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Abstract. Auditing system logs is an important means of ensuring systems’ security in situations
where run-time security mechanisms are not sufficient to completely prevent potentially malicious ac-
tivities. A fundamental requirement for reliable auditing is the integrity of the log entries. This paper
presents an infrastructure for secure logging that is capable of detecting the tampering of logs by pow-
erful adversaries residing on the device where logs are generated. We rely on novel features of trusted
hardware (TPM) to ensure the continuity of the logging infrastructure across power cycles without
help from a remote server. Our infrastructure also addresses practical concerns including how to han-
dle high-frequency log updates, how to conserve disk space for storing logs, and how to efficiently
verify an arbitrary subset of the log. Importantly, we formally state the tamper-proofness guarantee
of our infrastructure and verify that our basic secure logging protocol provides the desired guaran-
tee. To demonstrate that our infrastructure is practical, we implement a prototype and evaluate its
performance.

1 Introduction

Run-time security mechanisms often are not sufficient to completely prevent malicious activities. Under such
circumstances, auditing system logs is an important means of ensuring systems’ security. A fundamental
requirement for reliable auditing is the integrity of log entries. Adversaries may benefit significantly from
tampering with log entries; for instance, malware may erase log entries recording its installation or presence
in order to avoid detection and subsequent removal by anti-malware software. Or, an authorized insider may
view private customer data in violation of company policy, then remove evidence of his malfeasance from
the access log so that audits do not detect it.

There has been much work on developing tamper-proof logging protocols [1–5]. These protocols aim to
attest to the integrity of logs as well as detect tampering of logs by the adversary. Some provide tamper-
proofness by online commitments of current log state [3]; others store logs in secure memory [4]. Some use
the TPM monotonic counter to attest to the integrity of every log entry [2]; others use hash chain based
approach [1]. However, these schemes do not meet the stringent requirements for tamper-proof logging in
today’s computing environment. Next we explain these requirements through a realistic scenario.

Consider a scenario, where the organization, by means of auditing, aims to enforce policies such as,
“confidential documents stored on company-owned devices must never be transferred to an external USB
storage device.” The organization mandates that all employee devices, such as laptops and iPads, run an
application that monitors actions relevant to the policy. The logging infrastructure needs to protect audit
logs on these devices. Since many of these devices are often offline, the first requirement is that the integrity
of the audit log is not dependent on continuous connectivity to a central server. Adding a log entry should not
require connection to a server. Further, the device could power off, then restart with no connectivity to the
network (e.g., the device is turned on during flight). Consequently, a second requirement is that the logging
infrastructure needs to preserve its continuity across power cycles without contacting a remote server.

It is difficult to segregate security-relevant events from security-irrelevant ones. The logging process is
often required to capture a large variety of events from many processes (e.g., OS, browser). Therefore, a third
requirement is that logging should be fast enough to support high-frequency log updates. Finally, devices
have only limited disk space. The last requirement is that the logging infrastructure should work with limited
disk space for storing logs.

All aforementioned schemes lack at least one of the features required for our application: they lack
support for either offline tamper-proofness [3, 5]; or large logs on the order of gigabytes [4]; or continuous



logging across power cycles [1, 6]; or high frequency logging [1, 2, 4, 7, 8]. In this paper, we present a logging
infrastructure that satisfies all of these requirements. The security guarantee of our logging infrastructure is
based on a forward integrity adversary model [9], where the adversary can obtain administrative privileges
and take complete control of the system. Our infrastructure ensures that the adversary’s actions leading up
to the action of compromising the machine will be logged and cannot be tampered with, and therefore, can
be detected.

Our logging infrastructure is mainly composed of two entities: a logger and a verifier. Initially, the logger
and the verifier share a secret key. As the system executes, the logger generates a new key for every new
log entry, and uses the key to compute the HMAC of the log entry in order to attest to the log entry’s
integrity. The key sequence is generated as a hash chain; the initial key is known only to the logger and
verifier, similarly to the scheme by Schneier et al. [1]. At any given time point, only the key on top of the
chain is used; older keys are deleted from memory. When an adversary takes control of the system, it cannot
find old keys in memory. The hash-chained key sequence ensures that, without knowledge of the initial key,
old keys cannot be derived from the key currently stored in memory. Thus, the adversary cannot produce
valid HMACs for earlier log entries.

To allow high-frequency logging, our hash chain is constructed in software, instead of the PCR registers in
the TPM. This greatly reduces the time required to append a log entry. Furthermore, we develop mechanisms
that allow truncation of the log after verification and allow a verifier to efficiently verify any subset of the
log. As a result, our infrastructure works with limited disk space.

One of the main novelties of our infrastructure, compared to Schneier et al. [1], lies in leveraging TPM
2.0 features to maintain the continuity and secrecy of the key chain across a power cycle. Specifically, we use
the ability to seal data to values of a TPM monotonic counter, which TPM1.2 does not allow. At system
shutdown, we create a blob by sealing the last key before powering off to the value of a TPM monotonic
counter. Upon device restarts, the logger can recover the key by unsealing the blob. Our creation of use once
and discard blobs for logging is a novel use of TPM 2.0’s sealing to a monotonic counter feature.

In addition to the design and prototype implementation of our infrastructure, we formally verify the
tamper-proofness property of the basic protocol, which we consider as one of our key contributions. We
believe this is the first formal proof of security for a logging protocol. The analysis brings out a number of
assumptions that the system must satisfy to ensure tamper-proofness.

The rest of the paper is organized as follows. We define the adversary model and review TPM 2.0 features
in Section 2. Our logging protocols are presented in Sections 3 and 4. Section 5 details the verification steps of
the basic protocol. We describe our prototype implementation and evaluation results in Section 6. Section 7
discusses related work.

2 Overview

Review of TPM2.0 We list features of TPM2.0 that are key to ensuring tamperproofness property of our
protocols [10].

NV memory TPM 2.0 allows for a larger non-volatile memory than TPM 1.2. Its expected size is more
than a megabyte.

Monotonic NV counter Any memory slot in NV memory can be tagged as a monotonic counter, which
can only be incremented; it starts with a value greater than the maximum of all counters that ever
existed in this TPM.

Enhanced authorizations TPM 2.0 provides enhanced authorization by defining authorization policies,
which can be the conjunctions and disjunctions of basic policies. Basic policies include checking whether
an NV memory location stores a specified value and whether a PCR contains a specified value. These
authorization policies can be used to implement data sealing.

Power failure counter TPM 2.0 has a special 32-bit NV monotonic counter resetCount that can be mod-
ified by the TPM only. This counter is incremented on a power failure, and thus provides a count of the
number of power failures.

Adversary model We consider an adversary that controls processes that reside on the same machine as
the logging process. We assume that the adversary never controls the hardware, i.e., she cannot snoop on
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electrical signals, or conduct side-channel attacks by observing physical signals like power consumption.
We distinguish between two phases of a system that runs our logging infrastructure. These two phases are
separated by the event that the adversary takes control of the machine by gaining root privilege. We assume
that in the first phase, the adversary does not have root privileges.

3 The Basic Protocol (Protocol A)

In this section, we present our basic protocol (Protocol A), and provide informal arguments for its tamper-
proofness.

3.1 Protocol Description

Protocol A specifies the behavior of four entities: the logger, the verifier, the TPM, and the OS. We call
each entity a role in the protocol. We explain the logger program, as it is the most complex component and
uses novel TPM features. We briefly discuss the verifier program, with the detailed program including the
OS and TPM presented in Appendix F.

Logger The logger uses a sequence of keys (key(0), key(1),...key(n)) to produce HMACs of the log data,
which arrives sequentially. We annotate each key with the index i of its position in the sequence. The key
sequence is a hash chain starting with secret key(0), which is a secret shared between the logger and verifier.
The nth key is the hash of the n−1th key: key(n) = hash(key(n− 1)).

The logger has four phases: startup, logging, shutdown, and verification.

Startup At machine startup, a sealed key object (sealed blob containing the key) is stored in a designated
location sKeyLoc on the hard disk. This blob is sealed to the current value of the monotonic TPM counter.
Initially, the first sealed key object for key(0) is set up by the administrator. Subsequent sealed key objects
are stored by the logger during shutdown.

The logger first acquires locks on its memory locations, the disk location sKeyLoc storing the sealed key
object, and the disk location fileLoc storing the log. These locks prevent any attacker without root privileges
from reading from and writing to these locations. They are implemented using mechanisms such as process
memory isolation and access control in the file system. On a system restart, these locks are released. Next,
the logger unseals the sealed key object to obtain the current key and then increments the TPM counter. At
this point, the sealed key object can no longer be unsealed.

Logging After startup, the logger, upon receiving new log data, (1) produces an HMAC of the data using
the current key key(k), (2) writes the log data and HMAC to disk, (3) generates key(k + 1) by computing
the hash of the old key key(k), and (4) irretrievably erases the old key from the RAM.

The logger does not use the hash chain feature that TPM offers via PCRs. Instead, it computes the hash
in software, which vastly improves the logger’s performance, because hashing in memory is much faster than
using PCRs.

Shutdown Upon receiving a shutdown notification, the logger finishes processing the queue of logs, and then
seals the current key to the current monotonic TPM counter value and writes the sealed key object to
disk. This phase ensures that when the machine starts up again, there is a sealed key object stored on disk.
Protocol A requires the shutdown module of the OS to guarantee that the logger is able to finish its shutdown
phase before the machine is powered off.

Verification The verification phase is triggered by a verification request from an external verifier; a nonce is

sent with such a request. Upon receiving such a request, the logger sends back the log entries (log data and
HMACs) stored on disk, and the HMAC of the nonce using the current key.

Verifier The verifier initiates the verification phase by sending a nonce along with the verification request to
the logger. Upon receiving log entries containing both log data and its HMAC and the HMAC of the nonce
using the last key, the verifier checks the HMAC of each log entry and the HMAC of the nonce. The verifier
has the initial shared secret and can generate all the keys.
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3.2 Informal Argument for Tamper-proofness

We explain informally why Protocol A satisfies the tamper-proofness property. Formal analysis of Protocol A
is presented in Section 5.

We refer to keys that have smaller indices than the current key used by the logger as old keys. The
following two properties hold: (1) an attacker cannot learn the old keys and (2) without the old keys, the
attacker cannot tamper with the logs generated prior to the attacker gaining root privilege, i.e., modify
entries, remove entries, and truncate the log.

Property (1) holds both before and after the attacker gains root privilege. Before the attacker gains root
privilege, the memory and disk locations are properly protected. When the attacker gains root privilege, it
has access to all memory and disk locations. However, old keys are not present in the machine’s memory as
the logger erases these keys upon generation of the next key. The sealed key objects of these old keys cannot
be used to extract keys, because these sealed key objects are sealed to past values of the NV monotonic
counter of the TPM and there is no way to decrement the counter value. In particular, if the adversary
deletes the monotonic counter (by means of his root privilege), then any new monotonic counter will start
with the maximum value of all counters that ever existed on the TPM. Finally, the keys form a hash chain,
and, therefore, there is no way to generate the old keys directly from the current key. (2) follows directly
from (1) and the property of HMACs: without the correct key, an attacker cannot generate valid HMACs
that pass the verification. Tamper-proofness follows from (1) and (2).

4 Enhanced Protocol (Protocol B)

The basic protocol (Protocol A) has the tamper-proofness property, but is not very practical. Enhanced
protocol (Protocol B) uses additional mechanisms to satisfy the following practical requirements. (1) Hard
disk space is limited, and, thus, logs need to be periodically truncated. (2) Power failures may not permit the
logger’s shutdown phase to complete, leading to the loss of the current key. The protocol needs to be able to
recover from power failures. (3) For efficient and modular enforcement of several policies, the protocol needs
to support verification of an arbitrary subset of the log independently.

4.1 New Mechanisms

Branched key chain The enhanced protocol evolves keys in a branched manner. Keys are divided into
epochs. The initial keys of each epoch form a hash chain staring from key(0). The initial key for epoch k is
computed as: key(k) = hash(key(k − 1) | ′′epoch′′). There is a fixed maximum number (E) of keys within an
epoch. These keys form another hash chain indexed by the epoch number and a sub-epoch number. The ith

sub-epoch key in epoch k (key(k, i)) is hash(key(k, i− 1) | ′′subepoch′′). Here, key(k, 0) = key(k).

Mapping between keys and log entries To increase the flexibility of the verification and relieve the
verifier from the burden of deriving key indices for checking HMACs, we incorporate key index information
into the log data. Each log entry now includes the log data, the epoch and sub-epoch indices of the key
producing the HMAC, and an HMAC of the log data and the key indices.

4.2 Protocol Description

Logger The logger in Protocol B cycles through the same phases as in Protocol A. To maintain the branched
key chain, the logger starts a new epoch either when the previous epoch is completed or at startup. We first
describe the sub-routine that is invoked when a new epoch starts. For brevity, we omit the argument of the
location of the NV counter from seal and unseal, as this protocol uses only a fixed monotonic counter. The
pseudo code is shown in Figure 1.

New epoch In this sub-routine, the sealed object from location sKeyLoc is unsealed to obtain the current
epoch key. Then, the next epoch key is computed and sealed to the next TPM counter value. Finally, the
TPM counter is incremented and the epoch and sub-epoch counters are set appropriately.

A power failure that occurs in the middle of the new epoch routine could create a discrepancy between
the TPM monotonic counter value and the value that the sealed blob on disk is sealed to. If the power
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NewEpoch Sub-routine

epochkey ← unseal(data in sKeyLoc)
if unseal fails then

return fail ;

nextepochkey ← hash(epochkey | “epoch”)
n← read TPM counter
sKeyLoc← seal(nextepochkey, n+ 1)
increment TPM counter
key← epochkey
epoch← n; subepoch← 0

Startup Phase

lock all required memory locations
start newepoch phase
if failure, increment TPM counter
start newepoch phase
if successful, notify the OS

Logging Phase

while no shutdown notification do
data← get log data
logentry← (data|epoch|subepoch,
hmac(data|epoch|subepoch, key))
increment subepoch
key← hash(key | “subepoch′′)
write logentry to disk
if subepoch = E then

start newepoch phase

start shutdown phase

Shutdown Phase
wait for log producer to stop
while message queue is not empty do

process data as in logging phase

finaldata← hash(key | shutdown)
process finaldata as in logging phase

Fig. 1. Programs for Protocol B, not including the verifier stage

failure occurs right after the instruction that writes the sealed blob to disk and before the TPM counter is
incremented, the TPM counter value will be one step behind the value that the sealed blob is sealed to. The
startup phase handles this situation.

Startup Similarly to Protocol A, the logger locks critical locations in memory and on disk (and releases them
on a restart). Next, it invokes the new epoch sub-routine. Depending on whether the previous power-off is a
clean shutdown or a power failure, the sealed blob stored on the hard disk at startup is sealed to either the
current value of the monotonic TPM counter or that value incremented by one. If the new epoch sub-routine
fails to unseal the key, then TPM counter is incremented and the new epoch sub-routine is called again.

