
Maintaining Distributed Logic Programs Incrementally

Vivek Nigam1, Limin Jia2, Boon Thau Loo3, Andre Scedrov3

Abstract

Distributed logic programming languages, which allow both facts and pro-
grams to be distributed among different nodes in a network, have been recently
proposed and used to declaratively program a wide-range of distributed systems,
such as network protocols and multi-agent systems. However, the distributed
nature of the underlying systems poses serious challenges to developing efficient
and correct algorithms for evaluating these programs. This paper proposes an
efficient asynchronous algorithm to compute incrementally the changes to the
states in response to insertions and deletions of base facts. Our algorithm is
formally proven to be correct in the presence of message reordering in the sys-
tem. To our knowledge, this is the first formal proof of correctness for such an
algorithm.

1. Introduction

One of the most exciting developments in computer science in recent years
is that computing has become increasingly distributed. Both resources and
computation no longer reside in a single place. Resources can be stored in
different machines possibly around the world, and computation can also be per-
formed by different machines, e.g. cloud computing. Since machines usually run
asynchronously and under very different environments, programming computer
artifacts in such frameworks has become increasingly difficult as programs have
to be at the same time correct, readable, efficient and portable. There has,
therefore, been a recent return to using declarative programming languages,
based on Prolog and Datalog, to program distributed systems such as networks
and multi-agent robotic systems, e.g. Network Datalog (NDlog) [10], MELD [5],
Netlog [6], DAHL [12], Dedalus [4]. When programming in these declarative lan-
guages, programmers usually do not need to specify how computation is done,
but rather what is to be computed. Therefore declarative programs tend to be
more readable, portable, and orders of magnitude smaller than their imperative
counterparts.

Email addresses: vivek.nigam@ifi.lmu.de (Vivek Nigam), liminjia@cmu.edu (Limin
Jia), boonloo@cis.upenn.edu (Boon Thau Loo), scedrov@math.upenn.edu (Andre Scedrov)

1Ludwig-Maximilians-Universität, Germany
2Carnegie Mellon University, USA
3University of Pennsylvania, USA

Preprint submitted to Elsevier March 1, 2012

Distributed systems, such as networking and multi-agent robotic systems,
deal at their core with maintaining states by allowing each node (agent) to
compute locally and then propagate its local states to other nodes in the system.
For instance, in routing protocols, at each iteration each node computes locally
its routing tables based on information it has gained so far, then distributes the
set of derived facts to its neighbors. We can specify these systems as distributed
logic programs, where the base facts as well as the rules are distributed among
different nodes in the network.

Similarly to its centralized counterparts, one of the main challenges of imple-
menting these distributed logic programs is to efficiently and correctly update
them when the base facts change. For distributed systems, the communication
costs due to updates also need to be taken into consideration. For instance, in
the network setting, when a new link in the network has been established or an
old link has been broken, the set of derived routes need to be updated to reflect
the changes in the base facts. It is impractical to recompute each node’s state
from scratch when changes occur, since that would require all nodes to exchange
their local states including those that have been previously propagated.

A better approach is to maintain the state of distributed logic programs
incrementally. Instead of reconstructing the entire state, one only modifies pre-
viously derived facts that are affected by the changes of the base facts, while
the remaining facts are left untouched. For typical network protocols, updates
to the base facts are caused by topology changes, and these changes are small
compared to the size of the entire network, but happen quite often. There-
fore, whenever a link update happens, incremental recomputation requires less
bandwidth and results in much faster protocol convergence times when com-
pared to recomputation from scratch. (We compare incremental approach to
recomputation in more detail at the end of Section 2.3.)

This paper develops algorithms for incrementally maintaining recursive logic
programs in a distributed setting. Our algorithms allow asynchronous execution
among agents. No agent needs to stop computing because some other agent has
not concluded its computation. Synchronization requires extra communication
between agents, which comes at a huge performance penalty. In addition, we
also allow update messages to be received out of order. We do not assume the
existence of a coordinator in the system, which matches the reality of distributed
systems. Finally, we develop techniques that ensure the termination of updates
even in the presence of recursive logic programs.

More concretely, we propose an asynchronous incremental logic program-
ming maintenance algorithm, based on the pipelined semi-näıve (PSN) evalua-
tion strategy proposed by Loo et al. [10]. PSN relaxes the traditional semi-näıve
(SN) evaluation strategy for Datalog by allowing an agent to change its local
state by following a local pipeline of update messages. These messages specify
the insertions and deletions scheduled to be performed to the agents’ local state.
When an update is processed, new updates may be generated and those that
have to be processed by other agents of the system are transmitted accordingly.

We discovered that existing PSN algorithms [10, 9] may produce incorrect
results if the messages are received out of order. We propose a new PSN al-

2

gorithm and formally prove its correctness. Up to our knowledge, this is the
first formal proof for such an algorithm under the assumption that messages
can be received out of order. What makes the problem hard is that we need
to show that, in a distributed, asynchronous setting, the state computed by
our algorithm is correct regardless of the order in which updates are processed.
Unlike prior PSN proposals [10, 9], our algorithm does not require that mes-
sage channels be FIFO, which is for many distributed systems an unrealistic
assumption.

Guaranteeing termination is another challenge for developing an incremental
maintenance algorithm for distributed recursive logic programs. Typically, in
a centralized synchronous setting, algorithms, such as DRed [7], guarantee the
termination of updates caused by insertion by maintaining the set of derivable
facts, and discarding new derivations of previously derived facts. However, to
handle updates caused by deletion properly, DRed [7] first deletes all facts that
could be derived using a deleted base fact, then DRed re-derives any deleted
fact that has an alternative derivation. Re-derivation incurs communication
costs, which degrade the performance in a distributed setting. This argues for
maintaining the multiset of derivable facts, where no re-derivation of facts is
needed, since nodes keep track of all possible derivations for any fact. However,
termination is no longer guaranteed, as cycles in the derivation of recursive
programs allow facts to be supported by infinitely many derivations.

To tackle this problem, we adapt an existing centralized solution [14] to
distributed settings. For any given fact, we add annotations containing the
set of base and intermediate facts used to derive that fact. These per-fact
annotations are then used to detect cycles in derivations. We formally prove
that in a distributed setting, the annotations are enough to detect when facts
are supported by infinitely many derivations and guarantee termination of our
algorithm.

This paper makes the following technical contributions, after introducing
some basic definitions in Section 2:

• We propose a new PSN-algorithm to maintain distributed logic programs
incrementally (Section 3). This algorithm only deals with distributed non-
recursive logic programs. (Recursive programs are dealt in Section 5.)

• We formally prove that PSN is correct (Section 4). Instead of directly proving
PSN maintains distributed logic programs correctly, we construct our proofs in
two steps. First, we define a synchronous algorithm based on SN evaluations,
and prove the synchronous SN algorithm is correct. Then, we show that any
PSN execution computes the same result as the synchronous SN algorithm.

• We extend the basic algorithm by annotating each fact with information
about its derivation to ensure the termination of maintaining distributed states
(Section 5), and prove its correctness.

• We point out the limitations of existing maintenance algorithms in a dis-
tributed setting where channels are not necessarily FIFO (Section 6) and com-
ment on related work (Section 7);

3

Finally, we conclude with some final remarks in Section 8. This is an ex-
tended and revised version of the conference paper [15].

2. Distributed Datalog

We present Distributed Datalog (DDlog), which extends Datalog programs
by allowing Datalog rules to be distributed among different nodes. DDlog is the
core sublanguage common to many of the distributed Datalog languages, such
as NDlog [10], MELD [5], Netlog [6], and Dedalus [4]. Our algorithms maintain
the states for DDlog programs.

2.1. Syntax and Evaluation

Syntax. Similar to Datalog programs, a DDlog program consists of a (finite)
set of logic rules of the form h(~t) :- b1(~t1), . . . , bn(~tn), where the commas are
interpreted as conjunctions and the symbol :- as reverse implication. Following
[20], we assume a finite signature of predicate and constant symbols, but no
function symbols. A fact is a ground atomic formula. For the rest of this paper,
we use fact and predicate interchangeably.

We say that a predicate p depends on q if there is a rule where p appears in
its head and q in its body. The dependency graph of a program is the transitive
closure of the dependency relation using its rules. We say that a program is
(non)recursive if there are (no) cycles in its dependency graph. We classify the
predicates that do not depend on any predicates as base predicates (facts), and
the remaining predicates as derived predicates.

To allow distributed computation, DDlog extends Datalog by augmenting its
syntax with the location operator @ [10], which specifies the location of a fact.
The following DDlog program computes the reachability relation among nodes:

r1: reachable(@S,D) :- link(@S,D).

r2: reachable(@S,D) :- link(@S,Z), reachable(@Z,D).

It takes as input link(@S,D) facts, each of which represents an edge from the
node itself (S) to one of its neighbors (D). The location operator @ specifies where
facts are stored. For example, link facts are stored based on the value of the S

attribute.

Distributed Evaluation. The rules r1-r2 recursively derive
reachable(@S,D) facts, each of which states that the node S is reachable from
the node D. Rule r1 computes one-hop reachability, given the neighbor set of
S stored in link(@S,D). Rule r2 computes transitive reachability as follows: if
there exists a link from S to Z, and the node D is reachable from Z, then S can
also reach D.

In a distributed setting, initially, each node in the system stores the link
facts that are relevant to its own state. For example, the fact link(@2,4) is
stored at the node 2. To compute all reachability relations, each node runs the
exact same copy of the program above concurrently. Newly derived facts may
need to be sent to the corresponding nodes as specified by the @ operator.

4

Rule localization. As illustrated by the rule r2, the atomic formulas in the body
of the rules can have different location specifiers indicating that they are stored
on different nodes. To apply such a rule, facts may need to be gathered from
several nodes, possibly different from where the rule resides. To have a clearly
defined semantics of the program, we apply rule localization rewrite procedure
as shown in [10] to make such communication explicit. The rule localization
rewrite procedure transforms a program into an equivalent one (called localized
program) where all elements in the body of a rule are located at the same
location, but the head of the rule may reside at a different location than the
body atoms. This procedure improves performance by eliminating the need
of unnecessary communication among nodes, as a node only needs the facts
locally stored to derive a new fact. For example, the followings two rules are
the localized version of r2:

r2-1: reachable(@S,D) :- link(@S,Z), aux(@S,Z,D).

r2-2: aux(@S,Z,D) :- reachable(@Z,D), co-link(@Z,S).

Here, the predicate aux is a new predicate: it does not appear in the original al-
phabet of predicates and the fact co-link(@Z,S) is true if and only if link(@S,Z)
is true. The predicate co-link(@Z,S) is used to denote that the node Z knows
that the node S is one of its neighbors. As specified in the rule r2-1, these
predicates are used to inform all neighbors, S, of node Z that the node Z can
reach node D. It is not hard to show, by induction on the height of derivations,
that this program is equivalent to the previous one in the sense that a reachable

fact is derivable using one program if and only if it is derivable using the other.
For the rest of this paper, we assume that such localization rewrite has been
performed.

2.2. Multiset Semantics

The semantics of DDlog programs is defined in terms of the (multi)set of
derivable facts (least model). We call such a (multi)set, the state of the pro-
gram. In database community, it is called the materialized view of the program.
For instance, in the following non-recursive program, p, s, and t are derived
predicates and u, q, and r are base predicates.

{p :- s,t,r; s :- q; t :- u; q :-; u :-}.

The (multi)set of all the ground atoms that are derivable from this program, is
{s, t, q, u}. For this example, each fact is supported by only one derivation
and therefore the same state is obtained whether the state is the set, or the
multiset of derivable facts. If we add, the rule s :- u to this program, then
the state when using the multiset semantics of the resulting program would
change to {s, s, t, q, u} where s appears twice. This is because there are two
different ways to derive s: one by using q and the other by using u. Our choice
of multiset-semantics is essential for correctness, which we further discuss in
detail in Section 6.

5

Formally, we follow [13] and keep track of the multiplicity of facts by distin-
guishing between different occurrences of the same fact in the following form: we
label different occurrences of the same base fact with different natural numbers
and label each occurrence of the same derived fact with the derivation support-
ing it. For example, the state of the above program using multiset-semantics is
formally interpreted in our proofs as the set of annotated facts:

{sΞ1 , sΞ2 , tΞ3 , q1, u1}.

The two occurrences of s are distinguished by using the derivations trees Ξ1

and Ξ2. The former is a derivation tree with a single leaf q1 and the latter is a
derivation tree with a single leaf u1.

The state of a program P is defined by using the following fixed point oper-
ator [13], where I is a set of derivation annotated facts:

TP(I) = {hΞ | h :- b1, . . . , bn ∈ P ∧ bΞ1
1 , . . . , bΞn

n ∈ I}

and where Ξ is derivation with root labeled h and children Ξ1, . . . ,Ξn. The state
of the program P is obtained by iterating the TP operator starting from the
empty set, ∅, until a fixed point is reached. Such a fixed point operator can be
implemented using semi-näıve evaluations algorithms [13] similar to those used
to compute the state of Datalog programs [1]. In Section 4.2.1, we formalize the
operational semantics of such algorithm (see Algorithm 2) in order to prove the
correctness of our incremental algorithm correct, which is defined in Section 2.3
(see Definition 1).

We elide the annotations on facts whenever they are clear from the context.

2.3. Incremental State Maintenance

Changes to the base predicates of a DDlog program will change its state.
The goal of this paper is to develop a correct asynchronous algorithm that
incrementally maintains the state of DDlog programs as updates occur in the
system. The main idea of the algorithm is to first compute only the changes
caused by the updates to the base predicates, then apply the changes to the
state. For instance, when a base fact is inserted, the algorithm computes all
the facts that were not in the state before the insertion, but are now derivable.
Similarly, when a deletion occurs, the algorithm computes all the facts that were
in the state before the deletion, but need to be removed. We introduce notations
for defining such an algorithm here, and we formally define our algorithms and
prove them correct in the next few sections starting from Section 3.

