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Abstract

In this paper, we investigate how the accounting measurement basis affects the capital market
pricing of a firm’s shares, which, in turn, affects the efficiency of the firm’s investment decisions.
We distinguish two broad bases for accounting measurements: input-based and output-based
accounting. We argue that the structural difference in the two measurement bases leads to a
systematic difference in the efficiency of the investment decisions. In particular, we show that an
output-based measure has a natural advantage in aligning investment incentives because of its
comprehensiveness. The (first-) best investment is achieved when the output-based measure is
noiseless and manipulation-free. In addition, under an output-based measure, more accounting
noise/manipulation always leads to more inefficient investment choices. Therefore, if an output-
based measures is highly noisy and easy to manipulate in practice, the induced investment
efficiency can be quite low. On the other hand, an input-based measure, while not as comprehen-
sive, may induce more efficient investment decisions than an output-based measure if some noise
is unavoidable in either measure. The reason is two-fold. First, input-based measures may be
associated with less noise and limited manipulation in practice. Second and more importantly,
we show that under an input-based measure, a slight increase in accounting noise/manipulation
may lead to more efficient investment choices. In fact, the (first-) best result is achieved when
the noise/manipulability is small but positive. In other words, for an input-based measure,
being less comprehensive makes small but positive accounting noise/manipulability desirable.
Two extensions of the basic model are also explored.

∗The authors gratefully acknowledge the suggestions from an anonymous referee, Joel Demski, Jon Glover,
Burton Hollifield, Volker Laux, and members of an informal reading group at the Tepper School of Busi-
ness, Carnegie Mellon University. All errors are ours. The current version of the paper is available at
http://www.tepper.cmu.edu/andrew/liangj.
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1 Introduction

In this paper, we investigate how the accounting measurement basis affects the capital market
pricing of a firm’s shares, which, in turn, affects the efficiency of the firm’s investment decisions. We
distinguish two broad bases for accounting measurements. The first, an output-based accounting
measurement, is designed to measure a firm’s activities by recording the estimated financial benefits
of production. In contrast, the second basis, an input-based accounting measurement, is designed
to measure a firm’s activities by recording the estimated factor costs of production. We argue that
the two bases give rise to different informational properties of accounting numbers. In turn, the
different properties induce different capital market pricing, which leads to a systematic difference in
the efficiency of the investment decisions. In particular, we show that an output-based measure has a
natural advantage in aligning firm investment incentives. That is, because an output-based measure
provides comprehensive information about both the scale and profitability of the investment, it
reduces the negative impact of mispricing on investment efficiency through a dampening effect.
However, output-based measures suffer a potential disadvantage in that they may inherit more
measurement noise and may be subjected to more managerial manipulation. We show that an
output-based measure performs (first-) best when it is noiseless and manipulation-free. However,
in cases where they are highly noisy and easy to manipulate, we show that the investment efficiency
can be quite low as a result.

On the other hand, if some noise is unavoidable in any measure, an input-based measure may
induce more efficient investment decisions than output-based measures, despite having a disadvan-
tage of only providing information about the scale of the firm investment. The reason is two-fold.
First, input-based measures are typically associated with less noise and limited manipulation. Sec-
ond and more importantly, we show that with an input-based measure, some low levels of noise
and manipulability are tolerated or even preferred in some cases. In fact, the (first-) best result
is achieved when the measurement noise is small but positive. In other words, for an input-based
measure, being less comprehensive makes small but positive measurement noise desirable.

The debate on measurement bases has a long and varied standing in accounting history. Paton
and Littleton (1940) describe accounting numbers as price-aggregates which measure the economic
activities of a firm. The debate on the basis of price-aggregates centers on which “price” to use in
such measurements. Extensive subsequent writings describe the rationales for using entry prices,
exit prices, past and/or future market prices, and simulated prices (see Edwards and Bell 1961,
Sterling 1970, Ijiri 1975). We frame the debate within a partial equilibrium investment setting
with rational expectations and evaluate the different measurement bases on the scale of induced
investment efficiency. In other words, we adopt an information-economic paradigm and evaluate
the alternative measurements according to their information content. (See Christensen and Demski
2002 for more on such a paradigm.)

The insights in this paper may be helpful in current discussions of fair value measurements.
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There has been considerable movement in public accounting policy toward measurements based on
fair value. The move is partially motivated by the desire to increase the relevance of accounting,
arguably with some sacrifice in reliability. The emerging concern is the introduction of considerably
more estimates which are to be used in preparing fair value accounting measures. The Financial
Accounting Standards Board (FASB) has recognized the reliability issue and has prescribed different
levels of estimates (Level 1, 2, 3 etc.) accordingly. In this paper, we point to the effects of noise and
manipulation on investment efficiency. In particular, we show that using output-based measures
makes noise or manipulability a social “bad” to the economy because either of the two induces
inefficient investments. In other words, one must always be careful about its negative “real” effect
on firm investments if the measure brings in an increased level of noise and manipulability. This is
because under output-based measures, more accounting noise/manipulation always leads to more
inefficient investment choices. On the other hand, with input-based accounting, the (first-) best
result is achieved when the measurement noise is small but positive. As a result, our analysis points
to a certain attractiveness of an input-based measurement basis when some measurement noise is
unavoidable for either measure. Further, a slight increase in accounting noise/manipulation may
lead to more efficient investment choices. Generally, our results imply that the rational economic
choice between an output-based measure and an input-based measure is not obvious in most cases
where varying levels of noise and manipulability exist in both measures.

Specifically, we consider a simple two-period model in which a firm’s investment decision is
jointly affected by the total return of the investment and by the short-term capital market pricing of
its ownership shares. Conditional on private information about the profitability of the investment,
the firm makes an investment decision which generates cash flows in both the first and second
periods. The firm’s objective is to maximize a weighted average of the life-time cash flows and the
short-term share price. The share price reflects the rational expectation of firm value based on a
public report of the first-period aggregate cash flow (i.e., the sum of first-period investment return
and the cash flow from the first-period on-going activities). The market’s inability to identify the
sources of the first-period cash flow may induce a systematic short-term mispricing of firm value,
from the firm’s perspective. In turn, this mispricing induces a sub-optimal investment decision, ex
ante. We show that the deviation from the first-best investment level may be positive (i.e., over-
investment) or negative (i.e., under-investment) depending, in part, on the timing of the investment
return.

Within this framework, accounting is introduced as an information system which provides (price-
aggregate) measures about the investment. In pricing the firm’s shares, the capital market uses
the information in the accounting measure as a supplement to the information contained in the
aggregate cash flow. We consider two accounting measurement bases. First, an output-based
accounting measure is modeled as an unbiased estimate of the investment return (which is a function
of the actual investment made and the true investment profitability). Second and alternatively,
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an input-based accounting measure is modeled as an unbiased estimate of the actual investment
made. Either accounting signal provides additional information, which may help the capital market
improve the pricing of the firm’s shares. The improved pricing induces better firm investment
decisions. As the quality of accounting measures (which is inversely related to the measurement
noise) improves, one would expect less mispricing, which would lead to better investment decisions.
We show that this conjecture is, indeed, true for both the input- and output-based measures when
the noise in these measures is high. That is, when accounting measures are highly imprecise, any
improvement in precision will lead to more efficient investment decisions.

When the measurement noise is low, however, the two measurement bases are fundamentally
different. For the output-based measure, investment efficiency continues to rise with any increase
in measurement quality. At the limit, when the output-based accounting measure perfectly reveals
the investment return, first-best investment choices are made. However, for the input-based
measure with low measurement noise, the investment efficiency is an inverted U-shape function of
the measurement noise. As measurement noise decreases, the investment efficiency first increases
up to a threshold point and decreases afterwards. The first-best investment choices are made when
the noise is small but not zero (at the threshold point).

The reason for the difference, and for the surprising result, is the different mispricing structures
that are generated by the two measurement bases. For the output-based measure, both the actual
investment made and the actual investment profitability affect the accounting measure. As the
firm deviates from the first-best investment level, the effect on its share price is dampened, at the
margin, by the measure’s built-in profitability estimate. In other words, the firm’s ability to use
real investment to change the market perception of its investment profitability is mitigated by the
independent profitability estimate built into the output-based measure. In turn, the dampening
effect lessens the ex ante incentives to distort the investment decision. The investment efficiency
increases monotonically as the measurement noise decreases. For the input-based measure, the
accounting measure relies only on the actual investment made and does not directly rely on a
separate estimate of the investment profitability. The dampening effect does not apply to the
(mis)pricing of the accounting report; it only applies to the (mis)pricing of a portion of the cash
flow measure. As the measurement noise decreases, the dampening effect is diminished as more
valuation weight is shifted from the cash flow to the accounting report. This is the reason that a
noiseless input-based measure invites severe deviation from the first-best investment.

Finally, we offer two extensions of the model. First, we add accounting manipulation to the
mix. Following Dye and Sridhar (2004a), we model accounting manipulation by giving the firm
an option to privately modify accounting measurements before they are reported to the capital
market. The total cost of manipulation contains a random element. As a result, accounting
manipulation introduces additional noise into the reported accounting measures. Based on the
existing economic forces, it is shown that accounting manipulation always makes the firm worse off
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under an output-based accounting regime because adding more noise to an output-based accounting
measure always leads to a less efficient investment decision. However, accounting manipulation
may make the firm better off under an input-based accounting regime. This is because there are
regions in the inverted U-shape relation where a slight increase in measurement noise will improve
the investment efficiency. This is most likely when the existing measurement noise is small, and
the noise introduced by accounting manipulation to the input-based measure is also small.

In the second extension, we modify the model to allow an option for the date-2 shareholders
to utilize the technology in the firm to generate future cash flows. In this modified model, the
market price is reflective of two streams of cashflows: those generated by the initial investment
and those generated by future investments. As before, the mispricing affects the initial investment
choice and the relative performance of the input- vs. output-based accounting measures. However,
it is no longer true that the output-based measure performs best when noiseless. Comparing
accounting measurement bases is further complicated and requires knowing more details of the
context including, in particular, the importance of future cash flow relative to current cash flow.

The antecedent of studies on investment myopia in finance and economics is Holmstrom (1982)
and Stein (1989). Stein (1989) finds that the managers, facing stock market pressure, forsake good
investments so as to boost current earnings, even though the market is efficient and is not fooled
in equilibrium. In spite of being unable to fool the market, managers are trapped into behaving
myopically in the classic signal-jamming model. Dye and Sridhar (2004a) examine how investment
decisions are affected by the reliable and relevant components of an aggregate accounting report.
Their study focuses on the reliability-relevance trade-offs in accounting aggregation, the conditions
under which aggregation improves efficiency, and on the optimal weights in constructing an optimal
accounting report. While Dye and Sridhar (2004a) and our study share the feature of accounting
manipulation, our focus is on the comparison of two alternative accounting measurements, each
of which is disaggregated from a common cash flow measure. In addition, Demski, Lin, and
Sappington (2005) analyze a setting in which entrepreneurs invest before they learn whether they
will be forced to sell their assets. They study the optimal design of asset impairment regulations
when the assets resale market suffers from the “lemon” problem.

Using a contracting setting, Prendergast (2002) examines input-based and output-based mea-
sures and argues that input-based monitoring, coupled with a directed action, performs best in sta-
ble settings, while output-based monitoring is best in uncertain environments. The reason is that
output-based contracts, coupled with a delegation of decisions, align social and private incentives
better in uncertain situations. In contrast, our study focuses on the market incentives produced by
input- and output-based measures and finds that the output-based measure performs best when the
measurement is precise. Among other accounting studies on investment efficiency, Kanodia, Singh
and Spero (2005) analyze the economic consequences of the interaction between noisy accounting
measures and information asymmetry regarding the investment profitability. They find that some
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degree of accounting imprecision can be value-enhancing, which is consistent with our results on
the input-based measure. In contrast, we focus on the comparison of input- vs. output-based
measures and show that the role of accounting imprecision depends on the accounting basis: under
an output-based measure, noiseless accounting is optimal.

