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Abstract

Advances in data collection and storage capacity have made
it increasingly possible to collect highly volatile graph data for
analysis. Existing graph analysis techniques are not appropriate
for such data, especially in cases where streaming or near-real-
time results are required. An example that has drawn signifi-
cant research interest is the cyber-security domain, where inter-
net communication traces are collected and real-time discovery of
events, behaviors, patterns, and anomalies is desired. We propose
METRICFORENSICS, a scalable framework for analysis of volatile
graphs. METRICFORENSICS combines a multi-level “drill down”
approach, a collection of user-selected graph metrics, and a col-
lection of analysis techniques. At each successive level, more so-
phisticated metrics are computed and the graph is viewed at finer
temporal resolutions. In this way, METRICFORENSICS scales to
highly volatile graphs by only allocating resources for computa-
tionally expensive analysis when an interesting event is discov-
ered at a coarser resolution first. We test METRICFORENSICS on
three real-world graphs: an enterprise IP trace, a trace of legit-
imate and malicious network traffic from a research institution,
and the MIT Reality Mining proximity sensor data. Our largest
graph has ∼3M vertices and ∼32M edges, spanning 4.5 days.
The results demonstrate the scalability and capability of METRIC-
FORENSICS in analyzing volatile graphs; and highlight four novel
phenomena in such graphs: elbows, broken correlations, prolonged
spikes, and lightweight stars.
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1. Introduction

Given a stream of duration-stamped communication- or
contact-events, how can we find suspicious behaviors, pat-
terns, and anomalies in real-time or near real-time? How
can we do attribution? For example, in a computer commu-
nication network, we would like to detect the interval that
we are under attack, as well as the offending IP address (or
addresses).

We define a “volatile graph” to be a stream of duration-
stamped edges (in its simplest form: 〈vsrc, vdst, start time,
duration〉), where we assume that there are potentially infi-
nite number of nodes, and that edges may appear and dis-
appear. Examples of volatile graphs include IP-to-IP com-
munication graphs (either at the backbone or at the access-
link) as well as physical proximity graphs (e.g., measured
by blue-tooth connections).

This paper introduces METRICFORENSICS which given a
volatile graph is able to characterize it and detect interest-
ing events at multiple levels (both temporally and topologi-
cally). At the global level, METRICFORENSICS computes and
monitors a suite of graph metrics (e.g., the number of active
nodes, the first few eigenvalues, their wavelet transforms,
etc) at regular intervals. Only when a deviation from usual
behavior is flagged, METRICFORENSICS follows through with
a “drill down” approach, where the offending graph is stud-
ied at finer temporal and topological resolutions. In partic-
ular, flagged sub-graphs (community-level) and even indi-
vidual nodes (local-level) are examined using more sophis-
ticated and time-consuming metrics and analysis techniques
(such as ego-net analysis). Thus, METRICFORENSICS is able



to do attribution of the rare event, while maintaining high
processing speed.

The contributions of METRICFORENSICS are as follows:

• Effectiveness: METRICFORENSICS spots strange activi-
ties, like “elbows” (Section 4.1.1), broken correlations
(Section 4.1.2), prolonged spikes (Section 4.1.3), and
“lightweight” stars (Section 4.3).

• Scalability: All the components of METRICFORENSICS
are carefully chosen to be not only informative, but
also fast to compute (linear on the measures of inter-
est).

• Flexibility and generality: The METRICFORENSICS frame-
work can easily include other modules in addition to
the ones described, like spectral analysis, PageRank,
etc. Moreover, the method can be applied to any type
of volatile graphs (e.g., email/SMS communications).