We denote an update as a pair 〈U, p(~t)〉, where U is either +, denoting an
insertion, or -, denoting a deletion, and p(~t) is a ground fact. We call an update
of the form 〈+, p(~t)〉 an insertion update; and 〈-, p(~t)〉 a deletion update. We
write U to denote a multiset of updates. For instance, the following multiset of
updates

U = {〈+, q(@1, d)〉, 〈-, q(@2, a)〉, 〈-, q(@2, a)〉},
specifies that two copies of the fact q(@2, a) should be deleted from node 2’s
state, while one copy of the fact q(@1, d) should be inserted into node 1’s state.

6

We use] as the multiset union operator, and \ as the multiset minus op-
erator. We write P to denote the multiset of ground atoms of the form p(~t)
(atoms whose predicate name is p), and ∆P to denote the multiset of updates
to predicate p. We write P ν to denote the updated multiset of predicate p based
on ∆P . P ν can be computed from P and ∆P by union P with all the facts
inserted by ∆P and minus the facts deleted by ∆P . For ease of presentation,
we use the predicate name ∆p in places where we need to use the updates, and
pν in places where we need to use the updated multiset. For instance, if the
multiset of q is {q(a), q(a), q(b), q(c)} and we update it with U shown above, the
resulting multiset (Qν) for qν is {q(b), q(c), q(d)}.

Rules for computing updates. The main idea of computing updates of a DDlog
program given a multiset of updates to its base predicates is that we can modify
the rules in the corresponding program to do so. Consider, for example, the rule
p :- b1, b2 whose body contains two elements. There are the following three
possible cases that one needs to consider in order to compute the changes to the
predicate p: ∆p :- ∆b1, b2, ∆p :- b1,∆b2, and ∆p :- ∆b1,∆b2. The first two
just take into consideration the changes to the predicates b1 and b2 alone, while
the last rule uses their combination. We call these rules delta-rules.

Following [1, 20], we can simplify the delta-rules above by using the state of
pν , as defined above. The delta-rules above are changed to ∆p :- ∆b1, b2 and
∆p :- bν1 ,∆b2, where the second clause encompasses all updates generated by
changes to new updates in both b1 and b2 as well as only changes to b2.

Generalizing the notion of delta-rules described above, for each rule in a
program h(~t) :- b1(~t1), . . . , bn(~tn), we create the following delta insertion and
deletion rules, where 1 ≤ i ≤ n:

〈+, h(~t)〉 :- bν1(~t1), . . . , b
ν
i−1(~ti−1),∆bi(~ti), bi+1(~ti+1), . . . , bn(~tn)

〈-, h(~t)〉 :- bν1(~t1), . . . , b
ν
i−1(~ti−1),∆bi(~ti), bi+1(~ti+1), . . . , bn(~tn)

The first rule applies when ∆bi is an insertion, and the second one applies when
∆bi is a deletion.

By distinguishing predicates with ν and without ν one does not compute
the same derivation twice [7].

Correctness of an Incremental Algorithm. For defining the correctness of an
incremental algorithm, we use the following notation: given a multiset of up-
dates U , we write U t to denote the multiset of facts in U . For example, if
W = {〈+, p〉, 〈+, q〉, 〈-, r〉}, then W t = {p, q, r}. Given a program P, let V be
the state of a program P given the set of base facts E, and let V ν be the state of
P given the set of facts E] It \Dt, where I and D are, respectively, a multiset
of insertion and deletion updates of base facts. We assume that Dt ⊆ E] It.

Intuitively, an incremental algorithm is correct if it computes from a given
set of deletion and insertion updates of base facts the same state as the state of
the program obtained by incorporating the updates. This definition is similar
to the definition of eventual consistency used by Loo et al. [10] in defining the
correctness of declarative networking protocols.

7

Definition 1 (Correctness). We say that an algorithm correctly maintains
the state if it takes as input, a program P, the state V based on base facts E, a
multiset of insertion updates I and a multiset of deletion updates D, such that
Dt ⊆ E] It; and the resulting state when the algorithm finishes is the same as
V ν , which is the state of P given the set of facts E] It \Dt.

Discussion on Maintaining Incrementally versus Computing from Scratch. In
many distributed settings, it is impractical to re-compute the whole state when-
ever there is a change to the base facts. As we mentioned earlier, updates to
the base facts are small compared to the size of the computed facts. Consider
for instance Internet routing, where nodes compute the routes used by packages
transmitted on the Internet. A network topology has usually a great number of
nodes (possibly thousands of nodes) and it changes during time. In particular,
new nodes may become on-line, creating new links in the topology, and existing
nodes may become off-line, deleting existing links in the topology. Whenever a
change in the topology happens, the routing information of the nodes has to be
updated to reflect the new topology, so that for instance packages are not lost.
In such a setting, routing would be impractical if whenever there is a change in
topology, all routing information has to be recomputed from scratch and trans-
mitted to neiboring nodes. All nodes would need to stop and re-compute even
routes that are not affected by, say, a node becoming on-line.

Furthermore, in previous work [10, 11], the declarative networking commu-
nity has demonstrated empirically that incrementally maintaining the routes
of nodes whenever there is a change to the network topology is not only feasi-
ble, but also has performances that are comparable to optimized event-driven
imperative implementations. In particular, it has been shown that the com-
munication patterns obtained by NDlog implementations of protocols, such as
path-vector, correspond to the patterns obtained by the corresponding usual
imperative programs [11], which are designed to minimize communication over-
head. This body of work demonstrates that incrementally maintaining routes
requires less bandwidth and results in much faster protocol convergence times
than re-computing all routing information from scratch.

3. Basic PSN Algorithm for Nonrecursive Programs

We first present an algorithm for incremental maintenance of distributed
non-recursive logic programs. We do not consider termination issues in the
presence of recursive programs, which allows us to focus on proving the correct-
ness of pipelined execution. In Section 5, we will present an improved algorithm
that provably ensures termination of recursive programs.

3.1. System Assumptions

Our model of distributed systems makes two main assumptions, which are
realistic for many systems, such as in networking and systems involving robots.

The first assumption, following [10], is the bursty model : once a burst of
updates is generated, the system eventually quiesces (does not change) for a time

8

long enough for all the nodes to reach a fixed point. Without the bursty model,
the links in a network could be changing constantly. Due to network propagation
delays, no routing protocol would be able to update routing tables to correctly
reflect the latest state of the network. Similarly, if the environment where a
robot is situated changes too quickly, then the robot’s internal knowledge of
the world would not be useful for it to construct a successful plan. The bursty
model can be seen as a compromise between completely synchronized models of
communication and completely asynchronous models.

The second assumption is that messages are never lost during transmission.
Here, we are not interested in the mechanisms of message transmission, but we
assume that any message is eventually received by the correct node specified by
the location specifier @. Differently from previous work [9, 10], it is possible for
messages to be reordered in our model. We do not assume that a message that
is sent before another message has to necessarily arrive at its destination first.
There are existing protocols which acknowledge when messages are received
and have the source nodes resend the messages in the event of acknowledgment
timeouts, hence enforcing that messages are not lost. Message reordering mani-
fests itself in several practical scenarios. For instance, in addition to reordering
of messages buffered at the network layer, network measurements studies have
shown that packets may traverse different Internet paths for any two routers due
to ISP policies [18]. In a highly disconnected environment such as in Robotics [5],
messages from a given source to destination may traverse different paths due to
available network connectivity during the transmission of each message.

3.2. PSN Algorithm

We propose Algorithm 1 for maintaining incrementally distributed states
given a DDlog program. Algorithm 1 enhances the original pipelined evaluation
strategy [10]. Since all facts are stored according to the @ operator, we can use
a single multiset K containing the union of states of all the nodes in the system.
It is clear from the @ operator where the data is stored. Similarly, we use a
single multiset of updates U containing the updates that are in the system, but
that have not yet been processed by any node.

Algorithm 1 starts with a multiset of updates U and the multiset K contain-
ing two copies of the state of all nodes in the system, one marked with ν and
another without ν (see Section 2.3). The execution of one node of the system
is specified by one iteration of the while-loop in Algorithm 1. In line 2, an
update is picked non-deterministically from U to be processed next. However,
only deletion updates whose corresponding facts are present in K are allowed to
be picked. This is specified by the operation removeElement(K), which avoids
facts to have negative counts. Once an update is picked, the ν table is updated
according to the type of update in lines 3–6. In lines 7–12, the picked update
is used to fire delta-rules and create new updates that are then inserted into
the multiset U (lines 13–15). This last step intuitively corresponds to a node
sending new messages to other nodes, even to itself. Finally in the remaining
lines, the changes to the state without ν are committed according to the update

9

Algorithm 1 Basic pipelined semi-näıve algorithm.

1: while U .size > 0 do
2: δ ← U .removeElement(K)
3: if δ is an insertion update 〈+, p(~t)〉
4: P ν = P] {p(~t)}
5: if δ is a deletion update 〈-, p(~t)〉
6: P ν = P \ {p(~t)}
7: if δ is an insertion update 〈+, b(~t)〉
8: execute all insertions delta-rules for b:
9: 〈+, h〉 :- bν1 , . . . , b

ν
i−1,∆b, bi+1, . . . , bn

10: if δ is a deletion update 〈-, b(~t)〉
11: execute all deletion delta-rules for b:
12: 〈-, h〉 :- bν1 , . . . , b

ν
i−1,∆b, bi+1, . . . , bn

13: for all derived insertion (deletion) updates u do
14: U .insert(u)
15: end for
16: if δ is an insertion update 〈+, p(~t)〉
17: P = P] {p(~t)}
18: if δ is a deletion update 〈-, p(~t)〉
19: P = P \ {p(~t)}
20: end while

picked, making the table with ν and without ν have the same elements again
and ready for the execution of the next iteration.

We prove that Algorithm 1 terminates for non-recursive DDlog programs.
The idea behind the proof is that since the dependency graph of non-recursive
programs is a DAG (does not have cycles), whenever an update is picked and
used to fire delta-rule, all updates created involve facts whose predicate names
appear necessarily in a position “higher” in the dependency graph. Eventually,
the set of updates will be empty since the dependency graph has a bounded
height. Thus, the algorithm finishes. This argument is valid regardless of the
order in which updates are picked.

Lemma 2. For non-recursive DDlog programs, PSN executions always termi-
nate.

Proof In order to show termination, we need to show that the set of updates,
U , eventually becomes empty regardless of the order in which updates are picked.
We rely on the fact that the dependency graph for a non-recursive program
contains no cycles, that is, it is a directed acyclic graph. First, we order the
predicate names in the dependency graph in a sequence S by using any of the
graph’s topological sorts. Then given a set U of updates at the beginning of
an iteration of the while-loop that remain to be processed by Algorithm 1, we
construct a state-tuple associated to U as follows: for the ith position of the
state-tuple, we count the number of updates inserting or deleting tuples whose

10

e f

qq

doo_ _ _ _ _ _

h

g a

__>
>

>
>

///o/o/o

>>

b // c

SS

Figure 1: A simple network topology. A dashed arrow indicates an edge that is inserted, while
a curly arrow an edge that is deleted. For instance, the edge from d to f is added, while the
edge from a to b is deleted.

predicate name is the same as the predicate name appearing at the ith position
of S. We can show that after an iteration of Algorithm 1’s while-loop the state-
tuple reduces its value with respect to the lexicographical ordering, which is
well-founded since their are finitely many predicate names in the program. At
the beginning of an iteration, an arbitrary update, u, is picked and removed
from U . Assume w.l.o.g. that u is an update of a tuple whose predicate name
appears at the ith position in the sequence S. After the delta-rules are executed,
new updates are created, but since the program is non-recursive, it is necessarily
the case that their predicate names appear at the ith +m position in S, where
m > 0. Therefore the value of the ith position of the the state-tuple decreases
by one and only values in positions after i increase, while all values in positions
before i remain the same. Hence, the resulting state-tuple associated to the new
set of updates decreases w.r.t. the lexicographical ordering. Since this ordering
is well founded, Algorithm 1 always terminates, regardless of the order in which
updates are picked. 2

An Example Execution. We illustrate an execution of Algorithm 1 using the
topology in Figure 1 and the following program adapted from [7], which specifies
two and three hop reachability:4

hop(@X,Y) :- link(@X,Z), link(@Z,Y)

tri hop(@X,Y) :- hop(@X,Z), link(@Z,Y)

Here the only base predicate is link. Furthermore, assume that the state is as
given below, where we elide the @ symbols. For example, the facts link(@a,b)

and hop(@a,c) are in the state. Also at the beginning, the multiset of predicates
with ν is the same as the multiset of predicates without ν, so we elide the former.

Link = {link(a,b), link(a,d), link(d,c), link(b,c), link(c,h), link(f,g)}
Hop = {hop(a,c), hop(a,c), hop(d,h), hop(b,h)}
Tri hop = {tri hop(a,h), tri hop(a,h)}

In the state above, some facts appear with multiplicity greater than one, which
means that there is more than one derivation supporting such facts. Assume as

4Technically, the given program passes first through the rule localization procedure de-
scribed in Section 2. However, for the purpose of illustration, we use instead this un-localized
program.

11

depicted in Figure 1 that there are the following changes to the set of base facts
link:

U = {〈+, link(d,f)〉, 〈+, link(a,f)〉, 〈-, link(a,b)〉}

Algorithm 1 first picks an update non-deterministically, for instance, the update
u = 〈+, link(a,f)〉, which causes an insertion of the fact link(a,f) to the table
marked with ν. Now Linkν is as follows:

Linkν = {linkν(a,b), linkν(a,d), linkν(d,c), linkν(b,c), linkν(c,h),

linkν(f,g), linkν(a,f)}

Then, u is used to propagate new updates by firing rules, which creates a single
insertion update: 〈+, hop(a,g)〉. Finally, the change due to the update u is
committed to the table without ν. The new multiset of updates and the new
multiset of the link facts are as follows:

U = {〈+, hop(a,g) 〉, 〈+, link(d,f)〉, 〈-, link(a,b)〉}
Link = {link(a,b), link(a,d), link(d,c), link(b,c),

link(c,h), link(f,g), link(a,f)}

Asynchronous Execution. As previously mentioned, in a distributed setting,
agents need to run as asynchronously as possible, since synchronization among
agents involves undesired communication overhead.