The rest of the paper proceeds as follows. Section 2 describes the model details. Section 3
presents the benchmark results of the basic setup where only an aggregate cash flow is reported.
In section 4, we introduce accounting measures and analyze the equilibria induced by accounting.
Section 5 introduces an extension which models accounting manipulation. Section 6 offers another
extension where the firm technology is reusable in the future. Section 7 concludes the paper.

2 The Model

Consider an economy with a risk-neutral firm in a competitive risk-neutral capital market. There
are two periods (and three dates), representing short- and long-term concerns. The firm’s normal
on-going activities generate a pair of cash flows, denoted xt, realized on date-t (t = 1, 2). We
assume: [

x1

x2

]
∼ N

([
µ

µ

]
,

[
σ2 ασ2

ασ2 σ2

])
(1)

On date-0, the firm is faced with an investment opportunity (called a project) and observes
a private signal, denoted θ ∈ R, about the project’s profitability. The prior distribution of θ is
normal with mean θ0 and variance σ2

θ (i.e., θ v N [θ0, σ
2
θ ]). The firm chooses an investment level,

denoted I ∈ R+, to invest into the project. The project generates cash flows on date-1 and date-
2, denoted by f1(θ, I) and f2(θ, I) respectively. For tractability, we assume the project returns
f1(θ, I) = k

√
θI and f2(θ, I) = (2 − k)

√
θI, where k ∈ (0, 2). Thus, the total investment return

(2
√

θI) depends only on the investment level I and the profitability variable θ. The timing of the
investment return depends on k: higher k indicates that more investment return is realized in the
short-term.1

The realized periodic cash flows to the firm are denoted by zt (t = 1, 2):2

z1 = x1 + f1(θ, I) = x1 + k
√

θI (2)

z2 = x2 + f2(θ, I) = x2 + (2− k)
√

θI (3)

Following the literature (Dye 2002, Dye and Sridhar 2004a, 2004b), we assume that the in-
vestment is made privately (i.e., not directly observable) and that the firm is unable to directly

1All qualitative results remain if we assume that ft(.) are the expected values of the short- and long-term investment
returns and that the noise in the returns is independent of the existing random variables.

2Here we assume that z1 is gross of the investment cost (I), which is appropriate given that we assume the
investment is made privately. If z1 is net of the investment cost, the quantitative results would change while the
same qualitative forces would remain. See Dye 2002 and Dye and Sridhar 2004a for similar assumptions.
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communicate the private information (θ) to outsiders, including the capital market. We also assume
that θ is independent of x1 or x2 and the on-going cash flows (x1 or x2) are not affected by the
investment choice (I).

At the end of date 1, the firm’s shares are priced in a competitive risk-neutral capital market
such that the market price, denoted P, is equal to the expected value of the cumulative cash flow
on date-2. Denote the publicly available information set on date-1 by Ω (assuming no discounting
or dividend payments):

P = E[z1 + z2|Ω] (4)

The information set Ω includes public information available for pricing. In the basic setup,
the firm publicly reports its aggregate cash flow only, so Ω contains z1 alone. Later, we consider
additional signals created by an accounting information system; so Ω may include additional items
such as a deferral or an accrual.

The firm is motivated by both the long-term interest (i.e., cumulative cash flows on date-2) and
the short-term interest (i.e., date-1 stock price). We assume for life cycle or liquidity reasons, a
portion of the firm, denoted β ∈ (0, 1), must be sold on date-1. The remaining (1− β) portion will
be held by the date-0 shareholders.3 As a result, the firm’s objective is to maximize a weighted
average of date-1 market price and date-2 cumulative cash flow (net of the investment costs I).
For a type-θ firm with investment function I(θ), the objective function is

−I(θ) + βP + (1− β)(z1 + z2) (5)

The sequence of the events is summarized below.

t = 0 t = 1 t = 2

Firm privately Cash flows x1 and f1(θ, I) Cash flows x2 and f2(θ, I)
observes θ and are realized are realized
chooses I(θ) Firm releases reports Firm is liquidated

Market prices P based on Ω

Figure 1: Time Line of Events

As a reference point for what follows, we provide a description of the first-best investment policy
in Lemma 1 (proof omitted).

3Another reason may be that the firm faces a probability β of takeover on date-1, in which case the firm wishes
to maximize its date-1 share price (see Stein 1989 for additional discussions). In the finance literature, incentive to
underinvest may be driven by a debt-overhang problem (see Myers 1977).
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Lemma 1 (first-best) The socially optimal investment policy consists of a function IFB(θ), where
for each θ, IFB(θ) maximizes f1(θ, I) + f2(θ, I)− I = 2

√
θI − I. So we have IFB = θ when θ > 0;

and IFB = 0 when θ < 0.

We now define the equilibrium where the investment policy is made in the self-interest of the
firm.

Definition 1 An equilibrium relative to Ω consists of an investment function I∗(·), and a market
pricing function P (·), such that:

(i) Given P (·), optimal investment function I∗(·) maximizes V (θ|I(·)) = Ex1x2 [−I + βP (·) +
(1− β)(z1 + z2)];

(ii)Given I∗(·), the pricing function P (·) satisfies P = E[z1 + z2|Ω, I∗(·)].

We employ an approximation assumption to calculate the pricing function in closed-form.
Approximation Assumption: Let random variables x and y be jointly normally distributed,

and z is normally distributed and independent of x and y. Denote by f(x, z|y + az) the jointly
conditional density function of x and z for some known constant a and denote G(z|y + az) the
conditional cumulative density function of z. We assume for all realizations of y + az,

∫

z>0

∫

x
(x + z)f(x, z|y + az)dxdz + G(0|y + az)

∫

x
xf(x|y)dx=̃

∫

z

∫

x
(x + z)f(x, z|y + az)dxdz (6)

In words, the approximation assumes that the error due to censoring the lower tail of a normally
distributed random variable is small when calculating the conditional mean of the sum of the
censored variable and another normal random variable. In our context, the investment strategy
function I(θ) censors the underlying profitability parameter θ by the fact I = 0 if θ < 0. The market
observes some linear function of I(θ), not the uncensored θ. The assumption allows us to calculate
the market inference in closed-form by assuming the censored θ is close enough to the uncensored
θ. Because the censoring point is always held at zero, it is clear that this approximation becomes
increasingly accurate as E[z] is large, i.e., the probability mass to the left of zero is increasingly
small.4 5

4Note this approximation assumption pertains to calculating the conditional expectation (i.e., expected x + z
conditional on the realization of y+az). We acknowledge that this is a global requirement. That is, the approximation
applies for each and every realization of y + az. For extremely negative realizations of the censored variable z, the
approximation error may be large. However, the approximation error for a particular realization of y + az, denoted
AE(y + az), becomes smaller and approaches zero as the mean of z increases. In the appendix, we formally prove
this claim.

5Dye and Sridhar (2004b) use an approximation assumption in their analysis. While their approximation applies
to calculating the unconditional mean of an altered normally distributed random variable, ours applies to a series
of conditional mean of an altered normally distributed random variable. Stocken and Verrecchia (2004) also uses a
similar approximation.
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3 Basic Setup

Except in Section 6, we assume throughout that on date-1 the realized aggregate cash flow (z1) is
always publicly observable. However, outsiders are not able to differentiate the cash flow compo-
nents. In other words, cash flows generated from on-going activities and from the investment are
aggregated. This aggregation feature plays an important role in this setting.

We now analyze the equilibrium behavior of the firm in the basic setup.

Theorem 1 Using the approximation assumption (6), there exists a unique linear equilibrium rel-
ative to Ω = {z1}. It is given by

(i) an equilibrium linear pricing function:

P (z1) = a + b× z1, where (7)

b =
(1 + α)σ2 + 2kδσ2

θ

σ2 + k2δσ2
θ

(8)

a = (2− b)µ + (2− kb)
√

δθ0 (9)

(ii) an equilibrium investment function:

I(θ) =

{
δθ, if θ ≥ 0
0 if θ < 0

(10)

where δ =
(

1 + β

(
bk

2
− 1

))2

(11)

Proof of Theorem 1. All proofs are placed in the appendix. ¥

Compared with the first-best investment, a key observation in Theorem 1 is that the equilibrium
investment choice (I) is generally a function of the short-term market pressure (parameter β)
and the timing of the investment cash flows (parameter k), not just a function of the investment
profitability (variable θ). This is because in pricing the firm’s shares, the market is unable to
distinguish the individual components of the short-term cash flow (z1). To illustrate, suppose
that the market is able to distinguish the cash flow components; then the appropriate response to
every dollar of the on-going cash flows (x1) would be (1 + α) and the appropriate response to the
short-term investment return (f1(θ, I) = k

√
θI) would be 2

k . However, because only the aggregate
(z1 = x1 + k

√
θI) is reported, the market response is the weighted average of (1 + α) and 2

k .

Therefore, the market may not price the investment efficiently. Because the firm cares about the
short-term share price (β > 0), the efficiency of the pricing affects the investment incentives.

To understand the nature of the mispricing, we return to the firm objective function (5), which
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may be rewritten as

− I + βP + (1− β)(z1 + z2)

= −I + z1 + z2 + β(P − (z1 + z2))

=
(
−I + x1 + x2 + 2

√
θI

)
+ β(P − (x1 + x2 + 2

√
θI)) (12)

The first term of (12) is the first-best objective function. The second term of (12), when β > 0,
is an increasing function of the mispricing (equal to price minus the long-term firm value). When
making the investment decision (I), the firm does not know xt but knows θ. So, the expected
mispricing, given θ, is

Ex1x2 [P − (x1 + x2 + 2
√

θI)|θ]

Substituting the linear pricing function P = a + b(x1 + k
√

θI) into the expected mispricing, we
have

Ex1x2 [P − (x1 + x2 + 2
√

θI)|θ]
= Ex1x2 [a + b(x1 + k

√
θI)− (x1 + x2 + 2

√
θI)|θ]

= (bk − 2)
√

θI + Ex1x2 [a + bx1 − (x1 + x2)] (13)

Given that the second term of (13) is not a function of I, the mispricing will only affect the
equilibrium investment through the first term of (13):6 (bk − 2)

√
θI. So we have

V (θ|I(·)) = Ex1x2

[(
−I + x1 + x2 + 2

√
θI

)
+ β(P − (x1 + x2 + 2

√
θI))|θ

]

= −I + Ex1x2 [x1 + x2] + 2
√

θI + β(bk − 2)
√

θI + βEx1x2 [a + bx1 − (x1 + x2)]

= −I + 2
√

θI + β(bk − 2)
√

θI + (2 + β(b− 2))µ + βa

When the firm either does not care about the short-term share price (β = 0) or the market
correctly prices firm investments (b = 2

k ), the firm makes the first-best investment choices. If
neither condition is met, the (mis)pricing is affected by the firm’s investment choice, so the firm
has an incentive to deviate from the first-best level. In fact, the firm faces conflicting incentives
when making its investment decision:

• Incentive to underinvest. Given k 6= 2, some investment returns are realized in the long-
run. Given 0 < β < 1, the firm receives only a fraction (i.e., (1− β) share) of the long-run
marginal benefit but must bear the full marginal cost. This leads to underinvestment because

6Notice that the second term of (13), while not affected by investment (I), is still a mispricing caused by reporting
the aggregate cash flow. This mispricing would induce (operating) inefficiencies if the firm is able to control the
timing of the on-going cash flows (x1 and x2). See Stein 1989.
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the marginal return is positive but decreasing in I. (See similar economic forces in Dye 2002,
Dye and Sridhar 2004a, 2004b.)

• Incentive to overinvest. Given k 6= 0, some investment returns are realized in the short-run.
Given 0 < β < 1, the firm has an incentive to inflate the first period cash flow (z1 = x1+k

√
θI)

because the pricing function places a positive weight on z1. In our model, the only way to
inflate z1 is to increase investment level (I). This leads to overinvestment as the short-run
marginal benefit from the investment may be inflated. (See a similar tension in Stein 1989.)

