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Abstract. In sequential languages, dynamic contracts are usually ex-
pressed as boolean functions without externally observable effects, writ-
ten within the language. We propose an analogous notion of concurrent
contracts for languages with session-typed message-passing concurrency.
Concurrent contracts are partial identity processes that monitor the bidi-
rectional communication along channels and raise an alarm if a contract
is violated. Concurrent contracts are session-typed in the usual way and
must also satisfy a transparency requirement, which guarantees that ter-
minating compliant programs with and without the contracts are ob-
servationally equivalent. We illustrate concurrent contracts with several
examples. We also show how to generate contracts from a refinement
session-type system and show that the resulting monitors are redundant
for programs that are well-typed.
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1 Introduction

Contracts, specifying the conditions under which software components can safely
interact, have been used for ensuring key properties of programs for decades.
Recently, contracts for distributed processes have been studied in the context of
session types [15, 17]. These contracts can enforce the communication protocols,
specified as session types, between processes. In this setting, we can assign each
channel a monitor for detecting whether messages observed along the channel
adhere to the prescribed session type. The monitor can then detect any deviant
behavior the processes exhibit and trigger alarms. However, contracts based
solely on session types are inherently limited in their expressive power. Many
contracts that we would like to enforce cannot even be stated using session
types alone. As a simple example, consider a “factorization service” which may
be sent a (possibly large) integer x and is supposed to respond with a list of
prime factors. Session types can only express that the request is an integer and
the response is a list of integers, which is insufficient.

In this paper, we show that by generalizing the class of monitors beyond
those derived from session types, we can enforce, for example, that multiplying
the numbers in the response yields the original integer x. This paper focuses on
monitoring more expressive contracts, specifically those that cannot be expressed
with session types, or even refinement types.



To handle these contracts, we have designed a model where our monitors
execute as transparent processes alongside the computation. They are able to
maintain internal state which allows us to check complex properties. These moni-
toring processes act as partial identities, which do not affect the computation ex-
cept possibly raising an alarm, and merely observe the messages flowing through
the system. They then perform whatever computation is needed, for example,
they can compute the product of the factors, to determine whether the messages
are consistent with the contract. If the message is not consistent, they stop the
computation and blame the process responsible for the mistake. To show that
our contracts subsume refinement-based contracts, we encode refinement types
in our model by translating refinements into monitors. This encoding is useful
because we can show a blame (safety) theorem stating that monitors that en-
force a less precise refinement type than the type of the process being monitored
will not raise alarms. Unfortunately, the blame theory for the general model is
challenging because the contracts cannot be expressed as types.

The main contributions of this paper are:

– A novel approach to contract checking via partial-identity monitors
– A method for verifying that monitors are partial identities, and a proof that

the method is correct
– Examples showing the breadth of contracts that our monitors can enforce
– A translation from refinement types to our monitoring processes and a blame

theorem for this fragment

The rest of this paper is organized as follows. We first review the background
on session types in Section 2. Next, we show a range of example contracts in
Section 3. In Section 4, we show how to check that a monitor process is a par-
tial identity and prove the method correct. We then show how we can encode
refinements in our system in Section 5. We discuss related work in Section 6.
Due to space constraints, we only present the key theorems. Detailed proofs can
be found in our companion technical report [12].

2 Session Types

Session types prescribe the communication behavior of message-passing concur-
rent processes. We approach them here via their foundation in intuitionistic
linear logic [4, 22, 5]. The key idea is that an intuitionistic linear sequent

A1, . . . , An ` C

is interpreted as the interface to a process expression P . We label each of the
antecedents with a channel name ai and the succedent with a channel name c.
The ai are the channels used and c is the channel provided by P .

a1 : A1, . . . , an : An ` P :: (c : C)

We abbreviate the antecedents by ∆. All the channels ai and c must be dis-
tinct, and bound variables may be silently renamed to preserve this invariant in



the rules. Furthermore, the antecedents are considered modulo exchange. Cut
corresponds to parallel composition of two processes that communicate along a
private channel x, where P is the provider along x and Q the client.

∆ ` P :: (x : A) x : A,∆′ ` Q :: (c : C)

∆,∆′ ` x:A← P ; Q :: (c : C)
cut

Operationally, the process x← P ; Q spawns P as a new process and continues
as Q, where P and Q communicate along a fresh channel a, which is substituted
for x. We sometimes omit the type A of x in the syntax when it is not relevant.

In order to define the operational semantics rigorously, we use multiset rewrit-
ing [6]. The configuration of executing processes is described as a collection C of
propositions proc(c, P ) (process P is executing, providing along c) and msg(c,M)
(message M is sent along c). All the channels c provided by processes and mes-
sages in a configuration must be distinct.

A cut spawns a new process, and is in fact the only way new processes are
spawned. We describe a transition C −→ C′ by defining how a subset of C can
be rewritten to a subset of C′, possibly with a freshness condition that applies
to all of C in order to guarantee the uniqueness of each channel provided.

proc(c, x:A← P ; Q) −→ proc(a, [a/x]P ), proc(c, [a/x]Q) (a fresh)

Each of the connectives of linear logic then describes a particular kind of com-
munication behavior which we capture in similar rules. Before we move on to
that, we consider the identity rule, in logical form and operationally.

A ` A
id

b : A ` a← b :: (a : A)
id

proc(a, a← b), C −→ [b/a]C

Operationally, it corresponds to identifying the channels a and b, which we im-
plement by substituting b for a in the remainder C of the configuration (which
we make explicit in this rule). The process offering a terminates. We refer to
a← b as forwarding since any messages along a are instead “forwarded” to b.

We consider each class of session type constructors, describing their process
expression, typing, and asynchronous operational semantics. The linear logical
semantics can be recovered by ignoring the process expressions and channels.

Internal and external choice Even though we distinguish a provider and its
client, this distinction is orthogonal to the direction of communication: both may
either send or receive along a common private channel. Session typing guarantees
that both sides will always agree on the direction and kind of message that is
sent or received, so our situation corresponds to so-called binary session types.

First, the internal choice c : A ⊕ B requires the provider to send a token
inl or inr along c and continue as prescribed by type A or B, respectively. For
practical programming, it is more convenient to support n-ary labelled choice
⊕{` : A`}`∈L where L is a set of labels. A process providing c : ⊕{` : A`}`∈L
sends a label k ∈ L along c and continues with type Ak. The client will operate
dually, branching on a label received along c.

k ∈ L ∆ ` P :: (c : Ak)

∆ ` c.k ; P :: (c : ⊕{` : A`}`∈L)
⊕R

∆, c : A` ` Q` :: (d : D) for every ` ∈ L

∆, c : ⊕{` : A`}`∈L ` case c (`⇒ Q`)`∈L :: (d : D)
⊕L



The operational semantics is somewhat tricky, because we communicate asyn-
chronously. We need to spawn a message carrying the label `, but we also need
to make sure that the next message sent along the same channel does not over-
take the first (which would violate session fidelity). Sending a message therefore
creates a fresh continuation channel c′ for further communication, which we sub-
stitute in the continuation of the process. Moreover, the recipient also switches
to this continuation channel after the message is received.

proc(c, c.k ; P ) −→ proc(c′, [c′/c]P ),msg(c, c.k ; c← c′) (c′ fresh)
msg(c, c.k ; c← c′), proc(d, case c (`⇒ Q`)`∈L) −→ proc(d, [c′/c]Qk)

It is interesting that the message along c, followed by its continuation c′ can be
expressed as a well-typed process expression using forwarding c.k ; c← c′. This
pattern will work for all other pairs of send/receive operations.

External choice reverses the roles of client and provider, both in the typing
and the operational rules. Below are the semantics and the typing is in Fig. 6.

proc(d, c.k ; Q) −→ msg(c′, c.k ; c′ ← c), proc(d, [c′/c]Q) (c′ fresh)
proc(c, case c (`⇒ P`)`∈L),msg(c′, c.k ; c′ ← c) −→ proc(c′, [c′/c]Pk)

Sending and receiving channels Session types are higher-order in the sense
that we can send and receive channels along channels. Sending a channel is
perhaps less intuitive from the logical point of view, so we show that and just
summarize the rules for receiving.

If we provide c : A⊗B, we send a channel a : A along c and continue as B.
From the typing perspective, it is a restricted form of the usual two-premise ⊗R
rule by requiring the first premise to be an identity. This restriction separates
spawning of new processes from the sending of channels.

