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ABSTRACT
A number of research systems have demonstrated the bene-
fits of accompanying each request with a machine-checkable
proof that the request complies with access-control policy
— a technique called proof-carrying authorization. Numer-
ous authorization logics have been proposed as vehicles by
which these proofs can be expressed and checked. A chal-
lenge in building such systems is how to allow delegation
between institutions that use different authorization logics.
Instead of trying to develop the authorization logic that all
institutions should use, we propose a framework for inter-
facing different, mutually incompatible authorization logics.
Our framework provides a very small set of primitives that
defines an interface for communication between different log-
ics without imposing any fundamental constraints on their
design or nature. We illustrate by example that a variety
of different logics can communicate over this interface, and
show formally that supporting the interface does not im-
pinge on the integrity of each individual logic. We also de-
scribe an architecture for constructing authorization proofs
that contain components from different logics and report on
the performance of a prototype proof checker.

Categories and Subject Descriptors
D.4.6 [Security and Protection]: Access controls; H.2.0
[Information Systems]: Security, integrity, and protec-
tion; K.6.5 [Security and Protection]: Authentication
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1. INTRODUCTION
Formal logics are often used to model access-control sys-

tems to achieve high assurance of the systems’ correctness.
An increasingly popular and practical method of using these
logics is instead to implement access control, e.g., as in proof-
carrying authorization (PCA) [3]. In this approach, the cre-
dentials that define a policy are specified in an access-control
logic, and the request to access a resource is accompanied by
a logical proof that the request satisfies access-control policy
and should therefore be granted. This has several benefits,
including (1) shrinking the reference monitor’s trusted com-
puting base (and hence increasing its trustworthiness); and
(2) creating irrefutable evidence, which can be saved in an
audit log, that explains why an access was granted.

In recent years, a variety of authorization logics has been
proposed (e.g., [22, 17, 25, 15, 12]). Although many of them
have similarities, e.g., similar notions of principal or a says

operator to describe the beliefs of principals, in general these
logics differ along many axes. For example, they may differ
in expressive power, the set of axioms they consider appro-
priate for delegation, as well as more fundamental ways such
as whether they are classical or constructive, linear or non-
linear, and what formal properties can be proved of them.

Each such logic has its advantages and disadvantages and
is well suited to describe some set of access-control scenarios.
Hence, different systems are modeled (or built) using differ-
ent logics, and it is unlikely that a single logic will arise and
displace all these individual logics. A particular challenge in
building access-control systems is to allow systems based on
different logics to interoperate, for example, for the purpose
of delegating from one domain or system to another.

Several approaches have been proposed that define a sub-
strate for defining logics with the aim of making these dif-
ferent logics interoperable [3, 23]. However, the substrate
itself typically imposes constraints that can severely restrict
the design of logics that are defined in it.

In this paper, we propose a general framework that allows
two access-control logics (and therefore the systems that use
them) to interoperate while restricting their design far less
than previous approaches. We accomplish this by defining
the interface for communication between two logics in a way
that is independent of the choices made in designing the
logics themselves.

1.1 A Motivating Scenario
We motivate our approach with the following practical ex-

ample. The ACM Digital Library partners with a number of
academic institutions to provide members of those institu-



tions full-text access to documents held by the library. Part
of the agreements between the ACM and its partner insti-
tutions is that determining who is a member of a particular
institution is the responsibility of that institution. For ex-
ample, CMU chooses to count as a member anyone who
connects from an IP address that belongs to the range of IP
addresses provided by the campus network. On the other
hand, UNC counts as a member anyone who has authenti-
cated via UNC’s proprietary single-sign-on mechanism. In
each case, the ACM trusts the institution to use its own
judgment in deciding on the details of how membership is
determined.1

To model this scenario in an access-control logic, one would
typically represent each of the delegations as a logical state-
ment. The chain of delegations giving Alice, a UNC student,
access to doc1 could be represented as

ACM says ((UNC says open(doc1)) → open(doc1))

to indicate that ACM has delegated to UNC the right to
decide when and by whom doc1 may be accessed;

UNC says ((UNC.members says open(doc1)) → open(doc1))

to indicate that UNC gives access to anybody who is part
of UNC.members, a name space controlled by UNC; and

UNC says ((Alice says F ) → (UNC.members says F ))

to indicate that Alice is a member of UNC’s community.
To gain access to doc1, Alice would then combine these

statements into a proof of ACM says open(doc1). Problems
arise, however, if ACM and UNC use different access-control
logics (e.g., instead of the same says operator they use a
saysACM and saysUNC that have different, incompatible def-
initions). In this case, ACM may not understand UNC’s
delegation to Alice and hence the proof that explains why
Alice is authorized to access doc1.

If ACM and UNC agreed on the format of digitally signed
credentials, a trivial solution to this problem might be for
UNC to certify each attempt by Alice to access doc1 by is-
suing a digitally signed credential (UNC signed open(doc1)).
Such a solution, however, has significant disadvantages. For
one, UNC must run an on-line certification service to field
requests from Alice, which may be inefficient or infeasible.
More importantly, the proofs submitted to ACM are much
less informative than before: they no longer contain infor-
mation, which may necessary in case of a breach or audit,
about why UNC allowed Alice access.

1.2 Overview of Our Approach
A framework that presents a comprehensive solution to

interoperability among different logics should address the
following challenges. First, considering the variety of au-
thorization logics that has been proposed and the trend to
develop even more, the framework must be general and flex-
ible so that it can accommodate a large variety of different
logics and not become obsolete when new logics are devel-
oped. Second, the framework should guarantee that delega-
tion respects proper boundaries between different domains.
In particular, it must ensure that a delegation expressed
in one logic, to a domain that uses a different logic, does
not affect the integrity of the logic in which the delegation
is issued, e.g., by rendering it logically inconsistent. Third,

1The ACM’s policy in this example is for illustration and
may not correspond exactly to the policy intended or imple-
mented by the ACM.

the framework must cleanly separate different logics, so that
rules from one logic cannot be erroneously used within a
proof component written in another logic. Fourth, the inter-
face exposed by the framework should be sufficiently narrow
that only minimal burden is placed on each of the logics that
participate in cross-domain delegation. Finally, in situations
when two logics with different expressiveness delegate to one
another, e.g., when one logic can reason about time and the
other cannot, the framework must provide a way to bridge
this gap in expressiveness.