We summarize the investment results with the following theorem.

Theorem 2 In the basic setup Ω = {z1}, there exists a value for k, namely, k∗ = 2
1+α , such that

the linear equilibrium produces the first-best investment level δ = 1. If k > k∗, then δ > 1 or the
firm overinvests; if k < k∗, then δ < 1, or the firm underinvests.

Intuitively, when k = k∗, the appropriate response to the short-term investment return ( 2
k )

happens to be the same as the appropriate response to the on-going cash flow (1 + α). That is,
the proportion of the short-term investment return perfectly matches the time-series correlation of
cash flows from on-going activities. Thus, even with an aggregated cash flows report, the market
price motivates the efficient investment decision.

If k 6= k∗, the market reaction to the aggregate cash flow is an average of 2
k and (1 + α) .

When k > k∗, the average is higher than 2
k , which places too high of a weight on the short-term

investment return, leading to over-investment. When k < k∗, the average is lower, leading to
under-investment. In other words, the aggregation of information leads to market mispricing of
the firm investment, which leads to sub-optimal investment decisions.

Using this basic model, we can show that (a) both the market response coefficient b and the
investment coefficient δ increases as α increases; (b) if k < k∗, both b and δ increases as the on-going
cash flows are less noisy (i.e., σ2 decreases); and (c) as the short term pressure β increases, market
response b decreases and firm investment coefficient decreases if k < k∗. (See Proposition 1 in the
appendix for details.)

4 Accounting

Now we expand the information set which is available to the market. We are particularly interested
in how information contained in the non-cash component of the financial statements affects the
market pricing and the induced investment incentives. We model this by introducing a public
signal y, which is produced by the accounting information system of the firm. We assume that on
date-1 both the realized cash flows (z1) and the accounting signal (y) are publicly observable. The
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general idea is that y may provide additional information beyond an aggregate cash flow report
(z1) and in particular, y may help differentiate the individual components of cash flows.7

4.1 Input-based and Output-based Accounting Measures

In accounting practice, two broad accounting measurement bases dominate how accounting defer-
rals/accruals are prepared. First, under an input-based measurement basis, accounting metrics are
prepared to be estimates of the effort (or costs) expended in various firm activities. The historical
(exchange) cost principle reflects this approach well. Ready examples are long-lived assets and
inventory, where book values are based on acquisition costs. Second, under an output-based mea-
surement basis, accounting metrics are prepared to be estimates of the expected reward in return
(for the costly activities). The fair value principle reflects this approach well. Ready examples
are market value methods where assets and liabilities are measured at market value or based on
an estimate of the expected NPV of future cash flows (which is designed to simulate a would-be
market value). We study both accounting systems and examine the effect of alternative accounting
reports on the investment efficiency. We assume that the firm can choose either an input-based
approach, labeled IP, or an output-based approach, labeled OP.8

Denote the signal produced by an output-based measure yOP , and assume that

yOP = k
√

θI + εOP (14)

where εOP ∼ N(0, σ2
OP ). The output-based accounting report provides a noisy measurement of the

short term investment return.9

For the input-based measure, denote the report yIP , and assume that

yIP = I + εIP (15)

where εIP ∼ N(0, σ2
IP ). The input-based accounting report provides a noisy measurement of the

investment cost. In the following, to simplify the notation, we denote the accounting policy by m,
m ∈ {OP, IP}.

7This idea is consistent with some recognizable features of certain timing accruals. For example, the unearned
revenue accruals help classify the timing properties of cash inflow, and the extraordinary-item category may help
distinguish components of realized cash flows with different serial correlations.

8Here we have limited our attention to a single, one-time measurement. In practice, accounting measurement
systems can be much more complex with an initial measurement, subsequent (date-2) re-valuation, and a final
measurement on the disposal of the item in question. A dynamic model with multiple information arrivals would
make it possible to model these issues, and it is certainly an interesting extension of the current model.

9For simplicity, we choose the short term return as the expected value of an output-based accounting report. Our
results do not change if we assume that the report is scaled up to provide a noisy measurement of the total investment
return (i.e., yOP = 2

√
θI + εOP ).
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4.2 Equilibria under Alternative Accounting Regimes

We now analyze the equilibrium behavior of the firm under both output-based accounting and
input-based accounting.

Theorem 3 If yOP = k
√

θI + εOP and yIP = I + εIP , using (6), there exists a unique linear
equilibrium relative to Ω = {z1, y

m} (m ∈ {OP, IP}) and it is given by
(i) an equilibrium linear pricing function:

P (z1, y
m) = am + bm

z × z1 + bm
y × ym, where (16)

bOP
z =

(1 + α)k2δOP σ2σ2
θ + (1 + α)σ2σ2

OP + 2kδOP σ2
OP σ2

θ

k2δOP σ2σ2
θ + σ2σ2

OP + k2δOP σ2
OP σ2

θ

(17)

bOP
y =

[2− (1 + α)k] kδOP σ2σ2
θ

k2δOP σ2σ2
θ + σ2σ2

OP + k2δOP σ2
OP σ2

θ

(18)

aOP = (2− bOP
z )µ + (2− kbOP

z − kbOP
y )

√
δOP θ0

bIP
z =

(1 + α)δ2
IP σ2σ2

θ + (1 + α)σ2σ2
IP + 2kδIP σ2

IP σ2
θ

δ2
IP σ2σ2

θ + σ2σ2
IP + k2δIP σ2

IP σ2
θ

(19)

bIP
y =

[2− (1 + α)k] δ
3
2
IP σ2σ2

θ

δ2
IP σ2σ2

θ + σ2σ2
IP + k2δIP σ2

IP σ2
θ

(20)

aIP = (2− bIP
z )µ + (2− kbIP

z −
√

δIP bIP
y )

√
δIP θ0

(ii) an equilibrium investment function:

Im(θ) =

{
δmθ, if θ ≥ 0
0 if θ < 0

, where (21)

δOP =

(
1− β +

βk
(
bOP
z + bOP

y

)

2

)2

, δIP =

(
1− β + βkbIP

z
2

1− βbIP
y

)2

(22)

To gain some insights into the results, we make the following observations.

• If k = k∗ = 2
1+α , the linear equilibrium under either accrual accounting system produces the

first-best investment level (δm = 1) and the market response coefficients bm
z = 2

k , bm
y = 0

(m ∈ {OP, IP}). In this case, the cash flow z1 provides sufficient information for efficient
pricing, and the market ignores the accruals completely (bm

y = 0).

• If σ2
m → +∞, the equilibrium is the same as the basic setup (Ω = {z1}). The quality

of accruals is so poor that the market ignores the accounting signals (bm
y = 0), which is

equivalent to a setting without accounting reports.
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• The direction of the response to accounting signals (i.e., the sign of bOP
y or bIP

y ), can be
positive or negative depending on the sign of [2− (1 + α)k].

The following Corollary summarizes the intuitive properties of the equilibrium under either
accounting regime.

Corollary 1 If yOP = k
√

θI + εOP and yIP = I + εIP , using (6), for any m ∈ {OP, IP},
(i) if σ2

m → +∞, the investment choice approaches that in the basic setup where Ω = {z1};
(ii) δm increases (decreases) in σ2

m when k > k∗ (k < k∗).
(iii) bm

z decreases (increases) in σ2
m when k > k∗ (k < k∗).

(iv) bm
y increases (decreases) in σ2

m when k > k∗ (k < k∗).

This corollary confirms an intuitive relation between measurement noise and investment effi-
ciency. Recall that Theorem 2 shows that the aggregation of on-going and investment cash flows
induces the sub-optimal investment. The combination of items (i) and (ii) of Corollary 1 indicates
that the sub-optimal investment problem is alleviated by the accounting report. For example, when
k < k∗, and σ2

m → +∞, we know δm is the same as in the basic setup and the firm underinvests.
In this case, item (ii) implies that a lower σ2

m (than +∞) would induce a higher δm, alleviating the
under-investment problem.

When the accounting quality is extremely poor (σ2
m → +∞), no valuation weight is placed on

the accounting signals (bm
y = 0). As the quality improves, more weight is shifted between the cash

flow report and the accounting report. For example, when k < k∗, the market under-prices the
investment. As σ2

m is lowered (from +∞), the market response to the accounting signal increases
(from zero) and the response to the cash report decreases (i.e., the weight shifts from cash flow to
accruals).

Overall, the results thus far show that, when the noise level is high enough, an improvement
in the quality of the accounting measures (i.e., a drop in the noise) improves the communication
between the firm and the market, and this benefits the investment efficiency. That is, the quality
of accruals is well-defined and well-behaved: the lower the variance, the higher the accrual quality,
the lower the market mispricing of firm investments, and most importantly, the more efficient the
investment decision.

4.3 Comparing Output-based and Input-based Accounting Measures

When the noise level is low, the output-based and input-based measures exhibit a fundamental
difference. We find a monotonic relation between the investment efficiency and the quality of the
output-based accounting signal. That is, the investment efficiency under output-based accounting
continues to improve when measurement noise decreases.

In the extreme, output-based accounting achieves the first-best result as σ2
OP is reduced to

zero. If σ2
OP = 0, the market is able to infer the short-term investment return perfectly from
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the accounting report (because yOP = k
√

θI for certain). Subtracting the accounting signal from
the aggregate cash flow reveals the cash flow from first period on-going activities. That is, the
accounting report helps the investors clearly distinguish the cash flow components. In turn, the
market response coefficients are bOP

z = 1+α and bOP
y = 2

k−(1 + α) , leading to a combined reaction
of 2

k to the short-term investment return, which provides the first-best investment incentive.
In contrast, input-based accounting is another story in which the results are not as straight-

forward. The relation between investment efficiency and measurement noise (σ2
IP ) is not monotonic.

When k > k∗, the over-investment problem exists only when σ2
IP is high enough. If σ2

IP is very
low, the firm underinvests. In the extreme, when σ2

IP = 0, outsiders are able to infer the actual

investment made (I); the market response coefficients are bIP
z = 1+α, and bIP

y = [2− (1 + α) k] δ
− 1

2
IP ,

and the investment level δIP =
(
1− β

(
k(1+α)

2 − 1
))2

< 1.

The following theorem summarizes and compares the effects of the two accounting systems on
the investment efficiency.

Theorem 4 If yOP = k
√

θI + εOP and yIP = I + εIP ,

(i) if σ2
OP = 0, investment choice is the first-best level, and

(ii) if σ2
IP = σ2

θ , investment choice is the first-best level.
(iii) There exists a Σ (0 < Σ < σ2

θ), such that a sufficient condition for input-based accounting
to be more (less) efficient than the cash flow reporting regime (of the basic setup) is σ2

IP > Σ
(σ2

IP < Σ).
(iv) There exists a Σ′ (Σ < Σ′ < σ2

θ), such that a sufficient condition for input-based accounting
to be more efficient than output-based accounting is the combination of (a) σb

IP ∈ [Σ′, σ2
θ ] and (b)

σ2
OP > Σ′.

The two systems achieve the first-best at different noise levels. Under output-based, the first-
best is achieved when the accounting measure is noiseless, which is very intuitive. Under the input-
based system, the first-best is achieved when the noise is small but not zero. More importantly,
output-based does not dominate input-based in all situations. Since some noise is unavoidable in
practice, it is likely input-based may be preferable. Consider the following two comparisons. First,
suppose an accounting item in question is well-understood and easy to measure. So we assume
both output-based and input-based measures share the same (small) noise level (e.g., less than σ2

θ).
In this case, Theorem 4 predicts input-based is preferred if the variance of the noise (σ2

m) is between
Σ′ and σ2

θ . Alternatively, suppose the accounting item is not well-understood and hard to measure.
So we assume the noise level is high for both measures (i.e., greater than σ2

θ). In this case, it is
more likely that output-based accounting may entail a more noisy measure than input-based.10

As a result, the investment efficiency under a highly noisy output-based measure may be closer to
10One way to view the natural relation between σ2

IP and σ2
OP is that the accounting system constructs the output-

based measure based on two estimates: an estimate of actual investment made (e.g, yIP = Î = I + noise) and an
estimate of profitability (e.g., θ̂ = θ + noise). The output-based measure is estimated using the true production
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the (benchmark) cash flow setting (by Corollary 1) while the efficiency under a not-so-noisy input-
based measure may be closer to first-best (by Theorem 4). In this case, input-based dominates
output-based as long as their variance difference is large enough.