Logging The logger computes keys in the branched key chain. It computes a new sub-epoch key for each new
log entry until the maximum sub-epoch number is reached. At this point, a new epoch key is computed by
invoking the new epoch sub-routine. For each log entry, the logger places the epoch and sub-epoch indices
in the log to build an explicit mapping between log entries and keys.

Shutdown In the shutdown phase, all remaining log entries are processed. Unlike protocol A, the logger does
not create a sealed blob for the current key, as this has been done inside each new epoch sub-routine during
logging. Instead, it writes a special log entry hash(key | shutdown) to disk indicating the completion of a
clean shutdown. The absence of such an entry at machine startup is the evidence of a power failure.

Verification The verification phase of the logger is the same as protocol A, except for the deletion of logs
after each successful verification and attestation of the resetCount value in TPM. The verifier sends a ticket
containing encrypted information about how many epochs have been verified. The logger stores this ticket
on disk and sends this ticket back to the verifier along with log entries in response to the next verification
request.

Verifier Differently from protocol A, the verifier starts by asking for the value of resetCount to determine if
there was a power failure. The verifier additionally generates a ticket attesting to the successful verification
up to a check point for the logger. The verifier, after verification till epoch k (the last verified epoch), sends
a ticket to the logger stating that the verification till epoch k is successful. The ticket is an encryption:
encV (k | r), where k is the last verified epoch, r is a nonce known only to the verifier and V is the public
key of the verifier. The ticket is sent to the verifier in the next verification phase along with log entries from
epoch k + 1. The verifier uses the information from the ticket sent by the logger to jump to the appropriate
epoch key to start the verification.

The verifier’s pseudo code is shown in Figure 2. The verifier, upon receiving the log and the ticket,
decrypts the ticket to obtain the epoch index. If the ticket is valid, the verifier computes the sub-epoch key
and begins verification. In the end, the verifier generates a new ticket and sends it to the logger. It is also
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Verification Phase
attest to resetCount.
nonce← recv from verifier
fhmac← hmac(nonce, key)
log← read whole log
tct← read ticket
send (fhm, log, tct) to verifier
recv. (st, tct, del) from verifier
if st = 1 then

save tct to disk
delete epochs till del

Verifier Program

ask for attestation of resetCount
powfail← current resetCount 6= old resetCount
nonce, r ← generate nonces
send nonce to logger
(fhm, log, encV (n|r′))← recv from logger
check r′ is nonce used in last ticket, halt if not
epochkey← hashn(sharedsecret|“epoch′′)
logavailable ← true; idx ← 0
while logavailable do

key← epochkey; n← n+ 1
for j: 0 to E-1 do

if no more log entries then
logavailable ← false; break

verifyhmac(log(idx)data, log(idx)mac, key)
if log entry data is “shutdown” then

break
idx← idx + 1; key← hash(key|“subepoch′′)

epochkey← hash(epochkey|“epoch′′)

verifyhmac(nonce, fhm, key)
if all verifyhmac pass and not powfail then

send (1, encV (n− 1|r), n− 1) to logger

Fig. 2. Verification stage programs for Protocol B

easy to modify the verifier to verify any subset of the log by making use of the epoch and subepoch indices
contained in each log entry.

4.3 Improvements to the Logging Infrastructure

We highlight how the extensions to the protocol address the practical concerns that we summarized at the
beginning of this section.

Rolling logs Using the ticket, the logger can delete logs up to a verification check point. Instead of sending
the entire log starting from the first log entry, the logger only needs to send the ticket for the first k epochs
and the log starting from the k+1 epoch. To further lower the requirement of disk space for storing the
HMACs of logs, it is possible to store a hash of all HMACs in an epoch after the completion of the epoch,
instead of storing each HMAC.

Recovery from power failure A power failure may prevent the logger from completing the shutdown
phase and storing the current key to disk. As a result, the logger in Protocol A has no way of deriving the
valid key at the next startup without help from a remote server. The branched key chain used in Protocol B
offers a means to recover from such a loss. Dividing the keys into epochs allows the logger to periodically
store the sealed blob of the next epoch key to disk without sacrificing performance. Upon rebooting after a
power failure, the logger simply increments the TPM counter to retrieve the key from disk.

Portions of the log buffered in memory that are not written to disk due to a power failure are lost.
However, a power failure can be detected by the verifier by checking the value of TPM’s resetCount counter.

Modular log analysis With the epoch and sub-epoch indices stored with each log entry, the verifier can
request the logger to send portions of the log entries that it wants to verify. One application is enforcing
multiple policies on the same system modularly. Each policy analysis can select relevant portions of the log
and perform the verification independently; as the verifier can compute the keys based on the epoch and
subepoch information contained in each log entry.
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4.4 Design Choices and Limitations

Power attacks One limitation of our infrastructure is that we cannot distinguish genuine power failures
from adversarial system crashes. An attacker can hide malicious activities before the power failure because
log entries buffered in memory are lost. Existing logging schemes that use volatile memory for buffering
logs [1] or even work in verifiable computation [11] suffer from the same problem. Our choice of using volatile
memory for log buffering is driven by the desire to accommodate high-frequency logging. Accesses to non-
volatile memory (hard disk or TPM) are slow; thus, it is not feasible to use them to process each log entry.
Additional hardware support could mitigate this problem.

Tradeoffs between performance and security guarantees Disk write operations are expensive, and,
therefore, the bigger the size of the buffered log entry blocks, the more efficient the logger program becomes.
However, in case of a power failure, the logger loses the log entries buffered in memory, which may record
adversary actions. Consequently, the security guarantee becomes weaker as the block size increases. This
problem is mitigated in protocol B by allowing offline recovery from a power failure and detection of the
power failure.

Another tradeoff lies in our decision to hash keys in RAM instead of the TPM to accommodate high-
frequency log updates. A potential issue is that non-root processes may coerce a root process to write the
memory to disk, e.g., by stressing the system memory, and thus leak the keys. Special precaution need to be
taken to protect memory regions that store the keys, which we leave for future work.

Suggested hardware features to defend against power attacks One way to prevent power attacks is
to rely on hardware support to allow for a clean shutdown in spite of a power failure. One possibility is to
provide a “fast” memory interface for NV memory of the TPM with assured write on a power failure. The
logger uses the NV memory as a buffer instead of the RAM. The logger always maintains an entry composed
of a string “power failure” and its HMAC using the current key. This last log entry is never written to
disk, except after recovering from a power failure when the TPM NV memory content is flushed to disk.
An attacker cannot generate the last entry on its own, so tampering with entries stored in the TPM NV
memory can be detected. This scheme requires the logger to compute an additional HMAC for every log
entry. However, software HMAC is very fast and is unlikely to be a performance bottleneck.

5 Verification

We augment the modeling language and program logic from an existing work [12, 13] and formally prove that
Protocol A satisfies the tamper-proofness property. Protocol B uses similar techniques to ensure tamper-
proofness, so the verification results of Protocol A can be straightforwardly extended to Protocol B. A
detailed formal description of verification is present in the appendix.

System modeling We assume the system has a set of principals P and there is a partial order on the
principals: we write X̂ � Ŷ if Ŷ is more privileged than X̂, i.e., can access all the resources that X̂ can. We
write r̂oot to denote the root and t̂pm to denote TPM. (P,�) is an access control lattice, where the maximal
elements are r̂oot and t̂pm.

The system is modeled as several components, which we call threads, running concurrently. Each thread
is owned by a principal. Threads share several common data structures, which include storage (RAM and
disk) and read and write locks on storage. The logger, verifier, OS, and TPM are encoded using our modeling
language. Other threads (including adversary) in the system are modeled as arbitrary programs interacting
with the rest of the system. Their behavior is constrained by our adversary model, which is specified by
predicates stating a principal’s knowledge based on what it has learned so far. For instance, a principal can
compute the HMAC of d using key k if it has both the data and the key. This resembles Dolev-Yao’s network
adversary.

The behavior of the system is captured by the set of traces generated by all possible interleaving executions
of the threads. The security property is specified as a first-order logic formula that holds on every trace of
the system. The model and language is discussed in more details in Appendix A.
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Predicates We define the predicates used in the verification. Action predicates, summarized below, describe
the semantics of actions such as read and write, with @ u denoting the time u when the predicate holds.

Read(i, l,m)@u : thread i reads m from location l
Write(i, l,m)@u : thread i writes m to location l
Hmac(i, d, l,m)@u : thread i produces m = hmac(d, k)

where key k is stored in location l
VerifyHmac(i,m, d, k)@u : thread i verifies m = hmac(d, k)

Other key predicates used in the verification are shown below.

Mem(l,m)@u : location l has value m
CanRead(i, l)@u : i can read location l
IsReadLocked(i, l)@u : thread i holds the read lock of l

HT(i, X̂, e)@u : thread i owned by X̂ runs expression e
Has(i, s)@u : thread i knows s

Owner(i, K̂) : principal K̂ owns thread i
Contains(m,m′, S)@u : m′ can be derived from m using S
MayDerive(e, e′, S) : e′ can be derived from e using S

The Contains(m,m′, S) predicate is true when the term m′ can be extracted from m using elements of
the set S; for instance, m is an encryption of m′ using a key k and S contains the key k. It is defined
with respect to an inductively-defined predicate MayDerive (details in Appendix C). One example rule is
that MayDerive(e, hash(e), S) is true without any premises: from a term e, its hash can always be computed.
Predicate Has(i, s) is true if thread i has the plain text of s. It is defined using Contains: i has s if there
exists a term m that contains s, and thread i receives m or reads m from the storage. These predicates state
the assumptions that cryptographic functions are correct and thus capture the adversary’s capabilities. We
present the details of the logic in Appendix B and detailed definitions of predicates in Appendix C.

Axioms about actions Our proof also uses sound axioms specifying the semantics of actions. We show
the axioms for generating and verifying HMACs below. Axiom A1 states that on successful verification, it is
the case that someone must have produced the HMAC with a key stored in location l. Axiom A2 states that
if a thread j computes a HMAC using a key key based on location l, it must be the case that j can read
l. Similar to the Has predicate, these axioms also state assumptions about the correctness of cryptographic
functions. Other axioms are listed in Appendix E.

A1 ∀i,mac, d, key, u. VerifyHmac(i,mac, d, key) @ u ⊃
∃j, l, u′.(u′ < u) ∧ Hmac(j, d, l,mac) @ u′ ∧ Mem(l, key) @ u′

A2 ∀j,mac, d, key, u. Hmac(j, d, l,mac) @ u ⊃ CanRead(j, l) @ u

System assumptions System assumptions are specified as axioms as well. We define three axioms for
this: one specifies the capability of the forward-integrity adversary, one specifies an assumption about the
processes running during the logger’s startup phase, and one specifies the effect of the access control lattice.
We write ua to denote the time when the adversary gains root privilege.

The following axiom specifies that before time ua, processes owned by r̂oot are well-behaved and do not
interfere with the logger. Predicate RW(i, L)@u is true if thread i reads from or writes to any location in the
set L at time u. The axiom states that processes owned by r̂oot do not access any of the storage locations
owned by the logger (specified as LoggerLoc), and only threads running with the privilege of the OS can
access locations shared between the OS and the logger (specified as LoggerOSLoc).

Aadv = ∀u ≤ ua. NoAdv(u)

NoAdv(u) = ∀i. Owner(i, r̂oot) @ u ⊃ (∀L. LoggerLoc(L) ⊃ ¬RW(i, L) @ u)

∧
(
∀L.LoggerOSLoc(L) ∧ RW(i, L) @ u ⊃ HT(i, r̂oot, OS) @ u

)
Axiom ANR states that before the machine is compromised, after any reset, no thread reads and unseals

the sealed key before the logger increments the TPM counter. Predicate Early(u) is true if u is a time point
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between a reset and the logger incrementing the TPM counter and there are no other resets or counter
incrementing operations between them.

ANR = ∀u, i,m. Early(u) ∧ (u ≤ ua) ∧ ¬HT(i, L̂, LOGGER) @ u
⊃ ¬Read(i,M.disk.sKeyLoc,m) @ u

This may seem to be a strong assumption; however, verifying that it holds on a real system is feasible. We
discuss this further at the end of this section.

The protection provided by the access-control lattice to guard sensitive operations is captured using
axioms similar to the one shown below, which specifies the effects of the lattice on memory read accesses.

ARDLattice = ∀i, j, u, l, I,K. IsReadLocked(i, l) @ u ∧ Owner(i, I) ∧ I ≺ K ∧
Owner(j,K) ⊃ CanRead(j, l) @ u

If a location l is locked by a thread i owned by principal I, then any thread j owned by a principal K
higher than I on the access control lattice can read l.

Verification goal We define an auxiliary predicate LastLogIdx(k, u, uend) to state that before time uend, the
last log entry the logger writes is indexed by k, and written at time u. We write γ to denote the context
containing all the axioms introduced so far. The main result of our verification is a derivation of the following
judgment:

γ `∀k, k′, ub, ue, ul, ur, uw, i, j, log, n, fhm. HT(i, V̂ , VERIFIER) on [ub, ue] ∧
(ub < uc < ur < uv < ue) ∧ Send(i,VERIFY)@ub ∧ New(i,nonce)@uc ∧
Recv(i, (log[n], n, fhm)) @ ur ∧ VerifyHmac(i, fhm,nonce, key(n+ 1))@uv ∧(
(ur ≤ ua) ⊃ LastLogIdx(k, ul, ur)

)
∧
(
(ur > ua) ⊃ LastLogIdx(k, ul, ua)

)
∧

(1 ≤ k′ ≤ k) ∧ (ul ≥ uw) ∧ Write(j,fileloc(k′), v) @ uw
∧ HT(j, L̂, LOGGER) @ uw ⊃ data(v) = data(log(k′))

It says that if the verifier completes successfully then for the log data received by the verifier at time ur,
the received data at index k′ is the same as the log data v that was written to disk by the logger at index
k′, conditional on the assumption that k′ was written to disk by the logger before time min(ur, ua). In other
words, the log entries written before the adversary took control at time ua will not pass verification if they are
tampered with. The formula to the right of the ` is the formal definition of the tamper-proofness property.
The detailed derivation steps are provided in Appendix E. Here we provide an outline of the derivation.

Derivation steps The proof of the tamper-proofness property relies on the following four invariants. Pred-
icate keyOwnerIn(u) states that at time u only the logger, TPM, and verifier have the key. keyMemIn(u)
states that at time u the only locations that may have the key reside in the memory owned by the logger,
or the memory shared between the logger and the TPM, or the disk location that contains the sealed key
object. Predicate oldKeyAdv(u, ua) states that at time u, no thread other than the logger, TPM, or verifier
has an old key (key used before time ua). Finally, predicate oldKeyNotInMem(u, ua) states that at time u,
no memory location contains an old key (key used before time ua).