∆ ` P :: B

∆, a : A ` send c a ; P :: (c : A⊗ B)
⊗R∗

∆, x : A, c : B ` Q :: (d : D)

∆, c : A⊗ B ` x← recv c ; Q :: (d : D)
⊗L

The operational rules follow the same patterns as the previous case.

proc(c, send c a ; P ) −→ proc(c′, [c′/c]P ),msg(send c a ; c← c′) (c′ fresh)
msg(c, send c a ; c← c′), proc(d, x← recv c ; Q) −→ proc(d, [c′/c][a/x]Q)

Receiving a channel (written as a linear implication A( B) works symmet-
rically. Below are the semantics and the typing is shown in Figure 6.

proc(d, send c a ; Q) −→ msg(c′, send c a ; c′ ← c), proc(d, [c′/c]Q) (c′ fresh)
proc(c, x← recv c ; P ),msg(c′, send c a ; c′ ← c) −→ proc(c′, [c′/c][a/x]P )

Termination We have already seen that a process can terminate by forwarding.
Communication along a channel ends explicitly when it has type 1 (the unit of
⊗) and is closed. By linearity there must be no antecedents in the right rule.

· ` close c :: (c : 1)
1R

∆ ` Q :: (d : D)

∆, c : 1 ` wait c ; Q :: (d : D)
1L

Since there cannot be any continuation, the message takes a simple form.



proc(c, close c) −→ msg(c, close c)
msg(c, close c), proc(d,wait c ; Q) −→ proc(d,Q)

Quantification First-order quantification over elements of domains such as in-
tegers, strings, or booleans allows ordinary basic data values to be sent and
received. At the moment, since we have no type families indexed by values, the
quantified variables cannot actually appear in their scope. This will change in
Section 5 so we anticipate this in these rules.

The proof of an existential quantifier contains a witness term, whose value
is what is sent. In order to track variables ranging over values, a new context
Ψ is added to all judgments and the preceding rules are modified accordingly.
All value variables n declared in context Ψ must be distinct. Such variables are
not linear, but can be arbitrarily reused, and are therefore propagated to all
premises in all rules. We write Ψ ` v : τ to check that value v has type τ in
context Ψ .

Ψ ` v : τ Ψ ; ∆ ` P :: (c : [v/n]A)

Ψ ; ∆ ` send c v ; P :: (c : ∃n:τ. A)
∃R

Ψ, n:τ ; ∆, c : A ` Q :: (d : D)

Ψ ; ∆, c : ∃n:τ. A ` n← recv c ; Q :: (d : D)
∃L

proc(c, send c v ; P ) −→ proc(c′, [c′/c]P ),msg(c, send c v ; c← c′)
msg(c, send c v ; c← c′), proc(d, n← recv c ; Q) −→ proc(d, [c′/c][v/n]Q)

The situation for universal quantification is symmetric. The semantics are given
below and the typing is shown in Figure 6.

proc(d, send c v ; Q) −→ msg(c′, send c v ; c′ ← c), proc(d, [c′/c]Q)
proc(c, x← recv c ; P ),msg(c′, send c v ; c′ ← c) −→ proc(c′, [c′/c][v/n]P )

Processes may also make internal transitions while computing ordinary values,
which we don’t fully specify here. Such a transition would have the form

proc(c, P [e]) −→ proc(c, P [e′]) if e 7→ e′

where P [e] would denote a process with an ordinary value expression in evalua-
tion position and e 7→ e′ would represent a step of computation.

Shifts For the purpose of monitoring, it is important to track the direction of
communication. To make this explicit, we polarize the syntax and use shifts to
change the direction of communication (for more detail, see prior work [18]).

Negative types A−, B− ::= N{` : A−` }`∈L | A+ ( B− | ∀n:τ.A− | ↑A+

Positive types A+, B+ ::= ⊕{` : A+
` }`∈L | A+ ⊗B+ | 1 | ∃n:τ.A+ | ↓A−

Types A,B,C,D ::= A− | A+

From the perspective of the provider, all negative types receive and all posi-
tive types send. It is then clear that ↑A must receive a shift message and then
start sending, while ↓A must send a shift message and then start receiving. For
this restricted form of shift, the logical rules are otherwise uninformative. The
semantics are given below and the typing is shown in Figure 6.

proc(c, send c shift ; P ) −→ proc(c′, [c′/c]P ),msg(c, send c shift ; c← c′) (c′ fresh)
msg(c, send c shift ; c← c′), proc(d, shift← recv d ; Q) −→ proc(d, [c′/c]Q)

proc(d, send d shift ; Q) −→ msg(c′, send c shift ; c′ ← c), proc(d, [c′/c]Q)
proc(c, shift← recv c ; P ),msg(c′, send c shift ; c′ ← c) −→ proc(c′, [c′/c]P )



Recursive types Practical programming with session types requires them to
be recursive, and processes using them also must allow recursion. For example,
lists with elements of type int can be defined as the purely positive type list+.

list+ = ⊕{ cons : ∃n:int. list+ ; nil : 1 }

A provider of type c : list is required to send a sequence such as cons·v1·cons·v2 · · ·
where each vi is an integer. If it is finite, it must be terminated with nil · end. In
the form of a grammer, we could write

From ::= cons · v · From | nil · end

A second example is a multiset (bag) of integers, where the interface allows
inserting and removing elements, and testing if it is empty. If the bag is empty
when tested, the provider terminates after responding with the empty label.

bag− = N{ insert : ∀n:int. bag−, remove : ∀n:int. bag−,
is empty : ↑⊕{empty : 1, nonempty : ↓ bag−} }

The protocol now describes the following grammar of exchanged messages, where
To goes to the provider, From comes from the provider, and v stands for integers.

To ::= insert · v · To | remove · v · To | is empty · shift · From
From ::= empty · end | nonempty · shift · To

For these protocols to be realized in this form and support rich subtyping and
refinement types without change of protocol, it is convenient for recursive types
to be equirecursive. This means a defined type such as list+ is viewed as equal
to its definition ⊕{. . .} rather than isomorphic. For this view to be consistent,
we require type definitions to be contractive [11], that is, they need to provide
at least one send or receive interaction before recursing.

The most popular formalization of equirecursive types is to introduce an
explicit µ-constructor. For example, list = µα.⊕{ cons : ∃n:int. α, nil : 1 } with
rules unrolling the type µα.A to [(µα.A)/α]A. An alternative (see, for example,
Balzers and Pfenning 2017 [3]) is to use an explicit definition just as we stated,
for example, list and bag, and consider the left-hand side equal to the right-hand
side in our discourse. In typing, this works without a hitch. When we consider
subtyping explicitly, we need to make sure we view inference systems on types as
being defined co-inductively. Since a co-inductively defined judgment essentially
expresses the absence of a counterexample, this is exactly what we need for
the operational properties like progress, preservation, or absence of blame. We
therefore adopt this view.

Recursive processes In addition to recursively defined types, we also need
recursively defined processes. We follow the general approach of Toninho et al
[23] for the integration of a (functional) data layer into session-typed communi-
cation. A process can be named p, ascribed a type, and be defined as follows.

p : ∀n1:τ1. . . . , ∀nk:τk.{A← A1, . . . , Am}
x← p n1 . . . nk ← y1, . . . , ym = P

where we check (n1:τ1, . . . , nk:τk) ; (y1:A1, . . . , ym:Am) ` P :: (x : A)



We use such process definitions when spawning a new process with the syntax

c← p e1 . . . , ek ← d1, . . . , dm ; P

which we check with the rule

(Ψ ` ei : τi)i∈{1,...,k} ∆′ = (d1:A1, . . . , dm:Am) Ψ ; ∆, c : A ` Q :: (d : D)

Ψ ; ∆,∆′ ` c← p e1 . . . ek ← d1, . . . , dm ; Q :: (d : D)
pdef

After evaluating the value arguments, the call consumes the channels dj (which
will not be available to the continuation Q, due to linearity). The continuation
Q will then be the (sole) client of c and The new process providing c will execute
[c/x][d1/y1] . . . [dm/ym]P .

One more quick shorthand used in the examples: a tail-call c ← p e ← d in
the definition of a process that provides along c is expanded into c′ ← p e← d ;
c← c′ for a fresh c′. Depending on how forwarding is implemented, however, it
may be much more efficient [13].

Stopping computation Finally, in order to be able to successfully monitor
computation, we need the capability to stop the computation. We add an abort l
construct that aborts on a particular label. We also add assert blocks to check
conditions on observable values. The semantics are given below and the typing
is in Figure 6.

proc(c, assert l True;Q) −→ proc(c,Q) proc(c, assert l False;Q) −→ abort(l)

Progress and preservation were proven for the above system, with the exception
of the abort and assert rules, in prior work [18]. The additional proof cases do
not change the proof significantly.