The key difference between input-based and output-based has to do with the fundamental
difference between the two accounting approaches. The input-based method (yIP = I + εIP )
requires estimating the investment cost (I) alone, without any explicit attention to the profitability
of the investment (θ). The output-based method (yOP = k

√
θI + εOP ) requires estimating both I

and θ. This fundamental difference leads to a structural difference in the market mispricing of
firm investments.

Returning to the analysis of investment distortion induced by mispricing, substitute the pricing
function (P = aOP + bOP

z (x1 + k
√

θI) + bOP
y (k

√
θI + εOP )) into the expected mispricing, and we

have

Ex1x2 [P − (x1 + x2 + 2
√

θI)|θ]
= Ex1x2 [a

OP + bOP
z (x1 + k

√
θI) + bOP

y (k
√

θI + εOP )− (x1 + x2 + 2
√

θI)|θ]
= [

(
bOP
z + bOP

y

)
k − 2]

√
θI + Ex1x2 [a

OP + bOP
z x1 + bOP

y εOP − (x1 + x2)]

If
(
bOP
z + bOP

y

)
k − 2 6= 0, any investment will affect the market pricing, giving the firm an

incentive to over- or under-invest. The marginal effect of investment I on the mispricing depends
on true investment profitability theta (because the derivative equals (bOP

z +bOP
y )k−2

2

√
θ
I ). This leads

to a dampening effect: the marginal benefit is concave in I, providing a diminishing return to
investment deviations. Intuitively, the firm’s ability to use real investment to change the market
perception of its investment profitability is mitigated by the independent profitability estimate built
into the output-based measure.

With input-based accounting, the expected mispricing is

Ex1x2 [P − (x1 + x2 + 2
√

θI)|θ]
= Ex1x2 [a

IP + bIP
z (x1 + k

√
θI) + bIP

y (I + εIP )− (x1 + x2 + 2
√

θI)|θ]
= (bIP

z k − 2)
√

θI + bIP
y I + Ex1x2 [a

IP + bIP
z x1 + bIP

y εIP − (x1 + x2)]

The mispricing will only affect the equilibrium investment through the first two terms: (bIP
z k−

2)
√

θI + bIP
y I. The marginal effect of investment on the first term (bIP

z k − 2)
√

θI depends on the

investment profitability (the derivative is bIP
z k−2

2

√
θ
I ) while the marginal effect on the second term

bIP
y I depends only on an equilibrium constant bIP

y . The dampening effect is active only on the first
term, not the second term. Notice, from Theorem 3, that we know in equilibrium, the market

function (roughly, yOP = 2
p

θ̂Î). Viewed this way, it is natural that the overal noise in yOP is likely to be higher
than the noise in yIP .
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reactions to the cash flow and accounting measures (bIP
z and bIP

y respectively) are such that

bIP
z k − 2 =

[(1 + α)k − 2] (σ2σ2
IP + δ2

IP σ2σ2
θ)

δ2
IP σ2σ2

θ + σ2σ2
IP + k2δIP σ2

IP σ2
θ

bIP
y =

[2− (1 + α)k] δ
3
2
IP σ2σ2

θ

δ2
IP σ2σ2

θ + σ2σ2
IP + k2δIP σ2

IP σ2
θ

.

When k 6= k∗, the sign of bIP
z k − 2 is always the opposite of the sign of bIP

y , which indicates that
the marginal effects on the two terms are in the opposite direction. The total effects on mispricing
depend on which item outweighs the other.

For example, if k > k∗, bIP
z k − 2 is positive which indicates that a higher investment would

increase market mispricing. However, the dampening effect provides a diminishing return to over-
investment which makes over-investment less attractive. On the other hand, the firm is also
motivated to under-invest because bIP

y is negative. Notice here that the marginal effect is a
constant and is independent of the private information θ and investment level I; no dampening is
in effect. This hurts the economy when the accounting report is too precise. If σ2

IP is too small,
the absolute value of bIP

y is too large, which motivates the firm to under-invest by a large amount
(Corollary 1). This motivation outweighs the over-investment motivation by the first item because
a small σ2

IP reduces the market response to the aggregate cash flows report (bIP
z ).

Consider the limiting case, when σ2
IP = 0. Unlike the case for output-based accounting, the

first-best investment is not achieved when the input-based measure is noiseless. Suppose the firm
invests the first-best amount (e.g., I = θ), then the market’s best responses are bIP

z = 1 + α and
bIP
y = 2 − (1 + α)k < 0. These responses invite the firm to under-invest because at I = θ, the

marginal benefit of additional investment is bIP
z k−2

2 + bIP
y = 1 − (1+α)k

2 , which is less than the
marginal cost of additional investment (= 1).11

In another knife-edge case, the two opposite effects exactly offset each other where the first-best
is achieved. That is, if σ2

IP = σ2
θ and we propose that δIP = 1 , then we find that bIP

z k−2
2 +

bIP
y = 0 (i.e., the marginal effect of any investment deviation is zero). In equilibrium, there is no

incentive to distort investment. Thus, with the input-based measure, the first-best is achieved when
measurement noise is small but not zero. Table 1 summarizes the performance of three accounting

11Further, in this limiting case of perfect knowledge of the actual investment made (I), the induced investment
efficiency is worse than that of the basic setup (item iv of the Theorem 4). Alternatively, if the profitability (θ) is
perfectly revealed and z is reported, it can be shown that the induced efficiency is not first-best. This is consistent
with Kanodia et al (2005) where some imprecision in the accounting measurement is preferred. What is different in
the current model is that the conclusion on accounting imprecision depends on the accounting measurement basis.
With an output-based measure, the ideal accounting is noiseless.

17



regimes

Table1: The performance of three accounting regimes

Parameter Regions

Accounting β = 0 0 < β < 1
Regimes k = k∗ ≡ 2

1+α k > k∗ k < k∗

Cash Flow δ = 1 δ = 1 δ > 1 δ < 1

Output-based δOP = 1 δOP = 1
σ2

OP = 0 σ2
OP > 0

δOP = 1 δOP > 1
σ2

OP = 0 σ2
OP > 0

δOP = 1 δOP < 1

Input-based δIP = 1 δIP = 1
σ2

IP = σ2
θ σ2

IP ≶ σ2
θ

δIP = 1 δIP ≶ 1
σ2

IP = σ2
θ σ2

IP ≶ σ2
θ

δIP = 1 δIP ≷ 1

Figure 2 illustrates the effect of accounting reports on the efficiency. Here, the expected net
project return represents the efficiency of the investment. The FB line stands for the net project
return when the investment level is the first-best (IFB = θ). The basic setting results (ISB = δθ) are
denoted by the SB-CF line. The performance of input-based accounting (IIP = δIP θ) and output-
based accounting (IOP = δOP θ) is described by the IP and OP solid curves respectively. From
the figure, it is easy to see that output-based accounting is dominated by input-based accounting
in the region when the common noise is between Σ′ and σ2

θ .
12

====================
Insert Figure 2 Here

====================

5 Extension I: Accounting Manipulation

In this section we expand the model to consider managerial manipulation of the accounting mea-
surement. A robust feature of any accrual measurement is that firms have varying degrees of
influence (or discretion) on how accruals are prepared. However, other economic factors (e.g.,
auditing or managerial reputation) prevent the use of complete discretion. We capture this partial
discretion by considering a simple model of cost-benefit calculus on the part of the firm.

12The Figure 2 shows that input-based accounting induces more efficient investment decisions than output-based
accounting for all noise level greater than Σ′. We note that this result is not general and that there exist sufficient
conditions that the output-based accounting dominates the input-based accounting when the measurement noise is
large. That is, when the noise is high, input-based does not necessarily dominate output-based when both share a
common measurement noise.
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5.1 Equilibrium under Accounting Manipulation

Suppose that the accounting signal ym (m ∈ {OP, IP}) is subjected to managerial manipulation.
A firm can prepare its accounting report wm differently from the unmanipulated ym, at a cost. We
assume the cost as c (wm) = cm

2 (wm − ym − ξm)2 , where ξm is independent of all other random
variables and follows a normal distribution with mean zero and variance of η2

m. Variable ξm captures
the random component of manipulation costs.13 From the earlier results, the market response to
the accounting report can be positive or negative. Then, with accounting manipulation, the firm
can benefit from adjusting the accounting report upwards or downwards, at the margin. We next
introduce the definition of an equilibrium for the setup with accounting manipulation.

Definition 2 An equilibrium relative to Ω = {z1, w
m} consists of an investment function Im

w (·), a
reporting policy wm(·), and a market pricing function P (·), such that:

(i) Given P (·), the optimal investment function Im
w (·) and the reporting policy wm(·) maximize

V (θ|Im
w (·), wm(·)) = E[−Im

w + βP (·) + (1− β)(z1 + z2)− c(wm)]
(ii)Given Im

w (·) and wm(·), the pricing function P (·) satisfies P = E[z1 + z2|Ω, Im
w (·), wm(·)]

We now analyze the equilibrium behavior of the firm under the accrual basis accounting with
manipulation.

Theorem 5 If yOP = k
√

θI + εOP and yIP = I + εIP , and c (wm) = cm

2 (wm − ym − ξm)2 (m ∈
{OP, IP}), where k ∈ (0, 2) and using (6), there exists a unique linear equilibrium relative to
Ω = {z1, w

m}. It is given by
(i) an equilibrium linear pricing function:

P (z1, w
m) = am

w + bm × z1 + dm × wm, where

bOP =
(1 + α)k2γOP σ2σ2

θ + (1 + α)σ2υ2
OP + 2kγOP υ2

OP σ2
θ

k2γOP σ2σ2
θ + σ2υ2

OP + k2γOP υ2
OP σ2

θ

dOP =
[2− (1 + α)k] kγOP σ2σ2

θ

k2γOP σ2σ2
θ + σ2υ2

OP + k2γOP υ2
OP σ2

θ

aOP
w = (2− bOP )µ + (2− kbOP − kdOP )

√
γOP θ0 − β(bOP )2

cOP

13See a similar assumption and more discussions of the cost structure in Dye and Sridhar 2004a.
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bIP =
(1 + α)γ2

IP σ2σ2
θ + (1 + α)σ2υ2

IP + 2kγIP υ2
IP σ2

θ

γ2
IP σ2σ2

θ + σ2υ2
IP + k2γIP υ2

IP σ2
θ

dIP =
[2− (1 + α)k] γ

3
2
IP σ2σ2

θ

γ2
IP σ2σ2

θ + σ2υ2
IP + k2γIP υ2

IP σ2
θ

aIP
w = (2− bIP )µ + (2− kbIP −√γIP dIP )

√
γIP θ0 − β(dIP )2

cIP

υ2
m = σ2

m + η2
m (23)

(ii) an equilibrium investment function and an equilibrium reporting policy:

Im
w (θ) =

{
γmθ, if θ ≥ 0
0 if θ < 0

where (24)

γOP =

(
1− β +

βk
(
bOP + dOP

)

2

)2

, γIP =

(
1− β + βkbIP

2

1− βdIP

)2

(25)

wm = ym + ξm +
βdm

cm
(26)

According to the equilibrium reporting policy (the wm expression in equation 26), the equilib-
rium accounting report varies from the one without accounting manipulation: the additional noise
from a random variable ξm is added as well as a fixed constant βdm

cm .
The market can perfectly calculate the fixed constant βdm

cm . (Parameters β and cm are common
knowledge, and dm is the equilibrium market response to the accounting report.) The intercept of
the pricing function am

w is adjusted accordingly to “undo” the expected manipulation. The random
component of manipulation injects noise ξm into the accounting report. As a result, accounting
manipulation worsens the quality of accounting reports. The pricing function is adjusted in a way
that the variance of the measurement noise (σ2

m) in the previous equilibrium pricing function is
replaced by υ2

m, which equals to the sum of σ2
m and η2

m.