1. ∀u.u ≤ ua ⊃ keyOwnerIn(u) 3. ∀u.u > ua ⊃ oldKeyAdv(u, ua)
2. ∀u.u ≤ ua ⊃ keyMemIn(u) 4. ∀u.u > ua ⊃ oldKeyNotInMem(u, ua)
The proofs of these invariants use transfinite induction on time; given the invariants hold before time u,

we prove that they hold at u. In particular, we use the program logic to reason about the protocol roles to
show that these invariants are maintained when programs belonging to these roles execute in an adversarial
environment.

From (1) and (2), we can prove that the adversary does not have access to any valid keys generated
before time ua at any time prior to ua. (3) and (4) imply that, after ua, the adversary cannot obtain keys
that were generated prior to time ua. From the above, we can conclude that at no time does the adversary
possess keys used by the logger prior to time ua. Then, it can be shown that the adversary cannot produce
valid log entries generated before time ua, which is the desired tamper-proofness property.

Design decisions based on verification One important system assumption that the tamper-proofness
property depends on is ANR: at any time (before the adversary gets root access) between the machine startup
and the logger startup, no process should read the sealed blob on disk. The fact that the logger starts soon
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Block Total Disk
size time (ms) time (ms)

512 5,135 2,513
256 6,675 4,056
128 11,074 8,320
64 15,882 12,997
32 29,148 25,505
16 53,306 49,168

Table 1. Time to log 100,000 entries with varying
block size.

Log size #log entries Verif.
time (s)

175MB 1,211,168 27
390MB 2,684,760 61
736MB 5,075,958 116
1.48GB 10,198,014 234

Table 2. Time (in seconds) to verify logs in a serial
manner

after machine startup after a reset makes the number of running threads during that period of time small.
The remote attestation feature of the TPM can be used to check that ANR holds by verifying the code that
runs on system reset. This assumption leads to important design decisions of the logger. For example, to
satisfy this assumption, the logger cannot be implemented as a user-level application. It would be extremely
difficult to ensure the tamper-proofness property of such a design, because the logger may not be the first
user application to start and other user applications starting before the logger cannot be trusted.

Several axioms (e.g., ARDLattice) capture the requirements of access-control lattice. For these axioms to be
sound in reality, we need to ensure that the implemented access control mechanisms are correct and cannot
be compromised by threads not owned by r̂oot. For instance, we use process isolation to protect logger-owned
memory locations.

6 Implementation and Evaluation

Implementation We implement a prototype logger and verifier based on Protocol B. Our logger application
is a user-level Windows service that uses the ETW logging framework of Windows 7 to receive events from
applications and log them. Our implementation relies on the assumption that services in Windows are trusted
(see the discussion in Section 5). However, we need not trust any user-level application because services start
before these applications. We use keys and HMACs of 256 bits and use SHA256 to produce keys. A 64-bit
NV memory location is designated as the monotonic counter that keys are sealed to.

We used a 2.8GHz quad core machine with 6GB of RAM. We use a TPM 2.0 simulator that opens two
network ports to receive binary TPM commands and return appropriate responses after processing those
commands. The TPM simulator is built from the TPM 2.0 specs and models all TPM 2.0 functionality. We
also use a C# TPM library that offers an easy interface to the TPM.

The most significant challenge that we faced in the implementation was that high-level languages that use
garbage collectors do not usually provide language support for secure erasure of memory objects, because the
memory manager (garbage collector) moves objects around. Though C# offers pinning of memory that can
be used to securely erase memory, the use of C# libraries that do not pin memory makes securely erasing keys
extremely difficult. However, the tamper-proofness property requires secure erasure of the memory objects
that store the keys. Hence, we implement an intermediate layer in C such that the current key always lives
in the memory of the C process. This C process uses the TPM library to interact with the TPM. Also, to
avoid unexpected behavior due to compiler optimizations we used SecureZeroMemory, which is a guaranteed
way of setting memory in Microsoft’s version of C.

Our implementation relies on the process memory isolation provided by the operating system to imple-
ment locks on volatile memory to prevent an attacker from gaining access to the key during startup phase.
We rely on user privilege access control to implement locks on disk.

The prototype system was stable across clean shutdowns and power failures.

Evaluation Table 1 shows the logger’s log-processing time given different block sizes. As the block size
grows, the processing time decreases, and so does the percentage of disk time over the total processing time.
This shows that the bigger the block size, the more efficient the logging process. However, the system becomes
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less secure as block size increases; the attacker has a better chance of hiding its activities in buffered logs
that will be discarded after a power failure.

Our storage overhead for HMACs for approximately 32 million log entries is 1 GB. If we store hashes of
HMACs in an epoch, then with an E value (sub-epoch number) of 1000, the storage overhead of 32 billion
log entries is 1 GB. Thus, the storage overhead of the HMACs is not a bottleneck. Further, with periodic
verification, log entries can be removed frequently.

Table 2 shows the evaluation results of the verifier’s performance. Verification is reasonably fast, even
with simple sequential verification. We expect a huge speed up if the verification process is parallelized using
pre-computed keys.

7 Related Work

Secure logging schemes Auditing has been studied extensively; for example, in the context of detecting
misconfiguration in access control policies [14, 15], and in the context of holding agents accountable for
their actions [16]. Security guarantees provided by these systems are based on the assumption that logs are
tamper-proof.

Most closely related to our approach is work by Kelsey and Schneier [1, 17]. They also use a hash chain of
keys to ensure the integrity and confidentiality of logs. Our main improvement over theirs is that we support
continuous logging across machine restarts, which they do not. Our protocol allows truncation of logs after
verification. As we only care about integrity of log entries, our scheme is much simpler than theirs, and
therefore allows for faster log appending operations. They additionally study variants of untrusted verifier,
which we do not consider. It is straightforward to extend our protocol using the ideas introduced by Kelsey
and Schneier to lift the assumption that the verifier is trusted. Follow-up work [18, 19] does not tackle
the issues we address in this paper, and instead, focuses on making the encrypted log searchable [18] or
implementing the scheme [19]. Recent work addresses the issue of log deletion required by law [6] and uses
similar scheme as [1, 17], but does not work across system restarts and lacks formal verification.

Monotonic counters have been used to ensure the tamper-proofness of logs [2, 8, 7]. They use the monotonic
counter inside the attestation of each log entry, whereas we use a software-based hash chain of keys to generate
attestations for log entries and only use the counter on system startup/shutdown to ensure the continuity and
secrecy of the keys. More concretely, we seal the current key to the counter value using the TPM. The sealed
blob is unrecoverable after the counter increments. Thus, we create use and discard blobs, which is a novel
use of the monotonic counter. Because we do not use the TPM in normal logging activities, our log appending
operation is much faster than that in prior work. In the best case, our scheme appends approximately 20, 000
log entries per second using a Intel 2.8GHz processor with 6GB RAM (Table 1), much faster than prior
similar schemes [3, 2, 19, 1, 8, 7]. The best of these schemes can process 1750 entries per second using Intel
Core 2 Duo 2.4GHz CPU with 4GB of RAM [3]. A2M, another work on secure logging that precedes TrInc,
stores logs in trusted memory [4]. Due to the limited size of trusted memory, this scheme is not practical to
be used to protect logs on the order of gigabytes, which our work aims to support.

There has been much work on designing efficient data structures for storing logs along with auxiliary
information (such as a hash tree) to provide guarantees of tamper-proofness [20–22, 3, 5]. For instance, the
work by Crossby et al. [3] provides a dynamic history tree data structure to store the log and capture the
history of log insertions through commitments. These structures require publishing the updated state of
the auxiliary data structure quite frequently; e.g., after each log addition. However, in our scenario, external
communication may not be feasible given the high bandwidth requirement of logs generated at high frequency.
While these schemes are effectively online schemes, our scheme provides the forward integrity guarantee in an
offline manner, even if the verifier does not verify before the adversary takes control. Also, our infrastructure
is able to append logs at much faster rate due to the simplicity of our approach.

Other schemes that use trusted hardware TPMs have been used extensively to design schemes that
guarantee some form of trust in computing devices, in spite of malicious software running on the device [23, 24,
11]. We use the TPM to protect a key by producing a sealed object of the key that can only be unsealed when
the TPM’s monotonic counter has a specific value. Incrementing the counter makes the object unsealable by
this TPM in the future.
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Due to practical constraints, such as size, power consumption and cost, the TPM is limited in its function-
ality, e.g., small non-volatile memory that degrades with about 100,000 writes. An ideal hardware solution
for tamper-proof logging is trusted secure hardware that stores the whole log itself, guaranteeing not only
detection of tampering but also recovery of the tampered logs. Other hardware like iButtons [25] has been
used in secure logging [19] that implements the scheme of Kelsey and Schneier [1]. While they provide many
of the guarantees that our scheme can, they do not address the issue of auditing across power cycles, and
their implementation is slow in appending log entries (∼1 second for an append).

The challenge of distinguishing power failures from malicious power attacks that we face is also encoun-
tered in another work using the TPM for secure code execution [11]. A trusted power source or a fail-safe
power failure mechanism is needed to allow TPMs to shutdown cleanly in case of a power failure.

Formal verification of system software Formally verifying the security guarantees of critical system
software has become increasingly important. Several projects have demonstrated the value of formal verifica-
tion (e.g., [26, 13, 27]) . The high-level goal of our work is the same. A model of an adversary against forward
integrity was proposed by Bellare et al. [9], which is the same adversary model in our formal verification.
As far as we know, we are the first to formally specify the two-phase adversary model and the forward
integrity property in logic. Another semi-formal model proposed by Crossby et al. focuses on specifying
integrity as prefix consistency of a log and its extension [3], which essentially requires online commitment of
log entries. Therefore, that model is not relevant to our logging scenarios. Ma et al. provide a cryptographic
style definition of the security properties of a hash chain [28, 29], much like Bellare et al. [9] However, unlike
our analysis, they cannot verify security properties of logging protocols, as they lack the logic/language
framework to reason about protocols.

Our verification technique is based on the compositional reasoning principles developed by Garg et
al. [12] We additionally allow dynamic forking of new threads and resetting the machine, which are essential
in modeling and reasoning about the behavior of protocols across machine resets and power failures.

8 Conclusion

Our secure logging protocols use new TPM features to guarantee forward integrity of logs in an offline setting
and address practical issues such as limited disk space, high-frequency log updates, and unexpected power
failures. As future work, we are interested in investigating how to select log block sizes for optimal balance
between the strength of the security guarantees and performance. One promising direction is to include
an adaptive block size choice module that takes into consideration the costs of security and performance.
Another issue we want to explore is the scheduling priority for the logger process, so that other processes
are not able to exhaust machine resources with the aim of preventing logging and causing a system crash.
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Appendix

We describe the formal verification of Protocol A in detail. First, we present the modeling language in
Appendix A, then we explain the program logic in Appendix B. Additional predicates used in the verification
are defined in Appendix C. The proof of protocol A’s tamper-proofness property is presented in Appendix E.
Finally, the encoding of the protocol is shown in Appendix F.

A Language and Model

Program syntax. The syntactic constructs for expressions, denoted e, are listed below.

Expressions e ::= t | act a | let(e1, x.e2) | if(b, e1, e2) | call(f, t) | fork e, t | reset
Function dec. ::= f(x)

4
= e

An expression can be a term t, which includes the standard binary and unary operations on constants
and variables. Expression act a denotes an atomic action, such as read or write. The language itself is
parametrized over these actions, which are instantiated based on the application domain. We include memory
read and write actions read, write; message send and receive actions recv, send; actions for acquiring read
and write locks readlock, writelock; and a polling action poll that checks the value of a memory location
and only returns if a specific value is stored in that location. Two pairs of actions that are important for
ensuring tamper-proofness property are: hmac, verifyhmac and seal, unseal. The hmac action takes as an
argument, a location l containing the key. To successfully compute an HMAC, l must be readable by the
thread invoking hmac. The seal and unseal actions model corresponding interfaces of TPM 2.0. For simplicity,
we only model sealing (unsealing) data to the value of a particular non-volatile TPM counter.

A sequencing expression is denoted let(e1, x.e2), where the return result of the first expression is used
in the evaluation of the second. An expression can also be an if statement and a function call. We allow a
program to fork new threads (fork e, t), where e is the code of the new thread and t is the principal that
the new thread runs as. The expression reset resets (reboots) the machine. The last two constructs are our
extensions to Garg et al.’s modeling language [12].

Finally, a program is composed of a list of function declarations, and an expression. The programs for
Protocol A’s roles can be straightforwardly encoded using this language (presented in Appendix F).

System Modeling Constructs. The syntactic constructs used to model our logging infrastructure are
defined in Figure 3. (P,�) is an access control lattice, as mentioned in Section 5.

Our model assumes distributed execution. A configuration of the system state, denoted C, is composed
of a shared state ζ and several threads T1, . . . , Tn running in parallel. Some of the threads may be controlled
by the adversary. A thread T is a tuple of a unique thread ID I, an execution stack K, and the expression
e currently being evaluated. Note that we use thread as a technical term to denote a run-time entity on the
machine. It is not the threads used in operating systems. Since there can be many machines in the system,
we assume each machine has a unique ID, denoted m. The thread ID I is a tuple composed of the principal
X̂, with whose privilege the thread runs, a thread identifier unique to each machine (id), and the machine
ID M . The execution stack K is a list of frames, denoted F , recording the evaluation context. A frame x.e
denotes that this frame is waiting for a return result to be plugged into e.

Threads share several data structures, including storage (RAM and disk) σ, read and write locks on
storage (ρ, ω), and a network message queue Q. We use l to denote locations in the storage. To simplify our
presentation, the locations are hierarchical: e.g., M.disk refers to all locations on the disk of machine M , and
M.disk.sealedloc refers to a specific location on M ’s disk. The read and write locks represent access-control
policies on the machine. The read (write) lock map, denoted ρ (ω), maps each storage location to the thread
holding the lock of that location. A location that is mapped to the special thread is not locked.

Threads across different machines communicate to each other via messages. The message queue Q is a
buffer of in flight messages.

We assume there is a permitted function deciding whether a thread is permitted to perform an action in
a given state. This function is used to control accesses to storage locations based on the read and write locks
and the access control lattice. It also decides which messages a thread can see.
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Principal X̂ ∈ P (P,�) is a lattice

Machine Id M

Thread Id I ::= X̂, id ,m
Frame F ::= x.e
Stack K ::= [] | F :: K
Thread T ::= I ;K ; e

Storage Locations l
Storage σ : Locations→ Terms
Read Lock ρ : Locations→ Thread ids ∪ { }
Write Lock ω : Locations→ Thread ids ∪ { }

Message M ::= sender, receiver, content
MessageQueue Q ::= [] | M :: Q

Shared State ζ ::= σ, ρ, ω,Q
Configuration C ::= ζ B T1, . . . , Tn

Permissions permitted
: (Shared States × Thread Ids

× actions)→ Boolean

Fig. 3. Modeling constructs

Reduction rules. The run-time behavior of the system is captured by the reduction rules, which specify
how the system transitions from one configuration to the next, one step at a time. Selected reduction rules
novel to this work are shown in Figure 4; the rest of the rules are same as in Garg et al. [12].

