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ABSTRACT
We present the design, implementation and evaluation of an
algorithm that checks audit logs for compliance with privacy
and security policies. The algorithm, which we name reduce,
addresses two fundamental challenges in compliance check-
ing that arise in practice. First, in order to be applicable
to realistic policies, reduce operates on policies expressed in
a first-order logic that allows restricted quantification over
infinite domains. We build on ideas from logic program-
ming to identify the restricted form of quantified formulas.
The logic can, in particular, express all 84 disclosure-related
clauses of the HIPAA Privacy Rule, which involve quantifi-
cation over the infinite set of messages containing personal
information. Second, since audit logs are inherently incom-
plete (they may not contain sufficient information to deter-
mine whether a policy is violated or not), reduce proceeds
iteratively: in each iteration, it provably checks as much of
the policy as possible over the current log and outputs a
residual policy that can only be checked when the log is ex-
tended with additional information. We prove correctness,
termination, time and space complexity results for reduce.
We implement reduce and optimize the base implementation
using two heuristics for database indexing that are guided
by the syntactic structure of policies. The implementation
is used to check simulated audit logs for compliance with the
HIPAA Privacy Rule. Our experimental results demonstrate
that the algorithm is fast enough to be used in practice.
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1. INTRODUCTION
Organizations, such as hospitals, banks, and universities,

that collect, use, and share personal information have to en-
sure that they do so in a manner that respects the privacy
of the information’s subjects. In fact, designing effective
processes to ensure compliance with internal policies and
privacy regulations, such as the Health Insurance Portabil-
ity and Accountability Act (HIPAA) [34] and the Gramm-
Leach-Bliley Act (GLBA) [33], has become one of the great-
est challenges facing organizations today (see, for example, a
survey from Deloitte and the Ponemon Institute [13]). This
paper presents an approach to address this challenge.

We design and implement an algorithm that checks audit
logs for compliance with a rich class of privacy and secu-
rity policies. The algorithm, which we name reduce, ad-
dresses two fundamental challenges in compliance checking
that arise in practice. First, in order to be applicable to
realistic policies, reduce operates on policies expressed in a
first-order logic that allows restricted quantification over in-
finite domains. We design this logic by starting from our
prior work on a logic for specifying privacy regulations [15],
and restricting the syntax of quantifiers in order to ensure
that reduce terminates. In more detail, we note that many
HIPAA clauses are of the form ∀p1, p2,m.(send(p1, p2,m) ⊃
ϕ) where p1 and p2 are principals and m is a message. This
formula quantifies over the infinite set of messages, so if an
enforcement algorithm were to blindly instantiate the quan-
tifiers with all possible values in the domain, it would not
terminate. However, since the number of messages transmit-
ted from a hospital is finite, the predicate send(p1, p2,m) is
true for only a finite number of substitutions for the vari-
able m (and similarly for p1 and p2). At a technical level, we
use the idea of mode checking from logic programming [2]
to ensure that the number of relevant substitutions for ev-
ery quantified variable is always finite, thus ensuring that
reduce terminates. The resulting logic is more expressive
than prior logics used for compliance-checking, including
propositional temporal logics [6, 18] and first-order metric
temporal logic [9], and, in contrast to these logics, can ex-
press all 84 disclosure-related clauses in the HIPAA Privacy
Rule.



Second, a significant challenge in automated compliance
checking is that logs maintained by organizations may be in-
complete, i.e., they may not contain enough information to
decide whether or not the policy has been violated. There
are many different sources of incompleteness. Specifically,
privacy regulations often permit disclosures based on sub-
jective beliefs (e.g., allowing a hospital to share health in-
formation with law enforcement officers if the hospital be-
lieves that a death could have been the result of a crim-
inal act) and future obligations (e.g., requiring organiza-
tions to notify customers within a prescribed time period
if a data breach has occurred). These two classes of poli-
cies (which abound in privacy regulations) illustrate why we
cannot hope to have an automated enforcement mechanism
that decides whether a disclosure is permitted or not at the
time the disclosure occurs—in other words, why a preventive
enforcement regime is not sufficient for enforcement of such
policies. In addition to these inherent forms of incomplete-
ness, sometimes not all relevant information is recorded in a
single log, i.e., logs may be spatially distributed. As an im-
portant contribution, we observe that such incomplete logs
can be abstractly represented as three-valued, partial struc-
tures that map each atomic formula to either true, false,
or unknown [11, 19]. We define the semantics of our logic
over such structures. We design reduce to work with partial
structures, thus providing a uniform method of compliance
checking that accounts for different sources of incomplete-
ness in audit logs. Since logs evolve over time by gathering
more information, reduce proceeds iteratively: In each iter-
ation, it checks as much of the policy as possible over the
current log and outputs a residual policy that can only be
checked when the log is extended with additional informa-
tion.

We formally prove the following properties of reduce, using
reduce(L, ϕ) = ϕ′ to denote one iteration of reduce: (1) The
residual policy ϕ′ output by reduce is minimal : it only con-
tains predicates whose truth value is unknown in the current
partial structure L; (2) reduce terminates: as noted earlier,
the finite substitution property of variables quantified over
infinite domains is crucial for termination; (3) reduce is cor-
rect : any extension of L satisfies the policy ϕ if and only if
it satisfies the residual formula ϕ′; (4) Assuming that find-
ing an entry in the audit log takes unit time, reduce runs in
time polynomial in the size of the audit log where the de-
gree of the polynomial is the size of the policy formula (i.e.,

TIME(|L|O(|ϕ|))), and uses space that is polynomial in the
size of the policy formula (i.e., PSPACE(|ϕ|)).

We implement reduce and optimize the base implementa-
tion with heuristics for database indexing that are guided
by the syntactic structure of policies. The implementation
is used to check simulated audit logs for compliance with
the HIPAA Privacy Rule. Our experimental results demon-
strate that the algorithm is practical—the average time for
checking compliance for each disclosure of protected health
information is 0.12 seconds for a log of size 15MB.

In practice, we expect that the reduce algorithm will be an
integral component of an after-the-fact audit tool for policy
violations. The other component of such a tool would be a
front-end that allows an auditor to select a part of the policy
(or the whole of it) and simplify it through the reduce algo-
rithm. The auditor may also provide additional information
about incomplete parts of the audit log and repeat the re-
duction. In ongoing work, we are building such a front-end.

Organization. Section 2 presents the syntax of the pol-
icy logic, and defines partial structures and the semantics
of the logic over them. Section 3 presents the reduce al-
gorithm and its properties. Section 4 describes the base
implementation of the algorithm and its optimization. Sec-
tion 5 describes our empirical evaluation of the implementa-
tion. Section 6 provides a detailed comparison with related
work and Section 7 presents conclusions and directions for
future work. The source code of our implementation and
a technical report [17] with proofs of theorems and other
details (TR in the sequel) are available online at the URL
http://www.cs.cmu.edu/~dg/.

2. POLICY LOGIC
We represent policies in a first-order logic with restricted

quantifiers (also called guarded quantifiers in the literature).

