
Fast Information-Theoretic Agglomerative
Co-Clustering

Tiantian Gao Leman Akoglu

Stony Brook University
Department of Computer Science

{tiagao,leman}@cs.stonybrook.edu

Preliminaries

Our algorithm iteratively merges those clusters whose merge yields a lower ob-
jective cost. However, operations such as finding nearest neighbors or closest pair
of clusters are expensive, especially in high dimensions. To quickly find highly
similar clusters to be merged, we exploit the Locality-Sensitive Hashing (LSH)
technique, which we briefly describe in this section.

Simply put, LSH [2] is a randomized algorithm for similarity search among a
given set of data points D. It uses a hash function h which ensures that similar
points are hashed to the same entry (hash bucket) with high probability, while
non-similar points are hashed to the same bucket with low probability. As a
result, it quickens the similarity search by narrowing down the search to points
that are hashed to the same bucket. In order to further reduce the probability of
highly similar points hashing to different buckets, it uses multiple hash functions.

LSH uses different, suitable hash functions for similarity search with respect
to different similarity functions. In this paper, we will use two: min-hashing [1] for
Jaccard similarity and random-projection-based hashing [3] for cosine similarity.
We next explain each one in more detail.

Min-hashing for Jaccard similarity.

Let data points in D consist of subsets of some global set of items I and the

similarity function of interest be the Jaccard similarity J(Di, Dj) =
|Di∩Dj |
|Di∪Dj | . Let

π be a random permutation on the indices of I. For a data point Di ⊆ I, the min-
hash value is defined as vπ(Di) = mindi∈Di

{π(di)}. Each random permutation
π gives a hash value vπ, which maps every data point to an integer hash value.
Given two data points Di, Dj ⊆ I, it can be shown that the probability that
their hash values agree is equal to their Jaccard similarity, i.e., Pr[vπ(Di) =
vπ(Dj)] = J(Di, Dj).

For a single hash value, the probability of two points hashing to the same
bucket increases linearly with their similarity. In LSH, often a signature consist-
ing of l min-hashes are generated for every data point, using l random permu-
tations π1, . . . , πl. This way, the probability two points matching on the same
hash bucket becomes J(Di, Dj)

l.

2 Tiantian Gao Leman Akoglu

Random projections for cosine similarity.

Similarly, let data points in D be d dimensional vectors and the similarity func-
tion of interest be the cosine similarity cos(Di, Dj) = 1− θ(Di, Dj), where θ de-
notes the angle between the two vectors. Let rnd be a random hyperplane. For a
data vector Di ∈ Rd, the hash value is defined as vrnd(Di) = sign(Di·rnd) = ±1,
depending on which side of the hyperplane Di lies. Given two data points
Di, Dj ∈ Rd, it can be shown that the probability that their hash values agree is
closely related to their cosine similarity, in particular, Pr[vrnd(Di) = vrnd(Dj)] =

1 − θ(Di,Dj)
π . Using a number of random vectors, one can generate a signature

of length l as before.

LSH parameters.

Let s denote the similarity (Jaccard or cosine) between two data points. With
a signature of length l, probability that these two points will hash to the same
bucket is proportional to sl. This probability may be very small even for large
s ∈ [0, 1], i.e. two points may hash to different buckets even if they are sufficiently
similar, which yields many false negatives. Even for small l, e.g. l = 1, the amount
of false negatives might be undesirable (see Figure 1(a)).

false

negative

false

positive

false

negative

false

positive

(a) s vs. sl (b) s vs. 1− (1− sr)b

Fig. 1. Probability of two data points with similarity s hashing to the same bucket,
using (a) single hash function, and (b) multiple hash functions. Shaded regions depict
false negatives and false positives for threshold similarity s = 0.7 and for the parameters
depicting the red curve.

To circumvent this issue, one can hash the signature of a data point multiple
times. Specifically, r < l elements from the original signature are randomly
sampled to generate a sub-signature which is used for hashing. Sub-signature
hashing is repeated b times. This results in b hash tables. This way the probability
of two points to be hashed to the same bucket in at least one of the hash tables
becomes 1− (1− sr)b. Intuitively, this transforms the probability curve into an
S-shape curve for which parameters r and b can be tuned to catch the most
similar points and only a few non-similar points (see Figure 1(b)).

Fast Information-Theoretic Agglomerative Co-Clustering 3

Number of sampled elements r:
The size of a (sub-)signature r determines how far (or non-similar) points

can take the same hash value. For large r, only highly similar points are likely to
hash to the same value (more false negatives), whereas for small r farther points
can hash to the same value (more false positives).

Number of hash tables b:
By increasing the number of hash tables (or repetitions) b, sufficiently similar

points could enter the same bucket for at least one hash table. This reduces
the false negatives. On the other hand, for large b, farther points can also be
contained in the same buckets (more false positives). Often, false positives are
eliminated by measuring the real similarities of points in the same buckets.
However, this increases the running time.

Overall, the LSH parameters r and b are used to adjust the trade-off between
false positives (larger running time) and false negatives (smaller coverage).

References

1. A. Broder. On the resemblance and containment of documents. In Compression
and Complexity of Sequences, pages 21–29, 1997.

2. A. Gionis, P. Indyk, and R. Motwani. Similarity search in high dimensions via
hashing. In VLDB, pages 518–529, 1999.

3. W. Johnson and J. Lindenstrauss. Extensions of Lipschitz mappings into a Hilbert
space. volume 26 of Contemporary Mathematics, pages 189–206. 1984.