5.2 Value of Accounting Manipulation

The accounting manipulation leads to a more noisy accounting measure and a dead-weight loss
(the manipulation cost to the firm). The latter cost is incorporated into the following cost-benefit
analysis of accounting manipulation.

Corollary 2 Under output-based, accounting manipulation always makes the firm worse off; under
input-based accounting, a sufficient condition for accounting manipulation to be value-enhancing is
the combination of (i) υ2

IP < σ2
θ and (ii) cIP · θ0 is sufficiently high.
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As we have shown, the performance of output-based accounting monotonically decreases as the
quality of the accounting report worsens. Therefore, under output-based, accounting manipulation
reduces efficiency for two reasons. First, a more noisy accounting report induces less efficient
investment. Second, the firm incurs a manipulation cost c (wm).

However, with input-based accounting, the non-monotonicity feature makes it possible that the
incremental noise due to manipulation may benefit the firm. Recall that in Figure 2, making the
accruals more noisy can improve efficiency when the accruals are “too” precise (σ2

IP < σ2
θ). Thus, if

υ2
IP < σ2

θ , the expected net project return strictly increases as a result of accounting manipulation,
provided that η2

IP is not too large.
Since the expected net project return is (2

√
γm − γm) · θ0, the higher θ0 can magnify the gain

from more efficient investment choices. The cost of manipulation is

c
(
wIP

)
=

cIP

2
(
wIP − yIP − ξIP

)2
=

(
βdIP

)2

2cIP

A higher cIP can reduce the dead-weight loss from the firm’s myopic decision. Thus, if cIP · θ0

is sufficiently high, the cost of earnings management is outweighed by the increase of the expected
investment returns.14

Intuitively, when the actual investment made is measured too precisely, the market pricing
places too much valuation weight on the accounting report, providing an unmitigated incentive to
over- or under-invest. By allowing accounting manipulation, more noise is injected into accounting
reports and the market reacts by reducing the valuation weight. As a result, less pressure leads to

14It might also be interesting to compare the efficiency of discretionary accounting reports with the basic cash flow
setting. This takes the view that allowing either output-based or input-based accounting measurement implicitly
grants the firm the ability to manipulate their accounting performance. In other words, accrual accounting and the
manipulation option are a bundle.

From Theorem 4, under output-based accounting, the investment is always more efficient than in the cash flow
setup, but manipulation always incurs positive costs c

�
wOP

�
. Whether output-based accounting with manipulation

is preferable to the cash flow setup depends on the cost incurred and on benefits derived from the investment
improvement. The same tension exists under input-based cost accounting with manipulation. Specifically, input-
based accounting with manipulation is more efficient than the cash flow setup when (i) υ2

IP > Σ and (ii) c · θ0 is
sufficiently high. On the other hand, input-based accounting with manipulation is less efficient than the cash flow
setup when υ2

IP < Σ.
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less inefficient investment choices.15 Table 2 summarizes the effect of accounting manipulation.

Table 2: The effect of accounting manipulation for different accounting regimes

Parameter Region

Accounting Regimes k > k∗ k < k∗

Output-based γOP > 1, ∂
∂υ2

OP
γOP > 0 γOP < 1, ∂

∂υ2
OP

γOP < 0

Input-based
υ2

IP > σ2
θ

υ2
IP < σ2

θ

γIP > 1, ∂
∂υ2

IP
γIP > 0

γIP < 1, ∂
∂υ2

IP
γIP < 0

γIP < 1, ∂
∂υ2

IP
γIP < 0

γIP > 1, ∂
∂υ2

IP
γIP > 0

5.3 “Real” versus “Accounting” Manipulation

The above analysis points to a link between the so-called “real” earnings management and “ac-
counting” earnings management. Real management typically refers to the firm’s discretionary
choices which affect the firm’s cash flow for the sole purpose of inflating reported performance.
These choices are not in the best interest of the shareholders. Accounting management typically
refers to the firm’s discretionary choices which affect the firm’s reported performance by altering
the accounting measurement process. In our model, we interpret investment deviations from the
first-best as an example of real earnings management and accounting manipulation of y into w as
accounting earnings management.

Under the output-based measure, our results indicate that accounting earnings management
always leads to more real management. They are complements. This is because “accounting”
management leads to more mispricing. Under an input-based measure, a similar result is obtained
when the measurement noise is high. However, when noise is low, (especially in the region where
investment efficiency increases in noise,) accounting earnings management leads to less mispricing,
and more efficient investment choices are made. Here accounting management is a substitute for
real management. The intuition is that the accounting management introduces additional noise,
which leads to less market reaction to the accounting report. Less pressure on the accounting
numbers mitigates over- and under-investment incentives.

6 Extension II: Technology for future investments

In this section we modify the model to include a situation where the firm technology may be re-used
in the future. That is, from date-2 onwards, the owners of the firm may generate future cash flow
by investing in the firm technology they have acquired on date-1. In other words, the owners have
an option to invest and will exercise the option if the technology turns out to be profitable. In turn,

15This intuition does not follow when output-based is used because when the measurement noise is low, actual
investment only partially affects the accounting signal (recall yOP = k

√
θI + εOP ).
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on date-1, the capital market not only prices the cash flows generated from the date-0 investment,
it also prices the value of owning the technology that produces future cash flows.16

6.1 Model Modifications

To simplify the problem, we change the model as the following. On date-0, the firm chooses an
investment level, denoted I1 ∈ R+, based on the private signal θ, same as before.

On date-1, shares of the firm are traded in a competitive capital market. However, we assume
there are no on-going activities17 (x1 and x2) and only one public signal λm (m ∈ {OP, IP}), which
is produced by the accounting information system, is observable to outsiders. Similarly, we assume
that the firm can choose either an input-based approach (IP ), or an output-based approach (OP )
as the accounting measurement bases. For the output-based measure,

λOP = 2
√

θI1 + εOP (27)

where εOP ∼ N(0, σ2
OP ). The output-based accounting reports provide a noisy measurement of the

total investment return. For input-based measure,

λIP = I1 + εIP (28)

where εIP ∼ N(0, σ2
IP ). The input-based accounting reports provide a noisy measurement of the

investment costs.
Finally, on date-2, the owners observe the return of the initial investment 2

√
θI1, and choose

additional investments into the existing technology. We assume the present value of future cashflows
is rθ, r ∈ R+. A simple interpretation of this representation is that the future profitability of the
technology is the same as θ, and the future owners make optimal investment decision, knowing the
true θ. In this case, in every period this technology is viable, the owners choose optimal It to
maximize 2

√
θIt − It and generate periodic profits equal to θ, assuming a positive θ. As a result,

future profits can be represented by an annuity (or perpetuity). Parameter r summarizes the
importance of these future cashflows relative to the cashflow generated by the initial investment.
If the technology is long-lived or if the owners’ discount rate is low, more firm value comes from
future investments (or “growth opportunities”), leading to a higher r.

A more complex, perhaps more realistic, interpretation involves a non-stationary technology,
or future firm owners subjected to additional market frictions, or that the true θ is revealed to the
owners gradually through learning-by-doing. However, under these scenarios, it may be reasonable
to assume that the value of this re-investment option is proportional to the past profitability θ. As

16We wish to thank the referee for suggesting us to pursue this extension.
17This assumption is made for simplicity only. All results in this section survive if a stochastic on-going activities

are introduced as long as, as before, they are independent of other random variables in the model.
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a result, we believe our characterization is a reasonable approximation to capture the idea of this
option without bringing in additional complexity to the model.

6.2 Equilibrium under Modified Model

Now return to the pricing problem on date-1, without the on-going cashflows, the capital market
must estimate the value of the date-2 cashflow generated by past investment and the value of the
potential future cashflows generated by future investments. As a result, the market price is equal to
the expected value of the cash flow from existing project plus the present value of the reinvestment
option, that is

P = E[2
√

θI1 + rθ|Ω].

As before, when making the initial investment on date-0, the firm is motivated by both the
long-term interest and the short term interest. The convex combination of these concerns is the
same as the basic setup, that is −I1 + βP + (1− β)(2

√
θI1 + rθ).

We now analyze the equilibrium behavior of the firm with technology for future investments.

Theorem 6 If λOP = 2
√

θI1 +εOP and λIP = I1 +εIP , and using (6), there exists a unique linear
equilibrium relative to Ω = {λm}. It is given by

(i) an equilibrium linear pricing function:

P (λm) = am
λ + bm

λ × λm, where

bOP
λ =

(4γ′OP + 2r
√

γ′OP )σ2
θ

4γ′OP σ2
θ + σ2

OP

aOP
λ = (2

√
γ′OP + r − 2

√
γ′OP bOP

λ )θ0

bIP
λ =

(2
√

γ′IP + r)γ′IP σ2
θ

(γ′IP )2σ2
θ + σ2

IP

(29)

aIP
λ = (2

√
γ′IP + r − γ′IP bIP

λ )θ0

(ii) an equilibrium investment function:

Im
1 (θ) =

{
γ′mθ, if θ ≥ 0
0 if θ < 0

where

γ′OP =
(
1− β + βbOP

λ

)2
, γ′IP =

(
1− β

1− βbIP
λ

)2

(30)

With a valuable technology for future investments, the share price includes the market estimate
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of how much the firm will benefit from the technology ever after. Higher r indicates the firm is able
to generate more future cashflows for given a positive θ. Thus, the market response coefficient bm

λ is
strictly increasing in r. With higher market response coefficient, the firm has incentive to inflate the
perceived profitability. This can be achieved by inflating initial investment, which increases the
mean of either the input-based measure or the output-based measure. Therefore, the investment
decision Im

1 is strictly increasing in the parameter r.

Since the accounting measurements may not be perfectly precise, the market also responds to
the measurement noise. As the variance of measurement noise σ2

m gets higher, the accounting
reports are less informative, leading to a less responsive market price to the accounting report and
the firm has less incentive to over-invest. Therefore, the initial investment (Im

1 ) is strictly decreasing
in the measurement noise σ2

m. Because the two exogenous parameters (r and σ2
m) provide opposite

incentives of investment choices, there exists a knife-edge case that the two opposite effects exactly
offset each other, leading to the first-best initial investment.

6.3 Comparing Output-based and Input-based Accounting Measures

The following Corollary summarizes the properties of the equilibrium.

Corollary 3 If λOP = 2
√

θI1 + εOP and λIP = I1 + εIP ,

(i) if σ2
OP = 2rσ2

θ , investment choice is the first-best level, and
(ii) if σ2

IP = (r + 1)σ2
θ , investment choice is the first-best level.

(iii) If r > 1(r < 1), there exists a Σ∗ which lies in the interval between (r + 1)σ2
θ and 2rσ2

θ ,
such that a sufficient condition for input-based accounting to be more efficient than output-based
accounting is σ2

IP = σ2
OP ∈ [(r + 1)σ2

θ , Σ∗] (σ2
IP = σ2

OP ∈ [Σ∗, (r + 1)σ2
θ ]).

18

The presence of the reinvestment option changes the market pricing and (thus) initial investment
decisions. Compared with corresponding results in section 4 (see Theorem 4), the results are
different in two ways. First, even with the output-based measure, investment efficiency is no
longer monotonic in measurement noise. In particular, the output-based accounting measure does
not perform best when the measure is noiseless. Second, the parameter r, a growth potential
index so to speak, is important in determining economic efficiency, in addition to accounting rules
and measurement errors. Intuitively, as r increases, the market imposes more pressure on the
accounting reports, and the firm is motivated to inflate the reports.19

18When r = 1, we can show that output-based accounting is (weakly) more efficient than input-based accounting
once β is small enough.