Synchronized algorithms proposed in the literature admit the following in-
variant: in an iteration one only processes updates that insert or delete facts
that are supported by derivations of some specific height. This is no longer the
case for Algorithm 1: it picks updates non-deterministically. In the example
above, one does not necessarily process all the updates involving link facts be-
fore processing hop or tri hop facts. In fact, in the next iteration of Algorithm 1,
a node is allowed to pick the update 〈+, hop(d,g)〉 although there are insertions
and deletions of link facts still to be processed. However, this asynchronous
behavior makes the correctness proof for Algorithm 1 much harder and forces
us to proceed with our correctness proofs quite differently.

Algorithm 1 sequentializes the execution of all nodes: in each iteration of the
outermost while loop, one node picks an update in its queue, fires all the delta-
rules and commits the changes to the state, while other nodes are idle. However
this is only for the convenience of constructing the proofs of correctness. In a
real implementation, nodes run Algorithm 1 concurrently. The correctness of
this simplification is justified by Theorem 3 below. Intuitively, the localization
procedure described in Section 2 ensures that all the predicates in the body are
stored at the same location, which implies that updates on two different nodes
can proceed independently, based only on their local states respectively.

Consider, as an illustrative example, the following localized program with
two clauses:

(1) p(@Y) :- s(@X,Y)

(2) s(@Y,X) :- q(@X), v(@X,Y).
Assume that there are two nodes n1 and n2 and that the initial state and set of
updates are, respectively, {q(@n1), v(@n1, n2)} and {〈+, s(@n2, n1)〉, 〈-, q(@n1)〉}.

12

If both nodes execute concurrently, then both updates are picked and used to
fire the rules of the program. However, since the programs are localized, there
is no need for the nodes n1 and n2 to communicate between each other during
the execution of an iteration of Algorithm 1: they only need to access their
own internal states. Node n1 will fire a deletion delta-rule of rule (2) using the
update 〈-, q(@n1)〉 and the fact v(@n1, n2), which are at node n1. The update
〈-, s(@n2, n1)〉 is then created and sent to node n2, while the fact q(@n1) is
deleted from n1’s local state. Similarly, the node n2 will fire an insertion delta-
rule of rule (1) using the update 〈+, s(@n2, n1)〉 and creating the insertion update
〈+, p(@n1)〉. Since the operations involved in the iterations do not interfere with
each other, this concurrent execution can be replaced by a sequential execution
where the node n1 executes its iteration before the node n2 and the resulting
final state is the same.

For simplicity, Theorem 3 only considers the case with two nodes running
concurrently. The general case where more than two nodes running concurrently
can be proved in a similar fashion.

Theorem 3. Let P be a localized DDlog program, and let WI and UI be an
initial state and an initial multiset of updates. Let WF and UF be the state and
the multiset of updates resulting from executing at different nodes two iterations,
i1 and i2, of Algorithm 1 concurrently, where w.l.o.g. i1 starts before or at the
same time as i2. Then the same state and multiset of updates, WF and UF , are
obtained after executing in a sequence i1 and then i2.

Proof (Sketch) We need to show that the resulting state reached by i1 and i2
are the same when these are executed in a sequence. Assume that i1 and i2 are
executed, respectively, by nodes n1 and n2 and pick, respectively, the updates
u1 and u2. Notice that these updates have to be different since they have the
location specifier, @, attached to the identifiers n1 and n2 respectively. Since i1
starts before i2, u1 is necessarily belongs to UI , whereas u2 can either belong to
UI or to the set of updates created by i1. Since in the sequence of executions, we
first execute i1 and only then i2, if we show that the same updates are created
by i1, then the existence of u2 is guaranteed.

To show that the set of updates created by the iterations is the same as in the
concurrent setting, we rely on the following two facts: (Fact 1) since the view is
changed in an iteration ij by incorporating uj (lines 17 and 19 in Algorithm 1)
to the view, the only changes to the set of facts performed by ij are to the set
of facts located at nj , that is, those that have the @ at the atribute nj . The
remaining facts remain untouched. (Fact 2) Since the program P is localized,
the body of all its rules have the location specified, @, in the same atribute, that
is, nj for the iteration ij . Now we are ready to prove that set of updates is the
same. Assume that u′

j is created in ij by firing in the concurrent setting the
delta-rule

u′
j :- bν1(~t1), . . . , b

ν
i−1(~ti−1),∆bi(~ti), bi+1(~ti+1), . . . , bn(~tn).

From Fact 2, we have that the facts in the body of this rule have @ on nj ,
and from the Fact 1, the view of the facts located at nj can only be modified by

13

the interation ij itself. Therefore when i1 and i2 are sequentialized, the same
facts used to fire the rule above are also in the view of nj . Hence the same rule
is fired in such setting and therefore the same update u′

j is created. 2

4. Correctness of Basic PSN

The correctness proof relates the distributed PSN algorithm (Algorithm 1)
to a synchronous SN algorithm (Algorithm 2), whose correctness is easier to
show. After proving that Algorithm 2 is correct, we prove the correctness of
Algorithm 1 by showing that an execution using distributed PSN can be trans-
formed into an execution using SN.

4.1. Operational Semantics for Algorithm 1

To prove the correctness of Basic PSN, we first formally define the opera-
tional semantics of Algorithm 1 in terms of state transitions.

Algorithm 1 consists of three key operations: pick, fire and commit. We call
them basic commands, and an informal description is given below:

• pick – A node picks non-deterministically one update, u, that is not a
deletion of a fact that is not (yet) in the state, from the multiset of updates
U . If u is an insertion of predicate p, pν is inserted into the updated state
P ν ; otherwise if it is a deletion update, pν is deleted from P ν . This basic
command is used in lines 2–6 in Algorithm 1.

• fire – This command is used to execute all the delta-rules that contain
∆p in their body, where 〈U, p(~t)〉 has already been selected by the pick
command. After a rule is fired, the derived updates from firing this rule
are added to the multiset U of updates. This basic command is used in
lines 7–15 in Algorithm 1.

• commit – Finally, after an update u has already been both picked and
used to fire delta-rules, the change to the state caused by u is committed:
if u is an insertion update of a fact p, p is inserted into the state P ;
otherwise, if it is a deletion update of p, p is deleted from the state P .
This basic command is used in lines 16–19 in Algorithm 1.

A configuration s is a tuple 〈K,U ,P, E〉, where K is a multiset of facts, and
U ,P and E are all multisets of updates. More specifically, at each iteration of
the execution, K is a snapshot of the derivable facts, and it contains both the
multiset (P) and the updated multiset (P ν). The multiset U contains all the
updates that are yet to be picked for processing; P contains the updates that
have been picked and are scheduled to fire delta-rules; and finally E contains the
updates that have been already used to fire delta-rules, but not yet committed
into the state. At the end of the execution, U , P and E should be empty
signaling that all updates have been processed, and K is the final state of the
system.

14

• pickI(S, 〈+, p(~t)〉) = 〈K] {pν(~t)},U \ {〈+, p(~t)〉},P] {〈+, p(~t)〉}, E〉,
provided 〈+, p(~t)〉 ∈ U .

• pickD(S, 〈-, p(~t)〉) = 〈K \ {pν(~t)},U \ {〈-, p(~t)〉},P] {〈-, p(~t)〉}, E〉,
provided 〈-, p(~t)〉 ∈ U and pν(~t) ∈ K.

• commitI(S, 〈+, p(~t)〉) = 〈K] {p(~t)},U ,P, E \ {〈+, p(~t)〉}〉,
provided 〈+, p(~t)〉 ∈ E .

• commitD(S, 〈-, p(~t)〉) = 〈K \ {p(~t)},U ,P, E \ {〈-, p(~t)〉}〉,
provided 〈-, p(~t)〉 ∈ E .

• fire(S, u) = 〈K,U] F ,P \ {u}, E] {u}〉,
provided u ∈ P and where F = fireRules(u,K,R).

Figure 2: Definition for the Basic Commands. Here S is the configuration 〈K,U ,P, E〉.

The five functions depicted in Figure 2, which take a configuration and
an update and return a new configuration, specify the semantics of the basic
commands. The semantics of the pick command is specified by pickI , when
the update is an insertion; and pickD, when the update is a deletion. The pick
command moves, an update 〈U, p(~t)〉 from U to P, and updates the state in K:
pν(~t) is inserted into K if U is +; it is deleted from K if U is -. Note that the
rule pickD only applies when the predicate to be deleted actually exists in K.
Because messages may be re-ordered, it could happen that a deletion update
message for predicate p arrives before p is derived based on some insertion
updates. In an implementation, if such an update happens to be picked, we
simply put it back to the update queue, and pick another update.

The rule fire specifies the semantics of command fire, where we make use
of the function fireRules. This function takes an update, 〈U, p(~t)〉, the current
state, K, and the set of rules, R, as input and returns the multiset of all updates,
F , generated from firing all delta-rules that contain ∆p in their body. The
multiset F is then added to the multiset U of updates to be processed later.

Finally, the last two rules, commitI and commitD, specify the operation of
committing the changes to the state. Similar to the rules for pick, they either
insert into or delete from the updated multiset P a fact p(~t).

A computation run of a program R is a valid sequence of applications of
the functions defined in Figure 2. We call the first configuration of a com-
putation run the initial configuration and its last configuration the resulting
configuration.

A single iteration of Algorithm 1, called PSN-iteration, is a sequence of
these three commands. In particular, only one update is picked from U (lines
2–6), and used to fire delta-rules (lines 7–15), and then the change to the state
(lines 16–19) is committed. For instance, in the example execution described
in Section 3.2. The initial configuration is 〈K,U , ∅, ∅〉, where K and U are the
same initial set of facts and updates shown in Section 3.2. Then the update u =

15

〈+, link(a,f)〉 from U is picked using the rule pickI . The resulting configuration
is the following, where the update u is moved to the set of picked updates:

〈K] {linkν(a,f)},U \ {u}, {u}, ∅〉.

Then the fire rule is applied and creates the single update u′ = 〈+, hop(a,g)〉,
which is added to the set of updates, obtaining:

〈K] {linkν(a,f)}, (U \ {u})] {u′}, ∅, {u}〉.

Finally the commit rule is applied and the state is updated yielding:

〈K] {linkν(a,f), link(a,f)}, (U \ {u})] {u′}, ∅, ∅〉.

which corresponds to the execution shown in Section 3.2, where the facts linkν(a,f)
and link(a,f) are added, and the update u is removed from the original set of
updates, while the propagated update u′ is added to it.

The intuition above is formalized by using the more general notion of complete-
iterations. Intuitively, a complete-iteration is a sequence of picks, fires and up-
dates that use the same set of updates. A PSN-iteration is one special case of
a complete-iteration where only one update is picked. In the example above
the update used was 〈+, link(a,f)〉. A PSN execution is a sequence of PSN-
iterations.

Definition 4 (Complete-iteration). A computation run is a complete-iteration
if it can be partitioned into a sequence of transitions using the pick commands
(pickI and pickD), followed by a sequence of transitions using the fire command,
and finally a sequence of transitions using the commit command, such that the
multiset of updates, T , used by the sequence of pickI and pickD transitions is the
same as those used by the sequence of fire and those used by commit transitions.

Definition 5 (PSN-iteration). A complete iteration is a PSN-iteration if the
multiset of updates used by the pick commands contains only one update.

Definition 6 (PSN execution). We call a computation run a PSN execu-
tion if it can be partitioned into a sequence of PSN-iterations, and in the last
configuration U , P and E are empty.

4.2. Correctness of SN Evaluations

We define an incremental maintenance algorithm based on synchronous semi-
näıve (SN) evaluation. This algorithm itself is not practical for any real imple-
mentation because of high synchronization costs between nodes. We only use it
as an intermediary step to prove the correctness of Algorithm 1.

16

Algorithm 2 Basic semi-näıve algorithm (multiset semantics).

1: while U .size > 0 do
2: for all insertion updates u = 〈+, h(~t)〉 in U do
3: Ih.insert(h(~t))
4: end for
5: for all deletion updates u = 〈-, h(~t)〉 in U do
6: Dh.insert(h(~t))
7: end for
8: for all predicates p do
9: P ν ← (P] Ip) \Dp

10: end for
11: while U .size > 0 do
12: δ ← U .removeElement(K)
13: if δ is an insertion update 〈+, b(~t)〉
14: execute all insertions delta-rules for b:
15: 〈+, h〉 :- bν1 , . . . , b

ν
i−1,∆b, bi+1, . . . , bn

16: if δ is a deletion update 〈-, b(~t)〉
17: execute all deletion delta-rules for b:
18: 〈-, h〉 :- bν1 , . . . , b

ν
i−1,∆b, bi+1, . . . , bn

19: for all derived insertion (deletion) updates u do
20: Uν .insert(u)
21: end for
22: end while
23: U ← Uν .flush
24: for all predicates p do
25: P ← (P] Ip) \Dp; Ip ← ∅;Dp ← ∅
26: end for
27: end while

4.2.1. A Synchronous SN Algorithm

Algorithm 2 is a synchronous SN algorithm. There, all the updates in U
(lines 2 – 10) are picked to fire delta-rules (lines 11–22) creating new updates,
which are inserted in U (line 23), and then the changes are committed to the
state (lines 24–26), where the operation flush in line 23 denotes that all the
elements from Uν are moved to U .