METRICFORENSICS satisfies the six requirements of an
emerging application. They are:
1. Requirements for the application: METRICFORENSICS’
application is mining of highly volatile graphs represented
as streams of duration-stamped edges. This application is
useful in analysis of various communication data (e.g., IP
traffic, phone-calls, blue-tooth connections, twitter feeds, etc).
Its requirements are scalability and ability to run in a stream-
ing or (near) real-time environment.
2. Approach: METRICFORENSICS is a multi-level graph-
mining framework, which takes as input a stream of volatile
graphs (represented by duration-stamped edges), constructs
summary graphs, and conducts multi-level scalable graph
analysis (such as eigen-value, fractal dimension, and corre-
lation analyses). METRICFORENSICS is easily extensible to
include analysis modules besides the ones presented here.
See Figure 1.
3. Deployment: METRICFORENSICS has been released to
various projects within Lawrence Livermore National Lab-
oratory. We plan to deploy the system to our government
sponsors and release the code as open source.
4. Evaluation: METRICFORENSICS was evaluated on three
real-world volatile graphs from various domains. Our largest
graph has∼3M vertices and∼32M edges, spanning 4.5 days.
The results were verified by inspection of background infor-
mation (such as deep packet-capture analysis) and discus-
sions with analysts.
5. Pragmatic issues: METRICFORENSICS’ framework is de-
signed to be scalable (i.e., operate on graphs with millions
of nodes and edges) and run in streaming or (near) real-time
environments. See Tables 1 and 2.
6. Comparative evaluation: Existing approaches either fail
in key requirements and functionalities (such as scalability,
multi-level graph analysis, and attribution) or can be eas-
ily added as a module into METRICFORENSICS’ extendable
framework (see Section 2). For example, one of the clos-
est systems is Redback [32], which takes a series of graphs
and conducts single-level graph analysis. METRICFOREN-
SICS and Redback are not directly comparable since Redback
(a) puts the burden of discretizing the stream of edges on the
user, (b) it does not conduct multi-level analysis, (c) it is not
scalable (the largest graphs reportedly tested on Redback
are hundreds of nodes), and (d) Redback is not open-source.
METRICFORENSICS can be used to compare different analy-

sis algorithms such as BGP-Lens [30] and fractal dimension
analysis (see Section 4.1.3).

The outline of the paper is as follows: Section 1 provides
an introduction to this work. Section 2 presents an overview
of the related work. Section 3 describes our proposed frame-
work, METRICFORENSICS. Section 4 presents experimental
results on three real-world volatile graphs. Lastly, Section 5
provides some concluding remarks.

2. Background and Related Work

We divide related work into four parts: (1) mining static
graphs, (2) mining time-evolving graphs, (3) anomaly detec-
tion on graphs and finally (4) mining time series.

Mining Static Graphs. This work can be grouped into
three levels. First, on the graph-level, there are discover-
ies on the statistical properties of some global metrics (e.g.,
degree distribution, diameter, first eigenvalue, etc) of the
whole graph [3, 15, 8, 28]. Next, at the subgraph level, re-
search has focused on frequent substructure discovery [35],
graph partitioning, and community detection (eg [16]. Fi-
nally, at the individual node/edge level, past work includes
link prediction [26], ranking [17], and proximity [33]. Note
that almost all of the previous work deals with only one of
the three levels, while METRICFORENSICS works on all the
levels in a “drill down” way.

Mining Dynamic Graphs. Most work here has focused
on community evolution [4, 13] and dynamic tensor anal-
ysis [31]. Again, most of the above analyze only one of the
three levels (graph level, subgraph level, or node/edge level),
and, typically, on a single, fixed time-granularity, in contrast
to METRICFORENSICS.

Anomaly Detection on Graphs. Gibbons and Matias [18]
proposed a fast method to compute “heavy-hitters” (that is,
frequently-occurring items, like source-IP addresses). Lakhina
et al. [24] suggested using entropy to characterize a con-
nectivity matrix. Bunke et al. [9] use similar measures to
spot differences between connectivity matrices and to report
anomalies when these differences are too high. Additional
work includes methods based on the minimum description
length (MDL) principle [29, 10], classification-based meth-
ods [27], probabilistic measures [14], and spectral methods [21,
20]. In OddBall [2], they explicitly focus on the “individual”
node-level by examining the 1-step-away ego-networks. For
a comprehensive list, see a recent survey [12]. All such meth-
ods can be folded within METRICFORENSICS framework at
the appropriate topological and temporal levels.