3 Contract Examples

In this section, we present monitoring processes that can enforce a variety of
contracts. The examples will mainly use lists as defined in the previous section.
Our monitors are transparent, that is, they do not change the computation.
We accomplish this by making them act as partial identities (described in more
detail in Section 4). Therefore, any monitor that enforces a contract on a list
must peel off each layer of the type one step at a time (by sending or receiving
over the channel as dictated by the type), perform the required checks on values
or labels, and then reconstruct the original type (again, by sending or receiving
as appropriate).

Refinement The simplest kind of monitoring process we can write is one that
models a refinement of an integer type; for example, a process that checks
whether every element in the list is positive. This is a recursive process that
receives the head of the list from channel b, checks whether it is positive (if yes,
it continues to the next value, if not it aborts), and then sends the value along to
reconstruct the monitored list a. We show three refinement monitors in Figure 1.
The process pos implements the refinement mentioned above.



pos : {list← list}
a← pos mon← b =
case b of

| nil⇒ a.nil ; wait b ; close a

| cons⇒ x← recv b ;
assert(x > 0)ρ ;
a.cons ; send a x ;
a← pos mon← b; ;

empty : {list← list}
a← empty← b =
case b of

| nil⇒ wait b ;
a.nil ; close a

| cons⇒ abortρ; ;

nempty : {list← list}
a← nempty← b =
case b of

| nil⇒ abortρ

| cons⇒ a.cons ;
x← recv b ;
send a x ; a← b; ;

Fig. 1. Refinement examples

Our monitors can also exploit information that is contained in the labels in
the external and internal choices. The empty process checks whether the list b is
empty and aborts if b sends the label cons. Similarly, the nempty monitor checks
whether the list b is not empty and aborts if b sends the label nil. These two
monitors can then be used by a process that zips two lists and aborts if they
are of different lengths. These two monitors enforce the refinements {nil} ⊆
{nil, cons} and {cons} ⊆ {nil, cons}. We discuss how to generate monitors
from refinement types in more detail in Section 5.

Monitors with internal state We now move beyond refinement contracts,
and model contracts that have to maintain some internal state (Figure 2).

We first present a monitor that checks whether the given list is sorted in
ascending order (ascending). The monitor’s state consists of a lower bound on
the subsequent elements in the list. This value has an option type, which can
either be None if no bound has yet been set, or Some b if b is the current bound.

If the list is empty, there is no bound to check, so no contract failure can
happen. If the list is nonempty, we check to see if a bound has already been set.
If not, we set the bound to be the first received element. If there is already a
bound in place, then we check if the received element is greater or equal to the
bound. If it is not, then the list must be unsorted, so we abort with a contract

ascending : option int→ {list← list}; ;
m← ascending bound← n =
case n of

| nil⇒ m.nil ; wait n ; close m

| cons⇒ x← recv n ;
case bound of

| None⇒ m.cons ; send m x ;
m← ascending (Some x)← n

| Some a⇒ assert (x ≥ a)ρ ;
m.cons ; send m x ;
m← ascending (Some x)← n; ;

match : int→ {list← list}; ;
a← match count← b =
case b of

| nil⇒ assert (count = 0)ρ ;
a.nil ; wait b ; close a

| cons⇒ a.cons ; x← recv b ;
if (x = 1) then send a x ;
a← match (count + 1)← b;

else if (x = −1)
then assert(count > 0)ρ ;
send a x ;
a← match (count−1)← b ;

else abortρ //invalid input

Fig. 2. Monitors using internal state



failure. Note that the output list m is the same as the input list n because every
element that we examine is then passed along unchanged to m.

We can use the ascending monitor to verify that the output list of a sorting
procedure is in sorted order. To take the example one step further, we can verify
that the elements in the output list are in fact a permutation of the elements
in the input list of the sorting procedure as follows. Using a reasonable hash
function, we hash each element as it is sent to the sorting procedure. Our monitor
then keeps track of a running total of the sum of the hashes, and as elements
are received from the sorting procedure, it computes their hash and subtracts it
from the total. After all of the elements are received, we check that the total is
0 – if it is, with high probability, the two lists are permutations of each other.
This example is an instance of result checking, inspired by Wasserman and Blum
[26]. The monitor encoding is straightforward and omitted from the paper.

Our next example match validates whether a set of right and left parentheses
match. The monitor can use its internal state to push every left parenthesis it
sees on its stack and to pop it off when it sees a right parenthesis. For brevity,
we model our list of parentheses by marking every left parenthesis with a 1 and
right parenthesis with a -1. So the sequence ()()) would look like 1,−1, 1,−1,−1.
As we can see, this is not a proper sequence of parenthesis because adding all of
the integer representations does not yield 0. In a similar vein, we can implement
a process that checks that a tree is serialized correctly, which is related to recent
work on context-free session types by Thiemann and Vasconcelos [21].

Mapper Finally, we can also define monitors that check higher-order contracts,
such as a contract for a mapping function (Figure 3). Consider the mapper which
takes an integer and doubles it, and a function map that applies this mapper to

mapper tp : {N{done : 1 ; next : ∀n : int.∃n : int.mapper tp}}
m← mapper =
case m of

| done⇒ close m

| next⇒ x← recv m ; send m (2 ∗ x) ; m← mapper

map : {list← mapper tp ; list}
k← map← m l =
case l of

| nil⇒ m.done ; k.nil ; wait l ; close k

| cons⇒ m′ ← mapper mon← m; //run monitor

x← recv l ; send m′ x ; y← recv m′ ; k.cons ; send k y ; k← map m′ l; ;

mapper mon : {mapper tp← mapper tp}
n← mapper mon← m =
case n of

| done⇒ m.done ; wait m ; close n

| next⇒ x← recv n ; assert(x > 0)ρ1 //checks precondition

m.next ; send m x ; y← recv m ; assert(y > x)ρ2 //checks postcondition

send n y ; n← mapper mon← m

Fig. 3. Higher-Order monitor



a list of integers to produce a new list of integers. We can see that any integer
that the mapper has produced will be strictly larger than the original integer,
assuming the original integer is positive. In order to monitor this contract, it
makes sense to impose a contract on the mapper itself. This mapper mon process
enforces both the precondition, that the original integer is positive, and the
postcondition, that the resulting integer is greater than the original. We can
now run the monitor on the mapper, in the map process, before applying the
mapper to the list l.

4 Monitors as Partial Identity Processes

In the literature on contracts, they are often depicted as guards on values sent to
and returned from functions. In our case, they really are processes that monitor
message-passing communications between processes. For us, a central property of
contracts is that a program may be executed with or without contract checking
and, unless an alarm is raised, the observable outcome should be the same.
This means that contract monitors should be partial identity processes passing
messages back and forth along channels while testing properties of the messages.

This may seem very limiting at first, but session-typed processes can maintain
local state. For example, consider the functional notion of a dependent contract,
where the contract on the result of a function depends on its input. Here, a
function would be implemented by a process to which you send the arguments
and which sends back the return value along the same channel. Therefore, a
monitor can remember any (non-linear) “argument values” and use them to
validate the “result value”. Similarly, when a list is sent element by element,
properties that can be easily checked include constraints on its length, or whether
it is in ascending order. Moreover, local state can include additional (private)
concurrent processes.

This raises a second question: how can we guarantee that a monitor really is a
partial identity? The criterion should be general enough to allow us to naturally
express the contracts from a wide range of examples. A key constraint is that
contracts are expressed as session-typed processes, just like functional contracts
should be expressed within the functional language, or object contracts within
the object oriented language, etc.

The purpose of this section is to present and prove the correctness of a
criterion on session-typed processes that guarantees that they are observationally
equivalent to partial identity processes. All the contracts in this paper can be
verified to be partial identities under our definition.

4.1 Buffering Values

As a first simple example let’s take a process that receives one positive integer
n and factors it into two integers p and q that are sent back where p ≤ q. The
part of the specification that is not enforced is that if n is not prime, p and q
should be proper factors, but we at least enforce that all numbers are positive



and n = p ∗ q. We are being very particular here, for the purpose of exposition,
marking the place where the direction of communication changes with a shift
(↑). Since a minimal number of shifts can be inferred during elaboration of the
syntax [18], we suppress it in most examples.

factor t = ∀n:int. ↑ ∃p:int.∃q:int.1
factor monitor : {factor t← factor t}
c← factor monitor← d =
n← recv c ; assert (n > 0)ρ1 ; shift← recv c ; send d n ; send d shift ;
p← recv d ; assert(p > 0)ρ2 ; q ← recv d ; assert(q > 0)ρ3 ; assert(p ≤ q)ρ4 ;
assert(n = p ∗ q)ρ5 ; send c p ; send c q ; c← d

This is a one-time interaction (the session type factor t is not recursive), so the
monitor terminates. It terminates here by forwarding, but we could equally well
have replaced it by its identity-expanded version at type 1, which is wait d ;
close c.