The main difference between Algorithm 1 and Algorithm 2 is that in Algo-
rithm 2, all nodes are synchronized at the end of each iteration. In one iteration,
all updates at the beginning of the iteration are processed by the corresponding
nodes and updates created are sent accordingly. However, the updates that
are created are not processed until the beginning of the next iteration. Nodes
need to synchronize with one another so that no node is allowed to start the
execution of the next iteration if there are some nodes that have not finished
processing all the updates in its local queue in the current iteration or have
not received all the updates generated by other nodes in the current iteration.

17

On the other hand, Algorithm 1 allows each node to pick and process any one
update available at the time of the pick.

For instance, if we apply SN to the same example discussed in Section 3.2,
then all updates in U :

U = {〈+, link(d,f)〉, 〈+, link(a,f)〉, 〈-, link(a,b)〉}

are necessarily picked and are used to fire delta-rules creating the following set
of new updates:

{〈+, hop(a,g)〉, 〈+, hop(d,g)〉, 〈+, hop(a,f)〉, 〈-, hop(a,c)〉, 〈-, hop(a,h)〉}

At the end of the while-loop, the updates picked are committed in the state.
The facts link(d,f) and link(a,f) are inserted into the state, while the fact
link(a,b) is deleted from it. The iteration repeats by using all the new updates
created above.

Interestingly, the operational semantics for Algorithm 2 can also be defined
in terms of the three basic commands: pick, fire, and commit. In particular an
iteration of the outermost loop in Algorithm 2 corresponds exactly to an SN-
iteration. Differently from PSN-iterations, where only a single update is picked
at a time, SN-iterations are complete-iterations that pick all updates.

Definition 7 (SN-iteration). A complete-iteration is an SN-iteration if the
multiset of updates used by the pick commands contains all updates in the initial
configuration U .

Definition 8 (SN execution). We call a computation run an SN execution if
it can be partitioned into a sequence of SN-iterations, and in the last configuration
U , P and E are empty.

4.3. Correctness Proof of SN

In this section we prove that Algorithm 2 is correct. For this, we need to
introduce the following set of definitions.

Recall from Section 2.2 that, when using a multiset semantics, we distinguish
between different occurrences of the same fact in the following form: we label
different occurrences of the same base fact with different natural numbers and
label each occurrence of the same derived fact with the derivation supporting
it. For example, the semantics of the following program from Section 2.2:

{p :- s,t,r; s :- q; s :- u; t :- u; q :-; u :-}.

is the set of annotated facts: {sΞ1 , sΞ2 , tΞ3 , q1, u1}. The two occurrences of s

are distinguished by using the derivations trees Ξ1 and Ξ2. The former is a
derivation tree with a single leaf q1 and the latter is a derivation tree with a
single leaf u1.

We write ∆ to denote the multiset of insertion and deletion updates of facts
such that V ν is the same multiset resulting from applying the insertions and

18

deletions in ∆ to V . We write ∆[i] to denote the multiset of insertion and
deletion updates of facts in ∆ such that 〈U, p(~t)〉 ∈ ∆[i] if and only if p(~t) is
supported by a derivation of height i. In an execution of Algorithm 2, we use
U [i] to denote the multiset of updates at the beginning of the ith iteration, and
U [i, j] to denote the union of all multisets U [k] such that i ≤ k ≤ j.

Returning to the example shown at the end of Section 2.2, the state of
this program is the multiset of annotated facts V = {sΞ1 , sΞ2 , tΞ3 , q1, u1}. If
we, for example, delete the base fact u1, then the resulting state changes to
V ν = {sΞ1 , q1}, where the difference set is

∆ = {〈-, u1〉, 〈-, sΞ2〉, 〈-, tΞ3〉},
∆[0] = {〈-, u1〉}, and ∆[1] = {〈-, sΞ2〉, 〈-, tΞ3〉}.

Algorithm 2 computes a multiset of updates U that are applied to the view V .
Ideally, we want to show that the multiset of updates computed by Algorithm 2
is the same as ∆, which is the difference between the initial V and the desired
final result V ν . The correctness proof of Algorithm 2 is composed of two parts:
(1) all the updates generated by Algorithm 2 are in ∆ (Algorithm 2 is sound);
and (2) Algorithm 2 generates all the updates in ∆ (Algorithm 2 is complete).

Soundness of Synchronous SN. We first show that Algorithm 2 does not perform
more updates to the view than what’s specified in ∆. Given a terminating
execution of Algorithm 2, let’s assume that the execution consists of n iterations.
Intuitively, the soundness statement would require that U [0, n] ⊆ ∆. However,
this is not true. Consider the following program with two clauses: p :- q, r and
q :- s. Assume that the original view V is {s, q} and that one provides the
updates {〈+, r〉, 〈-, s〉}. Then the view V ν = {r} and ∆ = {〈+, r〉, 〈-, s〉, 〈-, q〉}.
After the first iteration of Algorithm 2, the resulting set of new updates U [1] =
{〈+, p〉, 〈-, q〉}. The update 〈+, p〉 is not in ∆ but in U [1]. Notice that 〈+, p〉 is
supported by a proof that uses the base fact r, which is inserted; and the fact
q, which is supported by a proof that uses a deleted fact s. The deletion of s
needs some iterations to “catch up” and correct the unsound insertion of p.

We classify an update u as conflicting if it is supported by a proof containing
a base fact that was inserted (in It) and another fact that was deleted (in Dt).
In the example above, 〈+, p〉 is a conflicting updated because it is supported
by r, which is inserted and s, which is deleted. One key observation is that
Algorithm 2 may compute more updates than those in ∆. These extra updates
are all conflicting updates. We need to show that the effects of all conflicting
updates eventually cancel each other out.

The following lemma formalizes the intuition that updates that are needed to
change V to V ν are all non-conflicting updates. As discussed above, conflicting
updates are just a side-effect of an SN evaluation.

Lemma 9. All updates in ∆ are non-conflicting.

Proof Consider by contradiction that an insertion update u ∈ ∆ of the tuple
p is conflicting. Then p is supported by a tuple q that is deleted from the view

19

V . This is a contradiction because then p is no longer derivable in V ν ; and
therefore, the insertion, u, of p could not have been in ∆.

Similarly, assume that a deletion update u ∈ ∆ of the tuple p is conflicting.
Then p is supported by a tuple q that is inserted to V . Again, we have a
contradiction, since then p could not have been in V ; and hence u could not
have been in ∆. 2

The following lemma, which can be proved by induction on the number of
iterations, states that the non-conflicting updates (updates that are supported
only by insertion updates or only by deletion updates) generated at each iter-
ation by the algorithm, are necessary to change V to V ν . For instance, in the
example above, the non-conflicting updates 〈+, r〉 and 〈-, s〉 in U [0] and 〈-, q〉
in U [1] are indeed necessary to maintain the initial view, {s, q}, and obtain the
final view, {r}. This corresponds to the soundness of non-conflicting updates
created in an SN evaluation.

Lemma 10 (Soundness of Non-conflicting Updates). Let Û be the multi-
set of non-conflicting updates in a multiset of updates U . Then for any iteration
i, the multiset Û [i] ⊆ ∆.

Proof We proceed by induction on the number of iterations i.
For the base case, we have Û [0] = I]D = ∆[0] ⊆ ∆.

For the inductive case, consider i = j+1 and the inductive hypothesis Û [k] ⊆ ∆

for all k ≤ j. Assume that u = 〈+, pΞ〉 ∈ Û [j + 1], and it is computed by using
a delta-rule of the rule p :- b1, . . . , bn and the tuples or the insertion of tuples
of the form bΞ1

1 , . . . , bΞn
n . Since u is non-conflicting, all smaller derivations Ξis

are also non-conflicting. Hence from the inductive hypothesis, all the insertions

used by Ξis, including any insertion of b
Ξj

j , belong to ∆. Hence the tuples

bΞ1
1 , . . . , bΞn

n belong to V ν , and therefore by using the same rule above, there is
an insertion of the tuple pΞ in V ν , that is 〈+, pΞ〉 ∈ ∆. The case for deletion
follows similarly. 2

Now, we turn our attention to the conflicting updates. We write ū to denote
the complementary update of u. If u is an insertion (respectively, deletion)
update of a tuple p, then ū is a deletion (respectively, insertion) update of the
same tuple p. The following lemma formalizes the intuition described above that
when a conflicting update u (e.g., 〈+, p〉) is created, then the another update
ū (e.g., 〈-, p〉) needs some iterations to “catch up.” An interesting observation
is that the conflicting update inserting a tuple is necessarily created before the
update deleting the tuple. This is because in order to fire the body of a rule
which creates a conflicting update, the body needs to be satisfied. Hence, the
insertion update that inserts a fact into the view and creates a conflicting update
needs to be processed first. particular, does not

that

Lemma 11 (Pairing of Conflicting Updates). For any conflicting update
u ∈ U [i], there is exactly one update ū ∈ U [j], for some j, that is supported
by the same derivation. If u is an insertion update then i ≤ j, and if u is a
deletion update then i ≥ j.

20

Proof Let us first prove that conflicting insertion updates are computed first.
Given a conflicting deletion update 〈-, p〉 that is generated at iteration i, it must
be the case that a delta-rule

〈-, p〉 :- bν1 , . . . , b
ν
m−1,∆bm, bm+1, . . . bn

is fired. By the definition of conflicting updates, one of the tuples bi in the body
is supported by a tuple that must be inserted. Since the body of the rule above
can only be satisfied when bi is inserted, the insertion of bi must have been
necessarily picked before or at the iteration i, firing another delta-rule similar
to the rule above. Hence, the insertion update for the tuple p is created before
or at iteration i.

Next we show that for any conflicting insertion update, a complementary
deletion update is generated at the same or in a later iteration. Given an
insertion update u ∈ U [i]. Let m be the minimal height among all the subtrees
of the derivation supporting the tuple in u that contain a tuple, bi, that is
deleted. In exactly m iterations, the corresponding deletion delta-rule is going
to be fired using the deletion update for bi, generating a deletion update ū with
a tuple with same supporting proof. 2

Completeness of Synchronous SN. Now we prove by induction on the height
of derivations that all the updates in ∆ are generated by Algorithm 2. The
following lemma states that all updates in ∆ that are supported by a derivation
of height i have already been computed by Algorithm 2 at an iteration that
is no later than i. Or in other words, that synchronous SN is complete since
all updates that have to be processed are indeed processed by it. For instance,
in the example above, the updates in ∆[0] = {〈+, r〉, 〈-, s〉} belong to U [0] and
similarly the update in ∆[1] = {〈-, q〉} belongs to U [0, 1].

Lemma 12 (Completeness). For any i, ∆[i] ⊆ U [0, i].

Proof By induction on the height of proofs.
Base case i = 0: ∆[0] = I]D = U [0] = U [0, 0].
Inductive case i = j+1: By induction hypothesis, we know that all ∆[k], where
k < j + 1, have been computed. Now, we show that all updates in ∆[j + 1]
are contained in U [0, j + 1]. Assume that 〈+, pΞ〉 ∈ ∆[j + 1] and assume that
pΞ is supported in the view V ν by using rule p :- b1, . . . , bn called r and tuples
bΞ1
1 , . . . , bΞn

n also in V ν . We now show that a delta-rule of r is fired before the
jth + 1 iteration. Since pΞ /∈ V , it means that some bΞi

i s do not belong to
V , but belong V ν (hence the insertion update). Since the insertion of Ξ is a
derivation of height j + 1, the Ξis are derivations of height at most j. Hence,
from the inductive hypothesis, it is the case that the insertions of the bΞi

i s have
been previously derived and in the worst case the delta-rule for r is fired at the
iteration j. However, in order to fire a delta-rule of r, we also need to make
sure that Algorithm 2 does not delete any of the bΞi

i s. Since 〈+, pΞ〉 is in ∆, it

follows from Lemma 9 that Ξ is non-conflicting. So, no tuple bΞi
i s is supported

by a tuple that is deleted and hence indeed none of the bΞi
i s are deleted by

Algorithm 2. Therefore, 〈+, pΞ〉 ∈ U [0, j + 1]. The case for deletion updates is
similar. 2

21

not

Correctness of Synchronous SN. Combining the soundness and completeness
result, we can finally show the correctness of Algorithm 2.

Theorem 13 (Correctness of SN). Given a non-recursive DDlog program
P, a multiset of base facts, E, a multiset of updates insertion updates I and
deletion updates D to base facts, such that Dt ⊆ E] It, Algorithm 2 correctly
maintains the state of the program when it terminates.

Proof Because P is non-recursive, we know that both V and V ν are finite;
and therefore, ∆ is also finite.

By the definition of the transition rules, given a complete run of Algorithm 2,
the final view V1 computed by Algorithm 2 is V]U t

I [0, n] \ U t
D[0, n], where n is

the number of iterations of the execution, UI denotes the insertions updates in
U , and UD denotes the deletion updates in U .

Let Û denotes the non-conflicting updates in U . By Lemma 10, Û [0, n] ⊆ ∆.

By Lemma 12, ∆ ⊆ U [0, n]. By Lemma 9, ∆ ⊆ Û [0, n]. Therefore, ∆ = Û [0, n].
By Lemma 11, V] U t

I [0, n] \ U t
D[0, n] = V] Û t

I [0, n] \ Û t
D[0, n]. Since V ν =

V]∆t
I \∆t

D, we can conclude that V1 = V ν . 2

4.4. Relating SN and PSN executions

Our final goal is to prove the correctness of PSN. With the correctness result
of Algorithm 2 in hand, now we are left to prove that Algorithm 1 computes the
same result as Algorithm 2. At a high-level, we would like to show that given any
PSN execution, we can transform it into an SN execution without changing the
final result of the execution. This transformation requires two operations: one
is to permute two PSN-iterations so that a PSN execution can be transformed
into one where the updates are picked in the same order as in an SN execution;
the other is to merge several PSN-iterations into one SN-iteration. We need to
show that both of these operations do not affect the final configuration of the
execution.