Mining Time Series. Related work here includes click-
through rate estimation [1] and outlier detection [25]. Again,
METRICFORENSICS can naturally incorporate these meth-
ods into its framework, such as BGP-Lens [30] for finding
patterns and anomalies in Internet routing updates.

3. METRICFORENSICS

The flowchart for METRICFORENSICS is depicted in Fig-
ure 1. METRICFORENSICS is comprised of three distinct com-
ponents: (1) a suite of graph metrics, (2) a collection of anal-
ysis techniques, and (3) a multi-level approach. We will de-



Figure 1. METRICFORENSICS’ Flowchart

scribe each of these below. But first, we will briefly discuss
METRICFORENSICS’ data model for representing volatile graphs.

3.1 Data Model for Volatile Graphs

Highly volatile graphs, by definition, accumulate mas-
sive numbers of vertices and edges over time. However,
during a given window of time, only a fraction of these ver-
tices and edges are active. The METRICFORENSICS data model
takes advantage of this behavior.

3.1.1 Snapshot Graphs
A snapshot graph is defined by its vertices Vt and edges Et,

which are active at time t. A snapshot graph can be viewed
as an N×N adjacency matrix representing the graph at time
t. The dynamic system is then comprised of many such ma-
trices in sequence. Each time a vertex is added or deleted, or
an edge appears or disappears, or an edge-weight is changed,
a new snapshot graph is generated.

3.1.2 Summary Graphs
Due to the high volatility of the data, it is neither compu-

tationally feasible nor analytically worthwhile to consider
snapshot graphs in isolation. A summary graph summarizes
all snapshot graphs a during time period T . It is represented
by its vertices VT and edges ET . Many strategies are avail-
able for combining snapshot graphs, including:

• Binary: An unweighted edge (i, j) exists in the sum-
mary graph GT if (i, j) exists in at least one snapshot
graph during T .

• Sum: A weighted edge w(i, j) exists in the summary
graph GT if (i, j) exists in any snapshot graph during
T . Then, w(i, j) is the sum of the weights of edges
active at the beginning and during the interval T .

• Max: Similar to Sum except that w(i, j) is the maxi-
mum value of element aij in the adjacency matrices of
snapshot graphs for time interval T .

The frequency with which summary graphs are gener-
ated and analyzed is a parameter in METRICFORENSICS, and
plays an important role in the multi-level component of the
framework (see Section 3.4). Summary graphs can be gen-
erated after a fixed number of distinct snapshot graphs or

after a fixed period of time. Our experiments demonstrate
that the framework works across a reasonably large set of
summary graph frequencies, and as a heuristic we tend to
choose the frequency so that each summary graph repre-
sents no more than 100,000 unique snapshot graphs.

3.2 Suite of Graph Metrics

At the heart of METRICFORENSICS is a suite of graph
metrics. These metrics are of varying levels of complex-
ity and computational intensity. They are broadly classified
into three groups based on their topological granularity: (1)
global, (2) community, and (3) local. The framework is readily
extendable to include any graph metrics. Moreover, it is not
necessary to run all the metrics at all times.

3.2.1 Global Metrics
At the coarsest topological level, global metrics generally

measure high-level properties of the graph and are largely
agnostic to properties at the individual vertices. Table 1 lists
a subset of METRICFORENSICS’ global metrics. Several of
the metrics have both unweighted and weighted versions;
only the unweighted versions are listed here. Most are very
fast to calculate, scaling linearly with the number of active
vertices (NT = |VT |) or edges (MT = |ET |) in the time inter-
val T . Currently, all of our implemented global metrics have
complexity at most O(NT log NT + MT ).

3.2.2 Community Metrics
A second collection of metrics examines the graph at its

community-structure level. These algorithms are typically
more computationally expensive than those for the global
metrics. Many approaches to community discovery in graphs
exist [19]. The results presented in Section 4 are based on
Cross-Associations (XA) [11]. Regardless of the chosen com-
munity discovery algorithm, the metrics are similar.