The framework we describe in this paper is an attempt
to address the above concerns. The key idea behind our
framework is to use a universal wrapper to package a proof
component with a definition of its logic. More precisely, we
introduce a new logical primitive, seal(Kdomain, H,F ), that is
used to refer to a formula F specified in the logic defined
by a principal whose public key is Kdomain. To identify the
logic unambiguously, seal includes a cryptographic hash H

of the logic’s definition. This primitive, which is part of the
interface we require all logics to implement, enables ACM
to delegate to UNC via a statement like

ACM saysACM (seal(KUNC, h, UNC says∗ open(doc1))

→ open(doc1))

without knowing the precise definition of says∗ or how it
can be proved in UNC’s logic that UNC says∗ open(doc1).
More precisely, ACM is stating that as long as it is possible
to prove, in UNC’s logic, that UNC believes that access
should be allowed, then ACM will be willing to allow the
access. The proof of ACM saysACM open(doc1) now contains
a subproof of seal(KUNC, h, UNC says∗ open(doc1)) that is
specified in a logic completely independent of the one used
by ACM. This subproof of seal contains the definition of
UNC’s logic so that ACM’s reference monitor can verify that
the certificates issued by UNC and Alice in fact support
the conclusion UNC says∗ open(doc1). Moreover, ACM can
record this proof in an audit log. If something has gone
wrong, ACM will be able to inspect the proof and apportion
blame (and penalties) accordingly.

Issuing the above delegation requires ACM to trust UNC
not just to redelegate access correctly, but also to design a
logic with no bugs that could lead to access being inadver-
tently granted. Hence, ACM would presumably delegate in
this way (1) after manually inspecting UNC’s logic, (2) after
being formally convinced of the validity of UNC’s logic (e.g.,
via mechanically verifiable proofs), or (3) if it trusts UNC to
do the right thing. The less well-founded reasons for trust
(1, 3) are consistent with what ACM is currently forced to
do in reality; we show that informing trust via mechanized
proofs is also feasible in our framework.

1.3 Contributions and Roadmap
This paper makes the following contributions.

• We describe in detail our framework for delegating be-
tween logics using the seal primitive. We specify the
interface that logics need to implement in order to use
this primitive (Section 2.1), and illustrate how several
fundamentally different logics can coordinate in this
way (Section 2.2).

• We show a more flexible version of our framework that
allows several logics to agree on a richer set of formulas
for communicating between each other, while at the



same time further minimizing the interface exported
by our framework (Section 3).

• For several of the logics we consider, we prove formally
that implementing the interface for cross-domain del-
egation does not interfere with desirable properties,
such as consistency, that those logics may have in iso-
lation (Section 5). We extend this argument to explain
why any logic can safely be made compatible with our
framework.

• We describe designs for a checker that can verify proofs
that contain components from multiple logics and a
prover that allows such proofs to be assembled in a
distributed manner (Section 4). We have developed a
prototype implementation of the checker, and we re-
port on its performance (Section 4.1).

1.4 Related Work
The study of logics for access-control gained prominence

with the work on the Taos operating system [2]. Since then,
significant effort has been put into formulating formal lan-
guages and logics (e.g., [2, 4, 10, 25, 1, 20, 21, 22]) that
can be used to describe a wide range of practical scenarios.
The usefulness of mechanically generated proofs led to ef-
forts to balance the decidability and expressiveness of access-
control logics. These efforts resulted in various first-order
classical logics, each of which describes a comprehensive but
not exhaustive set of useful access-control scenarios [4, 18,
24, 25], and more powerful higher-order logics that served
as a tool for defining simpler, application-specific ones [3,
5]. Researchers have recently started to examine construc-
tive authorization logics [15], about which they have proved
metaproperties such as soundness and non-interference, as
well as logics that reason about linearity and time [14, 13].
That there exist so many compelling alternatives among au-
thorization logics makes our exploration of cross-domain del-
egation even more relevant in improving the likelihood of
adoption of logic-based access-control systems.

Most related to our work are proof-carrying authoriza-
tion (PCA) [3] and Alpaca [23]. Appel and Felten’s PCA
was an attempt to develop a framework in which differ-
ent logics could be encoded and could perhaps interoper-
ate [3]. PCA used higher-order logic (HOL) as a universal
substrate in which other logics were defined; by virtue of
being encoded in HOL, these application-specific logics in-
herited some desirable properties, such as consistency, of
the underlying logic. However, this implicitly assumed that
the application-specific logics would share the substrate’s
notion of judgment and fundamental axioms, hence severely
restricting the ways in which these logics could differ (specif-
ically, they would have to be non-linear, classical logics). Al-
though encoding logics with incompatible axioms was possi-
ble, such encodings would not derive any desirable properties
from the substrate or be amenable to interaction with other
application-specific logics.

PCA’s more enduring innovation was that it brought the
proof-carrying paradigm [27, 28] to logic-based access con-
trol. Since Appel and Felten proposed PCA, many systems
have adopted the proof-carrying approach (e.g., [6, 23]).
However, these typically use only one authorization logic
for the entire system and do not consider interoperation be-
tween two or more different authorization logics.

Alpaca is an authentication framework based on PCA
that uses logic to specify widely varying, but interoperat-
ing, public-key infrastructures [23]. Even though Alpaca
allows different principals to have different logical axioms
for reasoning, it still requires a fixed notion of logical judg-
ments and derivation rules for the says connective. As with
PCA, this severely restricts the ways in which specific logics
encoded in the system can differ from each other.