19When r = 0, the model reverts back to the basic model with output-based model performs best when noiseless.
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To see the trade-off precisely, we briefly review the mispricing structure. Substituting the pricing
function (P = aOP

λ + bOP
λ λOP ) into the mispricing expression, we have

EεOP

[
P − (2

√
θI1 + rθ)|θ

]

= EεOP

[
aOP

λ + bOP
λ

(
2
√

θI1 + εOP
)
− (2

√
θI1 + rθ)|θ

]

=
[
bOP
λ − 1

]
2
√

θI1 − rθ + aOP
λ + EεOP [bOP

λ εOP |θ]

The investment choice is first-best when the mispricing does not depend on the investment choice.
Under the output-based measure, the mispricing is not a function of the initial investment only
if the market response to accounting measure is equal to unity (i.e., bOP

λ = 1). However, in this
modified model, a noiseless output-based measure will no longer lead to a unity market response.
This is because, in this modified model, the market is pricing two streams of cashflows. First,
for cashflows due to the initial investment, a unity response is needed with a noiseless measure.
Second, for cashflows due to future investments, a non-zero response is needed. Combined the
total response would be greater than unity in the noiseless case, thus providing ex ante incentive
to deviate from the first-best investment.

Figure 3 provides an illustration of results in Corollary 3. Compared to Figure 2, the main
difference is that the efficiency under the output-based measure peaks when the variance of the
measure is not zero. Furthermore, when r > 1, the peak occurs to the right of the peak under
the input-based measure. This is because, relative to the input-based measure regime, a higher
r imposes more market pressure on the accounting measure and thus leading a more “distorted”
investment choice.

====================
Insert Figure 3 Here

====================

Finally, the extension leads us to rethinking the subtleties of output-based accounting when
(re-investment) option value is important. From an accounting measurement perspective, λOP can
be viewed as a measure of “value in use,” ignoring the option value of future use (through future
investments). These measures do exist in accounting practices such as the re-valuation exercise in
accounting for asset impairment. However, one may argue the option value would be impounded
in a would-be exchange price of the asset in question. Fair value accounting measures, as proposed
by the recent FASB exposure draft, may be close to having this characteristic. One can even argue
these measures already exist in accounting practices such as the use of market value in initial and
re-valuation of certain assets and in the initial recording of goodwill (provided the market prices
are reflective of various option values).
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7 Conclusion

In this paper, we explore the trade-offs between two dominant accounting measurement bases:
input-based measures and output-based measures. We discover that the trade-offs go beyond
relevance and reliability issues commonly mentioned in accounting debates. We show that these
two measures affect investment incentives in fundamentally different ways. The output-based
measures have a natural advantage in aligning the firm and social investment incentives through
a dampening effect, which limits over- and under-investment tendencies. However, high levels of
noise and accounting manipulation, which are typically associated with output-based measures,
may make output-based accounting far from a perfect solution to all accounting problems.

With an input-based accounting measurement basis, accounting numbers are less comprehen-
sive, but their advantages are a lower level of noise and fewer accounting manipulation opportunities.
In fact, being less comprehensive makes small but positive noise and/or manipulation desirable.
Based on our analysis, the move toward output-based accounting, such as a fair value principle,
may not be beneficial and requires more care and more extensive debates.

Our model is simple. Future works may benefit from including operating and financial choices
and from analyzing more general settings with heterogeneous firms where accounting standards are
central to an economic analysis of accounting.
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Appendix

Proof of Limit Properties of the Approximation Assumption. In this part of the appendix,
we show that the approximation error, denoted AE, gets smaller and approaches zero as the mean
of z increases, for every realized value of the conditioning variable, y + az. To prove this this
formally, notice for every W ≡ y + az,

AE(W ) =
∫

z>0

∫

x
(x + z)f(x, z|y + az)dxdz + G(0|y + az)

∫

x
xf(x|y)dx

−
∫

z

∫

x
(x + z)f(x, z|y + az)dxdz

= G(0|y + az)
∫

x
xf(x|y)dx−

∫

z<0

∫

x
(x + z)f(x, z|y + az)dxdz (31)

and we need to prove both components of the AE(W ) expression approach zero as E[z] increases
to every realization of W ≡ y + az.

By assumption, the jointly distribution of x and y is

[
x

y

]
∼ N

([
µx

µy

]
,

[
σ2

x σxy

σxy σ2
y

])

and z v N [µz, σ
2
z ] is independent of x and y. Hence, the jointly distribution of x, z and y + az is




x

z

y + az


 ∼ N







µx

µz

µy + aµz


 ,




σ2
x 0 σxy

0 σ2
z aσ2

z

σxy aσ2
z σ2

y + a2σ2
z







By the property of normal density function, the conditional distribution of z given any realiza-
tion of W ≡ y + az is

z|W v N [µz +
aσ2

z

σ2
y + a2σ2

z

(W − µy − aµz) ,
σ2

zσ
2
y

σ2
y + a2σ2

z

] (32)

To simplify the notation, we denote the above by z|W v N [µz′ , σ
2
z′ ] . And the jointly conditional

distribution of x and z given any realization of W is

[
x

z
|W

]
∼ N





 µx + σxy

σ2
y+a2σ2

z
(W − µy − aµz)

µz + aσ2
z

σ2
y+a2σ2

z
(W − µy − aµz)


 ,


 σ2

x − σ2
xy

σ2
y+a2σ2

z
− σxyaσ2

z

σ2
y+a2σ2

z

− σxyaσ2
z

σ2
y+a2σ2

z

σ2
zσ2

y

σ2
y+a2σ2

z





 (33)

Again to simplify, we denote the above by

[
x

z
|W

]
∼ N

([
µx′

µz′

]
,

[
σ2

x′ σxz

σxz σ2
z′

])
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Using (32), the conditional cumulative density function of z, G(z|W ) = Φ
(

z−µz′
σz′

)
, where Φ (·)

is the standard normal cumulative distribution function (cdf). Hence, G(0|W ) = Φ
(−µz′

σz′

)
. If

µz increases, −µz′
σz′

goes to negative infinity because, µz′ ≡ σ2
y

σ2
y+a2σ2

z
µz + aσ2

z
σ2

y+a2σ2
z

(W − µy), for any

given W . By the property of standard normal cumulative density function (Φ (·)), Φ
(−µz′

σz′

)
→ 0

as −µz′
σz′

→ −∞. Therefore, the first component of (31), G(0|W )
∫

x
xf(x|y)dx, goes to zero.

Using (33), the second component of (31) is

∫

z<0

∫

x
(x + z)f(x, z|W ≡ y + az)dxdz

=
∫

z<0

∫

x
(x + z)f(z|W )f(x|z,W )dxdz

=
∫

z<0
[
∫

x
xf(x|z, W )dx + z

∫

x
f(x|z, W )dx]f(z|W )dz

=
∫

z<0
[µx′ +

σxz

σ2
z′

(z − µz′) + z]f(z|W )dz

=
[
µx +

σxy

σ2
y

(W − µy)
]

G(0|W ) +
(

1− aσxy

σ2
y

) ∫

z<0
zf(z|W )dz

Similar to the first component, the first part of second component,
[
µx + σxy

σ2
y

(W − µy)
]
G(0|W ),

also approaches zero when µz increases.
Finally, we need to find show the second part of the second component,

∫
z<0 zf(z|W )dz, goes

to zero as µz increases.

∫

z<0
zf(z|W )dz =

1
σz′
√

2π

∫ 0

−∞
z exp(−(z − µz′)

2

2σ2
z′

)dz

=
1

σz′
√

2π

∫ 0

−∞
z exp(− z2

2σ2
z′

) · exp(
zµz′

σ2
z′

) · exp(− µ2
z′

2σ2
z′

)dz

Because z is always negative, exp(zµz′
σ2

z′
) must be positive and always smaller than one. So the abso-

lute value of above expression must be smaller than the absolute value of 1
σz′
√

2π

∫ 0
−∞ z exp(− z2

2σ2
z′

) ·
exp(− µ2

z′
2σ2

z′
)dz = σz′√

2π
exp(− µ2

z′
2σ2

z′
). As the mean of µz increases, − µ2

z′
2σ2

z′
goes to negative infinity.

Hence the absolute value of 1
σz′
√

2π

∫ 0
−∞ z exp(− z2

2σ2
z′

) · exp(− µ2
z′

2σ2
z′

)dz goes to zero, and thus, the

second part of the second component,
∫
z<0 zf(z|W )dz, also approaches zero.

To summarize, we have shown for every W ≡ y+az, as µz increases, AE(W ) approaches zero. ¥
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Proof of Theorem 1. We begin with the linear pricing conjecture:

P (z1) = a + bz1

The manager’s maximization program becomes:

Choose I(θ) to max
∫

θ
V (θ|I(·))G(θ)dθ

=
∫

θ
Ex1x2 [−I + βP + (1− β)(z1 + z2)]G(θ)dθ

= −I + β(a + b(µ +
∫

θ
k
√

θIG(θ)dθ)) + (1− β)
(

2µ +
∫

θ
2
√

θIG(θ)dθ

)

The point-wise first-order condition with respect to I is, for θ > 0,

0 = −1 +
(1− β + βbk

2 )
√

θ√
I

I =
(

1− β +
βbk

2

)2

θ

=
(

1 + β

(
bk

2
− 1

))2

θ

and for θ < 0, I = 0. So, it must be the case that

δ =
(

1 + β

(
bk

2
− 1

))2

Given that δ and k are constants,

(
x1 + x2 + 2

√
δθ

x1 + k
√

δθ

)
∼ N

((
2µ + 2

√
δθ0

µ + k
√

δθ0

)
,

[
2(1 + α)σ2 + 4δσ2

θ (1 + α)σ2 + 2kδσ2
θ

(1 + α)σ2 + 2kδσ2
θ σ2 + k2δσ2

θ

])
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So, we have the approximate pricing function, using (6) :

P = E[z1 + z2|z1] = E[x1 + x2 + 2
√

θI|x1 + k
√

θI]

=̃E[x1 + x2 + 2θ
√

δ|x1 + kθ
√

δ]

= 2µ + 2
√

δθ0 +
(1 + α)σ2 + 2kδσ2

θ

σ2 + k2δσ2
θ

(z1 − µ− k
√

δθ0)

=
(1− α)σ2 + 2(k2 − k)δσ2

θ

σ2 + k2δσ2
θ

µ +
(2− (1 + α)k)σ2

σ2 + k2δσ2
θ

√
δθ0

+
(1 + α)σ2 + 2kδσ2

θ

σ2 + k2δσ2
θ

z1

So, it must be the case that

a = (2− b)µ + (2− kb)
√

δθ0

b =
(1 + α)σ2 + 2kδσ2

θ

σ2 + k2δσ2
θ

To show the existence of δ and b, substituting b into δ, and simplifying, we have

(√
δ − 1

)
·
(

k2δ
σ2

θ

σ2
+ 1

)
= β

[
k (1 + α)

2
− 1

]

As β ∈ [0, 1], k ∈ [0, 2], and α ∈ (−1, 1), the range of the right-hand-side is from -1 to 1. As
δ > 0, and all of the functions are continuous, the left-hand-side covers the range from -1 to +∞.