Definitions. Let s
sn−→ (U)s′ and s

psn−→ (U)s′ denote, respectively, an execution
from configuration s to s′ using an SN iteration and a PSN iteration. We anno-
tate the updates used in the iterations in the parenthesis after the arrow. We
write s

a
=⇒ s′ to denote an execution from s to s′ using multiple SN iterations,

when a is sn; or PSN iterations, when a is psn. Let s =⇒ s′ denote an execution
from s to s′ using multiple complete iterations. We write σ1 σ2 if the exis-
tence of execution σ1 implies the existence of execution σ2. We write σ1! σ2

when σ1 σ2 and σ2 σ1.
An update u is classified as conflicting if it is supported by a proof containing

a base fact that was inserted (in It) and another fact that was deleted (in Dt).
We say u and ū are a pair of complementary updates if u is an insertion (deletion)
of predicate p, and ū is a deletion (insertion) of p. Intuitively, conflicting updates
are temporary updates that appear in the execution of incremental maintenance

22

algorithms but that do not affect the final configuration. The effect of a deletion
update cancels the effect of the corresponding insertion update. Lemma 17
formalizes this intuition.

Permuting PSN-iterations. The following lemma states that permuting two
PSN-iterations that are both insertion (deletion) updates leaves unchanged the
final configuration. So in our example execution described in Section 3.2, it
does not matter whether the update 〈+, link(a,f)〉 is picked before or after the
update 〈+, link(d,f)〉. The set of updates after these two updates are picked is
the same, namely the set of updates: {〈+, hop(a,g)〉, 〈+, hop(a,f)〉}.

Lemma 14 (Permutation – same kind).
Given an initial configuration s,

s
psn−→ ({〈U, r1〉})s1

psn−→ ({〈U, r2〉})s′
!

s
psn−→ ({〈U, r2〉})s2

psn−→ ({〈U, r1〉})s′ ,where U ∈ {+, -}.

Proof We show the case where U = + for the direction, the other cases are
similar. We need to show that the updates generated are the same no matter
which insertion update is fired first.

Assume that the initial state s = 〈K,U , ∅, ∅〉.
Let F1 = fireRules(〈+, r1〉,K] {rν1},R),

F2 = fireRules(〈+, r2〉,K] {r1, rν1 , rν2},R).
Let F ′

2 = fireRules(〈+, r2〉,K] {rν2},R),
F ′
1 = fireRules(〈+, r1〉,K] {r2, rν2 , rν1},R).

In the first execution sequence, F1 contains updates generated by firing delta-
rules that contain ∆r1 in the body using the initial views with rν1 inserted, and
F2 contains updates generated by firing delta-rules that contain ∆r2 in the body
using the views where r1 is already inserted into the view.

In the second execution sequence, F ′
2 contains updates generated by firing

delta-rules that contain ∆r2 in the body using the initial views with rν2 inserted,
and F ′

1 contains updates generated by firing delta-rules that contain ∆r1 in the
body from the state where r2 is already inserted into the view.

We need to show that F1] F2 = F ′
1] F ′

2.
Based on the definition of firRule, it is not hard to see that F ′

1 is a superset
of F1 because in the second execution sequence, r2 is already inserted into the
view before firing update to r1. Similarly, F2 is a superset of F ′

2. Let us assume
that F ′

1 = F1] F ′′
1 , and F2 = F ′

2] F ′′
2 . We just need to show that F ′′

1 = F ′′
2 .

All updates in F ′′
1 are fired by rules that have ∆r1 and either r2 or rν2 in

the body. Without loss of generality, any update u = 〈+, q〉 ∈ F ′′
1 is created by

firing delta-rules of the following two forms:
u :- · · · , rν2 , · · · ,∆r1, · · · or u :- · · · ,∆r1, · · · r2 · · · .
If it is the first case, then a corresponding delta-rule u :- · · · ,∆r2, · · · , r1, · · ·

will be fired when 〈+, r2〉 is picked; and therefore, 〈+, q〉 ∈ F ′′
2 .

For the second case, a corresponding delta-rule u :- · · · , rν1 , · · ·∆r2 · · · will
be fired; and therefore 〈+, q〉 ∈ F ′′

2 also. Consequently, F ′′
1 ⊆ F ′′

2 . We can use

23

similar reasoning to show that F ′′
2 ⊆ F ′′

1 . Combining the above two, F ′′
2 = F ′′

1 .
Therefore F1] F2 = F ′

1] F ′
2. Finally, we can conclude that permuting two

insertion updates leaves the final state unchanged. 2
However, permuting a PSN-iteration that picks a deletion update over a

PSN-iteration that picks an insertion update might generate new updates. Con-
sider a program consisting of the rule p :- r1, r2 and assume that r2 is in the
state. Furthermore, assume the updates {〈+, r1〉, 〈-, r2〉}. If the deletion update
is picked before the insertion update, no delta-rule is fired. However, if we pick
the insertion rule first, then the rule above is fired twice, one propagating an
insertion of p and the other propagating a deletion of p. However, the new
updates are necessarily conflicting updates. This is formalized by the statement
below.

The side condition that r1 6= r2 captures the semantics of the pick command
in that deletion updates are only picked if the facts to be deleted are already in
the state.

Lemma 15 (Permutation – different kind).
Given an initial configuration s

s
psn−→ (〈+, r1〉)s1

psn−→ (〈-, r2〉)〈K′,U ′]∆, ∅, ∅〉
!

s
psn−→ (〈-, r2〉)s2

psn−→ (〈+, r1〉)〈K′,U ′, ∅, ∅〉,
where r1 6= r2 and ∆ is a (possibly empty) multiset containing pairs of

complementary conflicting updates.

Proof We show the direction. The reasoning is symmetric for the reverse
transformation. Let

F1 = fireRules(〈+, r1〉,K] {rν1},R),
F2 = fireRules(〈-, r2〉,K] {r1, rν1} \ {rν2},R),
F ′
2 = fireRules(〈-, r2〉,K \ {rν2},R),

F ′
1 = fireRules(〈+, r1〉,K \ {r2, rν2}] {rν1},R).

In the first execution sequence, F1 contains all insertion updates created
from the initial view by firing insertion delta-rules that contain ∆r1 in their
body. Similarly, F2 contains all the deletion updates created by firing deletion
delta-rules that contain ∆r2 in their body, with r1 inserted into the initial view.

In the second execution sequence, on the other hand, F ′
2 contains all the

deletion updates created from the initial view by firing deletion delta-rules that
contain ∆r2 in their body. F ′

1 contains all the insertion delta-rules that contain
∆r1 in their body, with r2 deleted from the view.

We would like to show that F1]F2 = F ′
1]F ′

2]∆, where ∆ is a multiset of
pairs of complementary conflicting updates.

The multiset F1 is clearly a superset of F ′
1 since the latter is obtained by

executing rules when r2 is deleted from the initial view. Similarly, F2 is a
superset of F ′

2 since the former is obtained by executing rules when r1 is inserted
into the view.

Let F1 = F ′
1]∆1 and F2 = F ′

2]∆2. We need to show that ∆1]∆2 contains
a multiset of pairs of complementary conflicting updates. More specifically, we

24

can show that for any insertion updates in u ∈ ∆1 there its complementary
update ū ∈ ∆2.

Updates that are in ∆1 are generated by firing delta-rules that contain 〈+, r1〉
and either r2 or rν2 in the body. Updates that are in ∆2 are generated by firing
delta-rules that contain 〈-, r2〉 and either r1 or r

ν
1 in the body. Next we show that

there is one-to-one mapping between the delta-rules that generate an update u
in ∆1 and the delta-rules that generate an update ū in ∆2.

Any insertion update u in ∆1 is necessarily fired by rules of the following
two forms:

u :- · · · , rν2 , · · · ,∆r1, · · · , which we call a1
and u :- · · · ,∆r1, · · · r2 · · · , which we call a2.
Any deletion update u in ∆2 is necessarily fired by rules of the following two

forms:
u :- · · · , rν1 , · · · ,∆r2, · · · , which we call b1
and u :- · · · ,∆r2, · · · r1 · · · , which we call b2.
Notice that there is a one-to-one mapping between a1 and b2, and a one-to-

one mapping between a2 and b1. In other words, in the first execution sequence,
a1 is fired when 〈+, r1〉 is picked, and b2 is fired when 〈-, r2〉 is picked. Further-
more, a1 and b2 generate a pair of complementary conflicting updates, and so
do a2 and b1.

Therefore, F1] F2 = F ′
1] F ′

2] ∆1] ∆2, and ∆1] ∆2 contains pairs of
complementary conflicting updates. 2

From PSN iterations to an SN iteration and back. The second operation we
need for transforming a PSN execution into an SN execution is merging a PSN-
iteration with a complete-iteration to form a bigger complete-iteration.

Similarly to the case when permuting PSN-iterations of different kinds, merg-
ing PSN iterations may change the set of conflicting updates. For example, con-
sider a program consisting of a single rule p :- r,q, the initial state {q}, and
the multiset of updates {〈+, r〉, 〈-, q〉}. If both updates are picked in a complete-
iteration, then an insertion update, 〈+, p〉, is created by firing the delta-rule
〈+, p〉 :- ∆r,q using the insertion update 〈+, r〉. Similarly a deletion update
〈-, p〉 is created by firing the delta-rule 〈-, p〉 :- rν,∆q and the deletion update
〈-, q〉. However, if we break the complete-iteration into two PSN-iterations, first
picking the deletion update and second picking the insertion update, then no
delta-rule is fired. We prove the following:

Lemma 16 (Merging Iterations). Let U be a multiset of updates such that
the multiset {u}] H ⊆ U and let s = 〈K,U , ∅, ∅〉 be an initial configuration.

s =⇒ ({u}] H)〈K′,U ′] F1, ∅, ∅〉
!

s =⇒ (H)〈K2,U ′] {u}] F ′
1, ∅, ∅〉

psn−→ (u)〈K′,U ′] F2, ∅, ∅〉
Where F1 and F2 only differ in pairs of complementary conflicting updates.

Proof We only show the case when u is an insertion, and the second case can
be proved similarly. Let u = 〈+, p〉. By examining the two execution sequences,
we know that

25

F1 =
⊎

u0∈H]{u} fireRules(u0,K]Htν
I] {pν} \ Htν

D ,R),
F ′
1 =

⊎
u0∈H fireRules(u0,K]Htν

I \ Htν
D ,R),

F ′
2 = fireRules(u,K]Htν

I]Ht
I] {pν} \ Htν

D]Ht
D),R),

F2 = F ′
1] F ′

2

where we write Htν
I (Htν

D respectively) to denote the multiset that con-
tains pν if and only if 〈+, p〉 (〈-, p〉 respectively) is in H. We write Ht

I (Ht
D

respectively) to denote the multiset that contains p if and only if 〈+, p〉 (〈-, p〉
respectively) is in H.

Let’s further rewrite F1 to be F ′′
1]F ′′

2 where F ′′
1 =

⊎
u0∈H fireRules(u0,K]

Htν
I] {pν} \ Htν

D ,R), and F ′′
2 = fireRules(u,K]Htν

I] {pν} \ Htν
D ,R).

F ′′
1 is a superset of F ′

1. Let F
′′
1 = F ′

1]∆I]∆D.
Any update 〈+, r1〉 ∈ ∆I is generated by a delta-rule that contains pν and

an insertion update 〈+, q〉 ∈ H in the body:
〈+, r1〉 :- · · · , pν , · · · , 〈+, q〉, · · · , which we call a1.
Any update 〈-, r′1〉 ∈ ∆D is generated by a delta-rule that contains pν and

a deletion update 〈-, q〉 ∈ H in the body:
〈-, r′1〉 :- · · · , pν , · · · , 〈-, q〉, · · · , which we call a2.
The relation between F ′′

2 and F ′
2 is more complicated. What we can show

is the following F ′′
2] ∆′

I = F ′
2] ∆′′

I where ∆′
I = ∆I , and ∆′′

I contains all the
complimentary updates to the ones in ∆D, nothing else.

We would like to show that there is a one-to-one mapping between the delta-
rules that are fired to generate ∆I in the bigger complete iteration (the first
execution sequence), and the delta-rules that are fired to generate ∆′

I in the
PSN iteration (the second part of the second execution sequence).

The only updates that are in F ′
2, but not in F ′′

2 are due to Ht
I . Therefore, all

insertion updates in ∆′
I are generated by firing delta-rules that contain u and

q, where 〈+, q〉 ∈ H, in the body:
〈+, r1〉 :- · · · , u, · · · , q, · · · , which we call b1.
By the definition of delta-rules, there is one-to-one mapping between a1 and

b1. Consequently, ∆I = ∆′
I .

We also need to show that there is a one-to-one mapping between the delta-
rules that are fired to generate ∆′′

I , and the delta-rules that are fired to generate
∆D.

The only updates that are in F ′′
2 , but not in F ′

2 are due to Ht
D, which is

deleted from the view before the PSN iteration. Therefore, all insertion updates
in ∆′′

I are generated by firing delta-rules that contain u and q, where 〈-, q〉 ∈ H,
in the body:

〈+, r1〉 :- · · · , u, · · · , q, · · · , which we call b2.
By the definition of delta-rules, there is one-to-one mapping between a2 and

b2. Consequently, ∆′′
I contains all the complementary updates to those ones

that are in ∆D, which we denote by ∆̄D.
Finally, we obtain the following: F ′′

1 = F ′
1](∆I]∆D) and F ′′

2]∆I = F ′
2]∆̄D.

We know the following by union both sides of the above equations: F ′′
1] F ′′

2]
∆I = F ′

1] (∆I]∆D)] F ′
2] ∆̄D. We can conclude that F1 = F2]∆D] ∆̄D.

Therefore, F1 and F2 only differs in pairs of complementary conflicting updates.

