved model performance. This suggests
that the model benefits from a larger dataset, even with
marginally different prompts.

However, analyzing the breakdown of tags in both
datasets in Figure 9 and Figures 10 - 12 revealed that
the datasets are overwhelmingly skewed towards the ‘O’
tag. As observed in Section 2, the accuracy across all
runs – both more shots and modified prompts – was sig-
nificantly higher than the rest of the metrics, which is
likely a direct cause of this imbalance; even the most
simplistic model that predicts only ‘O’ for every token
could achieve a deceptively high accuracy score.

This observation also raised the question: how do the
modified prompt structures possibly reduce this tag im-
balance problem? One plausible explanation is that the
different prompt structures can help the model learn that
the task is not just about identifying each token as the
‘O’ tag but also recognizing and labeling other entity
types based on contextual information. By exposing the
model to various prompt structures with examples and
explanations, it may capture the nuances and patterns
required for accurate tag recognition better, rather than
defaulting to a naive ‘O’ prediction strategy.

To further investigate the effectiveness of the modified
prompts, I thought it would be insightful to analyze
the performance metrics across the different prompt for-
mats, broken down by entity tag type. I thought that
this granular analysis could reveal valuable insights into

which prompting techniques are more adept at identify-
ing specific entity types, rather than simply relying on
the majority ‘O’ class predictions consistently.

Figures 10 - 12 shows the breakdown of the tags in
the dev and training sets, excluding ‘O’. Clearly, some
labels are more common than others: the ‘Deity’ and
‘Goddess’ tags appear more frequently than tags like
‘Mythological king’. So, if a model is good at predict-
ing the ‘Deity’ and ‘Goddess’ tags, we would expect it
to perform better overall, even if it’s worse at predicting
many of the other tags. This suggestion is supported by
the performance of the 40-shot run, which had the high-
est F1 score on the ‘Deity’ and ‘Goddess’ tags (as seen
in Figures 16 and 17) and the highest overall F1 score,
even though it was not consistently the best at predicting
every tag. These results could suggest that to enhance
overall model performance in the future, prompts could
strategically emphasize the less frequently encountered
tags. This approach would aim to address the potential
bias towards frequent tags and it would encourage the
model to focus on tags where its learning can be further
optimized.

Figures 13 - 18 also reveal that there was not one run
type which had better performance across all tags. In-
deed, quite the opposite is true as each of the four run
types: 40-shot, Perplexity AI, ChatGPT, and Gemini had
at least one tag for which they performed the best (as
measured by the F1 score). This suggests that combining
the prompting style used in the Perplexity AI, ChatGPT,
and Gemini runs and increasing the numbers of shots
(possibly to even more than 40) could further improve
the model’s performance.

Figure 10: Distribution of tags across both the dev and training sets; generation code in Appendix Section A5

Figure 11: Distribution across the dev set;
generation code in Appendix Section A5

Figure 12: Distribution across the training
set; generation code in Appendix Section A5

Further, if a particular prompt structure consistently
outperforms others in recognizing and labeling rare
entity types, such as “Mythological king” or “Creta-
ceous dinosaur,” it could indicate that the prompt struc-
ture is better at capturing the contextual cues and pat-
terns associated with those entities. Identifying the
prompt structures which result in better performance on
rare tags is crucial. These prompt structures could be in-
terwoven with ones that perform better on common tags,
possibly resulting in models that predict both common
and rare tags more accurately.

Section 3.2 Future plans It would be interesting to

further investigate the potential of leveraging LLMs as
auxiliary prompt engineering tools. The research could
explore the efficacy of LLMs in generating effective
prompt structures along with compiling a comparative
analysis of the strengths and weaknesses of these LLM-
generated prompts.

Section 3.3 Conclusion In this short report, I explored
different methods of constructing demonstrations and
prompts for the OpenAI LLM to try to improve its per-
formance on token classification. I experimented both
with a baseline prompt structure, varying only the num-
ber of shots, and with three different modified prompt

structures: (1) examples with explanations, (2) fill in the
blank, and (3) error-augmented prompts. These three
approaches were generated using Perplexity AI, Chat-
GPT, and Gemini respectively. I concluded that the 40-
shot approach worked the best because it had the highest
F1 score, but also aknowledged that each run type per-
formed better than the others at identifying at least one
token type. With further experimentation, I would have
liked to see how a combination of prompt styles changed
the performance of the LLM.

Section 3.4 Limitations As previously noted, resource
limitations in the form of available credits significantly
impacted the scope of the experiments. My original plan
included the following runs: {0, 1, 5, 10, 20, 40, 100,

200} shots with original prompt structure, {0, 1, 5, 10,
20, 40, 100, 200} shots with a {fill in the blank, examples
with explanations, error-augmented prompts} prompt
structure, and an undetermined number of runs combin-
ing different numbers of shots and multiple prompt tech-
niques. Unfortunately, due to credit constraints, execut-
ing the full range of experiments was not feasible. I used
the OpenAI backend on each of the runs I executed. Us-
ing the Cohere platform was a potential way to expand
expanding the run list, but my concerns regarding poten-
tial bias introduced by utilizing different backends led
me to decide that it was best to maintain consistency for
the sake of result purity. Additionally, I could have paid
for my own API key, but without knowing how much
cost that could incur, I decided against this approach.