2. A FRAMEWORK FOR CROSS-DOMAIN
DELEGATION

In this section, we describe in detail each component of our
framework for cross-domain delegation. First, we enumer-
ate and discuss the elements of the interface that all logics
that participate in the framework are required to implement
(Section 2.1). Second, we show by example how several fun-
damentally different logics can implement the abstract por-
tions of the interface, e.g., how they translate their local
reasoning into proofs of seal(K, H,F ) and how they can im-
port and make use of a proof of seal(K, H, F ) (Section 2.2).
Finally, we show how our framework can be used for the
example of Alice attempting to access doc1 (Section 2.3).

In order for any amount of interoperation between sys-
tems to be possible, the systems have to agree on a common
syntax in which this interoperation is going to take place.
In our case, we start by defining all the logics and our in-
terface in LF2, a common language for defining logics [19].
The choice of LF is arbitrary; any of several such languages
(e.g., Coq [31] or HOL [16]) would have done as well. It
is important to note that this places no restriction on the
logics themselves with respect to expressiveness, the axioms
they support, or any other property.

2.1 Core Definitions
The key primitive our framework provides is seal(K, H, F ).

Its type, given in LF, is

seal : str → str → form → form.

to indicate that the key and hash arguments are strings, F

is a formula, and the type of seal itself is also a formula.
Our intended use of seal is to allow proofs expressed in

one logic to be packaged together with the definition of the
logic so that they can be verified and used within proofs
of another logic. Continuing the example from Section 1:
to access doc1, Alice will have to submit to ACM a proof,
in ACM’s logic, of ACM saysACM open(doc1). Part of this
proof (namely, that UNC allows the access) will be specified
in UNC’s logic, while the main proof will be specified in
ACM’s logic. Figure 1 sketches a proof that Alice might
submit to ACM. Since ACM doesn’t understand UNC’s logic
and UNC doesn’t understand ACM’s, seal(KUNC, h, UNC
says∗ open(doc1)), which is understood by both logics, will
act as the interface between the two. A sketch of logics
cooperating using our framework is shown in Figure 2. Here,
a thin interface shared by all domains defines the syntax of
packaged proofs like seal(KUNC, h, UNC says∗ open(doc1)).
We include in our framework, in addition to the definition of
seal, a mechanism that will allow a proof in UNC’s logic to be
exported as a proof of seal(KUNC, h, UNC says∗ open(doc1)).
Similarly, we include a mechanism for ACM to import this

2We use an enhanced version of LF that supports strings in
the style of Twelf [30].
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c1, c2, c3

UNC
=⇒ UNC saysUNC open(doc1)

c1, c2, c3

UNC
=⇒ UNC says∗ open(doc1)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
· =⇒ seal(KUNC, h, UNC says∗ open(doc1))

·
ACM
=⇒ seal(KUNC, h, UNC says∗ open(doc1))

·
ACM
=⇒ ACM saysACM (seal(KUNC, h, UNC says∗ open(doc1)))

.

.

.

c4

ACM
=⇒ ACM saysACM (seal(KUNC, h, UNC says∗ open(doc1))

→ open(doc1))

c4

ACM
=⇒ ACM saysACM open(doc1)

where c1 = UNC signedUNC ((Alice saysUNC open(doc1)) → (UNC.members saysUNC open(doc1)))
c2 = Alice signedUNC (open(doc1)),
c3 = UNC signedUNC (UNC.members saysUNC open(doc1) → open(doc1)),
c4 = ACM signedACM (∀h.(seal(KUNC, h, UNC says∗ open(doc1)) → open(doc1)))

Figure 1: Sketch of Alice’s proof of access to doc1. The judgment c1, . . . , cn

ACM

=⇒ F means that using credentials
c1, . . . , cn it is possible, in ACM’s logic, to derive a proof of F . The dotted line denotes an application of export

and the double line denotes an application of import.

proof into its own logic so that it can be used toward the
larger proof, as well as to verify that this proof of seal is valid
given the set of digitally signed certificates that accompanies
it. This verification will implicitly include verification that
the proof of UNC says∗ open(doc1) is valid in UNC’s logic.

It follows, then, that although ACM and UNC may not
agree on the details of whether or how something can be
proved, and even on whether a particular formula is a valid
statement in the logic, they have to agree that there is a
notion of proving a formula, and that such proofs are based
on digitally signed certificates that represent components of
a security policy. To allow each logic to decide on the content
of digital certificates (i.e., what formulas they may carry),
we define certificates as a 3-tuple of strings: the signer’s
public key, the hash of the logic in which the content of the
certificate is specified, and the (uninterpreted) content.

cert : type.
cert-signed : str → str → str → cert.
cert-list : type.
cert-nil : cert-list.
cert-cons : cert → cert-list → cert-list.

These definitions establish that certificates have the form
cert-signed(key,hash,content), that certificates can be mar-
shaled (using cert-cons) into a list (cert-list) and that the list
may be empty (cert-nil). Modeling the content of the certifi-
cate as a string makes it possible to have a shared notion of
a certificate without placing any constraints on the specific
formulas each logic may choose to allow certificates to carry.
In general, we will leave such decisions to the individual log-
ics and we will not require that the different logics agree in
their implementations.

The next set of definitions codifies the notion of proving
that a formula is true.

pf
UNC

: UNC says* open(doc1) = ...

pf
S
: seal(k

UNC
, h, UNC says* open(doc1)) = ...

pf
ACM

 = ... pf
S
...

UNC’s logic ACM’s logic

export
import

CMU’s logic

. . . . . . 

Figure 2: An overview of the xDomain framework.

ctx : type.
ctx-nil : ctx.
form : type.
prove : ctx → form → type.

These definitions establish that everyone must agree that a
formula (of type form) is proved based on the assumptions
in some context (of type ctx). In other words, an object of
type prove(c,f) is a proof that the assumptions c imply that
the formula f is true. As with the content of certificates, we
do not specify valid shapes for formulas or contexts, except
that a context may be empty (ctx-nil).