Therefore, there is at least one positive root of δ.20 ¥

Proof of Theorem 2. Suppose the manager chooses the first-best investment δ = 1. Corre-
spondingly, using (7), (8), and (9) the market pricing function would be

P (z1) = a + bδ=1 × z1, where

bδ=1 =
(1 + α)σ2 + 2kσ2

θ

σ2 + k2σ2
θ

, a = (2− bδ=1)µ + (2− kbδ=1)θ0

To sustain the equilibrium, the manager’s reaction to bδ=1 = (1+α)σ2+2kσ2
θ

σ2+k2σ2
θ

must indeed be to set
δ = 1, which is the first-best investment level. That is, it must be the case that

δ|bδ=1, k=k∗ = 1

20Technically, in some rare cases (when the right-hand-side is very close to -1), the function could have three positive
roots of δ. Then, in our study, we only consider the root that is closest to one. That is, in multiple equilibrium cases,
the economy chooses the most efficient one.
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Using (11), we have

δ|bδ=1, k=k∗ =
(

1 + β

(
bδ=1k

∗

2
− 1

))2

=


1 + β




(1 + α)σ2 + 2 2
1+ασ2

θ

σ2 +
(

2
1+α

)2
σ2

θ

·
2

1+α

2
− 1







2

= 1

Generally, we re-write bk as the following

bk =
(1 + α)σ2 + 2kδσ2

θ

σ2 + k2δσ2
θ

· k

= 2 +
[(1 + α)k − 2]σ2

σ2 + k2δσ2
θ

So

δ =
(

1 + β

(
bk

2
− 1

))2

=
(

1 +
β

2
· [(1 + α)k − 2]σ2

σ2 + k2δσ2
θ

)2

Now it is clear that if k > k∗, δ > 1, and k < k∗, δ < 1. ¥

Proposition 1 Comparative Statics in the Basic Setup

1. δ and b strictly increase in α;

2. When k > k∗(k < k∗), δ and b strictly decrease in σ2
θ

σ2 (strictly increase in σ2
θ

σ2 ); and

3. When k > k∗(k < k∗), δ strictly increases in β (strictly decreases in β). Also b strictly
decreases in β for any k 6= k∗.

Proof of Proposition 1. Using the pricing function (8), substituting b into the manager’s in-
vestment decision (11), we have the following equation which has to hold in equilibrium.

(√
δ − 1

)
·
(

k2δ
σ2

θ

σ2
+ 1

)
= β

[
k (1 + α)

2
− 1

]
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The left-hand-side increases monotonically in δ21, and is independent of α. The right-hand-side
increases monotonously in α, and is independent of δ. It is easy to see that δ strictly increases in α.

By (11), b strictly increases in δ , therefore, b strictly increases in α. From Theorem 2, δ > 1 when
k > k∗. Given the equation above, the right-hand-side is positive as k > k∗. As σ2

θ
σ2 increases, δ has

to decrease to let the equation sustain. Similarly if k < k∗, δ increases in σ2
θ

σ2 .By (11), b changes
in the same way as δ. As we show above, the left-hand-side increases monotonously in δ. When
k > k∗, the right-hand-side increases in β, so δ strictly increases in β. Similarly, δ strictly decreases
in β, when k < k∗, and δ is equal to one regardless of β, when k = k∗. To analyze the change of b,

re-write (8) as the following,

b =
2
k

+
(1 + α)− 2

k

1 + k2δ
σ2

θ
σ2

If k > k∗, (1 + α) − 2
k > 0. As β increases, δ increases from the above analysis. Therefore, b

decreases in β. Similarly, b also strictly decreases in β, when k < k∗,and is equal to 1+α regardless
of β, when k = k∗. ¥

Remarks: The first result is quite straight-forward. As α increases, the short-term and long-
term cash flows from the on-going activities are more correlated. Therefore, the market response
coefficient b increases, and the firm has an incentive to invest more to inflate the market price.
That is, δ increases.

Combined with Theorem 2, the second comparative static result shows that a higher σ2
θ

σ2 can
induce a more efficient investment level (i.e., pushing δ closer to one). As σ2 gets lower, the on-going
cash flows are less noisy, making the aggregate cash flow report (z1 = x1 +k

√
θI) more informative

about the short-term investment return (k
√

θI). Intuitively, it is easier for the market to identify
the first-period investment return. (Technically, the market response coefficient is closer to 2

k as
σ2

θ
σ2 increases.) As a result, the short-term investment return is less mispriced while the on-going
cash flow is more mispriced. However, given that the mispricing of the on-going cash flow does not
have any negative effect on the real investment decision, an increase in σ2

θ
σ2 improves the investment

efficiency. In the extreme, when σ2 approaches zero, the equilibrium achieves first-best results.
With short-term pressure (β > 0), the firm investment deviates from the first-best (by Theorem

2). The magnitude of the deviation increases in market pressure (β). As the firm makes less
efficient investment under more market pressure, the market responds less to the cash flow report
(b decreases in β) because the value lost due to inefficient investment increases in β.

Proof of Theorem 3. Suppose the firm chooses an input-based accounting system, based on the
linear conjecture:

21The monotonicity is based on the previous assumption that in the case of multiple roots for the equilibrium δ,
the economy chooses the root with which the investment is most efficient. See proof of Theorem 1.
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P (z1, y
IP ) = aIP + bIP

z × z1 + bIP
y × yIP

The manager maximizes the expected payoff:

Choose I(θ) to max
∫

θ
V (θ|I(·))G(θ)dθ

=
∫

θ
Ex1x2 [−I + βP + (1− β)(z1 + z2)]G(θ)dθ

= −I + β(aIP + bIP
z (µ +

∫

θ
k
√

θIG(θ)dθ) + bIP
y I) + (1− β)

(
2µ +

∫

θ
2
√

θIG(θ)dθ

)

The point-wise first-order condition with respect to I is for θ > 0, and we have

0 = −1 +
(1− β + βkbIP

z
2 )

√
θ√

I
+ βbIP

y

IIP =

(
1− β + βkbIP

z
2

1− βbIP
y

)2

θ

and for θ < 0, IIP = 0.

So it must be the case that

δIP =

(
1− β + βkbIP

z
2

1− βbIP
y

)2

Using (21), (22), we have




x1 + x2 + 2
√

δIP θ

x1 + k
√

δIP θ

εIP + δIP θ


 is normally distributed with mean




2µ + 2
√

δIP θ0

µ + k
√

δIP θ0

δIP θ0


 ,

and variance




2(1 + α)σ2 + 4δIP σ2
θ (1 + α)σ2 + 2kδIP σ2

θ 2δ
3
2
IP σ2

θ

(1 + α)σ2 + 2kδIP σ2
θ σ2 + k2δIP σ2

θ kδ
3
2
IP σ2

θ

2δ
3
2
IP σ2

θ kδ
3
2
IP σ2

θ δ2
IP σ2

θ + σ2
IP


 .
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Using the approximation assumption (6), the pricing function becomes

P = E[z1 + z2|z1, y
IP ] = E[x1 + x2 + 2

√
θI|x1 + k

√
θI, I + εIP ]

=̃E[x1 + x2 + 2θ
√

δ|x1 + kθ
√

δ, δθ + εIP ]

= 2µ + 2
√

δIP θ0 +
[

(1 + α)σ2 + 2kδIP σ2
θ , 2δ

3
2
IP σ2

θ

]
·


 σ2 + k2δIP σ2

θ kδ
3
2
IP σ2

θ

kδ
3
2
IP σ2

θ δ2
IP σ2

θ + σ2
IP



−1

·
[

z1 − µ− k
√

δIP θ0

yIP − δIP θ0

]

= 2µ + 2
√

δIP θ0 +
(1 + α)δ2

IP σ2σ2
θ + (1 + α)σ2σ2

IP + 2kδIP σ2
IP σ2

θ

δ2
IP σ2σ2

θ + σ2σ2
IP + k2δIP σ2

IP σ2
θ

·
(
z1 − µ− k

√
δIP θ0

)

+
[2− (1 + α)k] δ

3
2
IP σ2σ2

θ

δ2
IP σ2σ2

θ + σ2σ2
IP + k2δIP σ2

IP σ2
θ

· (yIP − δIP θ0

)

So it must be the case that

bIP
z =

(1 + α)δ2
IP σ2σ2

θ + (1 + α)σ2σ2
IP + 2kδIP σ2

IP σ2
θ

δ2
IP σ2σ2

θ + σ2σ2
IP + k2δIP σ2

IP σ2
θ

bIP
y =

[2− (1 + α)k] δ
3
2
IP σ2σ2

θ

δ2
IP σ2σ2

θ + σ2σ2
IP + k2δIP σ2

IP σ2
θ

aIP = (2− bIP
z )µ + (2− kbIP

z −
√

δIP bIP
y )

√
δIP θ0

To show the existence of δIP , bIP
z and bIP

y , substituting bIP
z (19) and bIP

y (20) into the investment
decision (22), we obtain

(√
δIP − 1

)
·
(

k2δIP
σ2

θ

σ2
+ 1 +

δ2
IP σ2

θ

σ2
IP

)
= β

[
k (1 + α)

2
− 1

]
·
(

1− δ2
IP σ2

θ

σ2
IP

)

As δIP ∈ (0,+∞), and the all functions are continuous, the left-hand-side at least covers the range
from −1 to +∞. The range of the left-hand-side could be larger depending on the parameter space.
The right-hand-side (a parabola) at least covers the range (β

[
k(1+α)

2 − 1
]
,−∞). We showed earlier

that the range of β
[

k(1+α)
2 − 1

]
is from −1 to 1. So the left-hand-side curve and the right- hand-

side curve must intersect at least once in δIP ∈ (0, +∞). Therefore, there is at least one positive
root of δIP .

Using a similar method, we obtain the linear equilibrium under output-based accounting. ¥

Proof of Corollary 1. From Theorem 3, using the pricing function (16) and , substituting bOP
z

(17) and bOP
y (18) into the manager’s investment decision (22), we obtain the following equation,
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which has to hold in equilibrium under the output-based accounting,

(√
δOP − 1

)
·
(

k2δOP
σ2

θ

σ2
OP

+ 1 + k2δOP
σ2

θ

σ2

)
= β

[
k (1 + α)

2
− 1

]
(34)

The second parenthesis on the left-hand-side of the equation is always positive and decreases in
σ2

OP . So, the absolute value of
(√

δOP − 1
)

must increase in σ2
OP , (given that the right- hand-side is

a constant,) which indicates better investment choices as σ2
OP is lower. As the sign of

(√
δOP − 1

)

is the same as the right-hand-side, δOP increases (decreases) in σ2
OP when k > k∗ (k < k∗).

For input-based accounting, we substitute bIP
z (19) and bIP

y (20) into the manager’s investment
decision (22), and we obtain the following equation:

(√
δIP − 1

)
·
(

k2δIP
σ2

θ

σ2
+ 1 +

δ2
IP σ2

θ

σ2
IP

)
= β

[
k (1 + α)

2
− 1

]
·
(

1− δ2
IP σ2

θ

σ2
IP

)
(35)

Suppose k > k∗. The right-hand-side must be positive when σ2
IP is sufficiently high, which means

the left-hand-side is positive or δIP > 1 or the firm overinvests. As σ2
IP is reduced, the right-

hand-side decreases and the second parenthesis on the left-hand-side increases. Thus, to maintain
equation (35), δIP has to be reduced, mitigating the investment inefficiency. Once σ2

IP is reduced
to σ2

θ , the equilibrium reaches the first-best, δIP = 1. However, as σ2
IP continues to decrease past

σ2
θ , the right-hand-side turns negative, and δIP has to be lower than one to sustain equation (35).

The investment δIP becomes less as σ2
IP continues to decrease. We get similar results in the case

of k < k∗. Thus, δIP increases (decreases) in σ2
IP when k > k∗(k < k∗).

From Theorem 3, using (17), (18), (19), and (20), we can readily find the effect of σ2
m on the

market response coefficients bm
z and bm

y . ¥

Proof of Theorem 4. To prove claim (i), substituting σ2
OP = 0 into (17) and (18), we have

bOP
z = 1 + α, and bOP

y = 2
k − (1 + α) . Then using (22), the investment level is first-best (δOP = 1).