(a) Performance changes plotted by metric (b) Performance changes plotted by structure

Figure 13: Performance changes on the “Aquatic animal” tag; generation code in Appendix Section A5

(a) Performance changes plotted by metric;
NOTE: the 40 shot run and the ChatGPT run had
the exact same metrics, which is why there are
only 3 visible lines

(b) Performance changes plotted by structure

Figure 14: Performance changes on the “Aquatic mammal” tag; generation code in Appendix Section A5

(a) Performance changes plotted by metric (b) Performance changes plotted by structure

Figure 15: Performance changes on the “Cretaceous dinosaur” tag; generation code in Appendix Section A5

(a) Performance changes plotted by metric (b) Performance changes plotted by structure

Figure 16: Performance changes on the “Deity” tag; generation code in Appendix Section A5

(a) Performance changes plotted by metric (b) Performance changes plotted by structure

Figure 17: Performance changes on the “Goddess” tag; generation code in Appendix Section A5

(a) Performance changes plotted by metric (b) Performance changes plotted by structure

Figure 18: Performance changes on the “Mythological king” tag; generation code in Appendix Section A5

Appendix: Code
Section A0: Original prompt structure code

1 # The baseline prompt structure format

2 messages = [

3 {'role': SYSTEM_STR , MSG_STR:
4 """You will be given input text containing different types of entities that you will

label.

5 This is the list of entity types to label: Deity, Mythological_king ,

Cretaceous_dinosaur , Aquatic_mammal , Aquatic_animal , Goddess.

6 Label the enities by surrounding them with tags like '<Cretaceous_dinosaur >
Beipiaognathus </Cretaceous_dinosaur >'."""

7 },

8 {'role': USER_STR, MSG_STR: """Text: Once paired in later myths with her Titan brother
Hyperion as her husband, mild-eyed Euryphaessa , the far-shining one of the Homeric Hymn

to Helios, was said to be the mother of Helios (the Sun), Selene (the Moon), and Eos (

the Dawn)."""},

9 {'role': SYSTEM_STR , MSG_STR: """Labels: Once paired in later myths with her Titan
brother <Deity> Hyperion </Deity> as her husband, mild-eyed Euryphaessa , the far-shining

one of the Homeric Hymn to Helios, was said to be the mother of Helios (the Sun), <

Goddess> Selene </Goddess> (the Moon), and <Goddess> Eos </Goddess> (the Dawn)."""},

10 {'role': USER_STR, MSG_STR: """Text: From her ideological conception , Taweret was
closely grouped with (and is often indistinguishable from) several other protective

hippopotamus goddesses: Ipet, Reret, and Hedjet.\nLabels: """}

11]

12

13 # Returns the content of the example

14 def get_message(example):
15 return """{}""".format(example['content'])
16

17 # A function which takes an example from the dataset as input, and returns a string that has

tagged the text with labels in the given HTML-style format.

18 def convert_bio_to_prompt(example):
19 message = ""

20 current_label = None

21 # All we need is the token and its corresponding ner_string , we can ignore the rest of

the information stored for each example

22 for token, ner_string in zip(example['tokens'], example['ner_strings']):
23 if ner_string != "O":
24 # Extract the label from the token

25 label = ner_string.split('-')[-1]
26 if label != current_label:
27 if current_label:
28 # Finishing the tagged entity, so add `/` to indicate the closing tag
29 message += "</{}> ".format(current_label)
30 # Otherwise , we are at the beginning of the tagged entity

31 message += "<{}> ".format(label)
32 current_label = label

33 message += token.split('-')[0] + " "
34 # If the current token is not a named entity but there was just one

35 elif current_label:
36 message += "</{}> ".format(current_label)
37 current_label = None

38 else:
39 message += token.split('-')[0] + " "
40 # If the example ends with a named entity

41 if current_label:
42 message += "</{}>".format(current_label)
43 return message
44

45

46 # A function that takes the number of shots, dataset, list of entity types, and

convert_bio_to_prompt function, and returns the chat_history (a list of maps) structured

as in the example.

47 def get_chat_history(shots, dataset, entity_types_list , convert_bio_to_prompt_fn):
48 chat_history = []

49

50 # System message

51 system_message = {

52 'role': SYSTEM_STR , MSG_STR: "You will be given input text containing different
types of entities that you will label. This is the list of entity types to label: {}.

Label the entities by surrounding them with tags like '<{}> Entity </{}>'.".format(
53 ", ".join(entity_types_list), list(entity_types_list)[0], list(entity_types_list

)[0])

54 }

55 chat_history.append(system_message)

56

57 for i in range(shots):
58 example = dataset[i]

59 # Get the text from each sample in the dataset

60 user_message = {

61 'role': USER_STR, MSG_STR: """Text: {}""".format(get_message(example))
62 }

63 chat_history.append(user_message)

64

65 # Add the labels to the sample

66 system_message = {

67 'role': SYSTEM_STR , MSG_STR: """Labels: {}""".format(convert_bio_to_prompt_fn(
example))

68 }

69 chat_history.append(system_message)

70

71 return chat_history
72

73 # Function to handle punctuation which is not correctly attached to the closest token to the

left

74 def move_punctuation_left(text):
75 # Define regular expression pattern to match punctuation followed by spaces