26

2

Lemma 16 actually gives us for free, the ability to break a complete SN-
iteration into several PSN-iterations. For example, we can use the lemma above
to transform the SN-iteration shown in Section 4.2.1 where we pick all the
updates appearing in the set of initial updates:

{〈+, link(d,f)〉, 〈+, link(a,f)〉, 〈-, link(a,b)〉}

into a sequence of three PSN-iterations where these updates are picked one
by one in any order. In this particular case, there are no conflicting updates
created. The resulting sets of updates in both executions are the same:

{〈+, hop(a,g)〉, 〈+, hop(d,g)〉, 〈+, hop(a,f)〉, 〈-, hop(a,c)〉, 〈-, hop(a,h)〉}.

Dealing with Conflicting Update Pairs. Next, we prove that conflicting updates
do not interfere with the final configuration when using PSN executions. In-
tuitively, we will rely on the following observations: (1) All updates generated
by firing delta-rules for conflicting updates are also conflicting updates. (2)
A pair of complementary conflicting updates generate pairs of complementary
conflicting updates. For example, consider adding the rule v :- p to the exam-
ple given before Lemma 16. Then the conflicting update 〈+, p〉 would propagate
the update 〈+, v〉. The latter update is also conflicting because the fact p is
supported by a fact q which is to be deleted. Moreover, when the deletion of
q “catches up,” then the complementary update 〈-, v〉 is created and cancels
the effect of the conflicting update 〈+, v〉. Consequently, a PSN execution that
contains a pair of complementary conflicting updates in its initial configuration
can be transformed into another PSN execution that does not contain these
updates and that the final configurations of the two executions are the same.
The following lemma precisely states that.

Lemma 17. Let ∆ = {〈+, p〉, 〈-, p〉} be a multiset containing a pair of comple-

mentary conflicting updates, then 〈K,U , ∅, ∅〉 psn
=⇒ s ! 〈K,U]∆, ∅, ∅〉 psn

=⇒ s.

Proof Assume that uI
c = 〈+, p〉 and uD

c = 〈-, p〉. We first show that for any
insertion update, u, created by firing delta-rules that contains 〈+, p〉 in the body,
there is exactly one deletion update ū that is created at an iteration no later
than the one where uD

c is picked.
Let’s assume that u is created by firing the following delta-rule:
u :- b1, . . . , bn, 〈+, p〉, bn+1, . . . , bn+m.
The update ū can be created either by a deletion update for bi which is

picked before uD
c ; or by the time uD

c is processed none of the predicates (bi)
in the body has been deleted, in which case ū will be generated by firing the
following delta-rule.

ū :- b1, . . . , bn, 〈-, p〉, bn+1, . . . , bn+m.
This means that only pairs of complementary conflicting updates are propa-

gated by the insertion and deletion of p. Using the same reasoning above, these

27

pairs of conflicting updates created will also cause the propagation of conflict-
ing pairs of updates only. For the rest of the proof, we call all these updates as
p-propagated updates.

Then, in this subexecution, we use Lemma 15 to permute deletion updates
to the right of insertion updates eagerly. In the process, new conflicting updates
are generated, which will be dealt later. Finally, we use Lemma 14 to permute
insertion updates (respectively, deletion updates), so that the propagated up-
dates are picked last and in the same order. That is, if the propagated insertion
update u1 is picked before the propagated insertion update u2, then the deletion
update ū1 is picked before ū2.

Next, we define ID executions. A PSN execution is an ID execution if it has
the following form:

s0
psn
=⇒ (UI)s1

psn
=⇒ (UP)s2

psn
=⇒ (UD)s3

psn
=⇒ (U ′

P)s4,
where for all u ∈ UI , u is a non-p-propagated insertion update, for all u ∈

UP , u is a p-propagated insertion update, and for all u ∈ UD, u is a non-p-
propagated deletion update, and for all u ∈ U ′

P , u is a p-propagated deletion
update. Furthermore, for all u ∈ UP then ū ∈ U2 and vice-versa. We denote an

ID execution as s
ID
=⇒ s′.

We show that any PSN execution can be transformed into a sequence of two
consecutive ID executions. The first ID execution is formed by using repeatedly
using Lemma 15 to permute deletion updates to the right of insertion updates.
In the process, new conflicting updates are generated, which will be used to
form the second ID execution. In the end, we obtain a PSN-execution where all
insertion updates are picked before deletion updates. Now we use Lemma 14
to permute insertion updates (respectively, deletion updates), so that the p-
propagated updates are picked after all the non p-propagated updates are picked.
This is possible because by its definition, non p-propagated updates cannot be
generated by firing a delta-rule that uses p-propagated updates. Now we have
obtained our first ID execution. This is not a complete PSN run because in the
first step, we have generated new pairs of complementary conflicting updates.

Next, we construct the second ID execution by complete the execution of
the program. We eagerly pick non-p-propagated insertion updates until none
is left, then we pick all p-propagated insertion updates. After that, we pick
non-p-propagated deletion updates; then, we finish by picking all p-propagated
deletion updates.

Now we have obtained a complete run of PSN, of the following form:

〈K1,U1, ∅, ∅〉
ID
=⇒ 〈K2,U2, ∅, ∅〉

ID
=⇒ 〈K3, ∅, ∅, ∅〉,

where the view in K2 is the same as the original PSN execution, which is guar-
anteed by Lemma 15 and Lemma 14.

Next we show that we can prune an ID execution to contain only non-p-
propagated updates without changing the final view.

Given an ID execution,

28

〈K,U , ∅, ∅〉
psn
=⇒ (UI)〈K] U t

I ,U \ UI] FI , ∅, ∅〉
psn
=⇒ (UP)〈K] U t

I] U t
P ,U \ UI] FI \ UP] FP , ∅, ∅〉

psn
=⇒ (UD)〈K] U t

I] U t
P \ U t

D,
U \ UI] FI \ UP] FP \ UD] FD, ∅, ∅〉

psn
=⇒ (U ′

P)〈K] U t
I] U t

P \ U t
D \ U ′t

P ,
U \ UI] FI \ UP] FP \ UD] FD \ U ′

P] F ′
P , ∅, ∅〉

Let U ′ contain all the non-p-propagated updates in U , and we generate a
PSN execution that only pick non-p-propagated updates as follows.
〈K,U ′, ∅, ∅〉
psn
=⇒ (UI)〈K] U t

I ,U ′ \ UI] FI , ∅, ∅〉
psn
=⇒ (UD)〈K] U t

I \ U t
D,U ′ \ UI] FI \ UD] F ′

D, ∅, ∅〉
Compared with the original ID execution, we have the following invariants.
First, K]U t

I]U t
P \U t

D\U ′t
P = K]U t

I\U t
D because U ′

P contains the complement
of UP .

Second, U ′ \ UI]FI \ UD]F ′
D contains only the non-p-propagated updates

in U \ UI]FI \ UP]FP \ UD]FD \ U ′
P]F ′

P . This is because the only updates
that contain non-p-propagated updates are U ′, FI and F ′

D; and FD ⊇ F ′
D.

We perform the above rewriting separately to both ID executions in

〈K1,U1, ∅, ∅〉
ID
=⇒ 〈K2,U2, ∅, ∅〉

ID
=⇒ 〈K3, ∅, ∅, ∅〉.

We obtain the following: 〈K1,U ′
1, ∅, ∅〉

ID
=⇒ 〈K2,U ′

2, ∅, ∅〉 and 〈K2,U ′′
2 , ∅, ∅〉

ID
=⇒

〈K3, ∅, ∅, ∅〉.
The invariants tell us that U ′

1 contains all non-p-propagated updates in U1
and nothing else, and both U ′

2 and U ′′
2 contains all the non-p-propagated updates

in U2 and nothing else. Therefore, we know that U1 = U ′
1] {〈+, p〉, 〈-, p〉}, and

U ′
2 = U ′′

2 . Finally, we obtain the valid PSN execution sequence: 〈K1,U ′
1, ∅, ∅〉

ID
=⇒

〈K2,U ′
2, ∅, ∅〉

ID
=⇒ 〈K3, ∅, ∅, ∅〉. 2

Correctness of Basic PSN. Finally, using the operations above we can prove
the following theorem, which establishes that PSN is sound and complete with
respect to SN.

Theorem 18 (Correctness of PSN w.r.t. SN). Let s = 〈K,U , ∅, ∅〉 be an
initial configuration. Then for non-recursive programs:

s
psn
=⇒ 〈K, ∅, ∅, ∅〉! s

sn
=⇒ 〈K, ∅, ∅, ∅〉.

Proof Given a PSN execution, we construct an SN execution by induction
as follows: we use the first operation (Lemmas 14 and 15) to permute to the
left all the PSN-iterations that pick one element in the initial state’s U set. The
resulting execution has all PSN-iterations in the same order as the first SN-
iteration of an SN execution. After each permutation, we either generate new
conflicting updates, or suppressed the generation of conflicting updates that is
in the original execution. We apply Lemma 17 to transform the rest of the
execution into a valid PSN execution, but leave the final state unchanged.

29

Next, we merge these PSN-iterations into an SN-iteration by applying the
second operation (Lemma 16). Again, we need to apply Lemma 17 to transform
the rest of the execution to account for the difference in conflicting updates.

We repeat the above process with the PSN sub-execution. This process will
eventually terminate because there is a finite number of updates (conflicting
and non-conflicting), with each iteration of the process, the sub-execution has
fewer updates to generate.

For the converse direction, given an SN execution, we apply Lemma 16
repeatedly to split SN-iterations and obtain a PSN execution. Again we might
need to apply the transformation described in Lemma 17 in order to construct
valid executions. 2

Corollary 19 (Correctness of basic PSN). Given a non-recursive DDlog pro-
gram P, a multiset of base facts, E, a multiset of updates insertion updates I
and deletion updates D to base facts, such that Dt ⊆ E] It, then Algorithm 1
correctly maintains the state of the program.

Discussion. The framework of using three basic commands: pick, fire, and
commit to describe PSN and SN algorithms can be used for specifying and
proving formal properties about other SN-like algorithms. For instance, instead
of removing a single update per iteration, as in PSN-iteration, one could imagine
removing multiple updates per iteration, closer to an SN-iteration. This is likely
to improve performance as, in order to compute the set of propagated updates,
one would only need to traverse all the rules of the program a single time for
all the picked updates. In contrast, the current PSN algorithm traverses all the
rules once for each update. For a second optimization, one could imagine erasing
conflicting updates in one’s local buffer of received updates. This would reduce
the number of conflicting updates propagated reducing, hence, communication
costs as well as the time to reach a stable point.

These modifications to PSN are easily justified in our framework. For the
latter optimization of erasing conficting updates is justified by Lemma 17. For
the former modification, we can transform an execution with arbitrary complete
iterations, which are not necessarily PSN-iterations, into an SN execution and
vice-versa. One first breaks the complete-iterations into PSN-iterations, obtain-
ing a PSN execution. Then the proof follows in exactly the same way as before.
This means that when implementing such systems, a node can pick all appli-
cable updates that are in its buffer and process them in one single iteration,
instead of picking them one by one, and the resulting algorithm is still correct.

5. Extended PSN Algorithm for Recursive Programs

Algorithm 1 and 2 use multiset-semantics. As a consequence, termination
is not guaranteed when they are used to maintain states of recursive programs.
Consider the following recursive program.

p(@1) :- a(@0) q(@2) :- p(@1) p(@1) :- q(@2)

30

Notice that p and q form a cycle in the dependency graph. Any insertion of the
fact p(@1) will trigger an insertion of q(@2) and vice versa. Given an insertion
of the fact a(@0), neither Algorithm 1 nor Algorithm 2 terminate because the
propagation of insertion updates of q(@2) and p(@1) does not terminate. Recur-
sively defined predicates could have an infinite number of derivations because
of cycles in the dependency graph. In other words, in the multiset-semantics,
such facts have infinite count. Neither Algorithm 1 nor Algorithm 2 have the
ability to detect cycles.

One way to detect such cycles in a centralized setting is proposed in [14].
The main idea is to remember for any fact p, the set of facts, S, called derivation
set, that contains all the facts that are used to derive p. While maintaining the
state, the algorithm checks whether a newly derived fact p appears in the set of
facts supporting it. If this is the case, then there is a cycle, and p has infinite
count. Whenever a fact with infinite count is detected, we store it in a second
set, H, called infinite count set. Future updates of p are not propagated to avoid
non-termination.5

The same idea is applicable to the distributed setting. We formalize this
by attaching the derivation and infinite count sets, S and H, to facts both in
states and updates. An annotated fact is of the form (p,S,H), where p is a
fact, S is the derivation set of p, containing all the facts used to derive p, and
H is a subset of S containing all the recursive facts that belong to a cycle in
the derivation and therefore cause p to have an infinite count. In the example
above, the state of facts without ν of the nodes would be:

{(a, ∅, ∅), (p, {a}, ∅), (q, {p,a}, ∅), (p,{a,p,q},{p}), . . .}

where we elide the (@X) symbols. The fact p in (p,{a,p,q},{p}), also appears
in the set supporting it. This means that p appears in a cyclic derivation, and
therefore p is in the set H.

In order to maintain correctly the state, we adapt the definition of the basic
commands accordingly. A summary of the rules are shown in Figure 3. Each
pick rule in Figure 2 is divided into two rules. Once an update u = 〈U, (p,S,H)〉
is picked from the multiset of updates by using either the transition rule pickI or
pickD, the algorithm first checks whether the fact is supported by a derivation
tree that has a cycle (if p ∈ S). If so, then p is added to the set H; otherwise H
remain unchanged. Notice that the updated state of p in K uses the updated
H set. The commit rule is the same as before, except for the new presentation
of facts.

The major changes in the operational semantics are in the fire rule, where
the derivation set and the infinite count set need to be computed, when a
delta-rule is fired and the propagation of updates to facts with infinite count
needs to be avoided. Given an update 〈U, (bi,Si,Hi)〉, in addition to com-

5Notice that the derivation set of a fact is not the same as the annotation used before in
our proofs to distinguish different occurrences of the same fact. The former is part of the
algorithm, while the latter is only used in our proofs.