We write ζ B T ↪→ ζ ′ B T ′ to denote the one-step transition of a single thread, and C u−→ C′ to denote
the top-level reduction steps of the system, where u is the time when the transition happens. A trace T is a
sequence of reduction steps: C1

u1−→ C1 · · ·
un−→ Cn.

In rule Red-Act, a thread executes an atomic action. This rule is restricted by the permitted function,
which serves to allow/disallow actions based on the current state, e.g., disallow reads on read locked memory
using the partial order �. The system is parametrized over a set of action reduction rules of the form
ζ, I, a → ζ ′, I, t, which evaluates an action a and return the result t and a new state ζ ′. These rules are
instantiated based on the application domain.

Rule Red-Conf allows arbitrary interleaving of the reductions of individual threads in the configuration.
When a thread forks a new thread, rule Red-Conf-Fork picks a fresh id and generates a new thread that
executes e with an empty stack. Note that a thread can only fork threads owned by principals that are less
privileged than itself. The rule Red-Conf-Reset stops all threads, sets all volatile memory to null, clears all
locks and starts two threads owned by principals r̂oot (the OS) and t̂pm.

B Logic of Programs

We extend the program logic by Garg et al. [12] to accommodate the new language constructs. Similar
to prior work, the program logic aims to derive security properties of a system composed of both trusted
components, which runs the prescribed protocol; and adversarial components, which runs arbitrary code,
but confined to its capabilities as specified in the adversary model.

Property specifications. Security properties are specified as first-order logic formulas (shown below). Most
constructs are standard. We write p @ u to mean that predicate p is true at time u. Similarly, ϕ @ u means
that formula ϕ holds at time u. We write (ϕ on I) to denote that ϕ is true during the time interval I. Using
these explicit time points, we can concisely specify event-orderings on the trace, which is essential for the
formal specification of the tamper-proofness property.

Formulas ϕ,ψ ::= p @ u | b | t = t′ | u1 ≤ u2 | > | ⊥
| ϕ @ u | ϕ ∧ ψ | ϕ ∨ ψ | ¬ϕ | ∀x.ϕ | ∃x.ϕ
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ζ B T ↪→ ζ′ B T ′
permitted(ζ, I, a) ζ, I, a→ ζ′, I, t

ζ B I ;x.e :: K ; act a 7→ ζ′ B I ;K ; e[t/x]
Red-Act

C −→ C′
ζ B Ti ↪→ ζ′ B T ′

i

ζ B T1 | . . . |Ti | . . . |Tn −→ ζ′ B T1 | . . . |T ′
i | . . . |Tn

Red-Conf

m = machine(I) id fresh X̂ � owner(I)

ζ B T1 | . . . | I ; (x.e) :: K ; fork e′, X̂ | . . . |Tn −→
ζ B T1 | . . . | I ;K ; e{J/x} | . . . |Tn | (X̂, id,m) ; . ; e′

Red-Conf-Fork

I ∈ ω(m.ram.sh) I ′.id′ fresh
I ′′.id′′ fresh σ′ = σ[(locs(m)− locs(m, {disk, tpm.nv}) 7→ null](ρ′, ω′) = (ρ, ω)[locs(m) 7→ ]

I ′ = (r̂oot, id′,m) and I ′′ = (t̂pm, id′′,m) m = machine(I)

ζ B T1 | . . . | I ;K ; reset | . . . |Tn −→ ζ′ B (T1 | . . . |Tn)\Threads(m) | I ′ ; . ; eOS | I ′′ ; . ; etpm
Red-Conf-Reset

Fig. 4. Selected reduction rules

Γ ` [e]〈ub, ue, i, x〉ϕ Given a trace that contains the complete evaluation of e between time Ub and Ue

by thread I and returns t, ϕ[Ub, Ue, I, t/ub, ue, i, x] holds on that trace.
This trace is allowed to contain other executing threads, including malicious ones.

Γ ` {e}〈ub, ue, i〉ϕ Given a trace that contains an incomplete evaluation of e between time Ub and Ue

by thread I, ϕ[Ub, Ue, I/ub, ue, i] holds on the trace.
Similarly, this trace may contain attacker threads.

Γ ` ϕ ϕ holds on any trace that satisfies Γ

Fig. 5. Summary of judgments

Reasoning principals. The program logic consists of three main judgments, summarized in Figure 5. For
clarity of presentation, we omit several contexts from the judgments as they mostly remain unchanged.
Context Γ contains formulas that are assumed true. The first judgment asserts partial correctness properties
of an expression; the second asserts invariant properties of an expression; and the last judgment is the
standard first-order logic judgment.

To give a flavor of the rules in our program logic, we show one rule for deriving the effects of completing
a fork action and one rule deriving properties of systems containing a trusted component.

L � owner(i) J fresh

Γ ` [fork e, L]〈ub, ue, i, x〉(x = J) ∧ Start(J, e)@ue ∧ Owner(J, L) @ ue

PK

Γ ` {e}〈ub, ue, i〉ϕ(ub, ue, i) Γ ` Start((X̂, id ,M), e) @ u

Γ ` ∀u′. (u′ > u) ∧ ¬Reset(M) on (u, u′] ⊃ ϕ(u, u′, (X̂, id ,M))
Honth

Rule PK states that fork e, L is only allowed if the new thread runs as a principal that has fewer privileges
than its parent thread; that the return value is the newly generated thread ID J ; and that the new thread
J starts to execute e when fork finishes. Rule Honth is the key rule transitioning from reasoning about the
program of trusted components to deriving a property of the trace. This is similar to the rule of the same
name in [12]. Essentially, if a thread I starts e at time u, and we know that e has an invariant ϕ (at any
time point before e finishes, ϕ is true), then at any later time point u′ and the machine has not been reset in
between, then the invariant guaranteed by e holds between these two time points. For instance, if the thread
invariant states that this thread never reads location M.disk.sealedloc, then that invariant holds from the
start of the thread till the next reset.
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C Additional predicates

Predicate MayDerive(e1, e2, S) means that e2 can be derived from e1 given the set of terms S. We show the
new rules below and other rules are the same as those in [13]. The first rule states that from a term e, its
hash can always be computed. The last two rules state that data sealed within a blob can be extracted if
either the TPM counter’s value is the same as the value that blob is sealed to, or the TPM’s key is known.

Mayderive(e, hash(e), S)

tpm.counter = n

Mayderive(SEALtpm.key(t, n), t, S)

tpm.key ∈ S
Mayderive(SEALtpm.key(t, n), t, S)

The predicate Has(i, s)@u is defined as there exists m such that (1) m contains s given S, (2) i has S, and
(3) the thread i has either received m, or read m from the storage, or computed m using the hmac action.

Has(i, s) @ u = ∃u′, u′′. (u′′ ≤ u′ ≤ u) ∧
∃m.

((
∃l, j,m′. Recv(i, j,m) @ u′′ ∨ Read(i, l,m) @ u′′ ∨ Hmac(i,m′, l,m) @ u′′

)
∧(

∃S. HasSet(i, S) @ u′ ∧ Contains(m, s, S) @ u′
))
∧

¬Reset() on [u′′, u]
HasSet(i, S) @ u = ∀s.(s ∈ S) ⊃ Has(i, s) @ u

The predicate Has satisfies the following properties. These are derivable from the definition of Has.

∀i, s, u, u′. Has(i, s) @ u ∧ (u′ > u) ∧ ¬Reset() on [u, u′] ⊃ Has(i, s) @ u′ (H1)
∀i, s, u, u′. Has(i, s) @ u ∧ (u′ < u) ∧ ¬Has(i, s) on [u′, u) ⊃

∃m.
(

(∃l, j,m′. Recv(i, j,m) @ u ∨ Read(i, l,m) @ u ∨ Hmac(i,m′, l,m) @ u)
∧ (∃S. HasSet(i, S) @ u ∧ Contains(m, s, S) @ u)

)
(H2)

H1 states that a thread retains information s, unless there is a reset. H2 states that the time u when
Has becomes true for thread i is the time when thread i obtains m that enables the derivation of s.

We expand the definition of NoAdv(u) from Section 5. Locations LoggerLoc(L) are instantiated with the
locations M.ram.keyloc,M.tpm.v.channel,M.ram.logger tpm,M.ram.logger sh and LoggerOSLoc(L) with
M.ram.logger os.

∀i, v1, . . . , v12, u. Owner(i, r̂oot) @ u ⊃ ¬RW(i,M.ram.keyloc, v1, v2) @ u ∧ ¬RW(i,m.tpm.v.channel, v3, v4) @ u ∧
¬RW(i,m.tpm.v.channel, v5, v6) @ u ∧ ¬RW(i,M.ram.logger tpm, v7, v8) @ u ∧
¬RW(i,M.ram.logger sh, v9, v10) @ u ∧(
RW(i,M.ram.logger os, v11, v12) @ u ⊃ HT(i, r̂oot, OS)

)
Finally, we define predicates used in the main theorem and the key invariant properties (Section 5).

RW(i, l, v1, v2) @ u = Read(i, l, v1) @ u ∨Write(i, l, v2)

inMem(i,m) @ u = ∃l. Mem(l,m) @ u ∧ CanRead(i, l) @ u

LastLogIdx(k, u, uend) = (k ≥ 0) ∧ (u ≤ uend) ∧
∀u′, i, j, v, v′, z. HT(i, L̂, LOGGER) @ u ∧ (u ≤ u′ ≤ uend) ∧ (k ≥ 1) ∧ (z > k) ∧Write(i,fileLoc(k), v) @ u ∧

HT(j, L̂, LOGGER) @ u′ ⊃ ¬Write(j,fileLoc(z), v′) @ u′

keyOwnerIn(u) = ∀u′,m, n, i, S. (u′ ≥ u) ∧ Has(i,m) @ u ∧ Contains(m, key(n), S) @ u′ ∧ ¬(tpm.key ∈ S)

⊃ HT(i, , L̂, LOGGER) @ u ∨ Owner(i, t̂pm) @ u ∨ Owner(i, V̂ ) @ u

keyMemIn(u) = ∀u′, n, l,m, S. (u′ ≥ u) ∧ Mem(l,m) @ u ∧ Contains(m, key(n), S) @ u′ ∧ ¬(tpm.key ∈ S)
⊃ l ∈ {M.disk.sealedkey,M.ram.keyloc,M.tpm.v.channel}
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oldKeyAdv(u, ua) = ∀i,m, v, S, ka, ul. (v ≥ u ≥ ua) ∧ Has(i,m) @ u ∧ tpm.key /∈ S ∧
Contains(m, key(ka), S) @ v ∧ ¬HT(i, L̂, LOGGER) @ u ∧
¬Owner(i, t̂pm) @ u ∧ LastLogIdx(k, ul, ua) ∧ (ka ≥ 1)
⊃ ka ≥ k + 1

oldKeyNotInMem(u, ua) = ∀l, ul, k, k′, S,m. (u ≥ ua) ∧ (k ≥ 1) ∧ LastLogIdx(k, ul, ua) ∧
∧ (1 ≤ k′ ≤ k) ∧ (l ∈M) ∧ Mem(l,m) @ u ∧ tpm.key /∈ S
⊃ ¬Contains(m, key(k′), S) @ u

D Axioms

We assume the following axioms. which have been proven sound based on the semantic model.

Ax1 ∀l,m, u, v. Mem(l,m) @ u ∧ (v < u) ∧ ¬Mem(l,m) @ v ⊃
∃u′, i. (v < u′ ≤ u) ∧Write(i, l,m) @ u′

Ax2 ∀i, l,m, u′. Write(i, l,m) @ u′ ⊃ ∃u′′.(u′′ < u′) ∧ Has(i,m) @ u′′ ∧ ¬Reset() on [u′′, u′]
Ax3 ∀i, j,m, u′. Recv(i, j,m) @ u′ ⊃ ∃u′′.(u′′ < u′) ∧ Send(j, i,m) @ u′′

Ax4 ∀i, j,m, u′. Send(i, j,m) @ u′ ⊃ ∃u′′.(u′′ < u′) ∧ Has(i,m) @ u′′ ∧ ¬Reset() on (u′′, u′]
Ax5 ∀i, l,m, u′. Read(i, l,m) @ u′ ⊃ ∃u′′.(u′′ < u′) ∧ Mem(l,m) on [u′′, u′] ∧ ¬Reset() on (u′′, u′]
Ax6 ∀i, i′, u, u′, l, v. Poll(i, l, v) @ u ∧ CanWrite({i, i′}, l) @ u ∧ ¬Mem(l, v) @ u′ ∧ (u′ < u) ∧

¬Reset() on (u′, u] ∧ ¬Write(i, l, v) on (u′, u] ⊃Write(i′, l, v) @ u
Ax7rd ∀i, j, u, u′, l, I, J. IsReadLocked(i, l) @ u ∧ Owner(i, I) ∧ I ≺ J ∧ Owner(j, J) ⊃ CanRead(j, l) @ u
Ax7wr ∀i, j, u, u′, l, I, J. IsWriteLocked(i, l) @ u ∧ Owner(i, I) ∧ I ≺ J ∧ Owner(j, J) ⊃ CanWrite(j, l) @ u
Ax8 ∀i, l,m, u. Read(i, l,m) @ u ⊃ Mem(l,m) @ u
Ax9 ∀i,mac, d, key, u. VerifyHmac(i,mac, d, key) @ u ⊃ ∃j, l, u′.(u′ < u) ∧ Hmac(j, d, l, key) @ u′

Ax10 ∀i,mac, d, key, u. Hmac(i, d, l, key) @ u ⊃ CanRead(i, l) @ u ∧ Mem(l, key) @ u

Ax11 ∀i, K̂, u′′, u. Owner(i, K̂) @ u′′ ∧ ¬Reset() on (u′′, u] ⊃ Owner(i, K̂) @ u

Ax12 ∀i, K̂, u′′, u. HT(i, P̂ , K̂) @ u′′ ∧ ¬Reset() on (u′′, u] ⊃ HT(i, P̂ , K̂) @ u

Ax13 ∀i, K̂, u′′, u. ¬Owner(i, K̂) @ u′′ ∧ ¬Reset() on (u′′, u] ⊃ ¬Owner(i, K̂) @ u

Ax14 ∀i, K̂, u′′, u. ¬HT(i, P̂ , K̂) @ u′′ ∧ ¬Reset() on (u′′, u] ⊃ ¬HT(i, P̂ , K̂) @ u

E Proofs

We present the proofs of the following four properties.
1. ∀u.u ≤ ua ⊃ keyOwnerIn(u) 3. ∀u.u > ua ⊃ oldKeyAdv(u, ua)
2. ∀u.u ≤ ua ⊃ keyMemIn(u) 4. ∀u.u > ua ⊃ oldKeyNotInMem(u, ua)

E.1 Proofs of 1 and 2

The proof proceeds by transfinite induction on u. First, we show that keyOwnerIn(−∞) ∧ keyMemIn(−∞).
Clearly, ∀i, t. ¬Has(i, t) @ −∞ since Has relies on actions in the past and no action has happened at −∞.
Thus, keyOwnerIn(−∞) trivially holds. Also, we assume that keyMemIn(−∞) holds, which is justified by the
fact that the system administrator hands over the machine with the key at location M.disk.sealedkey.