76 pattern = re.compile(r'\s*([.,:;!?])\s*')
77 matches = re.finditer(pattern, text)

78 modified_text = ''
79 # Position of last match

80 last_match_end = 0

81 for match in matches:
82 punctuation = match.group(1)

83 # Get the start and end index of the match

84 start, end = match.span()

85 # Move the punctuation mark to touch the closest word on the left

86 modified_text += text[last_match_end:start].rstrip() + punctuation

87 # Update the position of the last match

88 last_match_end = end

89 # Append the remaining text after the last match

90 modified_text += text[last_match_end:]

91 return modified_text
92

93 def convert_response_to_bio(response):
94 labels = []

95 # bool: are we inside of a tag, bool: are we at the first position within the tag, bool:

was the previous position in the tag, str: the name of the tag)

96 (inside, first, prev, tag) = (False, False, False, None)

97 for word in response.split():
98 # Ignore the starting labels

99 if "Labels:" in word:
100 continue
101 # At the end of a tag

102 if "</" in word:
103 rest = re.sub(r'<.+?>', '', word)
104 tag = (word.split('</'))[1].split('>')[0]
105 if (word[-1] != '>' and any(char in string.punctuation for char in word.split('>

')) and word.split('<')[0] == ''):
106 # Reset everything because we are now outside of the tag

107 (inside, first, prev, tag) = (False, False, False, None)

108 continue;
109 # Inside of the tag

110 elif (rest != '' and prev):
111 labels.append("I-" + tag)

112 # At the beginning

113 elif (rest != '' and not prev):
114 labels.append("B-" + tag)

115 (inside, first, prev, tag) = (False, False, False, None)

116 continue
117 # At the beginning of a tag

118 elif "<" in word:
119 (inside, first, prev, tag) = (True, True, False, (word.split('<'))[1].split('>')

[0])

120 rest = re.sub(r'<.+?>', '', word)
121 # This tag has multiple tokens that it is applied to

122 if (rest != ''):
123 labels.append("B-" + tag)

124 first = False

125 prev = True

126 continue
127 if inside:
128 if first:
129 labels.append("B-" + tag)

130 first = False

131 prev = True

132 else:
133 labels.append("I-" + tag)

134 else:
135 labels.append("O")

136

137 # Ensure that lonely punctuation marks are handled properly

138 tokens_pattern = re.compile(r'<[ˆ>]+>')
139 no_tags = re.sub(tokens_pattern , '', response)
140 no_punct_spaces = re.sub(r'\s([?.!"](?:\s|$))', r'\1', no_tags)
141 no_punct_spaces2 = move_punctuation_left(no_tags)

142

143 tokens = re.sub(r'([{}])'.format(r'\s*.,:;!?\s*'),r'\1 ', no_punct_spaces2).split()
144 if "Label" in tokens[0]:
145 tokens = tokens[1:]

146

147 return labels, tokens

Section A1: Perplexity AI “examples with explanations” prompt structure

The full output created by Perplexity AI as an example input for the “examples with explanations” prompt structure.
See Figure 2 and Figure 3 in Section 1 for the prompts given to ChatGPT to create this prompt structure.

1 messages = [

2 {'role': SYSTEM_STR , MSG_STR:
3 """You will be given input text containing different types of entities that you will

label. This is the list of entity types to label: Deity, Mythological_king, Cretaceous\

_dinosaur , Aquatic_mammal, Aquatic_animal, Goddess. Label the entities by surrounding

them with tags like '<Cretaceous_dinosaur > Beipiaognathus </Cretaceous_dinosaur >'.
Here are some examples with explanations:"""

4 },

5 {'role': USER_STR, MSG_STR:
6 """Example 1:

7 Input text: 'Poseidon , the god of the sea, ruled over the oceans and all creatures that
dwelled within them, including dolphins and whales."}

8 {'role': SYSTEM_STR , MSG_STR:
9 Labels: "<Deity> Poseidon </Deity>, the god of the sea, ruled over the oceans and all

creatures that dwelled within them, including <Aquatic_mammal> dolphins </Aquatic\

_mammal> and <Aquatic_mammal> whales </Aquatic_mammal >.'
10 Explanation: Poseidon is a deity, dolphins and whales are aquatic mammals."""

11 },

12 {'role': USER_STR, MSG_STR:
13 """Example 2:

14 Input text: 'The infraclassis Carinacea includes most living species of regular sea
urchin, and fossil forms going back as far as the Triassic.'}

15 {'role': SYSTEM_STR , MSG_STR:
16 Labels: 'The infraclassis Carinacea includes most living species of regular <Aquatic\

_animal> sea urchin </Aquatic_animal>, and fossil forms going back as far as the

Triassic.'
17 Explanation: A sea urchin is an aquatic animal."""

18 }

19 {'role': USER_STR, MSG_STR:
20 Now, try labeling the following input text:
21 Input text: "From her ideological conception , Taweret was closely grouped with (and is

often indistinguishable from) several other protective hippopotamus goddesses: Ipet,

Reret, and Hedjet."}

22

The change from the baseline code to generate this structure of prompt is in get chat history. This version
extracts an explanation from the labeling and appends it to the system message.