Atoms P ::= p(t1, . . . , tn)
Formulas ϕ ::= P | > | ⊥ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 |

∀~x.(c ⊃ ϕ) | ∃~x.(c ∧ ϕ)
Restrictions c ::= P | > | ⊥ | c1 ∧ c2 | c1 ∨ c2 | ∃x.c

Predicates p represent relations between terms t. Terms
are variables (x, y, . . .), constants, or terms applied to un-
interpreted function symbols. An atom is a predicate ap-
plied to a list of terms. Propositional connectives > (true),
⊥ (false), ∧ (conjunction), and ∨ (disjunction) have their
usual meanings. First order quantifiers — forall (∀) and ex-
ists (∃) — may range over infinite domains. Anticipating the
requirements of our audit algorithm (Section 3), we restrict
these quantifiers to the forms ∀~x.(c ⊃ ϕ) and ∃~x.(c ∧ ϕ)
by including a formula c called a restriction. By definition,
∀~x.(c ⊃ ϕ) is true iff all instances of variables ~x that satisfy
c, also satisfy ϕ. Similarly, ∃~x.(c ∧ ϕ) holds iff there is an
instance of ~x that satisfies both c and ϕ. To ensure that our
enforcement algorithm terminates, we require that only a
finite number of substitutions for quantified variables make
a restriction true. The latter is forced by the limited syntax
of restrictions (note that universal quantifiers and implica-
tions are not allowed in restrictions) and other checks that
we describe in Section 3.

For technical reasons, we do not include negation in the
logic. Instead we assume that each predicate p has a dual
p such that p(t1, . . . , tn) is true iff p(t1, . . . , tn) is false and
define a dual ϕ that behaves exactly as ¬ϕ would. For ex-
ample,

p(t1, . . . , tn) = p(t1, . . . , tn)

ϕ ∧ ψ = ϕ ∨ ψ
∀~x.(c ⊃ ϕ) = ∃~x.(c ∧ ϕ)

∃~x.(c ∧ ϕ) = ∀~x.(c ⊃ ϕ)

To represent time-dependent (temporal) properties, we as-
sume a domain of integers (both negative and positive in-
tegers), denoted τ , that count time in seconds from a fixed
point of reference and make the time of occurrence of an
event explicit in the predicate that represents the event. For
example, the atom send(p1, p2,m, τ) means that principal p1
sends to principal p2 the message m at time τ . The relation
τ1 ≤ τ2 represents the total order on integers. All of linear-
time temporal logic (LTL) [24] and its extension TPTL [1]
can be encoded in our logic. For details of the encoding see
our prior work [15].

http://www.cs.cmu.edu/~dg/


Example 2.1. Consider the following policy about trans-
mission of health information from one entity (e.g., a hospi-
tal or doctor) to another. This policy is motivated by similar
requirements in HIPAA, but is simpler and serves as a good
illustration.

An entity may send an individual’s protected health
information (phi) to another entity only if the re-
ceiving entity is the individual’s doctor and the
purpose of the transmission is treatment, or the
individual has previously consented to the trans-
mission.

To formalize this policy in our logic, we start by assuming
that all transmissions made by an entity are recorded in a
log. The predicate send(p1, p2,m, τ) is true if the transmis-
sion of message m from principal p1 to principal p2 at time
τ occurs in this log. Similarly, we assume that transmission
consents given by individuals are also recorded in a database
table. The predicate consents(q, a, τ), which means that in-
dividual q consents to the action a at time τ , holds if the
corresponding consent exists in this table.

We further assume that each transmitted message m is
tagged by the sender (in a machine-readable format) with
the names of individuals whose information it carries as well
as the attributes of information it carries (attributes include
“address”, “social security number”, “medications”, “medical
history”, etc.). The predicate tagged(m, q, t) means that
message m is tagged as carrying individual q’s attribute t.
Tags may or may not be accurate. Similarly, we assume that
each message m is labeled in a machine readable format with
a purpose u (e.g., “treatment”, “healthcare”, etc.). This is
represented by the predicate purp(m,u).

Attributes and purposes are assumed to have separate
hierarchies, e.g., the attribute “medications” is contained
in “medical history”. This is formalized as the predicate
attr in(medications,medical-history). Similarly, the pred-
icate purp in(u, u′) means that purpose u is a special case
of purpose u′, e.g., purp in(surgery, treatment). Finally,
doctorOf(p2, q, τ) means that q is a doctor of p2 at time τ .

The policy above can be formalized in our logic as follows
(terms phi and treatment are constants).

ϕpol =
∀p1,p2,m, u, q, t, τ. (send(p1, p2,m, τ) ∧ purp(m,u) ∧

tagged(m, q, t))
⊃ attr in(t, phi)
∨ (doctorOf(p2, q, τ) ∧ purp in(u, treatment))
∨ ∃τ ′.(τ ′ < τ ∧

consents(q, sendaction(p1, p2, (q, t)), τ
′))

In words, if entity p1 sends to entity p2 a message m at
time τ , m is tagged as carrying attribute t of individual q,
and m is labeled with purpose u, then either the attribute t
is not a form of protected health information (so the policy
does not apply) or the recipient p2 is a doctor of q at time τ
(atom doctorOf(p2, q, τ)) and u is a type of treatment, or q
has consented to this transmission in the past (last two lines
of ϕpol).

Predicates may be verified in different ways in an imple-
mentation. The predicates send and consents can be veri-
fied by looking up respective logs. Predicates tagged(m, q, t)
and purp(m,u) can be verified by examining the tags in m,
i.e., through a pre-defined computable function. Similarly,

predicates attr in and purp in may be verified through a
function that checks stipulated hierarchies over attributes
and purposes, respectively. Finally, the predicate
doctorOf(p2, q, τ) may require human input to resolve be-
cause, in general, information about all of q’s doctors may
be unavailable to the audit mechanism. Our implementa-
tion (Section 4) requires the policy designer to categorize
predicates based on how they are verified, but our audit
algorithm uses a single, abstract representation of these ver-
ification methods, called partial structures, to which we turn
next.

2.1 Partial Structures and Semantics
We formally abstract the information about truth and fal-

sity of atoms available to our audit algorithm as functions
called partial structures and define semantics of logical for-
mulas over such structures. Given a possibly infinite domain
D of terms, a partial structure (abbrev. structure) L is a
map from atoms over D to the three-value set {tt, ff, uu}.
We say that the atom P is true, false, or unknown in the
structure L if L(P ) is tt, ff, or uu, respectively. The possi-
bility of mapping an atom to “unknown” captures the com-
mon phenomena that, during audit, not every atom may be
classifiable as true or false. In particular, partial structures
abstract the following different kinds of incompleteness in
information available to the audit algorithm.

• Future incompleteness: Information about events in
the future cannot be available to an audit algorithm.
For instance, the policy may allow a disclosure if the
subject of the information disclosed is notified within a
month. However, if an audit occurs immediately after
a disclosure, it will not be known whether or not a
corresponding notification will be sent in future. This
is easily modeled by a partial structure L satisfying
L(send(p1, p2,m, τ)) = uu for every τ greater than the
time of audit.

• Spatial incompleteness: Not all relevant audit logs may
be available to the audit system. For instance, with
reference to Example 2.1, it is conceivable that the
predicates send and consents are stored on separate
physical sites. If we audit at the first site, information
about consents may be unavailable. This incomplete-
ness is easily modeled by requiring L(consents(p, a, τ))
= uu for all p, a and τ .

• Subjective incompleteness: A mechanized audit sys-
tem is unlikely to resolve predicates that rely on human
input. In Example 2.1, assuming that the set of doc-
tors of a patient is not known to the audit algorithm,
resolving the predicate doctorOf(p2, q, τ) may require
human input. Formally, this is modeled by a partial
structure L satisfying L(doctorOf(p2, q, τ)) = uu for
all p2 , q, and τ . Similarly, predicates that rely on
human belief or professional judgment, which consti-
tute a significant fraction of all predicates used in a
prior formalization of HIPAA [15], can be modeled by
mapping them to uu in a structure.

Because our audit algorithm (Section 3) works with partial
structures, it takes into account all these forms of incom-
pleteness. We note that real audit logs often only list atoms
that are true (tt), and cannot distinguish atoms that are
false (ff) from those that are unknown (uu). Consequently,



for modeling real scenarios, we define partial structures L
from system logs and additional information about their
completeness, as explained in Section 4.1.