Some community metrics are static, such as the fraction
of vertices in the largest community or the number of com-
munities. Others track changes in community structure, such
as the variation of information [22] between successive as-
signments. If a particular vertex is of interest, then changes
in its community can be easily tracked between successive
summary graphs.



Basic Metrics Time Complexity
Number of active vertices O(1)
Number of active edges O(1)
Average vertex degree O(1)
Average edge weight O(1)

Maximum vertex degree O(NT )
Connectivity Metrics

Number of connected components O(MT )
Fraction of vertices in the largest component O(MT )

Number of articulation points O(MT )
Minimum spanning tree weight O(MT )

Spectral Metrics
Top-k eigenvalues of the adjacency matrix O(NT k2 + MT k)

Stability Metrics
Jaccard(VT , VT−1) O(NT )
Jaccard(ET , ET−1) O(MT )

Table 1. A subset of METRICFORENSICS’ suite of
global graph metrics

3.2.3 Local Metrics
The final group of metrics focuses on individual vertices.

Local metrics often run too slowly to be applied to every
vertex in each summary graph. Examples of local metrics
include centrality metrics, OddBall [2], and impact metrics
(e.g., leaving a single vertex out of the graph and recalculat-
ing other metrics to determine the impact of the vertex).

3.3 Collection of Analysis Techniques

The second component of METRICFORENSICS is a collec-
tion of analysis techniques. Broadly speaking, they fall into
three categories: (1) single metric analysis, (2) coupled metric
analysis, and (3) non-metric analysis. This component is sim-
ilar to the suite of metrics in that it can easily accommodate
the addition of other techniques.

3.3.1 Single Metric Analysis
Values for an individual metric across multiple summary

graphs can be viewed as a time series. METRICFORENSICS
leverages the multitude of time series analysis techniques
to identify behaviors, events, and anomalies. For example,
an Autoregressive Moving Average (ARMA) Model can be
used to identify metric values that are abnormally large or
small given recent values. Fourier analysis can identify pe-
riodic behavior, such as daily trends in graph properties.
Wavelet analysis tools such as BGP-lens [30] identify pat-
terns and anomalies in metric values. Other single-metric
tools include lag plots, outlier detection techniques such as
Local Outlier Factor [7] and fractal dimension analysis [6].

3.3.2 Coupled Metric Analysis
Techniques in this category consider two or more metrics

in unison. The simplest such technique is correlation anal-
ysis. If K metrics are computed for a series of summary
graphs, a K × K matrix, C, can be computed where Cij is
say the Pearson correlation between metrics i and j. Large
values of |Cij | can identify redundant metrics. If such met-
rics vary widely in runtime complexity, then the slower ones

can be omitted from future calculations. However, it is often
useful to retain both metrics; if the computed values of two
metrics typically demonstrate high correlation, a sequence
of summary graphs that shows lower correlation is identi-
fied as an interesting event.

A useful example of coupled metric analysis involves var-
ious summary-graph edge-weighing strategies (Section 3.1.2).
In particular, if metrics are computed simultaneously on sum-
mary graphs constructed using different strategies, such as
Sum and Max, the resulting time series data are often highly
correlated. In this case, a summary graph for which the
metric-values do not demonstrate their typical relationship
can be identified as an interesting event.

Other techniques can be applied to coupled metric data,
such as outlier detection or clustering. For example, a clus-
tering algorithm like k-means can be applied to two time
series. Small clusters are labeled as interesting events or be-
haviors (see Section 4 for details).

3.3.3 Non-Metric Analysis
Techniques in this category do not involve the computed

metrics (as described in Section 3.2). These techniques are
not applied until an interesting event is discovered using the
above techniques, but they are often useful for understand-
ing the events. The primary existing techniques in this cate-
gory are visualization tools and attribute data inspection.