1 def add_explanation():
2 # Use regular expression to find content within <tag> tags

3 match = re.search(r'<(.*?) >(.*?)<\/\1>', text)
4 if match:
5 # Extract tag name and content within the tags

6 tag_name = match.group(1)

7 content = match.group(2)

8 # Create the explanation

9 return f"Explanation: A {content.lower()} is a {tag_name}."
10 else:
11 return "No explanation found."
12

13 def get_chat_history(shots, dataset, entity_types_list , convert_bio_to_prompt_fn):
14 # System message

15 system_message = {

16 'role': SYSTEM_STR , MSG_STR: """You will be given input text containing different
types of entities that you will label. This is the list of entity types to label: {}.

Label the entities by surrounding them with tags like '<{}> Beipiaognathus </{}>'. Here
are some examples with explanations:"""

17 }.join(entity_types_list), list(entity_types_list)[0], list(entity_types_list)[0])
18 chat_history.append(system_message)

19

20 for i in range(shots):
21 example = dataset[i]

22 user_message = {

23 'role': USER_STR, MSG_STR: """Text: {}""".format(get_message(example))
24 }

25 chat_history.append(user_message)

26

27 labeled = convert_bio_to_prompt_fn(example)

28 system_message = {

29 'role': SYSTEM_STR , MSG_STR: """Labels: {} {}""".format(labeled, add_explanation
(labeled))

30 }

31 chat_history.append(system_message)

32

33 return chat_history

Section A2: ChatGPT “fill in the blank” prompt structure

This is the example prompt generated by ChatGPT using the “fill in the blank” prompt structure. See Figure 2 and
Figure 3 in Section 1 for the prompts given to ChatGPT to create this prompt structure.

1 messages = [

2 {'role': SYSTEM_STR , MSG_STR:
3 """Identify and label the entities in the following text. Replace the blank space with

the appropriate tags. This is the list of entity types to label: Deity,

Mythological_king , Cretaceous_dinosaur , Aquatic_mammal , Aquatic_animal , Goddess. Label

the entities by replacing the blank space with tags like '<Deity> Hyperion </Deity>'."""
4 },

5 {'role': USER_STR, MSG_STR: """Text: Once paired in later myths with her Titan brother
Hyperion as her husband, mild-eyed Euryphaessa , the far-shining one of the Homeric Hymn

to Helios, was said to be the mother of Helios (the Sun), Selene (the Moon), and Eos (

the Dawn)."""},

6 {'role': SYSTEM_STR , MSG_STR: """Labels: Once paired in later myths with her Titan
brother <__> Hyperion <__> as her husband, mild-eyed Euryphaessa , the far-shining one of

the Homeric Hymn to Helios, was said to be the mother of Helios (the Sun), <__> Selene

<__> (the Moon), and <__> Eos <__> (the Dawn)."""}

7]

8

9 message = f"""Text: From her ideological conception , Taweret was closely grouped with (and

is often indistinguishable from) several other protective hippopotamus goddesses: Ipet,

Reret, and Hedjet.

10 Labels: """

The most important change to the baseline code to create the ChatGPT fill-in-the-blank style prompt is to the
function convert bio to prompt. Instead of adding the proper entity tags, we add “ ” everywhere.

1 # The modified convert_bio_to_prompt code to generate prompts of the same structure as the

example created by ChatGPT

2 def convert_bio_to_prompt(example):
3 message = ""

4 # The labels will all be replaced with "_" to create the fill-in-the-blank structure

5 current_label = "_"

6 for token, ner_string in zip(example['tokens'], example['ner_strings']):
7 if ner_string != "O":
8 label = ner_string.split('-')[-1] # Extracting the entity label from the token

9 if label != current_label:
10 if current_label:
11 message += "<{}> ".format(current_label)
12 # Add "_" instead of the actual tag to create fill-in-the-blank prompt

13 message += "<{}> ".format("_")
14 current_label = "_"

15 message += token.split('-')[0] + " "
16 # If the current token is not a non-"O" tag but there was just one

17 elif current_label:
18 # Once again add "_" instead of actual tag to create fill-in-the-blank prompt

19 message += "<{}> ".format("_")
20 current_label = None

21 else:
22 message += token.split('-')[0] + " "
23

24 # Check if the ending is a non-"O" tag

25 if current_label:
26 message += "<{}>".format(current_label)
27 return message

Section A3: Gemini “error-augmented prompts” prompt structure

This is the example prompt generated by Gemini using the ‘error-augmented prompts” prompt structure. See
Figure 2 and Figure 3 in Section 1 for the prompts given to ChatGPT to create this prompt structure.

1 original_text = "Once paired in later myths with her Titan brother Hyperion as her

husband, mild-eyed Euryphaessa , the far-shining one of the Homeric Hymn to Helios, was

said to be the mother of Helios (the Sun), Selene (the Moon), and Eos (the Dawn)."

2 original_label = "Once paired in later myths with her Titan brother <Deity> Hyperion </

Deity> as her husband, mild-eyed Euryphaessa , the far-shining one of the Homeric Hymn to

Helios, was said to be the mother of Helios (the Sun), <Goddess> Selene </Goddess> (the

Moon), and <Goddess> Eos </Goddess> (the Dawn)."