31

• pick1
I(S, 〈+, (p(~t),S,H)〉) =

〈K] {(pν(~t),S,H′)},U \ {〈+, (p(~t),S,H)〉},P] {〈+, (p(~t),S,H′)〉}, E〉,
provided 〈+, (p(~t),S,H)〉 ∈ U and p(~t) ∈ S, where H′ = H ∪ {p(~t)}.

• pick2
I(S, 〈+, (p(~t),S,H)〉) =

〈K] {(pν(~t),S,H)},U \ {〈+, (p(~t),S,H)〉},P] {〈+, (p(~t),S,H)〉}, E〉,
provided 〈+, (p(~t),S,H)〉 ∈ U and p(~t) /∈ S.

• pick1
D(S, 〈-, (p(~t),S,H)〉) =

〈K \ {(pν(~t),S,H′)},U \ {〈-, (p(~t),S,H)〉},P] {〈-, (p(~t),S,H′)〉}, E〉,
provided 〈-, (p(~t),S,H)〉 ∈ U and p(~t) ∈ S, where H′ = H ∪ {p(~t).

• pick2
D(S, 〈-, (p(~t),S,H)〉) =

〈K \ {(pν(~t),S,H)},U \ {〈-, (p(~t),S,H)〉},P] {〈-, (p(~t),S,H)〉}, E〉,
provided 〈-, (p(~t),S,H)〉 ∈ U and p(~t) /∈ S.

• fire(S, u) = 〈K] {(p(~t),S,H)},U ,P, E \ {〈+, (p(~t),S,H)〉}〉,
provided u ∈ P and where F = fireRules(u,K,R).

• commitI(S, 〈+, (p(~t),S,H)〉) = 〈K,U] F ,P \ {u}, E] {u}〉,
provided 〈+, (p(~t),S,H)〉 ∈ E .

• commitD(S, 〈-, (p(~t),S,H)〉) = 〈K \ {(p(~t),S,H)},U ,P, E \ {〈-, (p(~t),S,H)〉}〉,
provided 〈-, (p(~t),S,H)〉 ∈ E .

Figure 3: Definitions for the basic commands that detect cycles. Here S is the configuration
〈K,U ,P, E〉.

puting all updates that are propagated from this update, the algorithm also
constructs the corresponding derivation and infinite count sets, S and H as fol-
lows. Assume that the update 〈U, p〉 is propagated using a delta-rule with body
bν1 , . . . , b

ν
i ,∆bi, bi+1, . . . , bn and the facts (bj ,Sj ,Hj) where 1 ≤ j ≤ n, then the

derivation set for p is Sp = {b1, . . . , bn} ∪ S1 ∪ · · · ∪ Sn and the infinite count
set Hp = H1 ∪ · · · ∪ Hn. In order to avoid divergence, we also need to make
sure that an update of a fact with infinite count is not re-sent. To do so, the
algorithm only adds the update 〈U, (p,Sp,Hp)〉 to the multiset of updates U , if
it is not part of cycle that has been already computed (p /∈ Hp).

Returning to the previous example, when the update inserting the fact p(@1)
arrives for the second time at node 1, this update would contain the derivation
set S = {a(@0),p(@1),q(@2)}. Since the fact p(@1)∈ S, node 1 detects the cycle
in the derivation and adds the fact p(@1) to the infinite count set H. As q(@2)

is not in H, the insertion update of q(@2) is sent to node 2. However, when this
update is processed, creating a new insertion of p(@1), this new insertion is not
sent back to 1 because p(@1) is in the infinite count set, which means that it is
part of a cycle that has already been computed. Therefore, computation termi-
nates. In fact, the derivation set and infinite count set guarantee termination
of PSN on any recursive DDlog program.

Theorem 20 (Finiteness of PSN that detects cycles). Let S be an ini-
tial configuration and R be a DDlog program. Then all PSN executions using

32

s // p // q // ree
xx

Figure 4: Dependency graph of a propositional program.

R from S have finite length.

Proof Since we are assuming finite signature with no function symbols, there
is a finite number N of different facts in a system. We use a tuple with 2N ele-
ments, called state tuple, described next and the lexicographical ordering among
them to show termination. Given a state of the system, the ith element of the
state tuple contains the the number of updates 〈U, (p,S,H)〉 ∈ U , such that
i = |S|+ |H|, where |S| and |H| are the number of elements in S and H, respec-
tively. This ordering is clearly well founded. It is easy to show by induction on
the length of runs that there cannot be any update whose associated derivation
set S or infinite set H have more than N elements, since they are sets of facts.6

Therefore, only when the set of updates is empty, U = ∅, can the least state
tuple be reached. For any update message u = 〈U, (p,S,H)〉, we denote |u| as
the number of elements in the multiset S plus the number of elements in H.

We show that the value of the state tuple reduces with respect to the lexi-
cographical ordering after any PSN-iteration. After a PSN-iteration, there are
two possible ways that the multiset of updates U is changed. The first case is
when the picked update, u, does not contain a cycle. Then whenever a rule
is fired, an update, u′, is propagated such that the |u| < |u′| since at least the
tuple in u is inserted into the derivation set of u′. Then the update u′ is inserted
in the set U , while the update u is removed from it. Therefore, the value of
the ith element in the state tuple, where i = |u|, is reduced by one, while all
the values of the elements appearing before are untouched. The second case is
when a cycle is detected. Since the fire rule does not create updates whose cycle
has been detected, there is only the case when the update, u′, created inserts
or deletes a tuple that is in the infinite set, H, in which case it is added to it.
Hence |u| < |u′| and as before the state tuple is reduced by one. 2

Corollary 21. The PSN algorithm that detects cycles always terminates.

Consider the following program with five clauses:
p :- s; q :- p; r :- q; p :- r; q :- r,

whose dependency graph is depicted in Figure 4 and contains multiple depen-
dency cycles. Figure 5 contains the sequence of updates created when executing
PSN that detects cycles starting from an update inserting the base fact s. The
branches 1 and 2 are created when 〈+, (r, {s, p, q}, ∅)〉 is used to fire delta-rules.

6Even if they were not sets but multisets of annotated facts, we can show that their size is
bounded by 2N . This is because no update is created when a cycle is detected and therefore
there in the worst case 2N elements in S and at most N elements in H. Also notice that in
this case, we would need to use a state tuple with 3N elements, instead.

33

At the end of these two branches, no more updates are created. At the end of
branch 1, processing the update 〈+, (r,P, {p, q})〉 does not propagate any up-
dates, since it could only propagate an insertion of q and of p. However, both
q and p are in its infinite set, which means that they have infinite count, and
therefore such updates are not created. Similarly, in the branch 2, process-
ing the update 〈+, (p,P, {q, r})〉 does not propagate new updates, since q is in
its infinite count set. In the branches 1 and 2, the algorithm detects that all
facts in {p, q, r} have an infinite count. For instance, the first PSN-iteration in
branch 1, which processes the update 〈+, (p,P, ∅)〉, consists of the basic com-
mands pick1

I ,fire, and commitI . In the pick1
I the fact p is added to the infinite

set, ∅, because p appears in the supporting set, P. Hence, at the end of this
iteration, by the commitI command, the fact (p,P, {p}) is added to the state,
which indicates that p has infinite count since p is in the infinite count set of
this fact.

Correctness for PSN that Detects Cycles. We need to prove that the PSN algo-
rithm that detects cycles maintains views correctly in the presence of recursive
programs. The proofs follow the same steps as the proof for the correctness of
the basic PSN algorithm in Section 4. First, we extend the basic SN algorithm
(Algorithm 2) to deal with annotations for derivation and infinite count sets by
using the new transition rules in Figure 3. Then, we prove that the extended
SN algorithm is correct. Next, we relate PSN executions to SN executions.

However we need to revisit the definition of correctness. We have shown in
the beginning of this section that the multiset semantics for recursive programs
include tuples with infinite counts. That means that the view V and V ν could
be infinite, which implies that the updates that have to be computed (∆) could
be infinite as well. The definition for correctness only makes sense when ∆ is
finite, since no terminating programs can compute infinite set of updates. What
the cycle-detection mechanism really does is to represent the infinite number of
derivations for a recursive tuple by one derivation that contains only one cycle.
We revise the definition for correctness accordingly to reflect the fact that the
standard resulting view V ν that we compare against is a finite multiset view

〈+, (s, ∅, ∅)〉 //____ 〈+, (p, {s}, ∅)〉 //___ 〈+, (q, {s, p}, ∅)〉

tti i i i i

〈+, (p,P, ∅)〉

���
�

〈+, (r, {s, p, q}, ∅)〉 '&%$!"#2 //___'&%$!"#1oo_ _ _ 〈+, (q,P, ∅)〉

���
�

〈+, (q,P, {p})〉

���
�

〈+, (r,P, {q})〉

���
�

〈+, (r,P, {p, q})〉 〈+, (p,P, {q, r})〉

Figure 5: Sequence of updates created in an execution of PSN that detect cycles when inserting
the base fact s. Here P = {s,p,q,r}.

34

where a tuple that would have had infinite number of derivations in traditional
fixed-point semantics now has a finite number of representative derivations. For
instance, in a centralized setting, the semi-näıve evaluation algorithm described
in [14] computes such a finite (multiset) view for recursive programs.

Then in the proof of correctness of SN executions, we add a new case when
tuples with infinite counts are derived, that is, when they are supported by a
derivation with a single cycle. This is indeed the case for any SN execution
as the new fire rule does not propagate new updates when such updates are
processed.

Finally, the proofs that relate a PSN execution to an SN execution remain
almost the same except that we have to consider attaching annotations to tuples
and updates; and that the termination argument for PSN is different. The
transformations used in that proof continue to be valid when using the transition
systems in Figure 3.

Corollary 22 (Correctness of PSN). Given any DDlog program P, a mul-
tiset of base facts, E, a multiset of updates insertion updates I and deletion
updates D to base facts, such that Dt ⊆ E] It, then the PSN algorithm that
detects cycles correctly maintains the state of the program.

6. Comparison with Existing Incremental Maintenance Algorithms

We compare our algorithm with existing incremental maintenance algo-
rithms. We discuss limitations of these existing approaches and how our al-
gorithms improve them.

Delete and Re-derive. Gupta et al. proposed an algorithm in their seminal pa-
per [7] on incrementally maintaining logic programs in a centralized setting,
called DRed (Delete and Re-derive). DRed [7] maintains a state by using set-
semantics. DRed does not keep track of the number of supporting derivations
for any fact. Whenever a fact, p, is deleted, DRed eagerly deletes all the facts
that are supported by a derivation that contains p. Since some of the deleted
facts may be supported by alternative derivations that do not use p, DRed
re-derives them in order to maintain a correct state.

Re-deriving facts in a distributed setting is expensive due to high commu-
nication overhead, as demonstrated in [9]. Consider, for example, the topology
depicted in Figure 1, taken from [7]. There are two ways to reach the node
c from the node a, one passing the node b and the other through the node d.
Therefore the fact reachable(@a,c) is supported by two derivations. However,
when using set-semantics, DRed only stores one copy of reachable(@a,c) at the
node a. Assume that at some point the link from node a to the node b is bro-
ken, that is, the fact link(@a,b) is deleted. Then in DRed’s deletion phase, the
deletion of this fact propagates the deletion of reachable(@a,b), which similarly
will propagate the deletion of reachable(@a,c) and of reachable(@a,h). Then
DRed’s re-derive phase starts, which checks which facts that were deleted in the
deletion phase can be re-derived using an alternative derivation. In this case,

35

Node 1 : {}[] Burst {}[] {p}[〈+, p〉] Dequeue

Node 2 : {s, t}[] of {r, s, t}[〈+, r〉] Dequeue {r, s, t}[] 〈-, q〉
Node 3 : {q}[] updates. {}[〈-, q〉] 〈+, r〉 {}[〈-, q〉] 〈-, u〉
Node 4 : {u}[] −→ {}[〈-, u〉] −→ {}[〈-, u〉] −→

{p}[〈+, p〉] Dequeue {p}[]
{r}[〈-, s〉, 〈-, t〉] all {r}[]

{}[] updates {}[]
{}[] −→∗ {}[]

Figure 6: PSN computation-run resulting in an incorrect final state. The ith row depicts
the evolution of the state, in curly-brackets, and the update queue, in brackets, of node
i. The updates in the arrows are the ones dequeued by PSN and used to update the
state of the nodes. We also elide the (@X) in facts.

all the deleted facts (reachable(@a,b), reachable(@a,c), and reachable(@a,h))
are re-derivable using other derivations. All the reachable facts derived using
the path from a to b that passes through d have to be sent across the net-
work. For example reachable(@d,c) is sent to a in order to re-derive the fact
reachable(@a,c).

Our algorithm (Algorithm 1) uses multiset-semantics to keep track of the
number of supporting derivations of any fact. So, whenever a fact is deleted,
our algorithm just needs to reduce its multiplicity by one, and whenever its
multiplicity is zero, the fact is deleted from the state. Algorithm 1 incurs less
communication than DRed. Our extended algorithm (Section 5) annotates each
predicate with the set of supporting facts. Compared with DRed, this algorithm
incurs higher communication overhead in a workload where there are no dele-
tions. In the presence of deletions, our algorithm results in lower communication
overhead, since the deletion of a fact does not require the construction of alter-
native derivations.

Original PSN algorithm. The original PSN algorithm was proposed by Loo et
al.[10]. Our paper extends the original proposal in several ways. First, Loo et al.
consider only linear recursive terminating Datalog programs. We consider the
complete Datalog language including non-linear recursive programs. Second,
we relax the assumptions in the original proposal: instead of assuming that the
transmission channels are FIFO, which is unrealistic in many domains, we do
not make any assumption about the order in which updates are processed. In
other words, we do not assume the existence of a coordinator in the system.
An important improvement is that the PSN algorithm proposed in this paper
is proven to terminate and maintain states correctly. As pointed out in our
previous work [16], the PSN algorithm as presented in [10] may produce unsound
results and the use of the count algorithm [7] leads to non-termination. We
elaborate further on the former problem of the original PSN algorithm.