METRICFORENSICS currently includes a novel 3D visual-
ization tool that can display summary graphs rapidly and
in an informative layout. It highlights vertices with high
connectivity, and is used to quickly characterize a sequence
of summary graphs that have been identified as interesting.
The tool uses position (source vs. target vertex), size, and
color to differentiate between vertices according to a user-
specified collection of attributes. For example, the size of a
vertex can show its degree, while the color can depict the
vertex’ betweenness centrality. See Figure 3a for a 2D snap-
shot of a summary graph by our visualization tool.

The second non-metric analysis technique involves in-
spection and processing of available attribute data. Vertices
and edges in volatile graphs can have attributes. In some
cases, more detailed attributes may be available at an in-
creased cost of access. These should be retrieved only when
necessary. For example, IP communication traces often have
at least partial packet contents, but these are usually not
available for fast inspection. While it is not feasible to con-
sider every packet in detail, METRICFORENSICS can iden-
tify periods of time and sets of edges that may be of interest
based on graph metrics or community structure. A user can
then apply a full pcap analysis tool to the identified regions.

3.4 A Multi-Level Approach

METRICFORENSICS’ multi-level approach allows for ef-
ficient use of computational resources. Due to the volatile
nature of our data (e.g., IP network traces) and the varying
complexity of metrics and analysis techniques, it is neces-
sary to rely on fast techniques at coarse granularities (both
temporally and topologically) to identify regions of interest,
and then apply complex algorithms and tools only to inter-
esting regions. METRICFORENSICS uses multiple levels in



three distinct dimensions: (1) time, (2) topology, and (3) anal-
ysis automation.

The general approach involves performing METRICFOREN-
SICS’ metrics and analysis multiple times at different levels,
starting with the coarsest and becoming finer at each iter-
ation. Only those time periods identified as interesting at a
coarse level are passed down to be analyzed at the next finer
level. We generally identify three levels, based on the topo-
logical granularity levels (namely, global, community, and
local). However, METRICFORENSICS supports any number
of levels based on time granularity.

3.4.1 Time Granularity
The temporal scale of METRICFORENSICS can be controlled

in two ways. First, the period of time in which summary
graphs are analyzed can be adjusted. At the coarsest level,
METRICFORENSICS operates on all available data, which in
many cases can include streaming data. When an event is
detected, only the relevant portion of the data is examined
at finer levels.1 Second, temporal granularity is adjusted
by modifying the interval between summary graphs. At
the coarsest level, summary graphs are generated less often
than in finer levels. This “drill-down” approach is used to
pinpoint changes in behavior of specific vertices.

3.4.2 Topological Granularity
The axis of refinement here involves which set of graph

metrics are applied. At the coarsest level, only the global
topology of the graph is considered. Communities and indi-
vidual nodes are not generally considered, with the excep-
tion of a small number of global statistics that track the iden-
tities of high-degree vertices. The global metrics are scalable
and can be computed efficiently on each summary graph.
When an event is discovered at this level, the period of in-
terest is passed to the next (finer) level.

At the finer (regional) level, community-level metrics are
calculated. By identifying communities that exhibit change,
METRICFORENSICS can discard many vertices that have not
changed their behavior. This information is subsequently
used at the finest level of refinement, where local metrics
are computed on vertices in the identified communities.

3.4.3 Analysis Automation Levels
The final difference between levels in METRICFORENSICS

is the selection of analysis techniques. Some techniques,
such as ARMA, are fully automated. These can be applied at
any refinement level. Other tools and techniques like visu-
alization and attribute analysis require user interaction and
should only be applied to small sets of summary graphs.

4. Experiments

We implemented METRICFORENSICS in Java (with some
Matlab modules) and ran experiments on a commodity ma-
chine Intel Core 2 Duo @2.93GHz with 4Gb of memory. Our
experiments answer the following questions: (1) Can MET-
RICFORENSICS detect interesting events including anomalies?
1In a streaming setting, this is accomplished by maintaining
a circular buffer that stores a fixed number of recent snap-
shot graphs.