3

4 error_text_1 = original_text.replace("Hyperion", "Hipyrion").replace("Selene", "sELenE")

5 err_label_1 = original_label.replace("Hyperion", "Hipyrion").replace("Selene", "sELenE")

6

7 clean_prompt = {'role': USER_STR, MSG_STR: f"""Text: {original_text}"""}
8 clean_response = {'role': SYSTEM_STR , MSG_STR: f"""Labels: {original_label}"""}
9

10 error_prompt = {'role': USER_STR, MSG_STR: f"""Text: {error_text_1}"""}
11 error_response = {'role': SYSTEM_STR , MSG_STR: f"""Labels: {err_label_1}"""}
12

13 messages = [

14 {'role': SYSTEM_STR , MSG_STR:
15 """You will be given input text containing different types of entities that you will

label. This is the list of entity types to label: Deity, Mythological_king ,

Cretaceous_dinosaur , Aquatic_mammal , Aquatic_animal , Goddess. Label the enities by

surrounding them with tags like '<Cretaceous_dinosaur > Beipiaognathus </
Cretaceous_dinosaur >'."""

16 },

17 clean_prompt , clean_response , error_prompt , error_response

18]

The significant change to the baseline code to create the Gemini error-augmented prompt structure style is to
get chat history. Instead of using a basic pair of input text and labeled text, each pair adds either spelling
mistakes, strange capitalization, filler words, or other noise. This is intended to help the model learn to parse
through the noise and still correctly label each token with the proper tag. All other functions are the same as in the
baseline implementation.

1 # A package to generate random sentences: https://pypi.org/project/wonderwords/

2 from wonderwords import RandomSentence
3

4 # This function creates the chat history using the error-augmented prompts structure. The

idea is to inject errors, misspellings , and filler words into the prompts in the hopes

that the model will still learn to pick up the correct context in order to label each

token correctly.

5 def get_chat_history(shots, dataset, entity_types_list , convert_bio_to_prompt_fn):
6 original_text = "Once paired in later myths with her Titan brother Hyperion as her

husband, mild-eyed Euryphaessa , the far-shining one of the Homeric Hymn to Helios, was

said to be the mother of Helios (the Sun), Selene (the Moon), and Eos (the Dawn)."

7 original_label = "Once paired in later myths with her Titan brother <Deity> Hyperion </

Deity> as her husband, mild-eyed Euryphaessa , the far-shining one of the Homeric Hymn to

Helios, was said to be the mother of Helios (the Sun), <Goddess> Selene </Goddess> (the

Moon), and <Goddess> Eos </Goddess> (the Dawn)."

8

9 # Error 1: Misspelling and Case Change. This message contains misspelled words and words

with weird casing. The LLM should be able to handle these malformed messages in the

same way as the basic ones.

10 error_text_1 = original_text.replace("Hyperion", "Hipyrion").replace("Selene", "sELenE")

11 err_label_1 = original_label.replace("Hyperion", "Hipyrion").replace("Selene", "sELenE")

12

13 # Error 2: Word Substitution and Noise Words. This message substitutes some words and

adds other irrelevants words, none of which should be tagged as a special entity.

14 error_text_2 = original_text.replace("Titan brother", "large sibling").replace("far-

shining", "bright and beautiful") + " In addition, a random sea monster also appeared."

15 error_label_2 = original_label.replace("Titan brother", "large sibling").replace("far-

shining", "bright and beautiful") + " In addition, a random sea monster also appeared."

16

17 # Error 3: Irrelevant Entity. This message contains both noise words and an entity which

doesn't fit under any of the tags we have specified.
18 error_text_3 = "The is some text which doesn't do anything. " + original_text + " Also,

King Arthur was said to be a great leader."

19 error_label_3 = "The is some text which doesn't do anything. " + original_label + "

Also, King Arthur was said to be a great leader."

20

21 # Create separate prompts with original and error-augmented data

22 clean_prompt = {'role': USER_STR, MSG_STR: f"""Text: {original_text}"""}
23 clean_response = {'role': SYSTEM_STR , MSG_STR: f"""Labels: {original_label}"""}
24

25 error_prompt_1 = {'role': USER_STR, MSG_STR: f"""Text: {error_text_1}"""}
26 error_response_1 = {'role': SYSTEM_STR , MSG_STR: f"""Labels: {err_label_1}"""}
27

28 error_prompt_2 = {'role': USER_STR, MSG_STR: f"""Text: {error_text_2}"""}
29 error_response_2 = {'role': SYSTEM_STR , MSG_STR: f"""Labels: {error_label_2}"""}
30

31 error_prompt_3 = {'role': USER_STR, MSG_STR: f"""Text: {error_text_3}"""}
32 error_response_3 = {'role': SYSTEM_STR , MSG_STR: f"""Labels: {error_label_3}"""}
33

34 # Join the starting message with instructions to the rest of the formed messages

35 messages = [

36 {'role': SYSTEM_STR , MSG_STR:
37 """You will be given input text containing different types of entities that you will

label. This is the list of entity types to label: Deity, Mythological_king ,

Cretaceous_dinosaur , Aquatic_mammal , Aquatic_animal , Goddess. Label the enities by

surrounding them with tags like '<Cretaceous_dinosaur > Beipiaognathus </
Cretaceous_dinosaur >'."""