Conceptually, we can divide the procedure of producing a
proof of seal(KUNC, h, UNC says∗ open(doc1)) into two stages:
the first is to construct a proof of UNC says∗ open(doc1); the
second is to package this proof with references to the proper
logic definition and the certificates that support the proof.

check : cert-list → str → {c : ctx}{f : form}prove c f → type.
local : cert-list → str → form → type.

export : {g : cert-list}{h : str}{f : form}{c : ctx}{e : prove c f}
check g h c f e →
local g h f.

The first definition, check, specifies the type for a predi-
cate that relates digitally signed certificates (cert-list) to the
logical context c used to prove a formula f.3 Abstracting
the relationship between certificates and the logical context
allows our framework to work with logics that use different
definitions of formulas that certificates may carry. We will
show examples of such in Section 2.2. check takes five ar-
guments: the list of certificates, the hash of the logic, the
logical context, the formula f to be proved, and the proof of
f under context c. By defining a predicate of this type, UNC
will provide a link between the digitally signed certificates
that will be passed to ACM and the logical context that was
used to prove UNC says∗ open(doc1).

Once a proof has been packed into a self-sufficient package
with its certificates, it has the type local(g,h,f), where g is
the list of certificates, h is the hash of the definition of the
local logic, and f is the formula whose proof local represents.

3The notation {x:T1}T2 describes a function that takes an
argument of type T1 and produces a type T2. When x is not
free in T2, T1 → T2 is the shorthand for {x : T1}T2.



This encapsulated proof is produced by the export function,
whose type is shown above.

Next we define import, which is used to import an encap-
sulated proof into a different logic so that it can be used to
make inferences in that logic.

import : {k : str}{u : str}{h : str}{g : cert-list}{f : form}
local g h f →
prove ctx-nil (seal k h f).

import takes as arguments the public key k of the logic’s
author, e.g., KUNC; the URL u from which the logic definition
can be downloaded; the hash h of the logic defined at this
URL; the list of certificates g that were used in constructing
the proof; the proved formula f; and the package produced by
exporting a proof of f. It produces the proof of seal(k, h, f).

Finally, we define the minimal set of formulas f that can
appear in seal(k,h,f). Later, in Section 3, we will describe
how to generalize our framework to make it unnecessary to
globally define this set of formulas, and to allow sets of indi-
vidual logics to communicate with sets of formulas capturing
other notions (e.g., delegation).

says∗ : str → form → form.
open : str → str → form.

These definitions specify that says∗ takes as arguments a
string that represents a principal’s public key and a formula
that represents that principal’s belief, and is itself a formula.
The only other formula is open, which takes as parameters
two strings: one to identify the resource to access, the other
(which we will typically omit for readability) a nonce to
ensure that proofs of access cannot be replayed. With these
definitions in place, the formula seal(KUNC, h, KUNC says∗
open(doc1)) is finally well defined.

The full interface that we have described piecemeal in this
section is shown in a companion technical report [9].

2.2 Defining Individual Logics
In addition to including the shared components described

in Section 2.1, the definition of each logic needs to provide
local instantiations of constructs such as prove and check.
We will illustrate how these constructs can be implemented
in several different logics. The first example is a construc-
tive authorization logic (Section 2.2.1); the second is a con-
structive, linear authorization logic (Section 2.2.2); the last,
detailed in our companion technical report [9], is a construc-
tive, timed authorization logic. Each of the three examples
is representative of a category of access-control logics (al-
though there are other categories, as well). The distinct
formal feature of the logic in each example is that each uses
a different form of logical judgment. For all other logics that
use the same form of judgment, the method of implementing
the global interface will be similar to what we show here.

These examples also help demonstrate the generality of
our framework and show that providing local instantiations
of the abstract parts of the interface is fundamentally simi-
lar across different logics. The linear and timed authoriza-
tion logics are more expressive than the constructive au-
thorization logic with which they interoperate, and so these
examples also illustrate how our interface helps bridge the
different levels of expressiveness.

2.2.1 A Constructive Authorization Logic
Figure 3 shows the LF encoding of a relatively standard

authorization logic, which we presume ACM uses in our run-

1 %% logical connectives
2 acm/imp : form → form → form.
3 ...
4 %% context
5 acm/form-list : type.
6 acm/form-nil : acm/form-list.
7 acm/form-cons : form → acm/form-list → acm/form-list.
8 acm/context : acm/form-list → ctx.
9

10 %% check certs
11 acm/check certs : cert-list → str → ctx → type.
12 acm/check base : check G H C F E
13 ← acm/check certs G H C.
14

15 %% parsing functions from string
16 %% in the certificates to abstract syntax
17 acm/parse : string → form → type.
18 ...
19 %% check certs is simply a map from a list of certificates
20 %% to a list of formulas
21 acm/check certs base :
22 acm/check certs cert-nil H (acm/context acm/form-nil).
23 acm/check certs init :
24 acm/check certs
25 (cert-cons (cert-signed K H (const S)) Certs) H
26 (acm/context (acm/form-cons (acm/signed K F) Ctx))
27 ← acm/check certs Certs H (acm/context Ctx)
28 ← acm/parse S F.
29

30 acm/ctx-nil-weak :
31 prove (ctx-nil) (seal K H F) →
32 prove (acm/context acm/form-nil) (seal K H F).
33

34 %% inference rules
35 ...

Figure 3: Definition of ACM’s logic.

ning example. We prefix the definitions local to ACM’s logic
with acm/. Starting with Line 2, the connectives of ACM’s
logic are defined. Here we only show one connective, impli-
cation: imp A B is a formula if both A and B are formulas.
Other connectives are defined similarly. The type for formu-
las used here is the type form declared in the shared interface.
In other words, ACM’s logic provides local instantiations of
the abstract concept formulas.