(2) Do the discovered interesting events tell us something new
about the nature of volatile graphs? (3) Is METRICFORENSICS
scalable and amenable to real-time (or near real-time) execution?

Table 2 lists the graphs used in our experiments. ENTP is
IP traffic collected at the perimeter of an enterprise network
over 4.5 days in 2007. RMBT is the MIT Reality Mining’s
blue-tooth connections collected over 12 months.2 LBNL
is IP traffic collected on an internal enterprise network on
2004/12/15 on port #3.3 It includes scanning activities.

4.1 Experiments at the Global Level

We discuss some experiments at the global-level of our
volatile graphs here. For brevity, we have removed many of
results (such as our Fourier and wavelet analyses).

4.1.1 Eigen Analysis
Figure 2 depicts the two largest eigenvalues in the ENTP

summary graphs. In particular, it shows the λ1, λ2 rela-
tionship under three different edge-weighing strategies. In
the maximum connections strategy, the weight between ver-
tices i and j is equal to the maximum number of simultane-
ously active connections between i and j during the sum-
mary graph’s time interval T . Under the number of connec-
tions strategy, the weight between i and j is equal to the
number of active connections between i and j when T started
plus the number of connections between i and j during T .
In the sum of bytes strategy the weight between i and j is the
normalized sum of the flow-weights (i.e., number of bytes
sent and received) when T started and the weights of flows
that occurred between i and j during T . Regardless of the
summary graphs’ edge-weighing strategy, there are special
regions where λ1 is stable and λ2 is changing, or vice versa.
We also observe these special regions in the LBNL trace (see
Figure 3), where they are elbow-shaped.

The large eigenvalues of a weighted graph typically cor-
respond to either a single heavy edge, a vertex with high
weighted degree, or a component with a large total weight.
Thus, when we see a period of time when λ1 is changing
but λ2 is steady, it is a result of the currently dominant phe-
nomenon changing while the secondary phenomenon is sta-
ble (e.g., a single heavy edge changing weight while the
structure of the giant component is steady). We refer to
this as the “elbow” pattern because it appears as elbow-
like structures (Figure 3). A trivial example here is a pair
of heavy edges, (a, b) and (c, d), with w(c, d) > w(a, b) ini-
tially. If w(a, b) remains constant and w(c, d) decreases such
that eventually w(c, d) < w(a, b), the corresponding eigen-
values will switch so that λ1 is always correlated with the
larger-weight edge. Thus, during the initial period λ1 tracks
the changing w(c, d); but once w(c, d) < w(a, b), λ1 becomes
stable and λ2 tracks the (c, d) edge.

Depending on the edge-weighting strategy employed, these
periods may appear simply as horizontal or vertical sections
(Figure 2) or they may appear as elbows (Figure 3). Regard-
less, the observed behavior is one phenomenon (heavy edge,
heavy vertex, or heavy component) that is changing while
another phenomenon remains stable.
2http:reality.media.mit.edu/
3http://www.icir.org/enterprise-tracing/download.html



Data # of Source # of Target # of Total # Unique # Total Observation Window Runtime
Graph Vertices Vertices Vertices Edges Edges Time Size (wall clock)
ENTP 1,748,750 1,733,521 2,928,116 6,597,251 31,855,024 6480 min 0.5 min 107.75 min
RMBT 94 25,490 25,491 55,898 1,982,576 525.95K min 30 min 5.47 min
LBNL 3,268 2,837 3,317 15,577 9,258,309 60 min 0.0083 min 6.85 min

Table 2. Real-world networks used in experiments. Observation time is the span of time for which we
have data. Window size is determined based on activity rate (e.g., IP traffic is faster than blue-tooth
connections) and expected reaction time to events. Runtime is METRICFORENSICS’ wall-clock time.