Semantics. We formalize the semantics of logical formulas
as the relation L |= ϕ, read“ϕ is true in the partial structure
L”. Restrictions c are a subsyntax of formulas ϕ, so we do
not define the relation separately for them.

- L |= P iff L(P ) = tt

- L |= >

- L |= ϕ ∧ ψ iff L |= ϕ and L |= ψ

- L |= ϕ ∨ ψ iff L |= ϕ or L |= ψ

- L |= ∀~x.(c ⊃ ϕ) iff for all ~t ∈ D either L |= c[~t/~x] or
L |= ϕ[~t/~x]

- L |= ∃~x.(c ∧ ϕ) iff there exists ~t ∈ D such that L |=
c[~t/~x] and L |= ϕ[~t/~x]

For dual atoms, we define L(P ) = L(P ), where tt = ff,
ff = tt, and uu = uu. We say that a formula ϕ is false on
the structure L if L |= ϕ. The following two properties hold:

1. Consistency: A formula ϕ cannot be simultaneously
true and false in the structure L, i.e., either L 6|= ϕ or
L 6|= ϕ

2. Incompleteness: A formula ϕ may be neither true nor
false in a structure L, i.e., L 6|= ϕ and L 6|= ϕ may both
hold.

The first property follows by induction on ϕ. The second
property follows from a simple example. Consider a struc-
ture L and an atom P such that L(P ) = uu. Then, L 6|= P
and L 6|= P .

Structure Extension. In practice, system logs evolve
over time by gathering more information. This leads to
a partial order, L1 ≤ L2 on structures (L2 extends L1),
meaning that L2 has more information than L1. Formally,
L1 ≤ L2 if for all ground atoms P (atoms P without free
variables), L1(P ) ∈ {tt, ff} implies L2(P ) = L1(P ). Thus,
as structures extend, the valuation of an atom may change
from uu to either tt or ff, but cannot change once it is ei-
ther tt or ff. The following property follows by induction
on ϕ:

• Monotonicity: L1 ≤ L2 and L1 |= ϕ imply L2 |= ϕ.

Replacing ϕ with ϕ, we also obtain that L1 ≤ L2 and L1 |= ϕ
imply L2 |= ϕ. Hence, if L1 ≤ L2 then L2 preserves both
the L1-truth and L1-falsity of every formula ϕ.

3. AUDIT ALGORITHM
Our main technical contribution is an iterative process

that checks for violations of policies written in the logic. At
each iteration, our algorithm takes as input a policy ϕ and
information about atoms abstracted as a partial structure
L, and outputs a residual policy ψ that contains exactly the
parts of ϕ that could not be verified due to lack of infor-
mation in L. Such an iteration is written reduce(L, ϕ) = ψ.
When more information becomes available, extending L to
L′ (L ≤ L′), another iteration of the algorithm can be used
with inputs ψ and L′ to obtain a new formula ψ′. This

process can be continued until the output is either > (no
violation), ⊥ (violation) or a human auditor inspects the
output. By design, our algorithm satisfies three important
properties:

• Termination: Each iteration terminates.

• Correctness: If reduce(L, ϕ) = ψ, then for all exten-
sions L′ of L, L′ |= ϕ iff L′ |= ψ.

• Minimality: If reduce(L, ϕ) = ψ, then an atom occurs
in ψ only if it occurs in ϕ and its valuation on L is uu.

The technically difficult part of reduce is its treatment of
quantifiers over infinite domains. Consider, for instance, the
behavior of an algorithm satisfying the above three proper-
ties on input ∀x.ϕ. Because the output must be minimal,
in order to reduce ∀x.ϕ, a naive algorithm will instantiate x
with each possible element of the domain D and check the
truth or falsity of ϕ for that instance on L. This immedi-
ately leads to non-termination if the domain D is infinite,
which does happen for real policies (e.g., HIPAA contains
quantification over the infinite domain of messages).

Given the need for infinite domains, something intrinsic in
quantification must limit the number of relevant instances
of x that need to be checked to a finite number. To this end,
we rely on the restrictions c in quantifiers, ∀~x.(c ⊃ ϕ) and
∃~x.(c ∧ ϕ), and use the technique of mode analysis from
logic programming [2] to ensure that the restriction c has
only a finite number of satisfying instances in any structure
and that these instances are computable.

Briefly, mode analysis requires the policy designer to spec-
ify which argument positions of a predicate can be com-
puted finitely from others. For instance, in Example 2.1
we assumed that the purpose of a message is written on it
in machine-readable format and, hence, can be computed
from the message. Denoting required inputs by + and com-
putable outputs by −, we may give the predicate purp(m,u)
the mode purp(+,−), meaning that from the input m, the
output u can be computed. The mode purp(−,+) is in-
correct because given a fixed second argument (purpose),
there may be an infinite number of first arguments (mes-
sages) annotated with that purpose, so the latter set cannot
be finitely computed. Similarly, if the predicate mult(x, y, z)
means that x = yz, where x, y, z are integers, then any of
the modes mult(+,+,−), mult(−,+,+), and mult(+,−,+)
are okay, but mult(−,−,+) is not.

Given the mode information of all predicates in a policy,
a static, linear-time check of the policy, called a mode check,
ensures that there are only a finite number of instances of
free variables that can satisfy a restriction c in the policy.
To keep the presentation accessible, we omit a technical de-
scription of mode checking, but its details are present in our
TR. We note that mode checking is very permissive even
though not every policy in the syntax of the logic passes the
mode check. In particular, our entire prior formalization of
HIPAA [15] passes the check.

To actually compute the satisfying instances of a restric-
tion, we define a function ŝat(L, c) that returns all substi-
tutions σ for free variables of c such that L |= cσ (Sec-
tion 3.1). This definition assumes a function sat(L, P ) that
returns all substitutions σ for free variables of P such that
L |= Pσ if all input positions in P are ground. In practice,
sat(L, P ) is implemented by looking up system logs or call-
ing domain-specific solvers, depending on the predicate in



P (see Section 4 for the definition of sat that we use in our
implementation).

Finally, the main audit function reduce(L, ϕ) is defined
by induction on ϕ, using ŝat(L, c) as a black-box. Because
sat(L, P ) may only be defined for P with ground input ar-
guments, reduce(L, ϕ) is a partial function. However, we
show that if ϕ passes the mode check, then reduce(L, ϕ) is
defined (Theorem 3.3).

3.1 Iterative Reduction
At the core of our audit regime is a computable function

reduce(L, ϕ) = ψ, that instantiates quantifiers in, and sim-
plifies, the prevalent policy ϕ using information from the
extant structure L to obtain a residual policy ψ. Given an
initial policy ϕ0 and a sequence of structures L1 ≤ L2 ≤
. . . ≤ Ln, the reduction algorithm can be applied repeatedly
to obtain ϕ1, . . . , ϕn such that reduce(Li, ϕi−1) = ϕi. We

write this process in symbols as ϕ0
L1−−→ ϕ1 . . .