The contract could be invoked by the provider or by the client. Let’s consider
how a provider factor might invoke it:

factor : {factor t}
c← factor =
c′ ← factor raw ; c′ ← factor monitor← c′ ; c← c′

To check that factor monitor is a partial identity we need to track that p and q are
received from the provider, in this order. In general, for any received message, we
need to enter it into a message queue q and we need to check that the messages
are passed on in the correct order. As a first cut (to be generalized several times),
we write for negative types:

[q](b : B−) ; Ψ ` P :: (a : A−)

which expresses that the two endpoints of the monitor are a : A− and b : B−

(both negative), and we have already received the messages in q along a. The
context Ψ declares types for local variables.

A monitor, at the top level, is defined with

mon : τ1 → . . .→ τn → {A← A}
a← mon x1 . . . xn ← b = P

where context Ψ declares value variables x. The body P here is type-checked as
one of (depending on the polarity of A)

[ ](b : A−) ; Ψ ` P :: (a : A−) or (b : A+) ; Ψ ` P :: [ ](a : A+)

where Ψ = (x1:τ1) · · · (xn:τn). A use such as

c← mon e1 . . . en ← c

is transformed into
c′ ← mon e1 . . . en ← c ; c← c′

for a fresh c′ and type-checked accordingly.
In general, queues have the form q = m1 · · ·mn with

m ::= lk labels ⊕,N
| c channels ⊗,( | n value variables ∃,∀
| end close 1 | shift shifts ↑, ↓



where m1 is the front of the queue and mn the back.
When a process P receives a message, we add it to the end of the queue

q. We also need to add it to Ψ context, marked as unrestricted (non-linear) to
remember its type. In our example τ = int.

[q · n](b : B) ; Ψ, n:τ ` P :: (a : A−)

[q](b : B) ; Ψ ` n← recv a ; P :: (a : ∀n:τ.A−)
∀R

Conversely, when we send along b the message must be equal to the one at
the front of the queue (and therefore it must be a variable). The m is a value
variable and remains in the context so it can be reused for later assertion checks.
However, it could never be sent again since it has been removed from the queue.

[q](b : [m/n]B) ; Ψ,m:τ ` P :: (a : A)

[m · q](b : ∀n:τ.B) ; Ψ,m:τ ` send b m ; Q :: (a : A)
∀L

All the other send and receive rules for negative types (∀, (, N) follow
exactly the same pattern. For positive types, a queue must be associated with
the channel along which the monitor provides (the succedent of the sequent
judgment).

(b : B+) ; Ψ ` Q :: [q](a : A+)

Moreover, when end has been received along b the corresponding process has
terminated and the channel is closed, so we generalize the judgment to

ω ; Ψ ` Q :: [q](a : A+) with ω = · | (b : B).

The shift messages change the direction of communication. They therefore
need to switch between the two judgments and also ensure that the queue has
been emptied before we switch direction. Here are the two rules for ↑, which
appears in our simple example:

[q · shift](b : B−) ; Ψ ` P :: (a : A+)

[q](b : B−) ; Ψ ` shift← recv a ; P :: (a : ↑A+)
↑R

We notice that after receiving a shift, the channel a already changes polarity (we
now have to send along it), so we generalize the judgment, allowing the succedent
to be either positive or negative. And conversely for the other judgment.

[q](b : B−) ; Ψ ` P :: (a : A)
ω ; Ψ ` Q :: [q](a : A+) where ω = · | (b : B)

When we send the final shift, we initialize a new empty queue. Because the
queue is empty the two sides of the monitor must have the same type.

(b : B+) ; Ψ ` Q :: [ ](a : B+)

[shift](b : ↑B+) ; Ψ ` send b shift ; Q :: (a : B+)
↑L

The rules for forwarding are also straightforward. Both sides need to have
the same type, and the queue must be empty. As a consequence, the immediate
forward is always a valid monitor at a given type.

(b : A+) ; Ψ ` a← b :: [ ](a : A+)
id+

[ ](b : A−) ; Ψ ` a← b :: (a : A−)
id−



4.2 Rule summary

The current rules allow us to communicate only along the channels a and b
that are being monitored. If we send channels along channels, however, these
channels must be recorded in the typing judgment, but we are not allowed to
communicate along them directly. On the other hand, if we spawn internal (local)
channels, say, as auxiliary data structures, we should be able to interact with
them since such interactions are not externally observable. Our judgment thus
requires two additional contexts: ∆ for channels internal to the monitor, and Γ
for externally visible channels that may be sent along the monitored channels.
Our full judgments therefore are

[q](b : B−) ; Ψ ; Γ ; ∆ ` P :: (a : A)
ω ; Ψ ; Γ ; ∆ ` Q :: [q](a : A+) where ω = · | (b : B)

So far, it is given by the following rules

(∀` ∈ L) (b : B`) ; Ψ ; Γ ; ∆ ` Q` :: [q · `](a : A+)

(b : ⊕{` : B`}`∈L) ; Ψ ; Γ ; ∆ ` case b (`⇒ Q`)`∈L :: [q](a : A+)
⊕L

ω ; Ψ ; Γ ; ∆ ` P :: [q](a : Bk) (k ∈ L)

ω ; Ψ ; Γ ; ∆ ` a.k ; P :: [k · q](a : ⊕{` : B`}`∈L)
⊕R

(∀` ∈ L) [q · `](b : B) ; Ψ ; Γ ; ∆ ` P` :: (a : A`)

[q](b : B) ; Ψ ; Γ ; ∆ ` case a (`⇒ P`)`∈L :: (a : N{` : A`}`∈L)
NR

[q](b : Bk) ; Ψ ; Γ ; ∆ ` P :: (a : A) (k ∈ L)

[k · q](b : ⊕{` : B`}`∈L) ; Ψ ; Γ ; ∆ ` b.k ; P :: (a : A)
NL

(b : B) ; Ψ ; Γ, x:C ; ∆ ` Q :: [q · x](a : A)

(b : C ⊗B) ; Ψ ; Γ ; ∆ ` x← recv b ; Q :: [q](a : A)
⊗L

ω ; Ψ ; Γ ; ∆ ` P :: [q](a : A)

ω ; Ψ ; Γ, x:C ; ∆ ` send a x ; P :: [x · q](a : C ⊗A)
⊗R

[q · x](b : B) ; Ψ ; Γ, x:C ; ∆ ` P :: (a : A)

[q](b : B) ; Ψ ; Γ ; ∆ ` x← recv a ; P :: (a : C ( A)
(R

[q](b : B) ; Ψ ; Γ ; ∆ ` Q :: (a : A)

[x · q](b : C ( B) ; Ψ ; Γ, x:C ; ∆ ` send b x ; Q :: (a : A)
(L

· ; Ψ ; Γ ; ∆ ` Q :: [q · end](a : A)

(b : 1) ; Ψ ; Γ ; ∆ ` wait b ; Q :: [q](a : A)
1L

· ; Ψ ; · ; · ` close a :: [end](a : 1)
1R



(b : B) ; Ψ, n:τ ; Γ ; ∆ ` Q :: [q · n](a : A)

(b : ∃n:τ.B) ; Ψ ; Γ ; ∆ ` n← recv b ; Q :: [q](a : A)
∃L

ω ; Ψ,m:τ ; Γ ; ∆ ` P :: [q](a : [m/n]A)

ω ; Ψ,m:τ ; Γ ; ∆ ` send a m ; P :: [m · q](a : ∃n:τ.A)
∃R

[q · n](b : B) ; Ψ, n:τ ; Γ ; ∆ ` P :: (a : A−)

[q](b : B) ; Ψ ; Γ ; ∆ ` v ← recv a ; P :: (a : ∀n:τ.A−)
∀R

[q](b : [m/n]B) ; Ψ,m:τ ; Γ ; ∆ ` P :: (a : A)

[m · q](b : ∀n:τ.B) ; Ψ,m:τ ; Γ ; ∆ ` send b m ; Q :: (a : A)
∀L

(b : B−) ; Ψ ; Γ ; ∆ ` Q :: [q · shift](a : A+)

(b : ↓B−) ; Ψ ; Γ ; ∆ ` shift← recv b ; Q :: [q](a : A+)
↓L

[ ](b : A−) ; Ψ ; Γ ; ∆ ` P :: (a : A−)

(b : A−) ; Ψ ; Γ ; ∆ ` send a shift ; P :: [shift](a : ↓A−)
↓R

[q · shift](b : B−) ; Ψ ; Γ ; ∆ ` P :: (a : A+)