Next, starting from Line 4, we define ACM’s logical con-
text. In this particular implementation, the logical context
is implemented as a list of formulas. acm/form-list is the type
for a list of formulas. acm/nil is the empty list and acm/cons
concatenates one element with a list to produce a new list.
Line 8 connects a list of formulas to the logical context de-
fined in the interface. acm/context is a construct that wraps
up a list of formulas and produces a logical context under-
stood by the interface. Line 11 defines the type for ACM’s
check predicate, which maps the list of certificates to a log-
ical context. In this particular implementation, there is a
straightforward mapping between the list of formulas in the
logical context and the list of certificates. acm/check certs
takes as arguments the list of certificates, the logical con-
text, and the hash of ACM’s logic. acm/check base on Line
12 has a similar purpose as acm/context on 8: it is used to
link ACM’s acm/check certs with the check function defined
in the interface. On Line 17, we define a parse function that
converts a string to a valid formula in ACM’s logic. Parsing
is used for checking the list of certificates. On Lines 21–29,
we instantiate the acm/check certs predicate. The first case



handled by the function is when the lists are empty. The
second case is the recursive case where we check that the
heads of the lists correspond to each other, after which we
recursively check the tails of the lists.

The above-described additions to ACM’s local logic allow
ACM’s logic to smoothly interface with import and export.
In some sense, the local details are wrapped up using con-
structs such as acm/context and acm/check base to produce
an object of the type specified in the interface. Lines 30–
32 define a rule to inform ACM how ACM’s local logic can
make use of the sealed formula. The reason for having this
rule is that the proof of seal is an abstract object provided
through the interface that needs to be rewritten in ACM’s
local terms before it can interact with other proofs in ACM’s
logic. The rest of the logic definition is composed of defini-
tions of derivation rules, which are standard.

In this definition, ACM uses the notion of judgment (prove)
from the interface to formulate its own logical rules. This is
legitimate; however, ACM could also maintain its own for-
mulation of the logical rules and add wrappers to translate
a proof in ACM’s logic to an object of type prove C F. We
show an example of such wrappers for an authorization logic
with explicit time in a companion technical report [9].

2.2.2 A Linear Authorization Logic
Let us assume that CMU uses a linear authorization logic,

which enforces the property that some credentials can be
used in a proof only once. A fragment of CMU’s logic defi-
nition is shown in Figure 4.

The structure of the logic definition is very similar to that
of ACM’s non-linear logic. The main difference is that the
logical context is no longer a list of formulas, but a pair of
lists of formulas. One element of the pair represents the
linear logical context where contraction and weakening are
not allowed and the other is an unrestricted context where
contraction and weakening are permitted.

Relating certificates to the logical context becomes more
complicated, too. Some certificates correspond to assump-
tions in the linear context and others correspond to as-
sumptions in the unrestricted context. Following the ap-
proach of Bowers et al. for implementing a linear authoriza-
tion logic [11], a linear assumption cmu/signed K F corre-
sponds to two certificates: cert-signed K H linear(F, K′) and
cert-signed K′ H valid(K, F, hash e). The second certificate
is created by a ratifying agency attesting that the “linear”
credential (cmu/signed K F) that is used linearly in a proof
e (with hash hash e) had not been used in previous proofs.
ACM and CMU can have their own interpretations of logi-
cal contexts and checks; the details of how this is done are
hidden below the interface.

Finally, the cmu/trans-says∗ rule allows CMU to prove
says∗ K F if CMU proves cmu/says K F. Though we did not
show it in Figure 3, ACM’s logic contains a similar rule for
elevating acm/says to says∗. cmu/ctx-nil-weak is the logical
rule stating that if seal is proved under an empty context,
then, in CMU’s logic, seal L H F is proved. This is similar to
the rule in ACM’s logic except now the context is different.

2.3 A Cross-domain Access Control Example
In this section, we explain how to use our framework to

put together a proof that takes advantage of cross-domain
delegation. We continue with the ACM Digital Library ex-
ample, this time considering how a user, Bob, in the CMU

1 %% list of formula defs and operations
2 cmu/form-list : type.
3 cmu/form-nil : cmu/form-list.
4 cmu/form-cons : form → cmu/form-list → cmu/form-list.
5

6 %% logical context for linear logic,
7 %% the context is a pair of formula lists
8 cmu/context : cmu/form-list → cmu/form-list → ctx.
9

10 %% logical connectives
11 cmu/imp : form → form → form.
12 ...
13 %% parse certificates
14 cmu/parse : string → form → type.
15 ...
16 %% check certificates
17 cmu/check certs : cert-list → str → ctx → str → type.
18

19 cmu/check base : check G H C F E
20 ← cmu/check certs G H C (cmu/hash E).
21

22 %% linear formula (cmu/signed K goal) needs two credentials
23 %% 1. cert-signed K H linear(goal, K′) and
24 %% 2. cert-signed K′ H valid(K, goal, hash e)
25

26 cmu/check certs lin :
27 cmu/check certs
28 (cert-cons (cert-signed K HD (const S))
29 (cert-cons (cert-signed K′ HD (const S′))
30 Certs))
31 HD
32 (cmu/context U (cmu/form-cons (cmu/signed K F) Ctx))
33 H
34 ← cmu/check certs Certs HD (cmu/context Ctx L) H
35 ← cmu/parse/lin S K′ F
36 ← cmu/parse/valid S′ (cmu/signed K F) H.
37 ...
38 cmu/trans-says∗ : prove C (cmu/says K F)
39 → prove C (says∗ K F)
40 cmu/ctx-nil-weak : prove (ctx-nil) (seal K H F)
41 → prove (cmu/context cmu/form-nil cmu/form-nil)
42 (seal K H F).
43

44 %% Logic inference rules
45 ...

Figure 4: Definition of CMU’s logic.

domain can access a document. In the example scenario,
ACM’s policy states that ACM will grant access to a doc-
ument if one can show that CMU will grant access to the
document. ACM uses a constructive authorization logic,
and CMU uses a constructive linear logic (defined in Sec-
tions 2.2.1 and 2.2.2).

Before going into the details of the proof, we introduce
two logical formulas in ACM’s and CMU’s logics that allow
delegations to be made more succinctly. These new formulas
are just syntactic sugar: they make it more convenient to
write proofs, but are implemented merely as definitions on
top of the respective authorization logics.