(a) Maximum Connections Strategy (b) Number of Connections Strategy (c) Sum of Bytes Strategy

Figure 2. λ2 versus λ1 under various edge-weighing strategies in the ENTP summary graphs (gen-
erated every 30 seconds). x-axis is λ1 in log-scale; y-axis is λ2 in log-scale. The color of a dot is
the time that it was observed (in minutes): blue is earlier, red is later. Regardless of the summary
graphs’ edge-weighing strategy, there are interesting regions with elbow patterns where λ1 is stable
and λ2 is changing, or vice versa.

4.1.2 Correlation Analysis
We computed the pairwise Pearson correlation coefficients

between values of global metrics. For example, given sum-
mary graphs GT0 · · ·GTt we computed

r([λ
GT0
1 · · ·λGTt

1 ], [max wgtGT0 · · ·max wgtGTt ])

where max wgt is the maximum edge weight. Figure 4 de-
picts the top-14 most correlated global metrics with λ1 for
the ENTP data. It shows that normally λ1 is highly corre-
lated with maximum edge weight; however in Region 1 of
Figure 2a (where λ1 is stable but λ2 is changing), this cor-
relation disappears. Indeed λ1 is not correlated with any
graph metric in this region. We observed this behavior on
other data sets and other eigenvalues. For instance, λ2 is
highly correlated with the fraction of vertices in the largest
component, except in regions like Region 2 of Figure 2. In
these special regions (where λ1 is changing but λ2 is stable),
λ2 is highly correlated with the number of updates (e.g., ad-
dition or deletion of vertices and edges). We refer to this
phenomena as “broken correlations” and observe that there
are meta-level correlations between broken correlations and
elbow patterns described above.

4.1.3 Fractal Dimension Analysis
Intuitively, fractal dimension [6] measures the burstiness

of a collection of points. Human behavior is typically bursty [5]

(e.g., disk accesses [34], email responses [23]). In our case,
the points are in 1-dimensional space and correspond to com-
munications at different times. For points that are uniformly
distributed in time, the fractal dimension is near the dimen-
sionality of a line (i.e., D ≈ 1). For points that are all on the
same time-tick (creating a single burst), the fractal dimen-
sion is the dimensionality of a point, D = 0. The Cantor
set (constructed by recursively deleting the middle third of
a line segment) has fractal dimension D = log(2)

log(3)
≈ 0.63.

Packets due to human behavior typically have fractal di-
mension somewhere in [0.7, 0.9] (with self-similar bursts at
different time scales).

We computed the fractal dimensions of several graph met-
rics on our summary graphs (which can be regarded as a
cloud of points on the time axis). Fractal dimensions were
calculated for (disjoint) windows of width w = 3 hours on
the ENTP data, w= 5 minutes on the LBNL data, and w =10
days on the RMBT data. These parameters were selected so
that each window contains ∼500 events (which is roughly
the minimum size that fractal dimension analysis makes sense).
The fractal dimension was stable for most time periods, around
0.9 on ENTP and LBNL and around 0.8 on RMBT data. This
result suggests that RMBT data is more bursty than others.
Interestingly, the fractal dimensions for some metrics (such
as number of additions, number of deletions, number of up-
dates, and number of edges connecting to an IP outside the



(a) Graph at 2004.12.15 20:06:51.348

(b) λ2 versus λ1

Figure 3. (a) The LBNL graph at 2004.12.15
20:06:51.348. The vertex colors indicate the
recent position of the vertex: source (green)
vs. destination (red). The elevation repre-
sents the same role but considers the entire
history of the vertex. If the vertex is quiet, it
slowly moves from green or red back to black;
but will not change elevation. The IPs with
names either have high weight at 2004.12.15
20:06:51.348 or have had high weight within
the last 50 seconds. High weight is defined
as 50% of the current maximum weight in the
graph. (b) λ2 versus λ1 in the LBNL summary
graphs (generated every 5 seconds with sum-
of-flows strategy). x-axis is λ1 in log-scale;
y-axis is λ2 in log-scale. The elbow patterns
occur when the dominant phenomenon and
the secondary phenomenon swap roles.