[q](b : B−) ; Ψ ; Γ ; ∆ ` shift← recv a ; P :: (a : ↑A+)
↑R

(b : B+) ; Ψ ; Γ ; ∆ ` Q :: [ ](a : B+)

[shift](b : ↑B+) ; Ψ ; Γ ; ∆ ` send b shift ; Q :: (a : B+)
↑L

4.3 Spawning new processes

The most complex part of checking that a process is a valid monitor involves
spawning new processes. In order to be able to spawn and use local (private)
processes, we have introduced the (so far unused) context ∆ that tracks such
channels. We use it here only in the following two rules:

Ψ ; ∆ ` P :: (c : C) ω ; Ψ ; Γ ; ∆′, c:C ` Q :: [q](a : A+)

ω ; Ψ ; Γ ; ∆,∆′ ` (c : C)← P ; Q :: [q](a : A+)
cut+1

Ψ ; ∆ ` P :: (c : C) [q](b : B−) ; Ψ ; Γ ; ∆′, c:C ` Q :: (a : A)

[q](b : B−) ; Ψ ; Γ ; ∆,∆′ ` (c : C)← P ; Q :: (a : A)
cut−1

The second premise (that is, the continuation of the monitor) remains the mon-
itor, while the first premise corresponds to a freshly spawned local progress
accessible through channel c. All the ordinary left rules for sending or receiving
along channels in ∆ are also available for the two monitor validity judgments.
By the strong ownership discipline of intuitionistic session types, none of this
information can flow out of the monitor.



It is also possible for a single monitor to decompose into two monitors that
operate concurrently, in sequence. In that case, the queue q may be split any-
where, as long as the intermediate type has the right polarity. Note that Γ must
be chosen to contain all channels in q2, while Γ ′ must contain all channels in q1.

ω ; Ψ ; Γ ; ∆ ` P :: [q2](c : C+) (c : C+) ; Ψ ; Γ ′ ; ∆′ ` Q :: [q1](a : A+)

ω ; Ψ ; Γ, Γ ′ ; ∆,∆′ ` c : C+ ← P ; Q :: [q1 · q2](a : A+)
cut+2

Why is this correct? The first messages sent along a will be the messages in q1.
If we receive messages along c in the meantime, they will be first the messages
in q2 (since P is a monitor), followed by any messages that P may have received
along b if ω = (b : B). The second rule is entirely symmetric, with the flow of
messages in the opposite direction.

[q1](b : B−) ; Ψ ; Γ ; ∆ ` P :: (c : C−) [q2](c : C−) ; Ψ ′ ; Γ ′ ; ∆′ ` Q :: (a : A)

[q1 · q2](b : B−) ; Ψ ; Γ, Γ ′ ; ∆,∆′ ` c : C− ← P ; Q :: (a : A)
cut−2

The next two rules allow a monitor to be attached to a channel x that is
passed between a and b. The monitored version of x is called x′, where x′ is
chosen fresh. This apparently violates our property that we pass on all messages
exactly as received, because here we pass on a monitored version of the original.
However, if monitors are partial identities, then the original x and the new x′

are indistinguishable (unless a necessary alarm is raised), which will be a tricky
part of the correctness proof.

(x : C+) ; Ψ ; · ; ∆ ` P :: [ ](x′ : C+) ω ; Ψ ; Γ, x′:C+ ; ∆′ ` Q :: [q1 · x′ · q2](a : A+)

ω ; Ψ ; Γ, x:C+ ; ∆,∆′ ` x′ ← P ; Q :: [q1 · x · q2](a : A+)
cut++

3

[ ](x : C−) ; Ψ ; · ; ∆ ` P :: (x′ : C−) [q1 · x′ · q2](b : B−) ; Ψ ; Γ, x′:C− ; ∆′ ` Q :: (a : A)

[q1 · x · q2](b : B−) ; Ψ ; Γ ; ∆,∆′ ` x′ ← P ; Q :: (a : A)
cut−−3

There are two more versions of these rules, depending on whether the types of
x and the monitored types are positive or negative. These rules play a critical
role in monitoring higher-order processes, because monitoring c : A+ ( B−

may require us to monitor the continuation c : B− (already covered) but also
communication along the channel x : A+ received along c.

In actual programs, we mostly use cut x← P ; Q in the form x← p e← d ; Q
where p is a defined process. The rules are completely analogous, except that for
those rules that require splitting a context in the conclusion, the arguments d
will provide the split for us. When a new sub-monitor is invoked in this way, we
remember and eventually check that the process p must also be a partial identity
process, unless we are already checking it. This has the effect that recursively
defined monitors with proper recursive calls are in fact allowed. This is impor-
tant, because monitors for recursive types usually have a recursive structure. An
illustration of this can be seen in pos in Figure 1.

4.4 Transparency

We need to show that monitors are transparent, that is, they are indeed observa-
tionally equivalent to partial identity processes. Because of the richness of types



and process expressions and the generality of the monitors allowed, the proof
has some complexities. First, we define the configuration typing, which consists
of just three rules. Because we also send and receive ordinary values, we also
need to type (closed) substitutions σ = (v1/n1, . . . , vk/nk) using the judgment
σ :: Ψ .

(·) :: (·)
· ` v : τ

(v/n) :: (n : τ)

σ1 :: Ψ1 σ2 :: Ψ2

(σ1, σ2) :: (Ψ1, Ψ2)
For configurations, we use the judgment

∆ ` C :: ∆′

which expresses that process configuration C uses the channels in ∆ and provides
the channels in ∆′. Channels that are neither used nor offered by C are “passed
through”. Messages are just a restricted form of processes, so they are typed
exactly the same way. We write pred for either proc or msg.

∆ ` (·) :: ∆

∆0 ` C1 :: ∆1 ∆1 ` C2 :: ∆2

∆0 ` C1, C2 :: ∆2

Ψ ; ∆ ` P :: (c : A) σ : Ψ

∆′, ∆[σ] ` pred(c, P [σ]) :: (∆′, c : A[σ]) pred ::= proc | msg

To characterize observational equivalence of processes, we need to first charac-
terize the possible messages and the direction in which they flow: towards the
client (channel type is positive) or towards the provider (channel type is nega-
tive). We summarize these in the following table. In each case, c is the channel
along with the message is transmitted, and c′ is the continuation channel.

Message to client of c Message to provider of c
msg+(c, c.k ; c← c′) (⊕) msg−(c′, c.k ; c′ ← c) (N)
msg+(c, send c d ; c← c′) (⊗) msg−(c′, send c d ; c′ ← c) (()
msg+(c, close c) (1)
msg+(c, send c v ; c← c′) (∃) msg−(c′, send c v ; c′ ← c) (∀)
msg+(c, send c shift ; c← c′) (↓) msg−(c′, send c shift ; c′ ← c) (↑)

The notion of observational equivalence we need does not observe “nontermi-
nation”, that is, it only compares messages that are actually received. Since
messages can flow in two directions, we need to observe messages that arrive at
either end. We therefore do not require, as is typical for bisimulation, that if one
configuration takes a step, another configuration can also take a step. Instead we
say if both configurations send an externally visible message, then the messages
must be equivalent.

Supposing Γ ` C : ∆ and Γ ` D :: ∆, we write Γ ` C ∼ D :: ∆ for
our notion of observational equivalence. It is the largest relation satisfying that
Γ ` C ∼ D : ∆ implies

1. If Γ ′ ` msg+(c, P ) :: Γ then Γ ′ ` (msg+(c, P ), C) ∼ (msg+(c, P ),D) :: ∆.
2. If ∆ ` msg−(c, P ) :: ∆′ then Γ ` (C,msg−(c, P )) ∼ (D,msg−(c, P )) :: ∆′.
3. If C = (C′,msg+(c, P )) with Γ ` C′ :: ∆′1 and ∆′1 ` msg+(c, P ) :: ∆

and D = (D′,msg+(c,Q)) with Γ ` D′ :: ∆′2 and ∆′2 ` msg+(c,Q) :: ∆
then ∆′1 = ∆′2 = ∆′ and P = Q and Γ ` C′ ∼ D′ :: ∆′.



4. If C = (msg−(c, P ), C′) with Γ ` msg−(c, P ) :: Γ ′1 and Γ ′1 ` C′ :: ∆
and D = (msg−(c,Q),D′) with Γ ` msg−(c,Q) :: Γ ′2 and Γ ′2 ` D′ :: ∆
then Γ ′1 = Γ ′2 = Γ ′ and P = Q and Γ ′ ` C′ ∼ D′ :: ∆.

5. If C −→ C′ then Γ ` C′ ∼ D :: ∆

6. If D −→ D′ then Γ ` C ∼ D′ :: ∆

Clauses (1) and (2) correspond to absorbing a message into a configuration,
which may later be received by a process according to clauses (5) and (6).