To prove claim (ii), suppose that the manager chooses the first-best investment level I = θ under
input-based accounting. Correspondingly, using (16), (19), and (20), the market pricing function
would be

P IP (z1, y
IP ) = aIP + bIP

z,δa=1 × z1 + bIP
y,δa=1 × yIP , where

bIP
z,δa=1 =

(1 + α)σ2(σ2
θ + σ2

IP ) + 2kσ2
IP σ2

θ

σ2(σ2
θ + σ2

IP ) + k2σ2
IP σ2

θ

,

bIP
y,δa=1 =

[2− (1 + α)k] σ2σ2
θ

σ2(σ2
θ + σ2

IP ) + k2σ2
IP σ2

θ

To sustain the equilibrium, the manager’s reaction to bIP
z,δa=1 and bIP

y,δa=1 must, indeed, be to set
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the investment at the first-best level. That is, it must be the case that

δIP |bIP
z,δa=1,bIP

y,δa=1
= 1

By assuming σ2
IP = σ2

θ , we have

bIP
z,δa=1 =

2(1 + α)σ2σ2
θ + 2kσ4

θ

2σ2σ2
θ + k2σ4

θ

,

bIP
y,δa=1 =

[2− (1 + α)k]σ2σ2
θ

2σ2σ2
θ + k2σ4

θ

Using (22), we have

δIP =

(
1− β + βkbIP

z
2

1− βbIP
y

)2

Substituting bIP
z,δa=1 and bIP

y,δa=1 into the above expression yields:

δIP |bIP
z,δa=1,bIP

y,δa=1
=




1 + β
[(1+α)k−2]σ2σ2

θ

2σ2σ2
θ+k2σ4

θ

1− β
[2−(1+α)k]σ2σ2

θ

2σ2σ2
θ+k2σ4

θ




2

= 1

Claim (iii) and (iv) compare the investment efficiency under different accounting basis. Recall
the expected net return of the project is, using (21)

E[Rm] = E[f1(θ, Im) + f2(θ, Im)− Im] = E[2
√

θIm − Im] =
[
1− (

√
δm − 1)2

]
· θ0 (36)

It is clear from (36) that E[Rm] is single-peaked at δm = 1,m ∈ {IP,OP}.
To prove claim (iii), invoke claim (ii) of Theorem 4: δIP = 1 when σ2

IP = σ2
θ ; and invoke claim

(ii) of Corollary (1): δIP is monotonic in σ2
IP (increasing or decreasing depending on k). Combined,

we must have that E[RIP ] is single-peaked at σ2
IP = σ2

θ regardless of k.

Next, we compare E[RIP ] in the two extreme cases: (1) the case without the input-based
accounting measures (or the case σ2

IP = +∞ by Corollary 1 claim (i)), and (2) the case of a
perfectly precise input-based accounting measures (σ2

IP = 0). Substituting σ2
IP = +∞ into (19),

and (20), we have bIP
z = (1+α)σ2+2kδIP σ2

θ

σ2+k2δIP σ2
θ

, and bIP
y = 0. Then using (22), we have,

√
δIP = 1 +

β
[

k(1+α)
2 − 1

]

k2δIP
σ2

θ
σ2 + 1

, when σ2
IP →∞
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substitute into (36), the expected project return is

E[RIP |σ2
IP →∞] =


1−

β2
[

k(1+α)
2 − 1

]2

(
k2δIP

σ2
θ

σ2 + 1
)2


 · θ0

Similarly, for a perfect input-based accounting, substituting σ2
IP = 0 into (19), and (20), we

have bIP
z = 1 + α, and bIP

y = [2− (1 + α)k] δ
− 1

2
IP . Then using (22),

√
δIP = 1− β

[
k (1 + α)

2
− 1

]
, when σ2

IP = 0

substitute into (36), the expected project return is

E[RIP |σ2
IP = 0] =

[
1− β2

[
k (1 + α)

2
− 1

]2
]
· θ0

Because,
(
k2δIP

σ2
θ

σ2 + 1
)2

> 1, so E[RIP |σ2
IP →∞] > E[RIP |σ2

IP = 0]. Therefore, the expected
project return in the basic setting is higher than the return with precise input-based reports.
Because δIP is continuous in σ2

IP , so that E[RIP ] is continuous in σ2
IP , there must exist a Σ

(0 < Σ < σ2
θ) such that for any σ2

IP > Σ (σ2
IP < Σ), the input-based accounting is more (less)

efficient than the basic cash flow reporting system.
To prove claim (iv), a similar argument shows that E[RIP ] is single-peaked at σ2

OP = 0. There-
fore, E[ROP ] monotonically decreases in σ2

OP ∈ [0,+∞) regardless of k. Given the following
arguments:

• E[RIP ] is strictly increasing in σ2
IP ∈ [0, σ2

θ ] and reaches E[RIP ] = 1 (the first-best) when
σ2

IP = σ2
θ ;

• E[ROP ] is strictly decreasing in σ2
OP ∈ [0, σ2

θ ] ⊂ [0, +∞) and reaches E[ROP ] = 1 (the
first-best) when σ2

OP = 0;

• Both E[RIP ] and E[ROP ] are continuous in σ2
m over [0, +∞);

there must exist a Σ′ (Σ < Σ′ < σ2
θ), such that for any σ2

IP ∈ [Σ′, σ2
θ ] and σ2

OP > Σ′, E[RIP ] >

E[ROP ], as claimed by (iv) of Theorem (4). ¥

Proof of Theorem 5. After privately observing the unmanipulated ym, and the realization
of cash flow (z1) and cost parameter (ξm), the manager/firm chooses the accounting report wm
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following the optimization program below, with an equilibrium conjecture of linear market pricing
function P (z1, w

m) = am
w + bm × z1 + dm × wm,:

max
wm

βP (z1, w
m) + (1− β)Ez2 [z1 + z2]− c (wm)

Given the linear pricing and quadratic personal cost function, the solution to the optimization
problem is well defined and yields a simple solution that in equilibrium, the following holds:

wm = ym + ξm +
βdm

cm

Therefore the reported accounting number is simply a noised-up version of the underlying, unma-
nipulated number. Precisely, the reported accounting number has the following property:

E[wm] = E[ym] +
βdm

cm

V ar[wm] = V ar[ym] + V ar[ξm] = σ2
m + η2

m

The rest of the proof follows exactly as the proof of Theorem 3, substituting υ2
m with V ar[wm] =

σ2
m + η2

m. Note the adjustment to E[ym] will only affect the intercept part of the pricing function
(am

w ), which has no incentive effects on the initial investment. ¥

Proof of Corollary 2. Given Theorem 5, we know adding accounting manipulation option
would increase the noise of the reported accounting number. Under the output-based accounting
measures, given Corollary 1-(ii) and Theorem 4-(i), this leads to a loss of welfare on two fronts: (1)
less efficient investment decisions and (2) non-zero (personal) cost of manipulation activities. so
accounting manipulation always makes the firm worse off.

Under the input-based accounting measure, if υ2
IP < σ2

θ , adding noise to the accounting number
improves investment efficiency, given Corollary 1-(ii) and Theorem 4-(ii). If cIP ·θ0 is high enough,
the personal cost is small enough (because cIP is large) and the benefit of improved investment
efficiency is large enough (because θ0 is large). So the investment benefit outweights the loss due
to manipulation costs. Therefore, accounting manipulation is value-enhancing. ¥

Proof of Theorem 6. Suppose the firm chooses an input-based accounting system, based on the
linear conjecture:

P (λm) = am
λ + bm

λ × λm
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the manager maximizes the expected payoff:

Choose I1(θ) to max
∫

θ
V (θ|I1(·))G(θ)dθ

=
∫

θ
E

[
−I1 + βP + (1− β)(2

√
θI1 + rθ)

]
G(θ)dθ

= −I1 + β(aIP
λ + bIP

λ I1) + (1− β)
(∫

θ
(2

√
θI1 + rθ)G(θ)dθ

)

The point-wise first-order condition wrt I1 is for θ > 0, we have

0 = −1 +
(1− β)

√
θ√

I
+ βbIP

λ

IIP
1 =

(
1− β

1− βbIP
λ

)2

θ

and for θ < 0, IIP
1 = 0. So it must be the case that

γ′IP =
(

1− β

1− βbIP
λ

)2

Using (30), we have(
2
√

γ′IP θ + rθ

γ′IP θ + εIP

)
∼ N

((
(2

√
γ′IP + r)θ0

γ′IP θ0

)
,

[
(2

√
γ′IP + r)2σ2

θ (2
√

γ′IP + r)γ′IP σ2
θ

(2
√

γ′IP + r)γ′IP σ2
θ (γ′IP )2σ2

θ + σ2
IP

])

Using the approximation assumption, the pricing function becomes

P = E[2
√

θI1 + rθ|λIP ] = E[2
√

θI1 + rθ|I1 + εIP ]

=̃E[(2
√

γ′IP + r)θ|γ′IP θ + εIP ]

= (2
√

γ′IP + r)θ0 +
(2

√
γ′IP + r)γ′IP σ2

θ

(γ′IP )2σ2
θ + σ2

IP

(λIP − γ′IP θ0)

So it must be the case that

bIP
λ =

(2
√

γ′IP + r)γ′IP σ2
θ

(γ′IP )2σ2
θ + σ2

IP

aIP
λ = (2

√
γ′IP + r − γ′IP bIP

λ )θ0

To show the existence of γ′IP and bIP
λ , substituting bIP

λ into γ′IP , and simplifying, we have

√
γ′IP − 1 = β

γ′IP (2
√

γ′IP + r − γ′IP )− σ2
IP

σ2
θ

γ′IP [γ′IP − β(2
√

γ′IP + r)] + σ2
IP

σ2
θ
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As γ′IP ∈ (0, +∞), and the all functions are continuous, the left-hand-side is increasing in γ′IP and
covers the range from −1 to +∞. The right-hand-side is −β as γ′IP is zero, and also converges to
−β as γ′IP goes to infinity. Since we assume that β is from −1 to 1. So the left-hand-side curve
and the right- hand-side curve must intersect at least once in γ′IP ∈ (0,+∞). Therefore, there is at
least one positive root of γ′IP .

Using the similar method, we obtain the linear equilibrium under output-based accounting sys-
tem. ¥

Proof of Corollary 3. Suppose the manager chooses the first-best investment level I1 = θ under
input-based accounting. Correspondingly, using (29), the market pricing function would be

P (λIP ) = aIP
λ + bIP

λ,γ′IP =1 × λIP , where

bIP
λ,γ′IP =1 =

(2 + r)σ2
θ

σ2
θ + σ2

IP

,

To sustain the equilibrium, the manager’s reaction to bIP
λ,γ′IP =1 must, indeed, be to set the investment

at the first-best level. That is, it must be the case that

γ′IP |bIP
λ,γ′

IP
=1

= 1

By assuming σ2
IP = (r + 1)σ2

θ , we have

bIP
λ,γ′IP =1 =

(2 + r)σ2
θ

σ2
θ + σ2

IP

= 1

Using (30), we have

γ′IP =

(
1− β

1− βbIP
λ,γ′IP =1

)2

= 1

Using the similar method, we get the firm is motivated to choose γ′OP = 1 if σ2
OP = 2rσ2

θ under
output-based accounting. As the investment γ′m is strictly decreasing in the measurement noise σ2

m,

under both accounting measurements, the efficiency of investment is strictly decreasing from the
first-best to either direction. As γ′m is continuous in σ2

m, if r > 1(r < 1), there must exist a Σ∗

which lies in the interval of (r + 1)σ2
θ and 2rσ2

θ , such that input-based accounting is more efficient
than output-based accounting when σ2

IP = σ2
OP ∈ [(r + 1)σ2

θ , Σ∗] (σ2
IP = σ2

OP ∈ [Σ∗, (r + 1)σ2
θ ]). ¥
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Figure 2: The effect of accounting quality on the net project return
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Figure 3: Investment Efficiency in the Modified Model (r = 2)