Ln−−→ ϕn.
The definition of reduce is shown in Figure 1. It relies on

the function ŝat(L, c), which we define later. ŝat(L, c) com-
putes the finite set of substitutions σ such that L |= cσ. For
atoms P , reduce(L, P ) equals >, ⊥, or P , if L(P ) equals tt,
ff, or uu, respectively. The clauses for the connectives >, ⊥,
∧, and ∨ are straightforward. To evaluate reduce(L, ∀~x.(c ⊃
ϕ)), we first determine the set of instances of ~x that satisfy
c by calling ŝat(L, c). For each such instance ~t1, . . . , ~tn, we
reduce ϕ[~ti/~x] to ψi through a recursive call to reduce. Be-
cause all instances of ϕ must hold in order for ∀~x.(c ⊃ ϕ)
to be true, the output is ψ1 ∧ . . . ∧ ψn ∧ ψ′, where the last
conjunct ψ′ records the fact that instances of ~x other than
~t1, . . . , ~tn have not been considered. The latter is necessary
because there may be instances of ~x satisfying c in extensions
of L, but not L itself. Precisely, we define S = {~t1, . . . , ~tn}
and ψ′ = ∀~x.((c ∧ ~x 6∈ S) ⊃ ϕ). The new conjunct ~x 6∈ S
prevents the instances ~t1, . . . , ~tn from being checked again
in subsequent iterations. Formally, ~x 6∈ S encodes the nega-
tion of the usual finite-set membership. The treatment of
∃~x.(c ∧ ϕ) is dual; in that case, the output contains disjunc-
tions because the truth of any one instance of ϕ suffices for
the formula to hold.

Our implementation also performs trivial rewriting to sim-
plify the output of reduce. Specifically, it rewrites ψ ∧ > to
ψ, ψ ∧ ⊥ to ⊥, ψ ∨ > to >, and ψ ∨ ⊥ to ψ.

Definition of ŝat. The function ŝat(L, c) which com-
putes the set of substitutions σ such that L |= cσ, is defined
below. This function relies on a given function sat(L, P )
that computes the set of substitutions σ such that L |= Pσ.
The latter function is application-dependent, as described in
Section 4.

ŝat(L, p(t1, . . . , tn)) = sat(L, p(t1, . . . , tn))
ŝat(L,>) = {•}
ŝat(L,⊥) = {}
ŝat(L, c1 ∧ c2) =

⋃
σ∈ŝat(L,c1) σ + ŝat(L, c2σ)

ŝat(L, c1 ∨ c2) = ŝat(L, c1) ∪ ŝat(L, c2)
ŝat(L,∃x.c) = ŝat(L, c)\{x} (x fresh)

For atoms, the definition of ŝat coincides with that of
sat. Since > must always be true, ŝat(L,>) contains only
the empty substitution (denoted •). Since ⊥ can never be
satisfied, ŝat(L,⊥) is empty (denoted {}). For c1 ∧ c2,
the set of satisfying instances is obtained by taking those of

reduce(L, P ) =

 > if L(P ) = tt

⊥ if L(P ) = ff

P if L(P ) = uu

reduce(L,>) = >
reduce(L,⊥) = ⊥
reduce(L, ϕ1 ∧ ϕ2) = reduce(L, ϕ1) ∧ reduce(L, ϕ2)
reduce(L, ϕ1 ∨ ϕ2) = reduce(L, ϕ1) ∨ reduce(L, ϕ2)

reduce(L,∀~x.(c ⊃ ϕ)) = let
{σ1, . . . , σn} ← ŝat(L, c)
{~ti ← σi(~x)}ni=1

S ← {~t1, . . . , ~tn}
{ψi ← reduce(L, ϕ[~ti/~x])}ni=1

ψ′ ← ∀~x.((c ∧ ~x 6∈ S) ⊃ ϕ)
return
ψ1 ∧ . . . ∧ ψn ∧ ψ′

reduce(L,∃~x.(c ∧ ϕ)) = let
{σ1, . . . , σn} ← ŝat(L, c)
{~ti ← σi(~x)}ni=1

S ← {~t1, . . . , ~tn}
{ψi ← reduce(L, ϕ[~ti/~x])}ni=1

ψ′ ← ∃~x.((c ∧ ~x 6∈ S) ∧ ϕ)
return
ψ1 ∨ . . . ∨ ψn ∨ ψ′

Figure 1: Definition of reduce(L, ϕ)

c1 (denoted σ above), and conjoining those with satisfying
instances of c2σ (the operation σ + Σ appends σ to every
substitution in Σ). The set of satisfying instances of c1 ∨ c2
is the union of the satisfying instances of c1 and c2. Satisfy-
ing instances of ∃x.c are obtained by taking those of c, and
removing the substitutions for x (Σ\{x} removes x from the
domain of every substitution in Σ).

Example 3.1. We illustrate iterative audit on the policy
ϕpol from Example 2.1. For notational convenience, let ~x
denote the sequence of variables p1, p2,m, u, q, t, τ and de-
fine c(~x) and ϕ(~x) by pattern matching as the restriction
and formula satisfying ϕpol = ∀~x. c(~x) ⊃ ϕ(~x). Intuitively,
ϕ(p1, p2,m, u, q, t, τ) is the formula that must be satisfied if
p1 sends to p2 the message m at time τ and m is tagged
as containing attribute t about principal q for purpose u.
Further, define ϕ2 and ϕ3 by pattern matching as follows:
ϕ(~x) = attr in(t, phi) ∨ ϕ2(p2, q, τ, u) ∨ ϕ3(τ, q, p1, p2, t).

Consider a structure L with the following information:
(1) Alice sends to Bob the message M at time 4, tagged as
containing information about Charlie’s address for the pur-
pose of billing, (2) Charlie authorized this transmission at
time 2. This information implies that ŝat(L, c(~x)) = {σ},
where σ = [~x 7→ (Alice,Bob,M, billing,Charlie, address, 4)].
Applying the definition of reduce, we obtain reduce(L, ϕpol) =
ψ1 ∧ ϕ′pol where ψ1 = reduce(L, ϕ(~x)σ) and ϕ′pol = ∀~x. (c(~x)
∧ ~x 6∈ {σ}) ⊃ ϕ(~x).

Since ϕ(~x) is a disjunction of three formulas, the third of
which is ϕ3(τ, q, p1, p2, t), ψ1 is also a disjunction of three
formulas, the third of which is reduce(L, ϕ3(τ, q, p1, p2, t)σ).
It can easily be shown using (2) that this third disjunct is >,
so ψ1 also simplifies to >. This indicates that there is no vi-



olation of the policy so far, which should be intuitively clear
from the description of the structure L and an inspection of
the policy ϕpol. Succinctly, we have reduce(L, ϕpol) = ϕ′pol.

Next, consider an extension L′ which adds new informa-
tion: (3) Alice sends to Bob a message M ′ at time 5, tagged
as containing Dan’s lab report for the purpose of surgery,
(4) L′(consents(Dan, a, τ ′)) = ff for every action a and
every time τ ′ (in particular, Dan has not consented to Al-
ice’s transmission), and (5) L′(doctorOf(Bob,Dan, 5)) = ff

(so Bob is not Dan’s doctor at time 5). Then, the restric-
tion in the top-level universal quantifier of ϕ′pol, i.e., c′(~x) =

c(~x) ∧ ~x 6∈ {σ} satisfies ŝat(L′, c′(~x)) = {σ′}, where σ′ =
[~x 7→ (Alice,Bob,M ′, surgery,Dan, labreport, 5)]. Hence,
reduce(L′, ϕ′pol) = ψ2 ∧ ϕ′′pol, where ψ2 = reduce(L′, ϕ(~x)σ′)
and ϕ′′pol enforces the policy on transmissions other than the
two already considered. Calculation using (4) and (5) yields
ψ2 = attr in(labreport, phi), meaning that Alice’s trans-
mission of Bob’s record satisfies the policy only if labreport
is not a form of phi (protected health information). The
same conclusion may also be expected from an informal in-
spection of the policy.

Reporting Causes of Policy Violations. From what
we have presented so far, it may appear that the output
of reduce(L, ϕ) can only say that there has been a policy
violation but cannot indicate which instances of quantifiers
in ϕ have led to the violation. For instance, consider the
policy ϕpol = ∀~x. (c(~x) ⊃ ϕ(~x)) defined in the beginning
of Example 3.1. If c(~a) is true for some instance ~a of ~x
on structure L, but ϕ(~a) is false, then reduce(L, ϕpol) will
evaluate to ⊥, indicating a violation of the policy. However,
this output does not indicate the instance ~a which actually
causes the violation.