36

The original PSN performs the following operation: whenever an update
reaches a node, the update is not only stored at the end of the node’s update
queue, but also immediately used to update the node’s local state: the fact in
the update is immediately inserted into or deleted from the node’s state. This
procedure, however, leads to unsound results if channels are not FIFO. Consider
the following DDlog program, which is the same program as shown in Section
2.2, but now distributed over four nodes. The global state of this program is
{s(@2), t(@2), q(@3), u(@4)}:

node2: p(@1) :- s(@2), t(@2), r(@2).

node3: s(@2) :- q(@3).

q(@3) :-.

node4: t(@2) :- u(@4).

u(@4) :-

Consider the PSN computation-run depicted in Figure 6 (based on the orig-
inal algorithm). At the first transition, there is a burst of updates inserting the
base fact r and deleting the base facts q and u, where we elide the (@X) sym-
bols. When these updates are created, they are not only stored in the nodes’
queues but also used to update the state of the nodes (first transition in Fig-
ure 6). Then when the update 〈+, r〉 is dequeued and processed, a new update
inserting p is created (second transition in Figure 6). When the updates 〈-, q〉
and 〈-, u〉 are processed, they create the updates 〈-, s〉 and 〈-, t〉 (third transi-
tion in Figure 6). In the final transitions, none of the updates deleting s or t

trigger the deletion of p because t and u are no longer in node 2’s state and the
bodies of the respective deletion rules are not satisfied. Hence, the predicate
p is entailed after the original PSN terminates although it is not supported by
any derivation.

Our algorithms correct this error by delaying updates to the facts until after
updates are processed.

PSN with annotated facts. After the original PSN algorithm, Liu et al. proposed
in [9] a new PSN algorithm where facts are annotated in order to handle the
known problem that the original PSN does not terminate. Differently from
our approach, Liu et al. only track the base facts used in the derivation, while
our derivation set contains all facts (including intermediate derived facts) used
for each derivation. Moreover, as with the original PSN algorithm, Liu et al.
also assume the existence of a coordinator in the system enforcing that all
transmission channels are FIFO. Under this assumption, Liu et al. show that
their PSN algorithm terminates.

However, by using only base facts, it is not possible, without assuming that
the transmission channels used are FIFO, to differentiate an update that is the
result of computing a cyclic derivation from an update that arrived out-of-order.
When messages are processed out of order, the algorithm proposed in [9] yields
unsound results, illustrated below.

Consider the following program also used in Section 5 that contains cycles

37

and for which original PSN does not terminate:

a(@0) :-; p(@1) :- a(@0); q(@2) :- p(@1); p(@1) :- q(@2)

In [9], the state of this program is represented as the set {(a,{a}), (p,{a}),
(q,{a})} where we elide the (@X) symbols. All facts are derived by only using
the base fact a and therefore their annotations consist only of the base fact
a. An update inserting (p,{a}) could be derived due to a derivation with no
cycles or due to a cyclic derivation obtained by using the last two rules of the
program. In order to avoid divergence, the latter type of updates resulting from
cyclic derivations need to be discarded. Assume that there is a deletion of a,
represented by a deletion update 〈-, (a,{a})〉. When this update is processed,
node 1 creates 〈-, (p,{a})〉, which is processed by node 2, creating the update
〈-, (q,{a})〉. Finally, node 2 processes the latter, creating again the deletion
update 〈-, (p,{a})〉. When this update is received by node 1, the fact (p,{a}) is
not in the state, as it was deleted by the first deletion update. Therefore, node
1 can safely conclude, under the assumption of FIFO channels, that the latter
update is due to a cyclic derivation. Hence it just discards it and the algorithm
terminates.

It is easy to show that discarding eagerly such deletion updates yields un-
sound results when one relaxes the assumption of FIFO channels. Consider the
same program above, but two conflicting updates: 〈-, (a,{a})〉 and 〈+, (a,{a})〉.
If the deletion update is processed first by node 0, it will be discarded since
the fact (a,{a}) is not present in its state. The insertion update on the other
hand would be processed, generating eventually new insertion updates for all
the facts in the program. Hence, the final state obtained by their algorithm is
(a,{a}), (p,{a}), (q,{a}), whereas the correct state is the empty set.

Our algorithm annotates each predicate with all the predicates used to derive
it, which include not only the base predicates, but also intermediate predicates.
We have shown in Section 5 that we can detect cycles properly, even in the
presence of message re-ordering.

7. Additional Related Work

In contrast to our approach, MELD [5] simply attaches to each fact the
height of the supporting derivation. Although they are able to perform many
optimizations with such type of annotations, simply attaching the height of
derivations to facts is not enough to detect cycles in derivations and therefore
it is not enough to avoid divergence by itself. They address this problem by
synchronizing nodes and not allowing nodes to compute until they receive the
response from other nodes that all the deletions propagated from a deletion
of a base fact have been processed. As expected, performance can be greatly
affected since an unbounded number of nodes might need to be synchronized
at the same time due to cascading derivations. We believe that their work can
directly leverage the results in this paper.

38

In an attempt to generalize Loo et al.’s work [10], Dedalus [4] relaxes the
set of assumptions above by no longer assuming that messages always reach
their destination. The main difficulty when considering message loss is that
the semantics does not relate well with the semantics in the Datalog literature.
Depending on whether a message is lost or not, the final states computed by their
evaluation algorithms can be considerably different. Therefore, it is not clear
what is the notion of correctness in such systems. We believe that probabilistic
models where messages are lost with certain probability can be used, and we
leave this for future work.

In the agent programming community, several languages that allow for the
update of knowledge bases have been proposed. For instance, [3] proposes a logic
programming language that allows updates not only to base facts, but also to
rules themselves. Differently from this paper, however, their work considers only
a centralized setting. Moreover, a central difference from our work is that while
[3] is concerned in extending logic programming languages so that programmers
can specify updates, here we focus on algorithms that efficiently maintain states
of distributed Datalog programs. An interesting direction for future work would
be to extend our results to also allow rule updates in a distributed setting.

Adjiman et al. in [2] use classical propositional logic to specify knowledge
bases of agents in a peer-to-peer setting. They prove correct a distributed
algorithm that computes the consequences of inserting a literal, that is, an atom
or its negation, to a node (or peer). Since they use resolution in their algorithm,
they are able to deduce not only the atomic formulas that are derivable when
an insertion is made, but propositional formulas in general. While they are
mainly interested in finding the resulting state from inserting a formula, we are
interested in efficiently maintaining a state that was previously computed. It is
not clear how their approach can be used to update the consequences when a
sequence of insertions and deletions are made to the knowledge base.

Traditional distributed database [17] focuses on distributed querying tech-
niques over relational databases. There, distributed queries are issued over
relational tables that are partitioned across different sites. The focus of our
paper is different in three ways. Firstly, traditional distributed databases fo-
cuses primarily on support for queries over static data, and do not directly deal
with issues related to incrementally generating new results as the input data
changes. Secondly, traditional distributed queries are non-recursive in nature,
typically involving non-recursive joins or aggregations over tables stored across
sites. Finally, distributed databases primarily deal with tens of nodes, whereas
our setting involves a much larger number of nodes (hundreds or thousands)
exchanging messages and continuously updating their local network state in an
asynchronous fashion.

8. Conclusions and Future Work

Besides the correctness of the algorithm itself, our ultimate goal is to prove
interesting properties about programs written in distributed Datalog. The cor-
rectness results in this paper allow us to first formally verify high-level properties

39

of programs prior to actual deployment by relying on the well established se-
mantics for centralized Datalog, then the verified properties carry over to the
distributed deployment, because semantics for Distributed Datalog and central-
ized Datalog coincide.

In particular, we are interested in formal verification of implementations
of networking protocols prior to actual deployment in declarative network set-
ting [21, 22]. In order to do so, we need to extend this work to include additional
language features present in declarative networking including function symbols
and aggregates. Since Datalog programs with arbitrary functions symbols may
not terminate, we are investigating if we can extend existing analysis techniques
[8] developed for centralized Datalog with function symbols to determine when
DDlog programs with function symbols terminate. For including aggregates in
the language, we are looking into adapting existing work, such as [19] in incre-
mental view maintenance in a centralized setting to fit our needs.

Acknowledgements. We would like to thank Iliano Cervesato, Dale Miller, Juan
Antonio Navarro Pérez, Frank Pfenning, Andrey Rybalchenko, Val Tannen, and
Anduo Wang for helpful discussions.

This material is based upon work supported by the MURI program un-
der AFOSR Grant No: FA9550-08-1-0352 and by the NSF Grants IIS-0812270
and CNS-0845552. Additional support for Scedrov and Nigam from ONR
Grant N00014-07-1-1039 and from NSF Grants CNS-0524059 and CNS-0830949.
Nigam was also supported by the Alexander von Humboldt Foundation. Scedrov
was also partially supported by ONR grant N000141110555.

References

[1] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of
Databases. Addison-Wesley, 1995.

[2] Philippe Adjiman, Philippe Chatalic, François Goasdoué, Marie-Christine
Rousset, and Laurent Simon. Distributed reasoning in a peer-to-peer set-
ting: application to the semantic web. J. Artif. Int. Res., 25(1):269–314,
2006.

[3] José Júlio Alferes, João Alexandre Leite, Lúıs Moniz Pereira, Halina Przy-
musinska, and Teodor C. Przymusinski. Dynamic logic programming. In
APPIA-GULP-PRODE, pages 393–408, 1998.

[4] Peter Alvaro, William Marczak, Neil Conway, Joseph M. Hellerstein, David
Maier, and Russell C Sears. Dedalus: Datalog in time and space. Technical
Report UCB/EECS-2009-173, EECS Department, University of California,
Berkeley, Dec 2009.

[5] Michael P. Ashley-Rollman, Seth Copen Goldstein, Peter Lee, Todd C.
Mowry, and Padmanabhan Pillai. Meld: A declarative approach to pro-
gramming ensembles. In IROS, pages 2794–2800. IEEE, 2007.

40

[6] Stéphane Grumbach and Fang Wang. Netlog, a rule-based language for
distributed programming. In PADL, pages 88–103, 2010.

[7] Ashish Gupta, Inderpal Singh Mumick, and V. S. Subrahmanian. Main-
taining views incrementally. In Peter Buneman and Sushil Jajodia, editors,
Proceedings of the 1993 ACM SIGMOD International Conference on Man-
agement of Data, Washington, D.C., May 26-28, 1993, pages 157–166.
ACM Press, 1993.

[8] Ravi Krishnamurthy, Raghu Ramakrishnan, and Oded Shmueli. A frame-
work for testing safety and effective computability. J. Comput. Syst. Sci.,
52(1):100–124, 1996.

[9] Mengmeng Liu, Nicholas E. Taylor, Wenchao Zhou, Zachary G. Ives, and
Boon Thau Loo. Recursive computation of regions and connectivity in
networks. In ICDE, pages 1108–1119, 2009.

[10] Boon Thau Loo, Tyson Condie, Minos Garofalakis, David E. Gay,
Joseph M. Hellerstein, Petros Maniatis, Raghu Ramakrishnan, Timothy
Roscoe, and Ion Stoica. Declarative Networking: Language, Execution and
Optimization. In SIGMOD, 2006.

[11] Boon Thau Loo, Joseph M. Hellerstein, Ion Stoica, and Raghu Ramakrish-
nan. Declarative Routing: Extensible Routing with Declarative Queries.
In SIGCOMM, 2005.

[12] Nuno P. Lopes, Juan A. Navarro, Andrey Rybalchenko, and Atul Singh.
Applying prolog to develop distributed systems. In ICLP, 2010.

[13] Inderpal Singh Mumick, Hamid Pirahesh, and Raghu Ramakrishnan. The
magic of duplicates and aggregates. In VLDB ’90: Proceedings of the 16th
International Conference on Very Large Data Bases, pages 264–277, San
Francisco, CA, USA, 1990. Morgan Kaufmann Publishers Inc.

[14] Inderpal Singh Mumick and Oded Shmueli. Finiteness properties of
database queries. In Australian Database Conference, pages 274–288, 1993.

[15] Vivek Nigam, Limin Jia, Boon Thau Loo, and Andre Scedrov. Maintaining
distributed logic programs incrementally. In PPDP, pages 125–136, 2011.

[16] Vivek Nigam, Limin Jia, Anduo Wang, Boon Thau Loo, and Andre Sce-
drov. An operational semantics for network datalog. In LAM’10, 2010.

[17] M. Tamer Ozsu and Patrick Valduriez. Principles of Distributed Database
Systems, Second Edition. Prentice Hall, 1999.

[18] Vern Paxson. End-to-end routing behavior in the internet. In SIGCOMM
’96: Conference proceedings on Applications, technologies, architectures,
and protocols for computer communications, pages 25–38, New York, NY,
USA, 1996. ACM.

41

[19] Raghu Ramakrishnan, Kenneth A. Ross, Divesh Srivastava, and S. Sudar-
shan. Efficient incremental evaluation of queries with aggregation. In SLP,
pages 204–218, 1994.

[20] Raghu Ramakrishnan and Jeffrey D. Ullman. A Survey of Research on
Deductive Database Systems. Journal of Logic Programming, 23(2):125–
149, 1993.

[21] Anduo Wang, Prithwish Basu, Boon Thau Loo, and Oleg Sokolsky. Declar-
ative network verification. In 11th International Symposium on Practical
Aspects of Declarative Languages (PADL), 2009.

[22] Anduo Wang, Limin Jia, Changbin Liu, Boon Thau Loo, Oleg Sokolsky,
and Prithwish Basu. Formally Verifiable Networking. In ACM SIGCOMM
HotNets-VIII, 2009.

42