For the induction hypothesis, assume that keyOwnerIn(u) ∧ keyMemIn(u) for all u < u0 ≤ ua for some
u0. We need to show keyOwnerIn(u0) ∧ keyMemIn(u0).

Proving keyMemIn(u0) holds: We do so by contradiction. First, assume γ ` ¬keyMemIn(u0). This can
be expanded to be written as (with L standing for {M.disk.sealedkey,M.ram.keyloc,M.tpm.v.channel})

ψ = ∃u′, n, l,m, S.(u′ ≥ u0) ∧ Mem(l,m) @ u0 ∧ Contains(m, key(n), S) @ u′ ∧ ¬(tpm.key ∈ S) ∧ l /∈ L
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Choose fresh values of the existential (captured in the same formula used on the left as ψ) to get

γ, ψ ` (u′0 ≥ u0) ∧ Mem(l,m) @ u0 ∧ Contains(m0, key(n0), S0) @ u′0 ∧ ¬(tpm.key ∈ S0) ∧ l0 /∈ L (A1)

Using Axion Ax1 and Ax2 it is easy to prove that

∀l,m, u, v. Mem(l,m) @ u ∧ (v < u) ∧ ¬Mem(l,m) @ v ⊃
∃u′′, u′, i.(u′′ < u′ ≤ u) ∧Write(i, l,m) @ u′ ∧ Has(i,m) @ u′′ ∧ ¬Reset() on (u′′, u′]

In particular, if we choose l = l0,m = m0, u = u0, v = −∞, we get

γ, ψ ` Mem(l0,m0) @ u0 ∧ ¬Mem(l0,m0) @ −∞ ⊃
∃u′′, u′, i.(u′′ < u′ ≤ u0) ∧Write(i, l0,m0) @ u′ ∧ Has(i,m0) @ u′′ ∧ ¬Reset() on (u′′, u′] (R1)

The contrapositive within keyMemIn(−∞) yields

keyMemIn(−∞) = ∀n, l,m, S, u′. l /∈ L ⊃ ¬
(
Mem(l,m) @ −∞ ∧ Contains(m, key(n), S) @ u′ ∧ ¬(tpm.key ∈ S)

)
In particular, if we choose l = l0,m = m0, n = n0, S = S0, u

′ = u′0, we get

γ, ψ ` l0 /∈ L ⊃ ¬
(
Mem(l0,m0) @ −∞ ∧ Contains(m0, key(n0), S0) @ u′0 ∧ ¬(tpm.key ∈ S0)

)
Moving clauses to other side of implication we get

γ, ψ ` l0 /∈ L ∧ Contains(m0, key(n0), S0) @ u′0 ∧ ¬(tpm.key ∈ S0) ⊃ ¬Mem(l0,m0) @ −∞

Now, using (R1) we get

γ, ψ ` Mem(l0,m0) @ u0 ∧ l0 /∈ L ∧ Contains(m0, key(n0), S0) @ u′0 ∧ ¬(tpm.key ∈ S0) ⊃
∃u′′, u′, i.(u′′ < u′ ≤ u0) ∧Write(i, l0,m0) ∧ Has(i,m0) @ u′′ ∧ ¬Reset() on (u′′, u′] (R3)

Combining R3 with A1 and using modus ponens we get

γ, ψ ` ∃u′, u′′, i. (u′′ < u′ ≤ u0) ∧ Has(i,m0) @ u′′ ∧ ¬Reset() on (u′′, u′] ∧Write(i, l0,m0) @ u′

∧ (u′0 ≥ u0) ∧ Contains(m0, key(n0), S0) @ u′0 ∧ l0 /∈ L ∧ ¬(tpm.key ∈ S0)

Again using fresh values for the existential we get

γ, ψ ` (u′′−1 < u′−1 ≤ u0 ≤ u′0) ∧ Has(i0,m0) @ u′′−1 ∧ ¬Reset() on (u′′−1, u
′
−1] ∧

Write(i0, l0,m0) @ u′−1 ∧ Contains(m0, key(n0), S0) @ u′0 ∧ l0 /∈ L ∧ ¬(tpm.key ∈ S0)

Since, u′′−1 < u0 we have from induction hypothesis that keyOwnerIn(u′′−1) holds. From the definition of
keyOwnerIn(u′′−1) and the just proved

Has(i0,m0) @ u′′−1 ∧ Contains(m0, key(n0), S0) @ u′0 ∧ ¬(tpm.key ∈ S0)

we can conclude that
HT(i, L̂, LOGGER) @ u′′−1 ∨ Owner(i, t̂pm) @ u′′−1

Thus,
γ, ψ ` (u′−1 ≤ u0 ≤ u′0) ∧

(
HT(i0, L̂, LOGGER) @ u′′−1 ∨ Owner(i0, t̂pm) @ u′′−1

)
∧

¬Reset() on (u′′−1, u
′
−1] ∧Write(i0, l0,m0) @ u′−1 ∧ Contains(m0, key(n0), φ) @ u′0

∧ l0 /∈ L ∧ ¬(tpm.key ∈ S0)

Using Ax11 and Ax12 with ¬Reset() on (u′′−1, u
′
−1], we get HT(i0, L̂, LOGGER) @ u′−1 ∨ Owner(i0, t̂pm) @

u′−1. Thus, we get

γ, ψ ` (u′−1 ≤ u0 ≤ u′0) ∧
(
HT(i0, L̂, LOGGER) @ u′−1 ∨ Owner(i0, t̂pm) @ u′−1

)
∧

Write(i0, l0,m0) @ u′−1 ∧ Contains(m0, key(n0), φ) @ u′0 ∧ l0 /∈ L ∧ ¬(tpm.key ∈ S0) (R2)
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It is possible to prove by analyzing the programs that

γ, ψ ` ∀n, l,m, u, i, v, S. (u ≤ u0) ∧ (u ≤ v) ∧ HT(i, L̂, LOGGER) @ u ∧
Write(i, l,m) @ u ∧ Contains(m, key(n), S) @ v ∧ ¬(tpm.key ∈ S) ⊃ l ∈ L

γ, ψ ` ∀n, l,m, u, i, v, S. (u ≤ u0) ∧ (u ≤ v) ∧ Owner(i, t̂pm) @ u ∧Write(i, l,m) @ u ∧
Contains(m, key(n), S) @ v ∧ ¬(tpm.key ∈ S) ⊃ l = m.tpm.v.channel

The above proofs rely on the induction hypothesis about keyOwnerIn and keyMemIn to claim that the log
entries themselves do not contain any key. Instantiate the universal to specific values and combine the above
two results as follows

γ, ψ ` (u′−1 ≤ u0 ≤ u′0) ∧
(
HT(i0, L̂, LOGGER) @ u′−1 ∨ Owner(i0, t̂pm) @ u′−1

)
∧

Write(i0, l0,m0) @ u′−1 ∧ Contains(m0, key(n0), S0) @ u′0 ∧ ¬(tpm.key ∈ S0) ⊃ l0 ∈ L

Thus, using (R2) and the above result, we can prove the following, which is a contradiction.

γ, ψ ` l0 ∈ L ∧ l0 /∈ L

Proving keyOwnerIn(u0) holds: We do so by contradiction.
Assume γ ` ¬keyOwnerIn(u0). In an expanded form this is same as

∃u′,m, n, i, S. (u′ ≥ u0) ∧ Has(i,m) @ u0 ∧ Contains(m, key(n), S) @ u′ ∧
¬(tpm.key ∈ S) ∧ ¬HT(i, L̂, LOGGER) @ u0 ∧ ¬Owner(i, t̂pm) @ u0 ∧ ¬Owner(i, V̂ ) @ u0

Let the above formula be ψ. Again fix values of existential so that

γ, ψ ` (u′0 ≥ u0) ∧ Has(i0,m0) @ u0 ∧ Contains(m0, key(n0), S0) @ u′0 ∧
¬(tpm.key ∈ S0) ∧ ¬HT(i0, L̂, LOGGER) @ u0 ∧ ¬Owner(i0, t̂pm) @ u0 ∧ ¬Owner(i0, V̂ ) @ u0 (A2)

Now, we know that Has(i0,m0) ⊃ ¬Reset() @ u. Also, using Ax13 and Ax14 and picking up to be the max of
the witnesses for the existential u′ for the tpm thread and the logger thread, with the verifier never reseting,
we get ∀u. (up < u < u0) ⊃ ¬HT(i0, L̂, LOGGER) @ u ∧ ¬Owner(i0, t̂pm) @ u ∧ ¬Owner(i0, V̂ ) @ u. Using
facts from A2 we get

∀u. (up < u < u0) ⊃ ¬HT(i0, L̂, LOGGER) @ u ∧
¬Owner(i0, t̂pm) @ u ∧ ¬Owner(i0, V̂ ) @ u ∧ Contains(m0, key(n0), S0) @ u′0 ∧ ¬(tpm.key ∈ S0) (B1)

Taking contrapositive within keyOwnerIn(u) we get

keyOwnerIn(u) = ∀u′,m, n, i, S. ¬HT(i, L̂, LOGGER) @ u ∧ ¬Owner(i, t̂pm) @ u ∧ ¬Owner(i, V̂ ) @ u ⊃
¬
(

(u′ ≥ u) ∧ Has(i,m) @ u ∧ Contains(m, key(n), S) @ u′ ∧ ¬(tpm.key ∈ S)
)

Instantiating, with u < u0, and noting that u < u0 ≤ u′0 we get

γ ` ∀u. (u < u0) ∧ ¬HT(i0, L̂, LOGGER) @ u ∧ ¬Owner(i0, t̂pm) @ u ∧ ¬Owner(i0, V̂ ) @ u ⊃
¬
(
Has(i0,m0) @ u ∧ Contains(m0, key(n0), S0) @ u′0 ∧ ¬(tpm.key ∈ S0)

)
or rearranging

γ ` ∀u. ¬HT(i0, L̂, LOGGER) @ u ∧ ¬(tpm.key ∈ S0) ∧ ¬Owner(i0, t̂pm) @ u ∧ ¬Owner(i0, V̂ ) @ u ∧
Contains(m0, key(n0), S0) @ u′0 ⊃ ¬(u < u0) ∨ ¬Has(i0,m0) @ u

Using this with (B1) we get

γ ` ∀u. (up < u < u0) ⊃ ¬(u < u0) ∨ ¬Has(i0,m0) @ u
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which is same as ∀u. (up < u < u0) ⊃ ¬Has(i0,m0) @ u and which is same as ¬Has(i0,m0) on [up, u0). Thus,
we have

γ, ψ ` ¬Has(i0,m0) on [up, u0)

We know from A2 that
γ, ψ ` Has(i0,m0) @ u0

Now, invoking property H2 about Has we get

γ, ψ ` ∃m.
(

(∃l, j,m′. Recv(i0, j,m) @ u0 ∨ Read(i0, l,m) @ u0 ∨ Hmac(i0,m
′, l,m) @ u0)

∧ (∃S. HasSet(i0, S) @ u0 ∧ Contains(m,m0, S) @ u0)
)

Instantiating the existential with fresh values we get (with the formula captures in ψ)

γ, ψ ` (Recv(i0, j0,m−1) @ u0 ∨ Read(i0, l0,m−1) @ u0 ∨ Hmac(i0,m
′
0, l0,m−1) @ u0)

∧ HasSet(i0, S−1) @ u0 ∧ Contains(m−1,m0, S−1) @ u0 ∧ ¬(tpm.key ∈ S0)

From A2 we know that

γ, ψ ` (u′0 ≥ u0) ∧ Contains(m0, key(n0), S0) @ u′0 ∧ ¬HT(i0, L̂, LOGGER) @ u0 ∧
¬Owner(i0, t̂pm) @ u0 ∧ ¬(tpm.key ∈ S0) ∧ ¬Owner(i0, V̂ ) @ u0

First, note that Contains(m−1,m0, S−1) @ u0 ∧ (u′0 ≥ u0) ∧ Contains(m0, key(n0), S0) @ u′0 implies that
Contains(m−1, key(n0), S0∪S−1) @ u′0 ∧ (u′0 ≥ u0). Also, we know that ¬Owner(i0, t̂pm) ∧ HasSet(i0, S−1) ⊃
¬(tpm.key ∈ S−1) Thus, we can infer that

γ, ψ ` (u′0 ≥ u0) ∧ Contains(m−1, key(n0), S0 ∪ S−1) @ u′0 ∧ ¬(tpm.key ∈ S0 ∪ S−1) ∧
¬HT(i0, L̂, LOGGER) @ u0 ∧ ¬Owner(i0, t̂pm) @ u0 ∧ ¬Owner(i0, V̂ ) @ u0 ∧
(Recv(i0, j0,m−1) @ u0 ∨ Read(i0, l0,m−1) @ u0 ∨ Hmac(i0,m

′
0, l0,m−1) @ u0)

We analyze the three disjuncts separately reaching contradictions in each case. We skip the Hmac case,
since it is similar to Read. Thus, we analyze two sub cases below.