38 },

39 clean_prompt , clean_response , error_prompt_1 , error_response_1 , error_prompt_2 ,

error_response_2 , error_prompt_3 , error_response_3]

40

41 s = RandomSentence()

42

43 # For the rest of the prompts, we want to add filler words and sentences , hoping that

the model will learn to handle/ignore these irrelevant sections without compromising its

ability to identify the tokens which need to be specially labelled.

44 for i in range(shots):
45 example = dataset[i]

46 # Create a random (but grammatically correct) sentence

47 sent = s.sentence()

48 # To introduce a bit of extra pseudo-randomness , alternate if the filler sentence is

at the beginning or the end of the proper message

49 if i % 2 == 0:
50 user_message = {

51 'role': USER_STR , MSG_STR: """Text: {} {}""".format(sent, get_message(
example))

52 }

53 system_message = {

54 'role': SYSTEM_STR , MSG_STR: """Labels: {} {}""".format(sent,
convert_bio_to_prompt_fn(example))

55 }

56 else:
57 user_message = {

58 'role': USER_STR , MSG_STR: """Text: {} {}""".format(get_message(example),
sent)

59 }

60 system_message = {

61 'role': SYSTEM_STR , MSG_STR: """Labels: {} {}""".format(
convert_bio_to_prompt_fn(example), sent)

62 }

63 # Append all of the messages as normal

64 messages.append(user_message)

65 messages.append(system_message)

66

67 return messages

Section A4: Experimental results code
1 # The eval code is the same as the baseline implementation

2 def run_eval(dataset, shots, backend):
3

4 for example in tqdm(dataset, total=len(dataset), desc="Evaluating", position=tqdm.
_get_free_pos()):

5

6 # String list of labels (BIO)

7 true_labels = [labels_int2str[l] for l in example['ner_tags']]
8 example_tokens = example['tokens']
9

10 response_text = call_api_openai(shots, example) if backend == "openai" else
call_api_cohere(shots, example)

11

12 # String list of predicted labels (BIO)

13 predictions , generated_tokens = convert_response_to_bio(response_text)

14

15 if len(example['ner_strings']) != len(predictions):
16 predictions = example['ner_strings']
17

18 # Handle case where the generated text doesn't align with the input text.
19 # Basically , we'll eval everything up to where the two strings start to diverge.
20 # We relax this slightly by ignoring punctuation (sometimes we lose a paren or

something ,

21 # but that's not catastrophic for eval/tokenization).
22 # Just predict 'O' for anything following mismatch.
23 matching_elements = [strip_punct(i) == strip_punct(j) for i, j in zip(example_tokens ,

generated_tokens)]

24

25 if False in matching_elements:
26 last_matching_idx = matching_elements.index(False)

27 else:
28 last_matching_idx = min(len(generated_tokens), len(example_tokens))
29

30 predictions = predictions[:last_matching_idx] + ['O']*(len(example_tokens)-
last_matching_idx)

31 metric.add(predictions=predictions , references=true_labels)

32

33 return metric.compute()

34 # Run the eval on the entire dev set

35 dev_examples_to_take = 0

36

37 dev_set = data_splits['dev']
38 if dev_examples_to_take > 0:
39 dev_set = data_splits['dev'].select(range(dev_examples_to_take))
40

41 # The number of shots was changed according to the specific run

42 for num_shots in [5]:
43 print(f"shots: {num_shots}")
44 result = run_eval(dev_set, shots=num_shots , backend='openai')
45 print(result)
46

47 ####################################

48

49 # The rest of the code is written to create the plots for the experimental results

50 # The following two sections of code create the graphs to display the performance changes as

a result of changing the prompt structure.

51 # These numbers were extracted directly from the output after the evaluation was run. This

plot and the plot below display the same data, but with different x-axis values. This

plot has the performance metrics on the x-axis.

52 labels = ["Accuracy", "Precision", "Recall", "F1 Score"]

53 perplexity = [0.964, 0.363, 0.242, 0.298]

54 gpt = [0.956, 0.370, 0.256, 0.302]

55 gemini = [0.958, 0.347, 0.263, 0.290]

56

57 plt.plot(labels, perplexity , "-o", label="Perplexity AI")

58 plt.plot(labels, gpt, "-o", label="ChatGPT")

59 plt.plot(labels, gemini, "-o", label="Gemini")

60 plt.legend(loc="best")

61 plt.title('Performance comparision between Perplexity AI, Gemini, and GPT prompts')
62 plt.xlabel('Performance metric')
63 plt.ylabel('Score')
64 plt.show()

65

66 ####################################

67

68 # These numbers were extracted directly from the output after the evaluation was run. This

plot has the run type on the x-axis.

69 acc = [0.964, 0.956, 0.958]

70 prec = [0.363, 0.370, 0.347]

71 rec = [0.242, 0.256, 0.263]

72 f = [0.298, 0.302, 0.290]

73 labels = ["Perplexity AI", "ChatGPT", "Gemini"]

74

75 plt.plot(labels, acc, "-o", label="Accuracy")

76 plt.plot(labels, prec, "-o", label="Precision")

77 plt.plot(labels, rec, "-o", label="Recall")

78 plt.plot(labels, f, "-o", label="F1")

79 plt.legend(loc="best")

80 plt.title('Performance comparision between Perplexity AI, Gemini, and GPT prompts')
81 plt.xlabel('Model which created prompts')
82 plt.ylabel('Score')
83 plt.show()

84

85 ####################################

86

87 # The following code creates the graphs to display the performance changes as a result of

increasing the number of shots

88 # These numbers were extracted directly from the output after the evaluation was run. This

plot and the plot below display the same data, but with different x-axis values. This

plot has the performance metrics on the x-axis.