Clauses (3) and (4) correspond to observing messages, either by a client
(clause (3)) or provider (clause (4)).

In clause (3) we take advantage of the property that a new continuation
channel in the message P (one that does not appear already in Γ ) is always
chosen fresh when created, so we can consistently (and silently) rename it in
C′, ∆′1, and P (and D′, ∆′2, and Q, respectively). This slight of hand allows us
to match up the context and messages exactly. An analogous remark applies to
clause (4). A more formal description would match up the contexts and messages
modulo two renaming substitution which allow us to leave Γ and ∆ fixed.

Clauses (5) and (6) make sense because a transition never changes the inter-
face to a configuration, except when executing a forwarding proc(a, a← b) which
substitutes b for a in the remaining configuration. We can absorb this renam-
ing into the renaming substitution. Cut creates a new channel, which remains
internal since it is linear and will have one provider and one client within the
new configuration. Unfortunately, our notation is already somewhat unwieldy
and carrying additional renaming substitutions further obscures matters. We
therefore omit them in this presentation.

We now need to define a relation ∼M such that (a) it satisfies the closure
conditions of ∼ and is therefore an observational equivalence, and (b) allows us
to conclude that monitors satisfying our judgment are partial identities. Unfor-
tunately, the theorem is rather complex, so we will walk the reader through a
sequence of generalizations that account for various phenomena.

The ⊕,N fragment. For this fragment, we have no value variables, nor are we
passing channels. Then the top-level properties we would like to show are

(1+) If (y : A+) ; · ; · ` P :: (x : A+)[ ]
then y : A+ ` proc(x, x← y) ∼M P :: (x : A+)

(1−) If [ ](y : A−) ; · ; · ` P :: (x : A−)
then y : A− ` proc(x, x← y) ∼M P :: (x : A−)

Of course, asserting that proc(x, x ← y) ∼M P will be insufficient, because
this relation is not closed under the conditions of observational equivalence. For
example, if we add a message along y to both sides, P will change its state once
it receives the message, and the queue will record that this message still has to
be sent. To generalize this, we need to define the queue that corresponds to a



sequence of messages. First, a single message:

Message to client of c Message to provider of c

〈〈msg+(c, c.k ; c← c′)〉〉 = k (⊕) 〈〈msg−(c′, c.k ; c′ ← c)〉〉 = k (N)

〈〈msg+(c, send c d ; c← c′)〉〉 = d (⊗) 〈〈msg−(c′, send c d ; c′ ← c)〉〉 = d (()

〈〈msg+(c, close c)〉〉 = end (1)
〈〈msg+(c, send c v ; c← c′)〉〉 = v (∃) 〈〈msg−(c′, send c v ; c′ ← c)〉〉 = v (∀)
〈〈msg+(c, send c shift ; c← c′)〉〉 = shift (↓) 〈〈msg−(c′, send c shift ; c′ ← c)〉〉 = shift (↑)

We extend this to message sequences with 〈〈 〉〉 = (·) and 〈〈E1, E2〉〉 = 〈〈E1〉〉 · 〈〈E2〉〉,
provided ∆0 ` E1 : ∆1 and ∆1 ` E2 :: ∆2.

Then we build into the relation that sequences of messages correspond to the
queue.

(2+) If (y:B+) ; · ; · ; · ` P :: (x:A+)[〈〈E〉〉] then y : B+ ` E ∼M proc(x, P ) :: (x :
A+).

(2−) If [〈〈E〉〉](y:B−)· ; · ; · ` P :: (x:A−) then y:B− ` E ∼M proc(x, P ) :: (x:A−).

When we add shifts the two propositions become mutually dependent, but
otherwise they remain the same since the definition of 〈〈E〉〉 is already general
enough. But we need to generalize the type on the opposite side of queue to be
either positive or negative, because it switches polarity after a shift has been
received. Similarly, the channel might terminate when receiving 1, so we also
need to allow ω, which is either empty or of the form y : B.

(3+) If ω ; · ; · ; · ` P :: (x:A+)[〈〈E〉〉] then ω ` E ∼M proc(x, P ) :: (x:A+).
(3−) If [〈〈E〉〉](y:B−) ; · ; · ; · ` P :: (x:A) then y:B− ` E ∼M proc(x, P ) :: (x:xA).

Next, we can permit local state in the monitor (rules cut+1 and cut−1 ). The fact
that neither of the two critical endpoints y and x, nor any (non-local) channel,s
can appear in the typing of the local process is key. That local process will evolve
to a local configuration, but its interface will not change and it cannot access
externally visible channels. So we generalize to allow a configuration D that does
not use any channels, and any channels it offers are used by P .

(4+) If ω ; · ; · ; ∆ ` P :: [〈〈E〉〉](x : A+) and · ` D :: ∆ then ω ` E ∼M
D, proc(x, P ) :: [q](x : A+).

(4−) If [〈〈E〉〉](y : B−) ; · ; · ; ∆ ` P :: (x : A) and · ` D :: ∆ then Γ, y : B− `
E ∼M D, proc(x, P ) :: (x : A).

Next, we can allow value variables necessitated by the universal and existential
quantifiers. Since they are potentially dependent, we need to apply the closing
substitution σ to a number of components in our relation.

(5+) If ω ; Ψ ; · ; ∆ ` P :: [q](x : A+) and σ : Ψ and q[σ] = 〈〈E〉〉 and · ` D :: ∆[σ]
then ω[σ] ` E ∼M D, proc(x, P [σ]) :: (x : A+[σ]).

(5−) If [q](y : B−) ; Ψ ; · ; ∆ ` P :: (x : A) and σ : Ψ and q[σ] = E and
· ` D :: ∆[σ] then y : B−[σ] ` E ∼M D, proc(x, P [σ]) :: (x : A[σ]).

Breaking up the queue by spawning a sequence of monitors (rule cut+2 and cut−2 )
just comes down to the compositionally of the partial identity property. This is
a new and separate way that two configurations might be in the ∼M relation,
rather than a replacement of a previous definition.



(6) If ω ` E1 ∼M D1 :: (z : C) and (z : C) ` E2 ∼M D2 :: (x : A) then
ω ` (E1, E2) ∼M (D1,D2) :: (x : A).

At this point, the only types that have not yet accounted for are ⊗ and
(. If these channels were only “passed through” (without the four cut3 rules),
this would be rather straightforward. However, for higher-order channel-passing
programs, a monitor must be able to spawn a monitor on a channel that it
receives before sending on the monitored version. First, we generalize properties
(5) to allow the context Γ of channels that may occur in the queue q and the
process P , but that P may not interact with.

(7+) If ω ; Ψ ; Γ ; ∆ ` P :: [q](x : A+) and σ : Ψ and q[σ] = 〈〈E〉〉 and · ` D :: ∆[σ]
then Γ [σ], ω[σ] ` E ∼M D, proc(x, P [σ]) :: (x : A+[σ]).

(7−) If [q](y : B−) ; Ψ ; Γ ; ∆ ` P :: (x : A) and σ : Ψ and q[σ] = E and
· ` D :: ∆[σ] then Γ [σ], y : B−[σ] ` E ∼M D, proc(x, P [σ]) :: (x : A[σ]).

In addition we need to generalize property (6) into (8) and (9) to allow
multiple monitors to run concurrently in a configuration.

(8) If Γ ` E ∼M D :: ∆ then (Γ ′, Γ ) ` E ∼M D :: (Γ ′, ∆).
(9) If Γ1 ` E1 ∼M D1 :: Γ2 and Γ2 ` E2 ∼M D2 :: Γ3 then Γ1 ` (E1, E2) ∼M

(D1,D2) :: Γ3.

At this point we can state the main theorem regarding monitors.

Theorem 1. If Γ ` E ∼M D :: ∆ according to properties (7+), (7−), (8), and(9)
then Γ ` E ∼ D :: ∆.

Proof. By closure under conditions 1-6 in the definition of ∼.

By applying it as in equations (1+) and (1−), generalized to include value
variables as in (5+) and (5−) we obtain:

Corollary 1. If [ ](b : A−) ; Ψ ` P :: (a : A−) or (b : A+) ; Ψ ` P :: [ ](a : A+)
then P is a partial identity process.

5 Refinements as Contracts

In this section we show how to check refinement types dynamically using our
contracts. We encode refinements as type casts, which allows processes to re-
main well-typed with respect to the non-refinement type system (Section 2).
These casts are translated at run time to monitors that validate whether the
cast expresses an appropriate refinement. If so, the monitors behave as identity
processes; otherwise, they raise an alarm and abort. For refinement contracts,
we can prove a safety theorem, analogous to the classic “Well-typed Programs
Can’t be Blamed” [25], stating that if a monitor enforces a contract that casts
from type A to type B, where A is a subtype of B, then this monitor will never
raise an alarm.