Violating instances of a policy can be reported in the out-
put of reduce by slightly rewriting the policy formula (but
without changing the the reduce algorithm). The idea is
straightforward and easily illustrated with the example of
ϕpol. Consider a new predicate violated(~x) which means
that the list of terms ~x causes a violation of the policy ϕpol.
Further, and importantly, assume that violated is unin-
terpreted, i.e., for all ~t, L(violated(~t)) = uu (in our im-
plementation, we call such uninterpreted predicates subjec-
tive or SUBJ; see Section 4). Consider the revised policy
ϕ′pol = ∀~x.(c(~x) ⊃ (violated(~x) ∨ ϕ(~x))). Intuitively, ϕ′pol
says that for all instances ~a of ~x, if c(~a) is true, then ei-
ther ~a violates the policy or ϕ(~a) is true. This is also the
intended meaning of ϕpol, so replacing it with ϕ′pol does
not change the meaning of the policy itself. However, when
reduce is executed on ϕ′pol instead of ϕpol, the top-level of
the output contains violated( ~a1) ∧ . . . ∧ violated( ~an),
where ~a1, . . . , ~an are exactly those instances of ~x for which
c is true and ϕ is false. So, all instances of the quantifier ~x
that cause policy violation can be read from the output of
reduce on the revised policy ϕ′pol. The technique illustrated
by this example generalizes easily; any quantified formula
(either universal or existential) can be modified by adding
a new uninterpreted predicate to cause reduce to report all
instances of quantified variables that violate the formula.

3.2 Properties of the Audit Algorithm
Partial Correctness. The function reduce is partially
correct: If reduce(L, ϕ) = ψ, then in all extensions of L, ϕ
and ψ are logically equivalent.

Theorem 3.2 (Partial correctness of reduce). If reduce(L, ϕ)
= ψ and L ≤ L′, then (1) L′ |= ϕ iff L′ |= ψ and (2) L′ |= ϕ
iff L′ |= ψ.

Partial correctness of iterative audit is an immediate corol-
lary of Theorem 3.2. We can prove by induction on n that

if ϕ0
L1−−→ ϕ1 . . .

Ln−−→ ϕn, then for all structures L′ satisfying
Ln ≤ L′, L′ |= ϕn iff L′ |= ϕ0 and L′ |= ϕn iff L′ |= ϕ0.

Totality. Let ` ϕ mean that ϕ passes the mode check.
The following theorem states that reduce is defined on every
such ϕ and, further, that the output also passes the mode
check.

Theorem 3.3 (Totality of reduce). If ` ϕ then there is a ψ
such that reduce(L, ϕ) = ψ and ` ψ.

Complexity. The function reduce(L, ϕ) can be imple-
mented using auxiliary space polynomial in the size of the
formula ϕ, and in time polynomial in the maximum num-
ber of substitutions returned by sat (denoted |L|) where
the degree of the polynomial is proportional to the size of
the formula ϕ. This analysis assumes that computation of
each output returned by sat takes unit time which, in turn
means that finding a single row in a system log and reading
it takes unit time. In practice, |L| is bounded by the size of
the system logs, so the execution time of reduce for a fixed
policy is polynomial in the size of the system logs.

Theorem 3.4 (Complexity of reduce). Assuming that com-
puting each output returned by sat takes unit time, the algo-
rithm reduce(L, ϕ) lies in the intersection of the complexity

classes TIME(|L|O(|ϕ|)) and PSPACE(|ϕ|).

Minimality. If reduce(L, ϕ) = ψ then ψ is minimal with
respect to ϕ and L, i.e., an atom occurs in ψ only if it occurs
in ϕ and its valuation in L is unknown. Unfortunately, owing
to quantification, there is no standard definition of the set of
atoms of a formula of first-order logic. In the following, we
provide one natural definition of the atoms of a formula and
characterize minimality with respect to it. For a formula ϕ
that passes the mode check, we define the set of atoms of ϕ
with respect to a structure L as follows.

atoms(L, P ) = {P}
atoms(L,>) = {}
atoms(L,⊥) = {}
atoms(L, ϕ1 ∧ ϕ2) = atoms(L, ϕ1) ∪ atoms(L, ϕ2)
atoms(L, ϕ1 ∨ ϕ2) = atoms(L, ϕ1) ∪ atoms(L, ϕ2)
atoms(L,∀~x.(c ⊃ ϕ)) =

⋃
σ∈ŝat(L,c) atoms(L, ϕσ)

atoms(L,∃~x.(c ∧ ϕ)) =
⋃
σ∈ŝat(L,c) atoms(L, ϕσ)

Theorem 3.5 (Minimality). If ` ϕ and reduce(L, ϕ) = ψ,
then atoms(L, ψ) ⊆ atoms(L, ϕ) ∩ {P | L(P ) = uu}.

4. IMPLEMENTATION
We have implemented the iterative algorithm reduce(L, ϕ)

described in Section 3 as well as the mode analysis on for-
mulas. The implementation is written in Standard ML.
This section describes the implementation of reduce(L, ϕ)
and syntax-directed optimizations on it. Section 5 reports
on the implementation’s experimental evaluation.



4.1 Application-Specific Structures
Our implementation of reduce closely follows its abstract

definition from Section 3.1. The implementation must be in-
stantiated for a specific application by providing enough in-
formation to define a structure L, specifically, the two func-
tions sat(L, P ) and L(P ), on which reduce relies. This infor-
mation includes audit logs (e.g., transmission or access logs)
and relevant system databases (e.g., the roles database), and
is structured into five different components that we describe
next. Later, we describe how these four components are
used to define sat(L, P ) and L(P ).

First, the implementation of reduce must be told how each
predicate is verified. This is called the category of the pred-
icate, and is provided to the implementation through a file
in a custom syntax. Our current implementation supports
the following three common categories, but can be extended
modularly to include other forms of verification if needed.

A. DB (Database): The predicate maps directly to a ta-
ble in a relational database and is computed by looking
up the table. The name of the table and the column
name corresponding to each argument of the predicate
must also be provided. We assume that audit logs are
also represented as database tables, so predicates cor-
responding to these logs (e.g., send from Example 2.1)
are also in the category DB.

B. EVAL (Evaluable): The predicate is verified through a
given computable function (e.g., mult(x, y, z) meaning
x = yz would lie in this category).

C. SUBJ (Subjective): The predicate has no mechanized
definition; it is checked by a human auditor.

To illustrate, the predicates send and consents in Exam-
ple 2.1 are DB because they correspond to tables in the
system logs; predicates tagged and purp are EVAL because
they are implemented by analysis of messages (their first
arguments); predicate doctorOf is SUBJ because its veri-
fication requires knowledge of all of a principal’s doctors,
which is unlikely to be available in mechanized form.

Second, a function, lookup, to query the database must be
provided. Our current implementation requires that lookup
support standard SQL SELECT queries. Using this func-
tion, we define a function sat db(P ) that finds all satisfying
substitutions for variables in a DB atom P by running a
query on the database table corresponding to P .

Third, a function eval(P ) to evaluate EVAL atoms P must
be provided. This function has the same specification as sat,
except that it need be defined only for EVAL atoms.

Fourth, we require a function isFinal(P ) that takes as in-
put a DB or EVAL atom P with ground input arguments
and returns true iff in future extensions of the structure,
no additional substitutions satisfying P will be found (i.e.,
substitutions other than those found by looking up its cor-
responding table or by running eval on it). The implemen-
tation of isFinal(P ) will vary based on the predicate in P ,
but a simple heuristic works for DB atoms P if the database
table corresponding to P is available in its entirety at the
time of audit: isFinal(P ) = true iff the time argument of P
(which specifies the time at which the truth of P is being as-
certained) is less than the time at which the database table
was last updated.