The first new formula we will use is acm/delegate seal.
It takes as arguments the recipient of a delegation and the
name of the document to which access is being delegated,
and is defined in terms of more basic formulas as follows.

acm/delegate seal delegatee doc =
forall h, (seal delegatee h (says∗ delegatee (open doc)))

→ (open doc)



1 pf : prove ctx-nil
2 (seal (const ”k acm”)
3 (const ”acm-logic-hash”)
4 (says∗ (const ”k acm”) (open (const ”doc2”))))
5 = import (const ”k acm”)(const ”acmurl”)
6 (const ”acm-logic-hash”)
7 %% certificates
8 (cert-cons (cert-signed
9 (const ”k acm”)

10 (const ”acm-logic-hash”)
11 (const ”(acm/delegate seal cmu (doc2))”))
12 cert-nil)
13 %% formula to prove
14 (says∗ (const ”k acm”) (open (const ”doc2”)))
15 (export (cert-cons ...) %% certificates, same as above
16 %% formula to prove
17 (says∗ (const ”k acm”) (open (const ”doc2”)))
18 (const ”acm-logic-hash”)
19 %% logical context
20 (acm/context
21 (acm/form-cons
22 (acm/signed (const ”k acm”)
23 (acm/delegate seal (const ”k cmu”) (const ”doc2”)))
24 acm/form-nil))
25 (acm/says (const ”k acm”) (open (const ”doc2”)))
26 %% proofs
27 (acm/trans-says∗
28 ...
29 (acm/ctx-nil-weak
30 %% a subproof of seal (cmu, h, cmu says∗ open doc2)
31 (import (const ”k cmu”) (const ”cmuurl”)
32 (const ”hash of cmu logic”)
33 (cert-cons %% certificate
34 ... )
35 (says∗ (const ”k cmu”) (open (const ”doc2”)))
36 (export
37 (cert-cons ...) %% same certificates as above
38 (const ”hash of cmu logic”)
39 (says∗ (const ”k cmu”) (open (const ”doc2”)))
40 %% logical context
41 (cmu/context
42 ... )
43 (says∗ (const ”k cmu”) (open (const ”doc2”)))
44 %% proofs
45 (cmu/trans-says∗ ...)
46 %% cmu check
47 (cmu/check base ...)
48 )))))
49 )
50 %% check that the context match the certificates
51 (acm/check base (...))).

Figure 5: A proof with cross-domain delegation.

Second, we define cmu/delegate similarly.

cmu/delegate delegatee doc =
(cmu/says delegatee (open doc)) → (open doc)

We now proceed to describe the construction of the proof
that will allow Bob access to an ACM document. ACM
creates the following credential to express its policy that
access is being delegated to CMU.

acm/signed (const ‘‘k acm”)
(acm/delegate seal (const ‘‘k cmu”)

(const ‘‘doc2”))

CMU’s policy is to delegate one-time access to a user Bob.

cmu/signed (const ‘‘k cmu”)
(cmu/delegate (const ‘‘k Bob”) (const ‘‘doc2”))

Bob wants to open the document doc2 and hence issues a
credential to indicate his desire to do so.

cmu/signed (const ‘‘k Bob”) (open (const ‘‘doc2”))

Instead of creating just a proof p (as we showed informally
in Figure 1) of

acm/says (const ‘‘k acm”) (open (const ‘‘doc2”))

Bob must use p to produce a proof pf of

seal (const ‘‘k acm”) (‘‘acm-logic-hash”)
(says∗ (const ‘‘k acm”) (open (const ‘‘doc2”)))

The advantage of pf over p is that part of pf is an explana-
tion of how the digitally signed certificates supplied as part
of pf match the logical context used to prove p. This makes
it possible for pf to be interpreted by any reference monitor;
conversely, to interpret p, a reference monitor would need
to understand the mapping of certificates to context that is
specific to ACM’s logic.

We show the key parts of Bob’s proof in Figure 5. The
formula we are trying prove is on Lines 2–4. The proof of
this formula starts at Line 5. Since we are trying construct
a proof of seal (...) the proof uses import (Line 5) and export
(Line 15). Lines 8–12 are the logical descriptions of the
certificate that states ACM’s policy. The logical context
of the proof in ACM’s logic contains exactly the formulas
representing ACM’s policy. Lines 27–49 are a proof of

says∗ (const ‘‘k acm”) (open (const ‘‘doc2”))

specified in ACM’s logic. The last argument to import (Line
5) is the check on Line 51 that maps ACM’s certificates to
ACM’s logical context.

Now let us examine the structure of the proof between
lines 27 and 49. The outermost rule, acm/trans-says∗, takes
a proof of (acm/says (const ‘‘k acm”) (open (const ‘‘doc2”)))
and produces a proof of (says∗ (const ‘‘k acm”) (open (const
‘‘doc2”))). This illustrates how to translate a proof of a
formula that is specific to ACM’s logic to a proof of a formula
that is known to the common interface.

On line 29, the acm/ctx-nil-weak rule takes a subproof of

prove (ctr-nil)
seal (const ‘‘k cmu”) (const ‘‘hash of cmu logic”)

(says∗ (const ‘‘k cmu”) (open (const ‘‘doc2”))))

known as an abstract object from the interface and inter-
prets it as a logical statement that is known to ACM’s logic:

prove (acm/context acm/form-nil)
seal (const ‘‘k cmu”) (const ‘‘hash of cmu logic”)

(says∗ (const ‘‘k cmu”) (open (const ‘‘doc2”))))

The subproof between Lines 30 and 48 is again constructed
using import and export, but this time using CMU’s logic.
The proof structure is very similar to the proof between
Lines 5 and 51. This time, the mapping between the certifi-
cates and the logical context is more complicated because
the context is linear.