5.1 Syntax and Typing Rules

We first augment messages and processes to include casts as follows. We write
〈A⇐ B〉ρ to denote a cast from type B to type A, where ρ is a unique label for
the cast. The cast for values is written as (〈τ ⇐ τ ′〉ρ). Here, the types τ ′ and τ
are refinement types of the form {n:t | b}, where b is a boolean expression that
expresses simple properties of the value n.

P ::= · · · | x← 〈τ ⇐ τ ′〉ρ v ; Q | a:A← 〈A⇐ B〉ρ b

Adding casts to forwarding is expressive enough to encode a more general cast
〈A ⇐ B〉ρP . For instance, the process x:A ← 〈A ⇐ B〉ρP ; Qx can be encoded
as: y:B ← P ;x:A← 〈A⇐ B〉ρ y ; Qx.

One of the additional rules to type casts is shown below (both rules can be
found in Figure 6). We only allow casts between two types that are compatible
with each other (written A ∼ B), which is co-inductively defined based on the
structure of the types (the full definition is omitted from the paper).

A ∼ B

Ψ ; b : B ` a← 〈A⇐ B〉ρ b :: (a : A)
id cast

5.2 Translation to Monitors

At run time, casts are translated into monitoring processes. A cast a ← 〈A ⇐
B〉ρ b is implemented as a monitor. This monitor ensures that the process that
offers a service on channel b behaves according to the prescribed type A. Because
of the typing rules, we are assured that channel b must adhere to the type B.

Figure 4 is a summary of all the translation rules, except recursive types.
The translation is of the form: [[〈A ⇐ B〉ρ]]a,b = P , where A, B are types; the
channels a and b are the offering channel and monitoring channel (respectively)
for the resulting monitoring process P ; and ρ is a label of the monitor (i.e., the
contract).

Note that this differs from blame labels for high-order functions, where the
monitor carries two labels, one for the argument, and one for the body of the
function. Here, the communication between processes is bi-directional. Though
the blame is always triggered by processes sending messages to the monitor,
our contracts may depend on a set of the values received so far, so it does not
make sense to blame one party. Further, in the case of forwarding, the processes
at either end of the channel are behaving according to the types (contracts)
assigned to them, but the cast may forcefully connect two processes that have
incompatible types. In this case, it is unfair to blame either one of the processes.
Instead, we raise an alarm of the label of the failed contract.

The translation is defined inductively over the structure of the types. The
tensor rule generates a process that first receives a channel (x) from the channel
being monitored (b). It then spawns a new monitor (denoted by the @monitor
keyword) to monitor channel x, making sure that it behaves as type A1, and



[[〈1⇐ 1〉ρ]]a,b = wait b; close a
one

[[〈A1 ( A2 ⇐ B1 ( B2〉ρ]]a,b =
x← recv a;
@monitor y ← [[〈B1 ⇐ A1〉ρ]]y,x ← x
send b y;
[[〈A2 ⇐ B2〉ρ]]a,b

(
[[〈A1 ⊗A2 ⇐ B1 ⊗B2〉ρ]]a,b =
x← recv b;
@monitor y ← [[〈A1 ⇐ B1〉ρ]]y,x ← x
send a y;
[[〈A2 ⇐ B2〉ρ]]a,b

⊗

[[〈∀{n : τ | e}. A⇐ ∀{n : τ ′ | e′}. B〉ρ]]a,b = x← recv a;
assert ρ e′(x) (send b x; [[〈A⇐ B〉ρ]]a,b)

∀

[[〈∃{n : τ | e}. A⇐ ∃{n : τ ′ | e′}. B〉ρ]]a,b = x← recv b;
assert ρ e(x) (send a x; [[〈A⇐ B〉ρ]]a,b)

∃

∀`, ` ∈ I ∩ J, a.` ; [[〈A` ⇐ B`〉ρ]]a,b = Q` ∀`, ` ∈ J ∧ ` /∈ I, Q` = abort ρ

[[〈⊕{` : A`}`∈I ⇐ ⊕{` : B`}`∈J〉ρ]]a,b = case b (`⇒ Q`)`∈I
⊕

∀`, ` ∈ I ∩ J, b.` ; [[〈A` ⇐ B`〉ρ]]a,b = Q` ∀`, ` ∈ I ∧ ` /∈ J, Q` = abort ρ

[[〈N{` : A`}`∈I ⇐ N{` : B`}`∈J〉ρ]]a,b = case a (`⇒ Q`)`∈I
N

[[〈↑A⇐ ↑B〉ρ]]a,b =
shift← recv b;
send a shift ; [[〈A⇐ B〉ρ]]a,b

↑
[[〈↓A⇐ ↓B〉ρ]]a,b =
shift← recv a;
send b shift ; [[〈A⇐ B〉ρ]]a,b

↓

Fig. 4. Cast translation

passes the new monitor’s offering channel y to channel a. Finally, the monitor
continues to monitor b to make sure that it behaves as type A2. The lolli rule is
similar to the tensor rule, except that the monitor first receives a channel from
its offering channel. Similar to the higher-order function case, the argument
position is contravariant, so the newly spawned monitor checks that the received
channel behaves as type B1. The exists rule generates a process that first receives
a value from the channel b, then checks the boolean condition e to validate the
contract. The forall rule is similar, except the argument position is contravariant,
so the boolean expression e′ is checked on the offering channel a. The with rule
generates a process that checks that all of the external choices promised by the
type N{` : A`}`∈I are offered by the process being monitored. If a label in the
set I is not implemented, then the monitor aborts with the label ρ. The plus
rule requires that, for internal choices, the monitor checks that the monitored
process only offers choices within the labels in the set ⊕{` : A`}`∈I .

For ease of explanation, we omit details for translating casts involving recur-
sive types. Briefly, these casts are translated into recursive processes. For each
pair of compatible recursive types A and B, we generate a unique monitor name



1 ≤ 1
1

A ≤ A′ B ≤ B′

A⊗B ≤ A′ ⊗B′
⊗

A′ ≤ A B ≤ B′

A( B ≤ A′ ( B′
(

Ak ≤ A′k for k ∈ J J ⊆ I

⊕{labk : Ak}k∈J ≤ ⊕{labk : A′k}k∈I
⊕

Ak ≤ A′k for k ∈ J I ⊆ J

&{labk : Ak}k∈J ≤ &{labk : A′k}k∈I
&

A ≤ B

↓ A ≤ ↓ B
↓

A ≤ B

↑ A ≤ ↑ B
↑

A ≤ B τ1 ≤ τ2

∃n : τ1.A ≤ ∃n : τ2.B
∃

A ≤ B τ2 ≤ τ1

∀n : τ1.A ≤ ∀n : τ2.B
∀

def(A) ≤ def(B)

A ≤ B
def

∀v:τ, [v/x]b1 7→∗ true implies [v/x]b2 7→∗ true

{x:τ | b1} ≤ {x:τ | b2}
refine

Fig. 5. Subtyping

f and record its type f : {A ← B} in a context Ψ . The translation algorithm
needs to take additional arguments, including Ψ to generate and invoke the
appropriate recursive process when needed. For instance, when generating the
monitor process for f : {list ← list}, we follow the rule for translating internal
choices. For [[〈list ⇐ list〉ρ]]y,x we apply the cons case in the translation to get
@monitor y ← f ← x.

5.3 Metatheory

We prove two formal properties of cast-based monitors: safety and transparency.
Because of the expressiveness of our contracts, a general safety (or blame)

theorem is difficult to achieve. However, for cast-based contracts, we can prove
that a cast which enforces a subtyping relation, and the corresponding moni-
tor, will not raise an alarm. We first define our subtyping relation in Figure 5.
In addition to the subtyping between refinement types, we also include label
subtyping for our session types. A process that offers more external choices can
always be used as a process that offers fewer external choices. Similarly, a process
that offers fewer internal choices can always be used as a process that offers more
internal choices (e.g., non-empty list can be used as a list). The subtyping rules
for internal and external choices are drawn from work by Acay and Pfenning
[1]. For recursive types, we directly examine their definitions. Because of these
recursive types, our subtyping rules are co-inductively defined.