Fifth, we require two tables of ground SUBJ atoms subjTrue
and subjFalse that contain SUBJ atoms that have been marked

true and false respectively by human auditors earlier. These
tables are initially empty and an interactive front-end could
allow a human auditor to add entries to both tables, making
sure that no atom appears in both tables simultaneously.

Given these five components defining a structure L, sat
can be defined on L as follows.

sat(L, P ) =

 sat db(P ) if category(P ) = DB
eval(P ) if category(P ) = EVAL
undefined if category(P ) = SUBJ

(Our mode check ensures that a SUBJ atom never appears in
a restriction so, following the definition of reduce, sat(L, P )
is never called if P is SUBJ. Hence, it is okay to have
sat(L, P ) = undefined when P is SUBJ.)

Finally, we define L(P ). Note that L(P ) is meaningful
only for P without free variables, and for such P , sat(L, P )
must be either {} (no satisfying substitution) or {•} (only
the trivial satisfying substitution) or undefined.

L(P ) =


tt if sat(L, P ) = {•} or P ∈ subjTrue
ff if (sat(L, P ) = {} and isFinal(P ) = true)

or P ∈ subjFalse
uu otherwise

The valuation of a variable-free atom P is tt if either it has
a satisfying substitution or it exists in the table subjTrue;
the valuation is ff if either P does not have a satisfying
substitution and it cannot become true in any extension of
the structure or it exists in the table subjFalse; in all other
cases, the valuation of P is uu.

4.2 Optimizations
We discuss some optimizations to simplify the output of

reduce and improve the performance of its implementation.

Removing Residual Terms. The residual formula ψ′ =
∀~x.((c ∧ ~x 6∈ S) ⊃ ϕ) or ψ′ = ∃~x.((c ∧ ~x 6∈ S) ∧ ϕ) in
the output of reduce in Figure 1 can be very large because
it contains all substitutions S in the output of ŝat(L, c).
Accordingly, we remove this residual formula from the out-
put of reduce using the following simple heuristic: If during
the evaluation of ŝat(L, c) in the reduction of a quantifier
∀~x.(c ⊃ ϕ) or ∃~x.(c ∧ ϕ), every recursive call of the form
sat(L, P ) satisfies isFinal(P ) = true, then the c ∧ ~x 6∈ S can-
not be satisfied in any extension of L, so the residual term
ψ′ can be omitted. Whether or not isFinal(P ) = true in ev-
ery recursive call is easily checked by maintaining a boolean
variable during evaluation of ŝat.

Database Indexing. As may be expected, indexing ta-
bles in system databases has a significant impact on perfor-
mance. We list two reasonable syntax-directed heuristics for
choosing tables and columns to index. These heuristics are
justified through experiments in Section 5.

• Index deeper: More performance gains may be ex-
pected by indexing tables corresponding to DB pred-
icates that are nested deeper inside quantifiers in the
policy because our reduce procedure replicates formu-
las for each instance of a quantifier and this has a mul-
tiplicative effect for nested quantifiers.

• Index input modes: A table corresponding to the DB
predicate p should be indexed on columns that cor-
respond to input arguments in the mode of p because



these columns are guaranteed to be known in any look-
up query on the table.

Database Caching. We mention that in-memory caching
of previously read entries of a database table is unlikely to
improve performance when policies contain quantifiers. This
is because the atoms checked against a database change
every time quantifiers are instantiated differently. On the
other hand, in-memory caching of database entries is very
beneficial for policies without quantifiers.

5. EVALUATION
We evaluate our implementation of the algorithm reduce

on policies that regulate the transmission of protected health
information in the HIPAA Privacy Rule using synthetic logs
generated by a simulator. Section 5.1 explains the setup of
our experiments and Section 5.2 reports measurements of
running time and memory consumed.

5.1 System Setup
HIPAA Policies. In prior work, we formalized all 84
transmission related clauses of HIPAA in a first-order logic
PrivacyLFP [15]. To use our audit algorithm reduce on the
formalized policy, we made semantics-preserving changes to
our earlier encoding to make it fit our restricted quantifier
syntax and to make it pass our mode check. These changes
are minor and mostly involve refactoring parts of formulas
under quantifiers into the restrictions required by our re-
duced syntax.

We show below the top-level formula of the HIPAA pol-
icy, ϕHIPAA. Predicates in ϕHIPAA have the same meaning
as predicates of the same names in Example 2.1. The new
predicate contains(m, q, t, u) means that the disclosed mes-
sage m is both correctly tagged with the subject q and the
attribute t of the information it is carrying and is correctly
labeled with the purpose of the disclosure u. Verification of
correctness of tags requires manual analysis of the content
of m, which may be free text and, therefore, the predicate
contains has category SUBJ. The body of the HIPAA pol-
icy is a conjunction of three components: 1) The contains

predicate, 2) a disjunction of the so-called positive norms
ϕ+
i , of which at least one must be satisfied for every disclo-

sure, and 3) a conjunction of the so-called negative norms
ϕ−i , all of which must be satisfied for every disclosure [15].

ϕHIPAA =
∀p1,p2,m, u, τ. (send(p1, p2,m, τ) ∧ purp(m,u))
⊃ ∀q,t. tagged(m, q, t)

⊃ (contains(m, q, t, u) ∧
∨
i ϕ

+
i ∧

∧
i ϕ
−
i )

Synthesizing Audit Logs. We test the algorithm reduce
on synthetic logs generated by a discrete event-driven sim-
ulation that considers several disclosure scenarios governed
by HIPAA. In particular, we simulate disclosures of pro-
tected health information by a HIPAA covered entity in the
following scenarios: For its own treatment, payment and
health operations; for another health provider’s treatment,
payment and health operations; for law-enforcement activi-
ties; for judicial administrative proceedings; for notification
to friends and family to assist in treatment; and for market-
ing purposes.

Generated logs contain different types of events (disclo-
sures, role changes, etc.). Each type of event is represented

in the logic by a predicate (e.g., disclosures correspond to
the predicate send) and is stored in a separate table in a
SQLite database.

More precisely, the simulator implements a probabilistic
event scheduler. Each scenario is repeated after a probabilis-
tic gap, whose average value is an input to the simulator.
For instance, we may assume that, on average, a hospital
releases some patient’s protected health information for ju-
dicial administrative proceedings every 30 days. During the
execution of a scenario, the simulator adds relevant events
to the database. In some cases, events may not be added
with certain probabilities to model policy violations. For
instance, one of our scenarios discloses protected health in-
formation to a coroner for the purpose of determining the
cause of death of a patient. During this scenario, an entry
corresponding to the disclosure is created in the database.
In addition, two other facts are added to the database, but
with probabilities less than 1: The first fact asserts that the
receiver is actually in the role of a coroner and the second
fact asserts that the purpose of the disclosure is determining
the cause of death. Failure to add either of these two facts
models a policy violation.

During simulation, we tag each disclosed message with
a fresh symbolic attribute, and create entries in a table
attr in db to record sub-attribute relations between such
symbolic attributes. An entry (t1, t2) in table attr in db

means that attribute t1 is a sub-attribute of t2. The table
attr in db is used to compute the EVAL predicate attr in.

5.2 Performance Evaluation
We perform two sets of experiments: one evaluates a single

run of reduce, and the other evaluates iterative runs of reduce
in the sense described at the beginning of Section 3.1. All
experiments were performed on a 3GHz Intel Core 2 Duo
CPU running Linux with 8GB RAM and a 7200 RPM hard
disk drive. The database used for storing logs is SQLite
version 3.7.2. Our implementation was compiled using the
MLton compiler for Standard ML.