SubCase 1: Recv(i0, j0,m−1) @ u0
This case yields

γ, ψ ` (u′0 ≥ u0) ∧ Contains(m−1, key(n0), S0 ∪ S−1) @ u′0 ∧ ¬(tpm.key ∈ S0 ∪ S−1) ∧
¬HT(i0, L̂, LOGGER) @ u0 ∧ ¬Owner(i0, t̂pm) @ u0 ∧ ¬Owner(i0, V̂ ) @ u0 ∧ Recv(i0, j0,m−1) @ u0

Using Ax3 and Ax4 we can conclude that

γ, ψ ` (u′0 ≥ u0 > u−1 > u−2) ∧ Contains(m−1, key(n0), S0 ∪ S−1) @ u′0 ∧ ¬(tpm.key ∈ S0 ∪ S−1) ∧
¬HT(i0, L̂, LOGGER) @ u0 ∧ ¬Owner(i0, t̂pm) @ u0 ∧ ¬Owner(i0, V̂ ) @ u0 ∧ Send(j0, i0,m−1) @ u−1
∧ Has(j0,m−1) @ u−2 ∧ ¬Reset() on (u−2, u−1]

Now, we can invoke keyOwnerIn(u−2) as u−2 < u0 ≤ u′0 with suitable instantiation to get

γ, ψ ` (u′0 ≥ u0 > u−1 > u−2) ∧
(
HT(j0, L̂, LOGGER) @ u−2 ∨ Owner(j0, t̂pm) @ u−2 ∨ Owner(j0, V̂ ) @ u−2

)
∧

¬HT(i0, L̂, LOGGER) @ u0 ∧ ¬Owner(i0, t̂pm) @ u0 ∧ ¬Owner(i0, V̂ ) @ u0 ∧ Send(j0, i0,m−1) @ u−1 ∧
Contains(m−1, key(n0), S0 ∪ S−1) @ u′0 ∧ ¬Reset() on (u−2, u−1] (B2)

It is possible to show by analyzing the programs that

γ, ψ ` ∀n,m, u, i, j, v, S. (u−2 ≤ u < u0) ∧ (u ≤ v) ∧ HT(i, L̂, LOGGER) @ u−2 ∧
¬Reset() on (u−2, u−1] ∧ Contains(m, key(n), S) @ v ⊃ ¬Send(i, j,m) @ u

γ, ψ ` ∀n,m, u, i, j, v, S. (u−2 ≤ u < u0) ∧ (u ≤ v) ∧ Owner(i, t̂pm) @ u−2 ∧
¬Reset() on (u−2, u−1] ∧ Contains(m, key(n), S) @ v ⊃ ¬Send(i, j,m) @ u

γ, ψ ` ∀n,m, u, i, j, v, S. (u−2 ≤ u < u0) ∧ (u ≤ v) ∧ Owner(i, V̂ ) @ u−2 ∧
¬Reset() on (u−2, u−1] ∧ Contains(m, key(n), S) @ v ⊃ ¬Send(i, j,m) @ u
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Instantiating, and combining we get

γ, ψ ` (u−2 ≤ u−1 < u0 ≤ u′0) ∧
(
HT(j0, L̂, LOGGER) @ u−2 ∨ Owner(j0, t̂pm) @ u−2 ∨ Owner(j0, V̂ ) @ u−2

)
∧

¬Reset() on (u−2, u−1] ∧ Contains(m−1, key(n0), S0 ∪ S−1) @ u′0 ⊃ ¬Send(j0, i0,m−1) @ u−1

Thus, using the above result with (B2) we get

γ, ψ ` ¬Send(j0, i0,m−1) @ u−1

but, we also know from B2 that γ, ψ ` Send(j0, i0,m−1) @ u−1, which is a contradiction.
Next, we analyze the second disjunct

SubCase 2: Read(i0, l0,m−1) @ u0
This case yields

γ, ψ ` (u′0 ≥ u0) ∧ Contains(m−1, key(n0), S0 ∪ S−1) @ u′0 ∧ HT(i0, L̂, LOGGER) @ u0 ∧
¬¬Owner(i0, t̂pm) @ u0 ∧ ¬Owner(i0, V̂ ) @ u0 ∧
(tpm.key /∈ S0 ∪ S−1) ∧ Read(i0, l0,m−1) @ u0

Now, using Ax5 we can conclude that

γ, ψ ` (u′0 ≥ u0 > u′′) ∧ Contains(m−1, key(n0), S0 ∪ S−1) @ u′0 ∧ HT(i0, L̂, LOGGER) @ u0 ∧
¬Owner(i0, t̂pm) @ u0 ∧ ¬Owner(i0, V̂ ) @ u0 ∧ (tpm.key /∈ S0 ∪ S−1) ∧
Read(i0, l0,m−1) @ u0 ∧ Mem(l0,m−1) on [u′′, u0] ∧ ¬Reset() on [u′′, u0]

Now using induction hypothesis for predicate keyMemIn(u′′), given u′′ < u0, we get

γ, ψ ` (u′0 ≥ u0 > u′′) ∧ Contains(m−1, key(n0), S0 ∪ S−1) @ u′0 ∧ HT(i0, L̂, LOGGER) @ u0 ∧
¬Owner(i0, t̂pm) @ u0 ∧ ¬Owner(i0, V̂ ) @ u0 ∧ (tpm.key /∈ S0 ∪ S−1) ∧
Read(i0, l0,m−1) @ u0 ∧ Mem(l0,m−1) on [u′′, u0] ∧ (l0 ∈ L) ∧ ¬Reset() on [u′′, u0] (C1)

For now, assume a formula ξ (ξ will be proved later) given by

γ ` ∀u, u′′, i, n,m, S, v, l. ¬HT(i, L̂, LOGGER) @ u ∧ ¬Owner(i, t̂pm) @ u ∧ ¬Owner(i, V̂ ) @ u
∧ Mem(l,m) on [u′′, u] ∧ (v ≥ u) ∧ (u′′ < u ≤ u0) ∧ l ∈ L ∧ ¬Reset() on [u′′, u] ∧
(tpm.key /∈ S) ⊃ ¬Read(i, l,m) @ u ∨ ¬Contains(m, key(n), S) @ v

ξ basically states that any thread that is not the logger, tpm or verifier does not read l ∈ L or that memory
location l does not contain any key. ξ can be rearranged as

γ ` ∀u, u′′, i, n,m, S, v, l. ¬HT(i, L̂, LOGGER) @ u ∧ ¬Owner(i, t̂pm) @ u ∧ ¬Owner(i, V̂ ) @ u ∧
Mem(l,m) on [u′′, u] ∧ (v ≥ u) ∧ (u′′ < u ≤ u0) ∧ ¬Reset() on [u′′, u] ∧ (tpm.key /∈ S) ∧
Read(i, l,m) @ u ∧ Contains(m, key(n), S) @ v ⊃ l /∈ L

Then, instantiating with proper values (e.g., u = u0) we get

γ ` ¬HT(i0, L̂, LOGGER) @ u0 ∧ ¬Owner(i, t̂pm) @ u0 ∧ ¬Owner(i, V̂ ) @ u0 ∧ (u′0 ≥ u0) ∧ (u′′ < u0) ∧
Mem(l0,m−1) on [u′′, u] ∧ ¬Reset() on [u′′, u0] ∧ (tpm.key /∈ S0 ∪ S−1) ∧
Read(i0, l0,m−1) @ u0 ∧ Contains(m−1, key(n0), S0 ∪ S−1) @ u′0 ⊃ l0 /∈ L

Thus, using with (C1) we obtain the contradiction

γ, ψ ` l0 ∈ L ∧ l0 /∈ L

Thus, we now focus on proving ξ

γ ` ∀u, u′′, i, n,m, S, v, l. ¬HT(i, L̂, LOGGER) @ u ∧ ¬Owner(i, t̂pm) @ u ∧ ¬Owner(i, V̂ ) @ u
∧ Mem(l,m) on [u′′, u] ∧ (v ≥ u) ∧ (u′′ < u ≤ u0) ∧ l ∈ L ∧ ¬Reset() on [u′′, u] ∧
(tpm.key /∈ S) ⊃ ¬Read(i, l,m) @ u ∨ ¬Contains(m, key(n), S) @ v
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Here we ask the reader to recall about our splitting the startup to shutdown time into intervals: one from
startup to when the logger incremented the counter, and the other interval from when the logger incremented
the counter to shutdown, as stated in the main body. We do so using the following predicate

Early(u) = ∀u′.∀j. ¬(LastReset(u′) @ u) ∨ ¬HT(j, L̂, LOGGER) @ u ∨ ¬Counterup(j) on (u′, u]

where LastReset(u′) @ u = (u′ < u) ∧ Reset() @ u′ ∧ ¬Reset() on (u′, u]. Thus, we also have

¬Early(u) = ∃u′.∃j. LastReset(u′) @ u ∧ HT(j, L̂, LOGGER) ∧ ¬(¬Counterup(j) on (u′, u])

We can split formula ξ into two parts E and ¬E given respectively by

γ ` ∀u, u′′, i, n,m, S, v, l. Early(u) ∧ ¬HT(i, L̂, LOGGER) @ u ∧ ¬Owner(i, t̂pm) @ u ∧ ¬Owner(i, V̂ ) @ u
∧ Mem(l,m) on [u′′, u] ∧ (v ≥ u) ∧ (u′′ < u ≤ u0) ∧ l ∈ L ∧ ¬Reset() on [u′′, u] ∧
(tpm.key /∈ S) ⊃ ¬Read(i, l,m) @ u ∨ ¬Contains(m, key(n), S) @ v

γ ` ∀u, u′′, i, n,m, S, v, l. ¬Early(u) ∧ ¬HT(i, L̂, LOGGER) @ u ∧ ¬Owner(i, t̂pm) @ u ∧ ¬Owner(i, V̂ ) @ u
∧ Mem(l,m) on [u′′, u] ∧ (v ≥ u) ∧ (u′′ < u ≤ u0) ∧ l ∈ L ∧ ¬Reset() on [u′′, u] ∧
(tpm.key /∈ S) ⊃ ¬Read(i, l,m) @ u ∨ ¬Contains(m, key(n), S) @ v

We do the proof in three parts: first for the location M.disk.sealedkey and then for M.ram.keyloc and
M.tpm.v.channel.

Subsubcase 1: l = m.disk.sealedkey
Remember, we had assumed that

ANR = ∀u, i,m. Early(u) ∧ (u ≤ ua) ∧ ¬HT(i, L̂, LOGGER) @ u ⊃ ¬Read(i,M.disk.sealedkey,m) @ u

which takes care of the E part of the formula.
For the ¬E part we again split time into two parts: one part till the time the logger writes the sealed

object to disk, and other part from the time the logger writes the sealed object to actual shutdown.
We first show that ¬Contains(m, key(n), S) @ v till the time the logger writes the sealed object again at

shutdown. Assume the antecedent holds. Look at the following parts of the antecedent of the required to
prove formula (with universals instantiated): ¬Early(u) ∧ Mem(M.disk.sealedkey,m) on [u′′, u] ∧ (v ≥ u) ∧
(tpm.key /∈ S). First, note that by definition of of ¬Early(u) choosing fresh values u′, j we get

LastReset(u′) @ u ∧ HT(j, L̂, LOGGER) @ u ∧ ∃uc.(u′ < uc < u) ∧ Counterup(j) @ uc

The partial correctness for the unseal data function [unseal data]〈y, ub, ue, j, x〉 implies ∃m, d, uu. (ub <
uu < ue) ∧ Unseal(k,m, d, tpm.key) @ uu ∧ Owner(k, t̂pm) @ uu. Thus, we have using the order of execution
of programs that (note uc is the time when counter was incremented)

∃c,m′, uu, ud, uw, us. (u′ < us < uw < ur < ud < uu < uc) ∧ Counterval(c) @ uu ∧ Unseal(k,m′, d) @ uu
∧ Owner(k, t̂pm) @ uu ∧ Mem(M.disk.sealedkey,m′) @ ud ∧ ReadLock(j,M.disk.sealedkey) @ ur ∧
WriteLock(j,M.disk.sealedkey) @ uw ∧ Start(j) @ us

Pick fresh variables for existential, and we use the same names as the quantifier variables. We use the
following short form notation for sake of readability

Unsealc,t̂pm(k,m′, d) @ uu = Counterval(c) @ uu ∧ Unseal(k,m′, d) @ uu ∧ Owner(k, t̂pm) @ uu

The following is immediate (for given uu, uc) from the monotonicity of the counter:

∀j, u, c, c ∗ . (uu < uc < u) ∧ Counterup(j) @ uc ∧ Counterval(c) @ uu ⊃ Counterval(c∗) @ u ∧ (c∗ > c)

Also, we have

∀j, u. Start(j) @ us ∧ (us < u) ∧ ¬Reset() on (us, u] ∧ HT(j, L̂, LOGGER) @ u ⊃ HT(j, L̂, LOGGER) on [us, u]
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Next, note that under assumption about root threads NoAdv and Ax7wr we have (ψ denotes all the existential
that have been picked)

γ, ψ ` ∀v′. (u′ < us < uw < ur < u) ∧ ¬Reset() on (u′, u] ∧
HT(j, L̂, LOGGER) on [us, u] ∧ ReadLock(j,M.disk.sealedkey) @ uw ∧WriteLock(j,M.disk.sealedkey) @ uw
∧ ¬Write(j,M.disk.sealedkey, v′) on (uw, u] ⊃ ∀i.¬Write(i,M.disk.sealedkey, v′) on (uw, u]

Thus, by preservation of memory value, given no writes, (for all values m′)

γ, ψ ` ∀v′,m′. (u′ < us < uw < ur < ud < u) ∧ ¬Reset() on (u′, u] ∧WriteLock(j,M.disk.sealedkey) @ uw
∧ ReadLock(j,M.disk.sealedkey) @ ur ∧ HT(j, L̂, LOGGER) on [us, u] ∧ Mem(M.disk.sealedkey,m′) @ ud ∧
¬Write(j,M.disk.sealedkey, v′) on (uw, u] ⊃ Mem(M.disk.sealedkey,m′) on [ud, u]

But, we know from assumed true antecedent of ¬E that Mem(M.disk.sealedkey,m) on [u′′, u], which implies
m′ = m. Also, by definition of Contains for all S

Mem(M.disk.sealedkey,m) @ u ∧ Unsealc,t̂pm(k,m, d) @ uu ∧ Counterval(c∗) @ u ∧ (c∗ > c) ∧ (tpm.key /∈ S)

(uu < u) ∧ (v ≥ u) ⊃ ¬Contains(m, key(n), S) @ v

Thus, we have (using relaxation of the consequent with Read)

γ, ψ ` ∀i, v′,m. (u′ < us < uw < ur < ud < u ≤ v) ∧ ¬Reset() on (u′, u] ∧WriteLock(j,M.disk.sealedkey) @ uw
∧ ReadLock(j,M.disk.sealedkey) @ ur ∧ HT(j, L̂, LOGGER) on [us, u] ∧ Mem(M.disk.sealedkey,m) @ ud ∧ (tpm.key /∈ S)
∧ Unsealc,t̂pm(k,m, d) @ uu ∧ ¬Write(j,M.disk.sealedkey, v′) on (uw, u] ⊃
¬Contains(m, key(n), S) @ v ∨ ¬Read(i, (M.disk.sealedkey,m) @ u (BeforeF inalSeal)

This part takes care of the time till logger writes the sealed key at shutdown.
To reason about the shutdown phase (after the logger writes the sealed key) we proceed below. We know

from the logger and shutdown expression that

∀uz. (uz ≤ U) ∧ HT(j, L̂, LOGGER) @ uz ∧Write(j,M.disk.sealedkey, v) @ uz ∧
¬Reset() on [uz, u] ⊃ Mem(M.ram.sh,−1) on [uz, u]

Thus, we have

γ, ψ ` ∀uz, v′. (u′ < us < uw < ur < uz ≤ u) ∧ ¬Reset() on (u′, u] ∧WriteLock(j,M.disk.sealedkey) @ uw
∧ ReadLock(j,M.disk.sealedkey) @ ur ∧ HT(j, L̂, LOGGER) on [us, u] ∧Write(j,M.disk.sealedkey, v′) @ uz
⊃ Mem(M.ram.sh,−1) on [uz, u]

Next, note that under assumption NoAdv about root threads we have

Mem(M.ram.sh,−1) @ u ∧ Owner(i, r̂oot) @ u ⊃ ¬Read(i,M.disk.sealedkey,m) @ u .