89 zerosht = [0.965, 0.460, 0.239, 0.296]

90 onesht = [0.959, 0.322, 0.300, 0.311]

91 fivesht = [0.965, 0.389, 0.239, 0.296]

92 tensht = [0.965, 0.329, 0.212, 0.258]

93 twentysht = [0.948, 0.366, 0.258, 0.302]

94 fortysht = [0.946, 0.441, 0.306, 0.361]

95 labels = ["Accuracy", "Precision", "Recall", "F1 Score"]

96

97 plt.plot(labels, zerosht, "-o", label='0 Shot')
98 plt.plot(labels, onesht, "-o", label='1 Shot')
99 plt.plot(labels, fivesht, "-o", label='5 Shot')

100 plt.plot(labels, tensht, "-o", label='10 Shot')
101 plt.plot(labels, twentysht , "-o", label='20 Shot')
102 plt.plot(labels, fortysht, "-o", label='40 Shot')
103 plt.legend(loc="best")

104 plt.title('Performance changes as a function of number of few-shot examples')
105 plt.xlabel('Performance metric')
106 plt.ylabel('Score')
107 # for e in [onesht, fivesht, tensht, twentysht , fortysht]:

108 # for x, y in zip(labels, e):

109 # plt.annotate(text=str(y), xy=(x, y))

110 plt.show()

111

112 ####################################

113

114 # These numbers were extracted directly from the output after the evaluation was run. This

plot has the number of shots on the x-axis.

115 accuracy = [0.965, 0.959, 0.965, 0.965, 0.948, 0.946]

116 precision = [0.460, 0.322, 0.389, 0.329, 0.366, 0.441]

117 recall = [0.239, 0.300, 0.239, 0.212, 0.258, 0.306]

118 f1 = [0.296, 0.311, 0.296, 0.258, 0.302, 0.361]

119 labels = ["0 shot", "1 shot", "5 shots", "10 shots", "20 shots", "40 shots"]

120

121 plt.plot(labels, accuracy, "-o", label="Accuracy")

122 plt.plot(labels, precision , "-o", label="Precision")

123 plt.plot(labels, recall, "-o", label="Recall")

124 plt.plot(labels, f1, "-o", label="F1 Score")

125 plt.legend(loc="best")

126 plt.title('Performance changes as a function of number of few-shot examples')
127 plt.xlabel('Number of shots')
128 plt.ylabel('Score')
129 plt.show()

Section A5: Analysis and Discussion code

Code used to generate Figures 10 - 12

1 # Code used to create the graphs of tag distribution across the dev and training sets. This

code was used in the analysis of how the distribution of tags in the datasets affected

the performance of different prompting styles

2 import json
3 import re
4 import matplotlib.pyplot as plt
5 from collections import Counter
6

7 tags = Counter()

8 tags_train = Counter()

9 tags_dev = Counter()

10

11 # Go through the dev and training datasets and collect the ner strings for each sample

12 for entry in data_splits['dev']:

13 tags.update(entry['ner_strings'])
14 tags_dev.update(entry['ner_strings'])
15 for entry in data_splits['train']:
16 tags.update(entry['ner_strings'])
17 tags_train.update(entry['ner_strings'])
18

19 total = sum(tags.values())
20

21 # Sort by the name of the tag, ignoring the B- and I-

22 def custom_sort(tag):
23 return tag[2:]
24

25 def plot_each(cnt, st):
26

27 # Extract all labels that aren't 'O'
28 nonO = Counter({k: c for k, c in cnt.items() if k != "O"})
29

30 # The x-axis is the tags sorted in alphabetical order

31 labels = list(nonO.keys())
32 sorted_labels = sorted(labels, key=custom_sort)
33 sorted_counts = [nonO[label] for label in sorted_labels]
34

35 plt.bar(sorted_labels , sorted_counts)

36 plt.xlabel('NER labels')
37 plt.xticks(rotation=90)

38 plt.ylabel('Occurrences')
39 if st == "all":
40 plt.title('Occurrences of all NER labels without "O" across all datasets')
41 else:
42 plt.title('Occurrences of all NER labels without "O" in the ' + st + ' set')
43

44 plt.show()

45

46 plot_each(tags_train , "training")

47 plot_each(tags_dev, "dev")

48 plot_each(tags, "all")

Code used to create graphs seen in Figures 13 - 18
1 # A function to create the graphs for each tag. These graphs were used in the analysis of

performance of different prompting styles.

2 def plot_by_tag(tag, tag_prec , tag_rec, tag_f1, forty, perp, chatpt, gem):
3 # These labels are the types of runs, the first graph uses them on the x-axis. The y-

axis is the performance metric score scale.