3. PAIR-WISE SHARING
In the framework we proposed in the previous section, we

assumed that all participants implement the same interface.
While most of the interface is sufficiently generic that it is
reasonable for it to be fixed for all participants, it is less rea-
sonable to predefine the set of formulas, such as says∗ and



open, that are used for delegation. For example, suppose
that IEEE decides to use our framework to allow institutions
access to its journals in electronic form. IEEE could have a
similar policy as ACM, stating that if CMU allows access to
a document to a principal, then IEEE will also allow that
access. Suppose, further, that IEEE distinguishes between
granting regular access to journals (via open) and granting
administrative access (admin); the latter allows posting of
comments in online forums. Now, IEEE’s policy for grant-
ing administrative access is stated as follows, provided that
admin is shared between IEEE and CMU.

ieee/sign (const ‘‘k ieee”)
(forall doc,

seal (const ‘‘k cmu”) H
(says∗ (const ‘‘k cmu”) (admin (const ‘‘doc”)))

→ admin (const ‘‘doc”))

Notice that admin was not one of the shared formulas
CMU previously knew about, since it was not specified in
our framework’s interface. This suggests that there is a need
for our framework to support different interfaces for different
groups of domains, so that individual domains can delegate
with sufficient expressiveness to fulfill their needs (e.g., dis-
tinguishing between access via admin and access via open).
Fortunately, the only part of the framework’s interface that
needs to be customized is the part that defines the formulas
that can be used to delegate between logics.

In this section, we generalize our framework to deal with
cross-domain delegation between groups of principals; we
call this pair-wise cross-domain delegation.

In pair-wise delegation, there is a distinction between glob-
ally shared and pair-wise shared components. The interface
(import/export) is still globally shared, but the common set
of formulas for delegating (open, says∗, admin) is pair-wise
shared. That is, the set of formulas used for delegating be-
tween ACM and CMU is different from the set used between
IEEE and CMU. Moreover, this requires each individual
logic to implement one stub per set of pair-wise delegation
formulas. For instance, suppose CMU and ACM agree to
use says∗, while CMU and IEEE agree to use says+. As a
result, CMU needs to implement

cmu/trans-says∗ : prove C (cmu/says K F) →
prove C (says∗ K F)

to interface with ACM; and

cmu/trans-says+ : prove C (cmu/says K F) →
prove C (says+ K F)

to interface with IEEE. However, the two above rules are
never both required at the same time; which rule is needed
depends on whether CMU is communicating with ACM or
IEEE. More concretely, CMU’s packaged proof, created us-
ing import and export, needs to specify which subset of CMU’s
logic definition is needed to interpret the proof.

This suggests that we need to enrich the import inter-
face to specify not just the definition of the individual logic
used to create the proof that is being imported, but also the
pair-wise shared interface agreed upon by the importer and
exporter. Hence, we revise import to specify, by the hash of
its contents, a specific pair-wise interface.

import : {k : str}{u : str}{h : str}{hpw : str}
{g : cert-list}{f : form}
local g h f →
prove ctx-nil (seal k h f).

Once both the individual logic (e.g., CMU’s) and the pair-
wise interface (e.g., the one shared by IEEE and CMU) have
been identified, the pair uniquely identifies the set of addi-
tional definitions that need to be loaded (e.g., CMU’s def-
initions for implementing the pair-wise interface shared by
IEEE and CMU). To make these components easy to locate
when importing a proof, we decide on the following conven-
tion: given an import statement like import k u h hpw ..., the
definition of k’s logic can be found at u/main, the pair-wise
interface at u/pairwise/hpw, and the implementation of the
pair-wise interface at u/stubs/hpw.

4. CHECKING AND BUILDING PROOFS
In addition to developing an interface that allows different

logics to interoperate, our goal in designing our framework
was to make it possible for reference monitors to use a sin-
gle, logic-independent proof checker to verify the validity of
proofs that are submitted to it. We describe such a checker
in Section 4.1.

A secondary, but important, concern is how proofs of ac-
cess are generated. For our framework to be practical, it
must support the ability to generate proofs of access in an
automated way. We discuss considerations relevant to auto-
mated proof generation and a preliminary design of a prov-
ing framework in Section 4.2.

4.1 Checker
For simplicity, we will describe a checker that implements

the simplified version of our framework as defined in Sec-
tion 2. The enhancements to this checker required to check
proofs specified in the full version of our framework (as de-
scribed in Section 3) are straightforward.

The interesting proofs in our framework are composed of
nested subproofs that are specified in different authorization
logics. Following the example of Section 2.3, a proof speci-
fied in ACM’s logic may contain a subproof in CMU’s logic.
The border between the two parts is composed of subsequent
applications of the export and import rules. The application
of the export rule and the subproofs to which it is applied are
all in CMU’s logic; the application of the import rule and the
remainder of the enclosing proof to which it contributes are
specified in ACM’s logic. Since this separation is, by design,
clean, the main challenge in designing and building a proof
checker is to provide a mechanism that will ensure that each
component of a proof that is specified in a particular logic
will be verified with respect to the definition of that logic.

As an occurrence of the import rule in a proof is the indi-
cator that a subproof will be specified in a different logic, we
enhance our standard LF checker to specially interpret such
occurrences. More specifically, when our checker encounters
a proof component like import key url hash cert-list fmla pf,
it will perform the following steps.

1. Download from url the definition of the logic used in key’s
domain.

2. Verify that the downloaded logic definition is signed with
the private key that corresponds to the (public) key and
that the hash of the logic definition matches hash.

3. Verify that each certificate specified in cert-list corresponds
to a valid binary certificate packaged with the proof.

4. Create a new instance of a checker, and initialize it with
the downloaded logic definition.

5. Use the newly created instance of the checker to check pf.



Table 1: Checker costs in example of Section 2.3
in ms (averaged over 50 runs on an Intel 2.83GHz
Core 2 Quad processor with 4GB RAM; fetches oc-
cur over 100Mb/s LAN).

Loading ACM logic 10

Fetching 3

Parsing 6

Hashing (SHA1) 1

Loading CMU logic 6

Fetching 1

Parsing 4

Hashing (SHA1) 1

Proof loading 37

Certificate parsing 7

Certificate verification 3

Typechecking (beyond parsing logics) 21

Total 77

Failure to complete any step will result in the overall proof
being rejected.