In the first set of experiments, we evaluate the impact of
database indexing, the size of the database and the rate of
policy violations on running time and memory consumption
of reduce, by executing it on logs generated by the simu-
lator. We vary the size of, and indexes on, three tables:
send, tagged, and attr in db. These tables correspond to
predicates that are nested progressively deeper inside quan-
tifiers in ϕHIPAA. For each experiment, we record the size
of the entire log (actually the size of the database containing
all logs and indexes on them) and for each table we record
the number of entries in the table, and whether or not it is
indexed.

Figure 2 summarizes the evaluation results. For instance,
in Experiment 1, the size of the entire database is 2.68MB,
the table send contains 5401 entries, and it is not indexed
(symbols N in the last four columns). Following the heuristic
“index input modes” from Section 4.2, whenever we index
a database table (entry Y in the last four columns), the
index is created only on columns that correspond to input
arguments of the corresponding predicate. The fifth column
of Figure 2 is the probability that a disclosure in any scenario
violates the policy.

Experiments 1–5 demonstrate the effect of indexing the
database tables. Indexing a database table allows efficient
random read access to data. As mentioned in Section 4.2,



Exp No. Ave. Time per Total time Memory used Prob. of Log size Number of entries/indexed (Y or N)
disclosure (s) (s) (KB) violation (MB) send tagged attr in db the rest

1 0.27 1453.12 592440 0.10 2.68 5401/N 4947/N 5100/N -/N
2 0.27 1456.43 592536 0.10 2.99 5401/Y 4947/N 5100/N -/N
3 0.27 1448.53 592604 0.10 3.14 5401/Y 4947/Y 5100/N -/N
4 0.26 1378.62 657436 0.10 3.29 5401/Y 4947/Y 5100/Y -/N
5 0.04 209.21 662080 0.10 3.98 5401/Y 4947/Y 5100/Y -/Y
6 0.07 725.19 1336808 0.10 7.68 10866/Y 9040/Y 9314/Y -/Y
7 0.12 2674.77 2375564 0 15.11 21684/Y 16945/Y 17565/Y -/Y
8 0.12 2680.25 2667132 0.10 15.10 21742/Y 17182/Y 17732/Y -/Y
9 0.11 2306.93 3565964 1 14.41 21626/Y 16865/Y 17465/Y -/Y

Figure 2: Experimental evaluation of single runs of the algorithm reduce

we may expect that indexing of predicates that are nested
deeper in the policy would improve performance more. The
results of Experiments 1–5 verify this expectation. For ex-
ample, indexing the table of the predicate send (Experi-
ment 2), which appears only in the restriction of the top-level
quantifier of ϕHIPAA does not improve the running time at
all over the baseline without any indexing (Experiment 1)
because during the execution of reduce on ϕHIPAA, the send

table is not accessed randomly. Instead, it is scanned linearly
to instantiate the top-level quantifier in ϕHIPAA. Adding an
index on the table tagged (Experiment 3), which is nested
under two quantifiers, improves performance slightly over
indexing send alone. Indexing attr in db (Experiment 4),
which is nested very deep under quantifiers in the policy
results in a noticeable improvement in performance. When
we index all other tables in our database, of which six corre-
spond to predicates that are nested very deep under quan-
tifiers in the policy formula, we notice a large improvement
in performance (Experiment 5).

Experiments 5, 6 and 8 measure the impact of log size on
audit time for fully indexed tables. As expected, both the
overall audit time and the per-disclosure audit time increase
as the size of the logs increases.

Experiments 7–9 measure the effect of changing the ra-
tio of policy violating disclosures to policy compliant disclo-
sures. As can be seen, the average time per disclosure de-
creases slightly when more disclosures are violations. This
is because the main body of ϕHIPAA contains conjunctions
after the outermost quantifier. For an instance of the quan-
tifier corresponding to a policy violation, reduce terminates
as soon as any one formula in the conjunction reduces to
false. On the other hand, for an instance of the quantifier
corresponding to a policy compliant disclosure, the entire
formula must be reduced.

Consequently, an experiment without policy violations (e.g.,
Experiment 7) measures the worst case performance of au-
dit. Even this performance is very practical — for a database
of size 15MB containing 21,684 disclosures without any vio-
lations, reduce can audit each disclosure in an average time
of 0.12s.

In the second set of experiments, we simulate a run of
our algorithm with three iterations on progressively larger
logs, and measure the size of the residual formula after each
iteration. The input to the first iteration is the formula
ϕHIPAA and a log containing 5401 disclosures.

Figure 3 summarizes the evaluation results. The first col-
umn is the size of a textual rendering of the policy formula
that is the input of reduce, and the second column is the
size of the resulting output formula. The remaining columns
document the running times, memory consumption, the size

of the log in an iteration, and the number of disclosures in
the log. The output formulas are quite large, e.g., after the
first run, the output formula has a size 4,654.07 KB. The
output formula is large because for each disclosure in the
log, most of the policy formula is replicated in the output,
but owing to a large number of SUBJ atoms in ϕHIPAA,
these replicated formulas are not eliminated completely (67
out of the 84 clauses contain SUBJ atoms [15]). Although
large output formulas slow subsequent iterations, such auto-
matic iterations are not the intended application of reduce.
Instead, we expect that our reduce algorithm will be used
with an interactive front-end that allows an auditor to se-
lect specific subformulas of interest (e.g., those pertaining to
disclosures by a specific agent) and run the reduce algorithm
only on them. The front-end may also allow the auditor to
provide information about subjective atoms and record such
information for subsequent use.

6. RELATED WORK
Runtime Monitoring with Temporal Logic. A lot of
prior work addresses the problem of runtime monitoring of
policies expressed in Linear Temporal Logic (LTL) [32, 3,
29, 31, 9, 5] and its extensions [30, 5, 31]. Although sim-
ilar in the spirit of enforcing policies, the intended deploy-
ment of our work is different: We assume that system logs
are accumulated independently and given to our algorithm,
whereas an integral component of runtime monitoring is ac-
cumulation of system logs on the fly. Our assumption about
the availability of system logs fits practical situations like
health organizations, which collect transmission, disclosure
and other logs to comply with regulations such as HIPAA
even if no computerized policy enforcement mechanism is in
place.

Comparing only the expressiveness of the logic, our work
is more advanced than all existing work on policy enforce-
ment. First, LTL can be encoded in our logic easily [15]. Sec-
ond, we allow expressive quantification in our logic, whereas
prior work is either limited to propositional logic [32, 3, 29],
or, when quantifiers are considered, they are severely re-
stricted [30, 5, 31]. A recent exception to such syntactic
restrictions is the work of Basin et al. [9], to which we com-
pare in detail below. Third, no prior work considers the
possibility of incompleteness in structures, which our reduce
algorithm takes into account.

Recent work by Basin et al. [9] considers runtime monitor-
ing over an expressive fragment of Metric First-order Tem-
poral Logic. Similar to our work, Basin et al. allow quantifi-
cation over infinite domains, and use a form of mode analysis
(called a safe-range analysis) to ensure finiteness during en-



Policy size Residual policy Ave. Time per Total time Memory used Log size Number of
(KB) size (KB) disclosure(s) (s) (KB) (MB) disclosures
39.52 4654.07 0.04 209.68 662080 3.98 5401

4654.07 9369.32 0.75 8193.76 4063472 7.68 10866
9369.32 19186.84 2.99 65009.30 4033484 15.1 21742

Figure 3: Experimental evaluation of iterative runs of the algorithm reduce

forcement. However, Basin et al.’s mode analysis is weaker
than ours; in particular, it cannot relate the same variable
in the input and output positions of two different conjuncts
of a restriction and requires that each free variable appear in
at least one predicate with a finite model. As a consequence,
some policies such as the HIPAA policy ϕHIPAA from Sec-
tion 5, whose top-level restriction (send(p1, p2,m, τ) ∧
purp(m,u)) contains a variable u not occurring in any pred-
icate with a finite model, cannot be enforced in their frame-
work, but can be enforced in ours.