4 labels = ["40 shot", "Perplexity AI", "ChatGPT", "Gemini"]

5 plt.plot(labels, tag_prec, "-o", label="Precision")

6 plt.plot(labels, tag_rec, "-o", label="Recall")

7 plt.plot(labels, tag_f1, "-o", label="F1 Score")

8 plt.legend(loc="best")

9 plt.title('Performance on the "' + tag + '" tag with modified prompts')
10 plt.xlabel('Run type')
11 plt.ylabel('Score')
12 plt.show()

13

14 # These labels are the performance metrics, the second graph uses them on the x-axis.

The y-axis is the performance metric scores.

15 labels = ["Precision", "Recall", "F1"]

16 plt.plot(labels, forty, "-o", label="40 shot")

17 plt.plot(labels, perp, "-o", label="Perplexity AI")

18 plt.plot(labels, chatpt, "-o", label="ChatGPT")

19 plt.plot(labels, gem, "-o", label="Gemini")

20 plt.legend(loc="best")

21 plt.title('Performance on the "' + tag + '" tag with modified prompts')
22 plt.xlabel('Metric')
23 plt.ylabel('Score')
24 plt.show()

References

Bsharat S. M., Myrzakhan A., Shen Z., 2024, Princi-
pled Instructions Are All You Need for Questioning
LLaMA-1/2, GPT-3.5/4 (arXiv:2312.16171)

Chen B., Zhang Z., Langrené N., Zhu S., 2023,
Unleashing the potential of prompt engineering in
Large Language Models: a comprehensive review
(arXiv:2310.14735)

Eliot L., 2023, Latest Prompt Engineering Technique In-
ventively Transforms Imperfect Prompts into Superb
Interactions for Using Generative AI, https://www.
forbes.com/sites/lanceeliot/2023/07/26/

latest-prompt-engineering-technique/

-inventively-transforms-imperfect/

-prompts-into-superb-interactions-for/

-using-generative-ai/?sh=5af16bdb2c31

Liu P., Yuan W., Fu J., Jiang Z., Hayashi H., Neubig G.,
2021, Pre-train, Prompt, and Predict: A Systematic
Survey of Prompting Methods in Natural Language
Processing (arXiv:2107.13586)

Reynolds L., McDonell K., 2021, Prompt Programming
for Large Language Models: Beyond the Few-Shot
Paradigm (arXiv:2102.07350)

Tang L., Peng Y., Wang Y., Ding Y., Durrett G.,
Rousseau J. F., 2023, Less Likely Brainstorming: Us-
ing Language Models to Generate Alternative Hy-
potheses (arXiv:2305.19339)

The New Stack 2023, Prompt Engineer-
ing: Get LLMs to Generate the Con-
tent You Want, https://thenewstack.

io/prompt-engineering-get-llms-to/

-generate-the-content-you-want/

Weird Foundation5044 2023, Is it just me or
is Prompt Engineering basically..., https:

//www.reddit.com/r/LocalLLaMA/comments/

182pjyg/is_it_just_me_or_is_prompt_

engineering_basically/

Weng L., 2023, lilianweng.github.io

http://arxiv.org/abs/2312.16171
http://arxiv.org/abs/2310.14735
https://www.forbes.com/sites/lanceeliot/2023/07/26/latest-prompt-engineering-technique /-inventively-transforms-imperfect/-prompts-into-superb-interactions-for/-using-generative-ai/?sh=5af16bdb2c31
https://www.forbes.com/sites/lanceeliot/2023/07/26/latest-prompt-engineering-technique /-inventively-transforms-imperfect/-prompts-into-superb-interactions-for/-using-generative-ai/?sh=5af16bdb2c31
https://www.forbes.com/sites/lanceeliot/2023/07/26/latest-prompt-engineering-technique /-inventively-transforms-imperfect/-prompts-into-superb-interactions-for/-using-generative-ai/?sh=5af16bdb2c31
https://www.forbes.com/sites/lanceeliot/2023/07/26/latest-prompt-engineering-technique /-inventively-transforms-imperfect/-prompts-into-superb-interactions-for/-using-generative-ai/?sh=5af16bdb2c31
https://www.forbes.com/sites/lanceeliot/2023/07/26/latest-prompt-engineering-technique /-inventively-transforms-imperfect/-prompts-into-superb-interactions-for/-using-generative-ai/?sh=5af16bdb2c31
https://www.forbes.com/sites/lanceeliot/2023/07/26/latest-prompt-engineering-technique /-inventively-transforms-imperfect/-prompts-into-superb-interactions-for/-using-generative-ai/?sh=5af16bdb2c31
http://arxiv.org/abs/2107.13586
http://arxiv.org/abs/2102.07350
http://arxiv.org/abs/2305.19339
https://thenewstack.io/prompt-engineering-get-llms-to/-generate-the-content-you-want/
https://thenewstack.io/prompt-engineering-get-llms-to/-generate-the-content-you-want/
https://thenewstack.io/prompt-engineering-get-llms-to/-generate-the-content-you-want/
https://www.reddit.com/r/LocalLLaMA/comments/182pjyg/is_it_just_me_or_is_prompt_engineering_basically/
https://www.reddit.com/r/LocalLLaMA/comments/182pjyg/is_it_just_me_or_is_prompt_engineering_basically/
https://www.reddit.com/r/LocalLLaMA/comments/182pjyg/is_it_just_me_or_is_prompt_engineering_basically/
https://www.reddit.com/r/LocalLLaMA/comments/182pjyg/is_it_just_me_or_is_prompt_engineering_basically/