We prove a safety theorem (i.e., well-typed casts do not raise alarms) via
the standard preservation theorem. The key is to show that the monitor process
generated from the translation algorithm in Figure 4 is well-typed under a typing
relation which guarantees that no abort state can be reached. We refer to the type
system presented thus far in the paper as T , where monitors that may evaluate
to abort can be typed. We define a stronger type system S which consists of the
rules in T with the exception of the abort rule and we replace the assert rule
with the assert strong rule. The new rule for assert, which semantically verifies



Both System T and S

Ψ ; b : A ` a← b :: (a : A)
id

Ψ ; ∆ ` P :: (x : A) x : A,∆′ ` Q :: (c : C)

Ψ ; ∆,∆′ ` x:A← P ; Q :: (c : C)
cut

Ψ ; ∆ ` P :: (c : A+)

Ψ ; ∆ ` shift← recv c ; P :: (c : ↑A+)
↑R

Ψ ; ∆, c : A+ ` Q :: (d : D)

Ψ ; ∆, c : ↑A+ ` send c shift ; Q :: (d : D)
↑L

Ψ ; ∆ ` P :: (c : A−)

Ψ ; ∆ ` send c shift ; P :: (c : ↓A−)
↓R

Ψ ; ∆, c : A− ` Q :: (d : D)

Ψ ; ∆, c : ↓A− ` shift← recv c ; Q :: (d : D)
↓L

· ` close c :: (c : 1)
1R

Ψ ;∆ ` Q :: (d : D)

Ψ ;∆, c : 1 ` wait c ; Q :: (d : D)
1L

Ψ ; ∆ ` P :: (c : B)

Ψ ; ∆, a : A ` send c a ; P :: (c : A⊗ B)
⊗R

Ψ ;∆, x : A, c : B ` Q :: (d : D)

Ψ ;∆, c : A⊗ B ` x← recv c ; Q :: (d : D)
⊗L

Ψ ;∆, x : A ` P :: (c : B)

Ψ ;∆ ` x← recv c ; P :: (c : A( B)
(R

Ψ ; ∆, c : B ` Q :: (d : D)

Ψ ; ∆, a : A, c : A( B ` send c a ; Q :: (d : D)
(L

Ψ ;∆ ` P` :: (c : A`) for every ` ∈ L

Ψ ;∆ ` case c (`⇒ P`)`∈L :: (c : N{` : A`}`∈L)
NR

k ∈ L Ψ ;∆, c : Ak ` Q :: (d : D)

Ψ ;∆, c : N{` : A`}`∈L ` c.k ; Q :: (d : D)
NL

k ∈ L Ψ ;∆ ` P :: (c : Ak)

Ψ ;∆ ` c.k ; P :: (c : ⊕{` : A`}`∈L)
⊕R

Ψ ;∆, c : A` ` Q` :: (d : D) for every ` ∈ L

Ψ ;∆, c : ⊕{` : A`}`∈L ` case c (`⇒ Q`)`∈L :: (d : D)
⊕L

Ψ ` v : τ Ψ ; ∆ ` P :: (c : [v/n]A)

Ψ ; ∆ ` send c v ; P :: (c : ∃n:τ. A)
∃R

Ψ, n:τ ; ∆, c : A ` Q :: (d : D)

Ψ ; ∆, c : ∃n:τ. A ` n← recv c ; Q :: (d : D)
∃L

Ψ, n:τ ; ∆ ` P :: (c : A)

Ψ ; ∆ ` n← recv c ; P :: (c : ∀n:τ. A)
∀R

Ψ ` v : τ Ψ ; ∆, c : [v/n]A ` Q :: (d : D)

Ψ ; ∆, c : ∀n:τ. A ` send c v ; Q :: (d : D)
∀L

Ψ ` v : τ ′ Ψ, x : τ ; ∆ ` Q :: (c : C) τ ∼ τ ′

Ψ ; ∆ ` x← 〈τ ⇐ τ ′〉ρ v ; Q :: (c : C)
val cast

A ∼ B

Ψ ; b : B ` a← 〈A⇐ B〉ρ b :: (a : A)
id cast

System T only

Ψ ` b : bool Ψ ; ∆ ` Q :: (x : A)

Ψ ; ∆ ` assert ρ b;Q :: (x : A)
assert

Ψ ; ∆ ` abort ρ :: (x : A)
abort

System S only

Ψ  b true Ψ ; ∆ ` Q :: (x : A)

Ψ ; ∆ ` assert ρ b;Q :: (x : A)
assert strong

Fig. 6. Typing process expressions

that the condition b is true using the fact that the refinements are stored in the
context Ψ , is shown below. The two type systems are summarized in Figure 6.



Theorem 2 (Monitors are well-typed). Let Ψ be the context containing the
type bindings of all recursive processes.

1. Ψ ; b : B `T [[〈A⇐ B〉ρ]]Ψa,b :: (a : A).

2. If B ≤ A, then Ψ ; b : B `S [[〈A⇐ B〉ρ]]Ψa,b :: (a : A).

Proof. The proof is by induction over the monitor translation rules. For 2, we
need to use the sub-typing relation to show that (1) for the internal and external
choice cases, no branches that include abort are generated; and (2) for the forall
and exists cases, the assert never fails (i.e., the assert strong rule applies). ut

As a corollary, we can show that when executing in a well-typed context, a
monitor process translated from a well-typed cast will never raise an alarm.

Corollary 2 (Well-typed casts cannot raise alarms). ` C :: b : B and
B ≤ A implies C, proc(a, [[〈A⇐ B〉ρ]]a,b) 6−→∗ abort(ρ).

Finally, we prove that monitors translated from casts are partial identify
processes.

Theorem 3 (Casts are transparent).
b : B ` proc(b, a← b) ∼ proc(a, [[〈A⇐ B〉ρ]]a,b) :: (a : A).

Proof. We just need to show that the translated process passes the partial iden-
tity checks. We can show this by induction over the translation rules and by ap-
plying the rules in Section 4. We note that rules in Section 4 only consider identi-
cal types; however, our casts only cast between two compatible types. Therefore,
we can lift A and B to their super types (i.e., insert abort cases for mismatched
labels), and then apply the checking rules. This does not change the semantics
of the monitors.

6 Related Work

There is a rich body of work on higher-order contracts and the correctness of
blame assignments in the context of the lambda calculus [10, 8, 7, 25, 24, 16, 2].
The contracts in these papers are mostly based on refinement or dependent types.
Our contracts are more expressive than the above, and can encode refinement-
based contracts. While our monitors are similar to reference monitors (such as
those described by Schneider [19]), they have a few features that are not inherent
to reference monitors such as the fact that our monitors are written in the target
language. Our monitors are also able to monitor contracts in a higher-order
setting by spawning a separate monitor for the sent/received channel.

Disney et al.’s [9] work, which investigates behavioral contracts that enforce
temporal properties for modules, is closely related to our work. Our contracts
(i.e., session types) also enforce temporal properties; the session types specify the
order in which messages are sent and received by the processes. Our contracts
can also make use of internal state, as those of Disney et al, but our system is
concurrent, while their system does not consider concurrency.



Recently, gradual typing for two-party session-type systems has been devel-
oped [20, 14]. Even though this formalism is different from our contracts, the way
untyped processes are gradually typed at run time resembles how we monitor
type casts. Because of dynamic session types, their system has to keep track of
the linear use of channels, which is not needed for our monitors.

Most recently, Melgratti and Padovani have developed chaperone contracts
for higher-order session types [17]. Their work is based on a classic interpre-
tation of session types, instead of an intuitionistic one like ours, which means
that they do not handle spawning or forwarding processes. While their contracts
also inspect messages passed between processes, unlike ours, they cannot model
contracts which rely on the monitor making use of internal state (e.g., the paren-
thesis matching). They proved a blame theorem relying on the notion of locally
correct modules, which is a semantic categorization of whether a module satisfies
the contract. We did not prove a general blame theorem; instead, we prove a
somewhat standard safety theorem for cast-based contracts.

The Whip system [27] addresses a similar problem as our prior work [15],
but does not use session types. They use a dependent type system to imple-
ment a contract monitoring system that can connect services written in different
languages. Their system is also higher order, and allows processes that are moni-
tored by Whip to interact with unmonitored processes. While Whip can express
dependent contacts, Whip cannot handle stateful contracts. Another distinguish-
ing feature of our monitors is that they are partial identity processes encoded in
the same language as the processes to be monitored.

7 Conclusion

We have presented a novel approach for contract-checking for concurrent pro-
cesses. Our model uses partial identity monitors which are written in the same
language as the original processes and execute transparently. We define what
it means to be a partial identity monitor and prove our characterization cor-
rect. We provide multiple examples of contracts we can monitor including ones
that make use of the monitor’s internal state, ones that make use of the idea
of probabilistic result checking, and ones that cannot be expressed as depen-
dent or refinement types. We translate contracts in the refinement fragment into
monitors, and prove a safety theorem for that fragment.
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