Since we use LF as the language in which we define our
framework and the logics that make use of it, the bulk of
the checker for verifying logical proofs in our framework is
a standard LF checker. In fact, to verify proofs that are
specified in a single logic and do not use the import rule, an
off-the shelf LF checker is sufficient.

For our prototype checker, example costs for these steps in
checking the proof of the example in Section 2.3 are shown
in Table 1. Since downloading a logic definition, verifying it,
and using it to initialize a fresh checker is time-consuming,
we can as an optimization maintain instantiated checkers for
later use in checking proofs specified in the same logics.

4.2 Prover
In this section, we explore the design space for a prover

that can automatically generate proofs using the cross-domain
delegation framework. Again, we use ACM’s Digital Library
as example. In our framework, if Alice, a member of CMU’s
domain, wants to access ACM’s document, she needs to cre-
ate a proof that (ACM saysACM open(doc2)). As discussed,
this proof contains a part specified in ACM’s logic and a
subproof in CMU’s logic. Since this prover has to search
for proofs in different domains, it inherits many challenges
known for distributed proving (e.g., [26, 7, 8]), including
where to locate useful credentials that belong to each do-
main, how to usefully interact with the user, and what needs
to be communicated between each domain-specific prover.
While we can use many of the ideas from existing distributed
provers, there are also problems that are specific to our
framework due to the heterogeneity of the domains. For
example, ACM and CMU could use wildly different proof
search strategies: they could use forward reasoning, or back-
ward chaining, or even some distributed proving algorithm.
The challenging question for developing a prover for this
cross-domain framework is to decide on the minimal set of
restrictions for each domain’s native theorem prover that
will make cross-domain proof search feasible.

In our proposed prover design, we assume that each do-
main that participates in cross-domain delegation maintains
a clearinghouse from which any member of that domain can
download (1) provers for foreign domains that have dele-
gated to the local domain and (2) the certificates by which

the foreign domains delegate to the local domain. For our
example, this means that CMU will have a downloadable
copy of ACM’s prover and the credential by which ACM
delegated to CMU. The goal of making provers portable in
this manner is to permit Alice to engage in the equivalent
of one of the previously studied approaches to distributed
proving [26, 7, 8], except that now multiple provers will all
be co-located on Alice’s computer.

In our scenario, the proof goal is passed from one prover
to another when a prover determines that the goal is spec-
ified in a different logic from that implemented by the first
prover. For example, Alice will embark on generating a proof
of (ACM saysACM open(doc2)) by locally running a copy of
ACM’s prover and asking it to prove this goal. ACM’s prover
will eventually attempt to prove the subgoal

seal(K, H, CMU says∗ open(doc2)),
at which point it will detect that this subgoal is specified in
CMU’s logic and will invoke CMU’s prover.

In general, whenever a prover encounters a subgoal of
seal(K,H,F), it needs to send the proof obligation of F to K’s
prover. We can view F as a communication channel between
two logics. If F is allowed to contain unification variables, K’s
prover is obliged to produce a unification of those variables.
This gives rise to a problem: since unification variables are
considered part of a prover’s state, and are now being im-
plicitly shared across provers, we have widened the interface
on which logics (and their provers) have to agree. Hence,
we restrict F to be closed (i.e., not contain unification vari-
ables). Although this is in general a significant restriction,
for proofs of the nature we consider here, this restriction is
not a problem, since CMU is only asked to prove statements
like CMU says∗ open(doc2), which is closed.

5. FORMAL PROPERTIES
Authorization logics are useful only if they are correct.

To ensure correctness, theorems are often proved to demon-
strate that logics have certain desirable properties. The
most common such property is consistency, meaning that
the logic cannot prove false under no assumptions.

It is important that the interface defined by our framework
respects the consistency of the individual authorization log-
ics that implement the interface. We explain in this section
why the interface we describe in Section 2 indeed preserves
the consistency of the individual authorization logics. More-
over, we have formally proved theorems stating that the
interface maintains the consistency property for the three
authorization logics we discussed in Section 2.

Interfacing with the framework introduces new logical rules
such as ctx-nil-weak (see Figure 3) into the local authoriza-
tion logic of each participant in cross-domain delegation. At
a high-level, the reason that adding new rules in a local logic
preserves the consistency of the logic is because the sealed
formulas are used only atomically. The local logic does not
reason about seal(L, H, F) in the same way that it does about
formulas such as (A and B), where if (A and B) is true, then
both formula A and formula B can be assumed to be true.
A logic might have inference rules that give meaning to the
subcomponents of the formula A and B. When a proof of
formula A is needed, a proof of A and B will do. On the
other hand, seal(L, H, F) is treated as an atomic formula,
just like an atomic predicate such as open. No logical rules
give additional meaning to these atomic constructs. A proof
of seal(L, H, F) can only be used in the places where a proof



of seal(L, H, F) is needed; it cannot be used to help create a
proof of F or other unrelated formulas. Adding ctx-nil-weak
does not add additional proving power to the logic; therefore,
if false could not be proved without ctx-nil-weak, it cannot
be proved with it, either.

One way to prove the consistency of a logic defined in the
style of sequent calculus is to prove the cut-elimination theo-
rem. We have proved cut-elimination theorems for the logics
formalized in Section 2.2 before they were augmented to im-
plement the cross-domain interface. We need to prove that
the cut-elimination theorems still hold after the addition of
the new rules required by the cross-domain interface.

We can indeed prove that, because in any logic that im-
plements our interface there will be only one rule that can be
used to infer seal(L, H, F), and no rule that takes seal(L, H, F)
as a premise. If a proof happens to use seal(L, H, F) as an
intermediate step (via the cut rule), then we can eliminate
this use of the cut rule by pushing the use of cut further up
in the proof tree. If we repeat this step, we will in the end
eliminate the use of seal(L, H, F) as an intermediate step al-
together. In more technical terms, this means that in a proof
of cut-elimination, the cases involving seal(L, H, F) can only
be commutative or init cases [29]. Consequently, the cut-
elimination proof for a local logic before it is augmented
with rules to implement our interface would already have
covered the proof cases that are relevant for seal(L, H, F).
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