Thus, usingAx7rd we get for all i, (ur < uz ≤ u) ∧ ReadLock(j,M.disk.sealedkey) @ ur ∧ HT(j, L̂, LOGGER) on
[us, u] ∧ Mem(M.ram.sh,−1) @ u ⊃ ¬Read(i,M.disk.sealedkey, v) @ u. Thus, we have

γ, ψ ` ∀i, uz, v′,m. (u′ < us < uw < ur < uz ≤ u) ∧ ¬Reset() on (u′, u] ∧WriteLock(j,m.disk.sealedkey) @ uw
∧ ReadLock(j,M.disk.sealedkey) @ ur ∧ HT(j, L̂, LOGGER) on [us, u] ∧Write(j,M.disk.sealedkey, v′) @ uz
⊃ ¬Read(i,M.disk.sealedkey,m) @ u

Thus, moving the ∀uz as an existential into the precedent we get ∃uz. (uw < uz ≤ u) ∧Write(j,M.disk.sealedkey, v′) @
uz which is same as ¬(¬Write(j,M.disk.sealedkey, v) on (uw, u]). Then, the strengthening antecedent and
relaxing the consequent we get

γ, ψ ` ∀i, v′,m.(u′ < us < uw < ur < ud < u ≤ v) ∧ ¬Reset() on (u′, u] ∧WriteLock(j,M.disk.sealedkey) @ uw
∧ ReadLock(j,M.disk.sealedkey) @ ur ∧ HT(j, L̂, LOGGER) on [us, u] ∧ Mem(M.disk.sealedkey,m) @ ud ∧ (tpm.key /∈ S) ∧

(¬(¬Write(j,M.disk.sealedkey, v′) on (uw, u]) ∧ (v ≥ u) ⊃
¬Contains(m, key(n), S) @ v ∨ ¬Read(i,M.disk.sealedkey,m) @ u
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Combining this with the formula (BeforeF inalSeal) we get (note same consequent)

γ, ψ ` ∀i, v′,m.(u′ < us < uw < ur < ud < u ≤ v) ∧ ¬Reset() on (u′, u] ∧WriteLock(j,M.disk.sealedkey) @ uw
∧ ReadLock(j,M.disk.sealedkey) @ ur ∧ HT(j, L̂, LOGGER) on [us, u] ∧ Mem(M.disk.sealedkey,m) @ ud

∧ (tpm.key /∈ S) ∧ (v ≥ u) ⊃ ¬Contains(m, key(n), S) @ v ∨ ¬Read(i,M.disk.sealedkey,m) @ u

Note that the consequent does not depend on any of the existential witnesses. Thus, we have

γ ` ∀u, u′′, i, S, v,m. ¬Early(u) ∧ Mem(M.disk.sealedkey,m) on [u′′, u] ∧ (v ≥ u)
∧ (tpm.key /∈ S) ⊃ ¬Contains(m, key(n), S) @ v ∨ ¬Read(i, (M.disk.sealedkey,m) @ u

The antecedent can be strengthened to obtain the desired result ¬E.
Next, we show the proof for that for l = M.ram.keyloc. As the proof for M.tpm.v.channel is similar we

skip that part. The proof is similar to the last part where we split the required to prove formula into two E
and ¬E, one with Early and one with ¬Early.

Subsubcase 2: l = M.ram.keyloc
We start with proving E. Assume part of antecedent of E after instantiating all universals: Early(u) ∧ (v ≥
u) ∧ tpm.key /∈ S. Then, Early(u) holds. Choose u′ such that LastReset(u′) @ u (there always exists such a
u′). Thus, this implies that HT(j, L̂, LOGGER) @ u ⊃ ¬Counterup(j) on (u′, u]. First, the following hold due
to the operational semantics of reset, Reset() @ u′ ⊃ Mem(M.ram.keyloc, null) @ u′. Again, using Ax1 we
get

∀m,u′′. Mem(M.ram.keyloc,m) @ u′′ ∧ (u′′ < u) ∧ ¬Reset() on (u′, u]
⊃ (m = null) ∨ ∃k, u′′′. (u′ < u′′′ ≤ u′′) ∧Write(k,M.ram.keyloc,m) @ u′′′

We know that since Early(u) holds we have

¬Reset() on (u′, u] ∧ HT(j, L̂, LOGGER) @ u ⊃ ¬Reset() on (u′, u] ∧ HT(j, L̂, LOGGER) @ u ∧ ¬Counterup(j) on (u′, u]

Also, we know from analysis of logger program that

∀j, v′. ¬Reset() on (u′, u] ∧ HT(j, L̂, LOGGER) @ u ∧ ¬Counterup(j) on (u′, u] ⊃ ¬Write(j,M.ram.keyloc, v′) on (u′, u]

Thus, by using modus ponens on the last two formulas we get

∀j, v′. ¬Reset() on (u′, u] ∧ HT(j, L̂, LOGGER) @ u ⊃ ¬Write(j,M.ram.keyloc, v′) on (u′, u]

Also, from the tpm program we know that

∀i, v′.¬Reset() on (u′, u] ∧ Owner(i, t̂pm) @ u ⊃ ¬Write(i,M.ram.keyloc, v′) on (u′, u]

Also, from the verifier program we know that

∀i, v′.¬Reset() on (u′, u] ∧ Owner(i, V̂ ) @ u ⊃ ¬Write(i,M.ram.keyloc, v′) on (u′, u]

Thus, combining last three formulas we have

∀i, v′.¬Reset() on (u′, u] ∧
(
Owner(i, V̂ ) @ u ∨ Owner(i, t̂pm) @ u ∨ HT(j, L̂, LOGGER) @ u)

⊃ ¬Write(i,M.ram.keyloc, v′) on (u′, u]

which can be rearranged as

∀i, v′, uw.¬Reset() on (u′, u] ∧Write(i,M.ram.keyloc, v′) @ uw ⊃
¬Owner(i, V̂ ) @ u ∧ ¬Owner(i, t̂pm) @ u ∧ ¬HT(i, L̂, LOGGER) @ u (W1)

As shown above, we also have

(m = null) ∨ ∃k, u′′′. (u′ < u′′′ ≤ u′′) ∧Write(k,M.ram.keyloc,m) @ u′′′
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Clearly
m = null ∧ (v ≥ u) ⊃ ¬Contains(m, key(n), S) @ v

In the other scenario (m 6= null), using the above result W1 and thread k writing to memory loca-
tion M.ram.keyloc we get ¬Owner(k, V̂ ) @ u′′′ ∧ ¬Owner(k, t̂pm) @ u′′′ ∧ ¬HT(k, L̂, LOGGER) @ u′′′ ∧
Write(k,M.ram.keyloc,m) @ u′′′.

We can now use Ax2 and H1 to claim Has(k,m) @ u′′′ from Write(k,M.ram.keyloc,m) @ u′′′. As
u′′′ < u ≤ u0 we can invoke keyOwnerIn(u′′′)

keyOwnerIn(u′′′) = ∀u′,m, n, i, S. (u′ ≥ u′′′) ∧ Has(i,m) @ u′′′ ∧ Contains(m, key(n), S) @ u′

∧ ¬(tpm.key ∈ S) ⊃ HT(i, L̂, LOGGER) @ u′′′ ∨ Owner(i, t̂pm) @ u′′′ ∨ Owner(i, V̂ ) @ u′′′

to claim that (using v ≥ u > u′′′)

¬HT(k, L̂, LOGGER) @ u′′′ ∧ ¬Owner(k, t̂pm) @ u′′′ ∧ ¬Owner(k, V̂ ) @ u′′ ∧ (v ≥ u′′′)
∧ Has(k,m) @ u′′′ ∧ ¬(tpm.key ∈ S) ⊃ ¬Contains(m, key(n), S) @ v

Thus, we infer ¬Contains(m, key(n), S) @ v which can be weakened to ¬Contains(m, key(n), S) @ v ∨
¬Read(i,M.ram.keyloc,m) @ u for any i, and is independent of all existentially chosen fresh variables. Thus,
we infer

γ ` ∀u, v, S, i, n,m. Early(u) ∧ (v ≥ u) ∧ tpm.key /∈ S ⊃
¬Contains(m, key(n), S) @ v ∨ ¬Read(i,M.ram.keyloc,m) @ u

which can be strengthened to obtain E.
We skip the proof of ¬E here, but, state that the proof relies on the fact that the logger has write lock

on M.ram.keyloc and only the logger ever reads that location.

E.2 Proving property 3 and 4

Next, we prove property 3 and 4, i.e., ∀u.u > ua ⊃ oldKeyAdv(u, ua) ∧ oldKeyNotInMem(u, ua).
We do transfinite induction on u. We first prove the base case where u = ua. oldKeyAdv(ua, ua) holds as

the antecedent is false because of keyOwnerIn(u). We prove oldKeyNotInMem(ua, ua) next.
By analyzing the program of logger we have

∀i, ul, k, k′, ke, S,m. (k ≥ 1) ∧ LastLogIdx(k, ul, ua) ∧ HT(i, L̂, LOGGER) @ ua ∧
inMem(i, key(ke)) @ ua ∧ (1 ≤ k′ ≤ k) ∧ inMem(i,m) @ ua ⊃ ke ≥ k + 1 ∧ ¬Contains(m, key(k′), S) @ ua

From program analysis of tpm we have

∀i, ul, k, k′, ke, S,m. (k ≥ 1) ∧ LastLogIdx(k, ul, ua) ∧ Owner(i, t̂pm) @ ua
inMem(i, key(ke)) @ ua ∧ (1 ≤ k′ ≤ k) ∧ inMem(i,m) @ ua ⊃ ke ≥ k + 1 ∧ ¬Contains(m, key(k′), S) @ ua

Combined with the already proven keyOwnerIn(ua) we get that

∀i, ul, k, k′, S,m. (k ≥ 1) ∧ LastLogIdx(k, ul, ua) ∧ (1 ≤ k′ ≤ k) ∧ ¬Owner(i, V̂ )
∧ inMem(i,m) @ ua ∧ tpm.key /∈ S ⊃ ¬Contains(m, key(k′), S) @ ua

The above can be simplified by noting that ∀l.∃i. CanRead(i, l) and verifier cannot read memory in machine
M to get

∀l, ul, k, k′, S,m. (k ≥ 1) ∧ LastLogIdx(k, ul, ua) ∧ (1 ≤ k′ ≤ k)
∧ (l ∈M) ∧ Mem(l,m) @ ua ⊃ ¬Contains(m, key(k′), S) @ ua

which proves oldKeyNotInMem(ua, ua).

For the induction hypothesis, assume that oldKeyNotInMem(u, ua) ∧ oldkeyAdv(u, ua) for all ua ≤ u < u0
for some u0. We need to show oldKeyNotInMem(u0, ua) ∧ oldkeyAdv(u0, ua).
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oldKeyNotInMem(u0, ua) holds: We do so by contradiction.
Assume the formula oldKeyNotInMem does not hold for u0, then we obtain a contradiction. The negation of
oldKeyNotInMem(u0, ua) is

∃l0, ul, k, k′, S0,m. (u0 ≥ ua) ∧ (k ≥ 1) ∧ P (k, ul, ua) ∧ (1 ≤ k′ ≤ k) ∧ Mem(l0,m) @ u0 ∧
tpm.key /∈ S ∧ Contains(m, key(k′), S0) @ u0

Choose fresh values for existential and let the above formula be ψ. From the induction hypothesis we know
oldKeyNotInMem(ua, ua) is true, thus,

Mem(l0,m) @ u0 ∧ Mem(l0,m
′) @ ua ⊃ m 6= m′

Thus,
∃j0, uw. (ua < uw < u0) ∧Write(j0, l0,m) @ uw

Thus, from Ax2 and H1 we get

∃j, uw. (ua < uw < u0) ∧Write(j0, l0,m) @ uw ∧ Has(j0,m) @ uw

Now, from oldkeyAdv(uw, ua) combined with ψ and Has(j0,m) @ uw it is possible to say that

HT(j0, L̂, LOGGER) @ uw ∨ Owner(j0, t̂pm) @ uw ∨ Owner(j0, V̂ ) @ uw (j0threads)

It is possible to prove by analyzing programs that

γ, ψ ` ∀k′, k, l,m, u, ul, i, v, S. (ua < u ≤ u0) ∧ (u ≤ v) ∧ HT(i, L̂, LOGGER) @ u ∧ P (k, ul, ua) ∧
(1 ≤ k′ ≤ k) ∧Write(i, l,m) @ u ∧ Contains(m, key(k′), S) @ v ∧ ¬(tpm.key ∈ S) ⊃ k′ ≥ k + 1

γ, ψ ` ∀k′, k, l,m, u, i, v, S. (ua < u ≤ u0) ∧ (u ≤ v) ∧ Owner(i, t̂pm) @ u ∧
P (k, ul, ua) ∧ (1 ≤ k′ ≤ k) ∧Write(i, l,m) @ u ∧ Contains(m, key(k′), S) @ v ∧ ¬(tpm.key ∈ S) ⊃ k′ ≥ k + 1

γ, ψ ` ∀k′, k, l,m, u, i, v, S. (ua < u ≤ u0) ∧ (u ≤ v) ∧ Owner(i, V̂ ) @ u ∧ P (k, ul, ua) ∧
(1 ≤ k′ ≤ k) ∧Write(i, l,m) @ u ∧ Contains(m, key(k′), S) @ v ∧ ¬(tpm.key ∈ S) ⊃ k′ ≥ k + 1

The above proof relies on the induction hypothesis oldKeyAdv and oldKeyNotInMem to ensure that the
log entries do not contain keys with index lower than k + 1. Then, instantiating i with j0, l with l0, m with
m, v with u0 and S with S0, and combined with ψ and (j0threads) we conclude that k′ ≥ k + 1, but, we
also have from ψ that k′ ≤ k which is contradiction.

Proving oldKeyAdv(u0, ua) holds: We do so by contradiction.
Assume the formula oldKeyAdv(u0, ua) does not hold, then we show a contradiction.

∃i0,m, v, S0, ka, u0, ul. (v ≥ u0 ≥ ua) ∧ Has(i0,m) @ u0 ∧ Contains(m, key(ka), S0) @ v ∧ ¬HT(i0, L̂, LOGGER) @ u0
∧ ¬Owner(i0, t̂pm) @ u0 ∧ ¬Owner(i0, V̂ ) @ u0 ∧ P (k, ul) ∧ tpm.key /∈ S0 ∧ (ka ≥ 1) ∧ (ka < k + 1)

Denote above by ψ. Pick the existential values (denote them by the same variable names). From Has
we infer that in past at time ur, i0 read (or hmaced) a message m′ from a location l that contained m
and ¬Reset() ∈ [ur, u0]. The receive is ruled out, as by induction hypothesis non-logger , non-verifier and
non-tpm threads do not have key(ka) as ka < k + 1, and the logger, verifier and tpm do not send out the
key. We reason about the read case below, deriving a contradiction. (The hmac case is similar so we skip it).