Formal Frameworks for Policy Audit. Cederquist et
al. [12] present a proof-based system for a-posteriori audit,
where policy obligations are discharged by constructing for-
mal proofs. The leaves of proofs are established from logs,
but the audit process only checks that an obligation has
been satisfied somewhere in the past. Further, there is no
systematic mechanism to instantiate quantifiers in proofs.
However, using connectives of linear logic, the mechanism
admits policies that rely on use-once permissions.

Iterative Enforcement. The idea of iteratively rewrit-
ing the policy over evolving logs has been considered pre-
viously [29, 32], but only for propositional logic where the
absence of quantifiers simplifies the problem considerably.
Bauer et al. [3] use a different approach for iterative enforce-
ment: they convert an LTL formula with limited first-order
quantification to a Büchi automaton and check whether the
automaton accepts the input log. Further, they also use
a three-valued semantic model similar to ours, but assume
that logs record all information about past events (past-
completeness). Three-valued structures have also been con-
sidered in work on generalized model checking [11, 19]. How-
ever, the problems addressed in that line of work are differ-
ent; the objective there is to check whether there exist ex-
tensions of a given structure in which a formula is satisfied
(or falsified).

Compliance Checking. Barth et al. [6] present two
formal definitions of compliance of an action with a policy,
called strong and weak compliance. An action is strongly
compliant with a policy given a trace if there exists an ex-
tension of the trace that contains the action and satisfies the
policy. We do not consider strong compliance in this paper.
An action is weakly compliant with a policy in Propositional
LTL (PLTL) given a trace if the trace augmented with the
action satisfies the present requirements of the policy. How-
ever, a weakly compliant action might incur unsatisfiable fu-
ture requirements. The technical definition is stated in terms
of a standard tableau construction for PLTL [24] that syn-
tactically separates present and future requirements. Our
correctness property for reduce generalizes weak compliance
to a richer class of policies and structures: PLTL can be
encoded in our policy logic, the residual formula generalizes
future requirements, and past-complete traces are a special
case of our partial structures.

In a related paper, Barth et al. [7] present an algorithm
that examines audit logs to detect policy violations and iden-
tify agents to blame for policy violations. While our audit
algorithm can be used to detect violations of a much richer
class of policies than the propositional logics considered by
Barth et al., it does not identify agents to be blamed for
violations.

Lam et al. [22] represent policy requirements of a part
of the HIPAA Privacy Rule in an extension of Prolog with
stratified negation, called pLogic, and use it to implement
a compliance checker for a medical messaging system. The
compliance checker makes decisions about legitimacy of mes-
sages entering the system based on eight attributes attached
to each message (such as its sender, intended recipient, sub-
ject, type of information and purpose). The prototype tool
has a usable front-end and provides a useful interface for
understanding what types of disclosures and uses of per-
sonal health information are permitted and forbidden by
the HIPAA Privacy Rule. However, as recognized by the
authors, the approach has certain limitations in demonstrat-
ing compliance with the HIPAA Privacy Rule. First, it does
not support temporal conditions. While pLogic uses spe-
cialized predicates to capture that certain events happened
in the past, it cannot represent future obligations needed to
formalize many clauses in HIPAA. In contrast, our policy
logic and the reduce algorithm handle temporal conditions,
including real-time conditions. Second, reasoning in pLogic
proceeds assuming that all asserted beliefs, purposes and
types of information associated with messages are correct.
In contrast, since reduce mines logs to determine truth values
of atoms, it does not assume facts unless there is evidence
in logs to back them up. Typically, a purpose or belief will
be taken as true only if a human auditor (or some other or-
acle) supplies evidence to that effect. Finally, our prototype
implementation was evaluated with a formalization of the
entire HIPAA Privacy Rule, whereas Lam et al. formalize
only §§164.502, 164.506 and 164.510.

Policy Specification and Analysis. Several variants of
LTL have been used to specify the properties of programs,
business processes and security and privacy policies [6, 15,
8, 18, 23]. The logic we use as well as the formalization of
HIPAA used in our experiments are adapted from our prior
work on the logic PrivacyLFP [15]. PrivacyLFP, in turn,
draws inspiration from earlier work on the logic LPU [6].
However, PrivacyLFP is more expressive than LPU because
it allows first-order quantification over infinite domains.

Further, several access-control models have extensions for
specifying usage control and future obligations [20, 10, 28,
21, 26, 16, 27]. Some of these models assume a pre-defined
notion of obligations [21, 26]. For instance, Irwin et al. [21]
model obligations as tuples containing the subject of the
obligation, the actions to be performed, the objects that
are targets of the actions and the time frames of the obli-
gations. Other models leave specifications for obligations



abstract [20, 10, 28]. Such specific models and the ensuing
policies can be encoded in our logic using quantifiers.

There also has been much work on analyzing the proper-
ties of policies represented in formal models. For instance,
Ni et al. study the interaction between obligation and autho-
rization [26], Irwin et al. have analyzed accountability prob-
lems with obligations [21], and Dougherty et al. have mod-
eled the interaction between obligations and programs [16].
These methods are orthogonal to our objective of policy en-
forcement.

Finally, privacy languages such as EPAL [4] and priva-
cyAPI [25] do not include obligations or temporal modalities
as primitives, and are less expressive than our framework.

7. CONCLUSION AND FUTURE WORK
We have presented the design, implementation, and eval-

uation of a provably correct iterative algorithm for policy
audit, reduce, that works even with incomplete audit logs.
Our policy logic is expressive enough to represent real pri-
vacy legislation like HIPAA, yet tractable due to a carefully
designed static analysis. Our empirical evaluation shows
that reduce is efficient enough to be used in practice.

In future work, we plan to investigate two applications be-
sides after-the-fact auditing using the reduce algorithm as a
core. The first application is runtime monitoring of policies.
In this context, reduce can be applied to the part of the pol-
icy relevant to an action to be performed with a hypothetical
log that includes the future action. If the resulting formula
is unsatisfiable, then the action to be performed is a viola-
tion. If the resulting formula is satisfied, then the action is
permitted. Finally, if reduce outputs a non-trivial residual
formula (involving, for example, beliefs, purposes, or future
obligations), the residual policy can be used to guide agents
about legitimacy of actions they are about to perform. Such
a tool will be useful to organizations in educating their em-
ployees about appropriate disclosures and uses of personal
information as described in complex policies, such as the
HIPAA Privacy Rule.

The second application is accounting of actions involving
personal information of individual data subjects. Proposals
for informing patients about disclosures and uses of their
personal health information are currently being debated in
the U.S. [14]. reduce can be run on the entire policy with a
subset of the logs that pertain to a specific agent to discover
all disclosures related to that agent and evidence support-
ing whether the disclosures were violations, permitted, or
conditionally permitted.

We also plan to integrate our audit algorithm into a policy-
aware health information exchange system that is being de-
veloped as part of the SHARPS project (http://sharps.
org) that we participate in. Ensuring that disclosures of
protected health information are made in accordance with
privacy regulations is critical in this setting. This project
also provides a vehicle to deploy and evaluate the effective-
ness of this algorithm over real hospital logs. Another di-
rection of ongoing and future work is to develop semantic
foundations and enforcement techniques for concepts in pri-
vacy policies related to purposes and beliefs that at first
glance appear difficult to formalize and enforce using com-
putational methods.
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