Since the message read m′ contained m we know there exists a S′ such that Contains(m′,m, S′). Also, by
the security of the tpm key we have tpm.key /∈ S′. As argued in previous part we have Contains(m′, key(ka), S′∪
S0) @ v. The ¬Reset() ∈ [ur, u0] with the assumed assertion that i0 is not the logger, tpm or verifier at time
u0 implies

¬HT(i0, L̂, LOGGER) @ ur ∧ ¬Owner(i0, t̂pm) @ ur ∧ ¬Owner(i0, V̂ ) @ ur

Consider two cases ur ≤ ua and ur > ua. We first derive a contradiction from the first case. From
keyOwnerIn(ur) we know that

∀v′, S, i′. (ur ≤ ua) ∧ Has(i′,m′) @ ur ∧ (tpm.key /∈ S) ∧ ¬HT(i′, L̂, LOGGER) @ ur ∧ ¬Owner(i′, t̂pm) @ ur
∧ ¬Owner(i′, V̂ ) @ ur ∧ (v ≥ ur) ⊃ ¬Contains(m′, key(ka), S) @ v′
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Instantiate v′ with v and S with S′ ∪ S0 and i′ with i0. Thus, the precedent is true (using ψ) and we get
¬Contains(m′, key(ka), S′∪S0) @ v, but, we already concluded that Contains(m′, key(ka), S′∪S0) @ v. Thus,
we have a contradiction.

Next, consider the case when read time ur > ua. Let the location read be l. Thus, Has(i0,m) @ ur. Then,
as before there is a set S′ such hat

tpm.key /∈ S′ ∪ S0 ∧ Mem(l,m) @ ur ∧ Contains(m, key(ka), S′ ∪ S0) @ u0

However, this violates the induction hypothesis oldKeyNotInMem(ur, ua) for ur < u0. Thus, ur must be u0.
Thus, Mem(l,m) @ u0 ∧ Contains(m, key(ka), S0) @ u0. From the induction hypothesis oldKeyAdv(u) we
know that Contains(m, key(ka), S0) @ u0 ⊃ ¬Mem(l,m) @ u where u < u0. Thus, we get

(u < u0) ∧ Mem(l,m) @ u0 ∧ ¬Mem(l,m) @ u

Using Ax1 we get

∃j0, u′. (u < u′ ≤ u0) ∧Write(j0, l,m) @ u′

Using Ax2 we get (with the j0 above)

∃u′′, u′. (u < u′′ < u′ ≤ u0) ∧ Has(j0,m) @ u′′ ∧Write(j0, l,m) @ u′ ∧ ¬Reset() on [u′′, u′]

Now, as in the last part, from oldKeyAdv(u′′, ua) combined with ψ and Has(j0,m) @ u′′ it is possible to say
that

HT(j0, L̂, LOGGER) @ u′′ ∨ Owner(j0, t̂pm) @ u′′ ∨ Owner(j0, V̂ ) @ u′′

Using the above assertion that ∧ ¬Reset() on [u′′, u′] we get

HT(j0, L̂, LOGGER) @ u′ ∨ Owner(j0, t̂pm) @ u′ ∨ Owner(j0, V̂ ) @ u′

Now, just as in the last part (by analyzing programs) we can show that ka ≥ k + 1, but, we already assert
that ka < k + 1, which is a contradiction.

E.3 Main Result

Finally, we prove the main result of the paper

γ `∀k, k′, ub, ue, ul, ur, uw, i, j, log, n, fhm. HT(i, V̂ , VERIFIER) on [ub, ue] ∧
(ub < uc < ur < uv < ue) ∧ Send(i,VERIFY)@ub ∧ New(i,nonce)@uc ∧
Recv(i, (log[n], n, fhm)) @ ur ∧ VerifyHmac(i, fhm,nonce, key(n+ 1))@uv ∧(
(ur ≤ ua) ⊃ LastLogIdx(k, ul, ur)

)
∧
(
(ur > ua) ⊃ LastLogIdx(k, ul, ua)

)
∧

(1 ≤ k′ ≤ k) ∧ (ul ≥ uw) ∧ Write(j,fileloc(k′), v) @ uw
∧ HT(j, L̂, LOGGER) @ uw ⊃ data(v) = data(log(k′))

where

LastLogIdx(k, u, uend) = (k ≥ 0) ∧ (u ≤ uend) ∧
∀u′, i, j. HT(i, L̂, LOGGER) @ u ∧ (u ≤ u′ ≤ uend) ∧ (k ≥ 1) ∧Write(i,fileLoc(k), v) @ u ∧

HT(j, L̂, LOGGER) @ u′ ⊃ ¬Write(j,fileLoc(k + 1), v) @ u′

We assume that the required to prove formula does not hold and derive a contradiction. The negation is

γ `∃k, k′, ub, ue, ul, ur, uw, i, j, log, n, fhm. HT(i, V̂ , VERIFIER) on [ub, ue] ∧
(ub < uc < ur < uv < ue) ∧ Send(i,VERIFY)@ub ∧ New(i,nonce)@uc ∧
Recv(i, (log[n], n, fhm)) @ ur ∧ VerifyHmac(i, fhm,nonce, key(n+ 1))@uv ∧(
(ur ≤ ua) ⊃ LastLogIdx(k, ul, ur)

)
∧
(
(ur > ua) ⊃ LastLogIdx(k, ul, ua)

)
∧

(1 ≤ k′ ≤ k) ∧ (ul ≥ uw) ∧ Write(j,fileloc(k′), v) @ uw
∧ HT(j, L̂, LOGGER) @ uw ∧ (data(v) 6= data(log(k′)))

28



Denote the above as ψ after picking fresh values for the existential with same variable names, except j0
for the variable j. By the definition of LastLogIdx and ψ we get that ul ≤ min(ur, ua).

Also, by analyzing the program of the verifier we know that

HT(i, V̂ , VERIFIER) on [ub, ue] ∧ VerifyHmac(i, fhm,nonce, key(n+ 1))@uv ∧@ u ⊃
∃u. (ur < u < uv) ∧ VerifyHmac(i, data(k′)mac, data(k′)data, key(k′)) @ u

Using the hmac axioms Ax9 and Ax10 for VerifyHmac(i, data(k′)mac, data(k′)data, key(k′)) and the fact that
data was received at time ur we get

VerifyHmac(i, fhm, nonce, key(n+ 1)) @ uv ⊃ ∃j, l, u′.(u′ < ur) ∧ Hmac(j, data(k′)data, l, data(k′)mac) @ u′

∧ inMem(j, key(k′)) @ u′

Let the above witness for j be j′. First, we show that u′ ≤ ua. Assume the contrary u′ > ua, which also im-
plies that ur > ua. Hence, LastLogIdx(k, ul, ua) holds, and inMem(j, key(k′)) @ u′ implies ∃l.Mem(l, key(k′)) @
u′. We show using oldKeyNotInMem(u′, ua) a contradiction.

From oldKeyNotInMem(u′, ua) we can claim that k′ > k. To get this, re-arrange oldKeyNotInMem to move
the ¬Contains to antecedent as ¬Contains and the k′ ≤ k to consequent as k′ > k.

oldKeyNotInMem(u, ua) = ∀l, ul, k, k′, S,m. (u ≥ ua) ∧ (k ≥ 1) ∧ LastLogIdx(k, ul, ua) ∧
∧ (1 ≤ k′) ∧ Mem(l,m) @ u ∧ tpm.key /∈ S ∧ Contains(m, key(k′), S) @ u
⊃ (k′ > k)

We already showed that LastLogIdx(k, ul, ua) and Mem(l, key(k′)) @ u′, and take S = φ. Hence, we can
infer that k′ > k. However, we asserted above that k′ ≤ k which is a contradiction. Thus, u′ ≤ ua.

It is possible to show that

∀j. Hmac(j, data(k′)data, l, data(k′)mac) @ u′ ⊃ ¬Owner(j, t̂pm) @ u′ ∧ ¬Owner(j, V̂ ) @ u′

by analyzing the tpm and verifier program. It is also possible to show using keyOwnerIn(u′) that

inMem(j′, key(k′)) @ u′ ∧ (u′ ≤ ua) ⊃ HT(j′, L̂, LOGGER) @ u′ ∨ Owner(j′, t̂pm) @ u′ ∨ Owner(j′, V̂ ) @ u′

Thus, we obtain HT(j′, L̂, LOGGER) @ u′. Also, from the logger program it can be shown that

∀j, u′. HT(j, L̂, LOGGER) @ u′ ∧ Hmac(j, data(k′)data, l, data(k′)mac) @ u′

∧ P (k, ul, ua) ∧ (1 ≤ k′ ≤ k) ∧ (u′ ≤ ua)
⊃ ∃u′w. Write(j, fileloc(k′), data(k′)) @ u′w ∧ (u′ < u′w ≤ ul) ∧ ¬Reset() on [u′, u′w] ∧
∀j′′, u, v′. (u ≤ ua) ∧ (u 6= u′w) ∧ HT(j′′, L̂, LOGGER) @ u ⊃ ¬Write(j′′, fileloc(k′), v′) @ u

Instantiate j = j′ and u′ = u′ in the above formula.
The antecedent holds by our assumptions and hence does the conclusion. We already have HT(j0, L̂, LOGGER) @

uw and uw ≤ ua and Write(j0, fileloc(k
′), v) @ uw, which means that a possible value for u′w is uw, Now,

the forall in the consequent implies that u′w = uw since for no other value of u is there a write to fileloc(k′).
Also, from ¬Reset() on [u′, uw] and HT(j′, L̂, LOGGER) @ u′ we get that HT(j′, L̂, LOGGER) @ uw, but, we
already have HT(j0, L̂, LOGGER) @ uw (from ψ). Thus, j′ = j0.

Again from Write(j′, fileloc(k′), data(k′)) @ u′w we get Write(j0, fileloc(k
′), data(k′)) @ uw, which com-

bined with Write(j0, fileloc(k
′), v) @ uw means v = data(k′). However, we also have v 6= data(k′) (from ψ).

Thus, we have a contradiction.

F Protocol Encoding
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Logger program
LOGGER =
call logger start();
call logger body();

logger start()
4
=

call setup loggerchannel( self);
writelock M .ram.keyloc;
readlock M .ram.keyloc;
writelock M .disk.sealedkey;
readlock M .disk.sealedkey;

//handles shutdown attack
s = read M .disk.sealedkey;
key = call unseal data(s);
counterup M .tpm.nv.counter.1; //counter 1
write M .ram.keyloc, key;
write M .ram.logger os,−1;

logger body()
4
=

shstatus = read M .ram.sh; //shutdown status
key = read M .ram.keyloc;
data = recv;
if (data == LOGGING DONE

∧ shstatus == −1)
then call logger shutdown();

else

if (data == V ERIFY )
then call verify logger();

else

hm = hmac data, key;
key′ = hash key;
write M.ram.keyloc, key′;
y = read M .disk.currentpos; //current pointer
write M .disk.y, (data, hm);
write M .disk.currentpos, y + 1;

verify logger()
4
=

curr = read M .disk.currentpos;
start = read M .disk.startoffile;
log = read M .disk.startoffile; //reads whole file
nonce = recv;
hm = hmac nonce, key;
send(log, curr− start, hm); //file, size, hm

logger shutdown()
4
=

s = read M .tpm.nv.counter.1;
key = read M .ram.keyloc;
sk = call seal data(key, 1, s+ 1);
write M .disk.sealedkey, sk;
write M .ram.logger sh,−1;

unseal data(s)
4
=

write M .tpm.v.channel,UNSEAL COMMAND;
//notify TPM of command

write M .ram.logger tpm,−2;
//wait for response of TPM

poll M .ram.logger tpm,−1;
//put data on channel

write M .tpm.v.channel, s;
//notify TPM of data

write M .ram.logger tpm, 1;
//wait for response of TPM

poll M .tpm.logger tpm, 2;
//read response of TPM

x = read M .tpm.v.channel;
x; //return x

seal data(data, counterindex, counter)
4
=

write M .tpm.v.channel, SEAL COMMAND;
write M .ram.logger tpm,−2;
//wait for response of TPM

poll M .ram.logger tpm,−1;
//put data on channel

write M .tpm.v.channel,
(data, counterindex, counter);

//notify TPM of data
write M .ram.logger tpm, 1;
//wait for response of TPM

poll M .tpm.logger tpm, 2;
//read response of TPM

x = read M .tpm.v.channel;
x;

OS program
OS =
call init();

id = fork LOGGER, L̂;
writelock M .ram.logger os, id;
write M .ram.logger os,−2;
poll M .ram.logger os,−1;
writelock M .ram.sh os;
write M .ram.sh os,−2;

id′ = fork SHUTDOWN, r̂oot; //enable shutdown
poll M .ram.sh os,−1;
fork PRODUCER;
e′;

SHUTDOWN =
writelock M .ram.sh;
//only the thread that locks ram.sh can reset
write M .ram.sh os,−1;
write M .ram.sh,−1;
//write -1 non-deterministically at any time
poll M .ram.logger sh,−1; //wait for logger
reset;
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Verifier program
V ERIFIER =
send (V ERIFY, 0);
key = hash SS;
nonce = new;
send nonce;
(alldata, size,finalhm) = recv;
call verifier loop(0, key, size,nonce,finalhm, alldata);

verifier loop(n, key, size,nonce,finalhm, alldata)
4
=

if (n == size)
then verifyhmac finalhm,nonce, key;
else

(log, hm) = alldata[n];
verifyhmac hm, log, key;
key’ = hash key;
call verifier loop(n+ 1, key’, size,nonce,finalhm)

TPM
TPM =

call tpm body();

tpm body()
4
=

//private key of TPM
prvkey = read M .tpm.nv.locked.prvkey;
//wait for command

poll M .ram.logger tpm,−2;
command = read M .tpm.v.channel;
write M .ram.logger tpm,−1;
poll M .ram.logger tpm, 1;
if (command == SEAL COMMAND) then

(data, counterindex, count) = read M .tpm.v.channel;
s = seal data, counterindex, count, prvkey;
write M .tpm.v.channel, s;

else if (command == UNSEAL COMMAND)
s = read M .tpm.v.channel;
data = unseal s, prvkey;
write M .tpm.v.channel, data;
//notify caller that done

write M .ram.logger tpm, 2;
call tpm body();

setup loggerchannel(id)
4
=

//take various locks on communication channels
writelock M .tpm.v.channel, id;
readlock M .tpm.v.channel, id;
writelock M .ram.logger tpm, id;
readlock M .ram.logger tpm, id;
writelock M .ram.logger sh, id;
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