enterprise) suddenly drop to 0.6-0.8 in some periods on the
ENTP data (Figure 5a). Specifically, the fractal dimension of
the number of additions suddenly drops down in the early
morning on 2007.11.15 (between 6 AM to 9 AM); Figure 5b
shows the magnification of that interval, illustrating that the

Figure 4. The top-14 graph metrics correlated
with λ1 in the ENTP data. The sharp drop in
correlation for Region 1 of Figure 2 is very
interesting and depicts a broken correlation.
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Figure 5. Fractal Dimension Analysis on
ENTP data. Bi-plots: Number of updates (in
red) and fractal dimension D (in green) versus
time-stamp. (a) The full interval of analysis -
note the drop of fractal dimension around 6
AM on 2007.11.15. (b) Magnification of the
suspicious region, which has a “prolonged
spike” (low volume, but prolonged activity-
level).



drop is due to a “prolonged spike”: activity that has low-
volume, but persists for a long time. We also observed this
phenomena with wavelet analysis and the BGP-lens pack-
age [30]. For brevity, we omit the wavelet analysis.

4.2 Experiments at the Community Level

When a summary graph is flagged as interesting at the
global-level, the next step is to analyze the flagged summary
graph at its community-level. Figure 6a depicts the pairwise
plot of λ1 and the fraction of source nodes in the largest XA
row-group (a.k.a. row-group fraction) during Region 1 from
Figure 2. The points are clustered by k-means with k = 8,
which produces five singleton clusters, one cluster of size 6,
one cluster of size 37, and another one of size 352. While the
singleton clusters and the small cluster of 6 are detectable
from λ1, the larger clusters have nearly identical centroids
in λ1 but are separable by their XA row-group assignments.
For those summary graphs in the cluster of size 37 (dark red
cluster in Figure 6a), vertices in the largest row-group are
marked as suspicious and passed on for further local-level
analysis. Figure 6b shows an exponential moving average of
the XA row-group’s variation-of-information (where lower
values indicate more stable community structures) in LBNL.
As pointed out by the red arrow, there is a noticeable dip
between 750 and 1100 seconds from the start of the hour
when communities are very stable. Figure 6c illustrates the
XA row-group’s variation of information against the same
measure on column groups. We observe that they are cor-
related, but there are also instances for which one is abnor-
mally high or low given the other (i.e., points in the dashed
red circles). These indicate that there vertices whose row-
groups are changing but not their column-groups (i.e., they
are changing their behavior as source vertices but not as tar-
get vertices), and vice versa.

4.3 Experiments at the Local Level

When METRICFORENSICS detects interesting events in the
given stream of volatile (or summary) graphs, it can zoom
into those interesting graphs and perform more rigorous anal-
ysis. In such cases, the main goal is to find interesting (ex-
treme, outlying, suspicious) vertices in a graph. To do so,
features from the neighborhood of vertices are extracted. In
particular, given a vertex, its neighbors, and the connec-
tions between them (a.k.a. the induced 1-step subgraph of
the vertex or the egonet), METRICFORENSICS can employ a
local-level analysis tool like OddBall [2]. OddBall computes
the number of edges, the total weight of edges, etc and de-
fines the vertices as points in a multi-dimensional feature
space, in which it looks for anomalies.

Figure 7a shows the number of edges versus the number
of vertices in the egonets of RMBT. Each point in the scat-
ter plot corresponds to a particular vertex. Here, the dashed
blue line with slope 2 corresponds to cliques and similarly
the dashed black line corresponds to stars. We observe that
most of the points lie on the blue line which indicates that a
vast majority of vertices have neighborhoods that look like
a clique. For RMBT, this is intuitive; all blue-tooth devices
in a specific region will “see” each other, and hence form

cliques. On the other hand, we also observe a second clus-
ter of nodes that are neither cliques nor stars. The outlier
points here are the black and the blue triangles, which indi-
cate two big “lightweight” stars. Figure 7b shows the total
edge-weight versus degree in RMBT. Here, the weights de-
note the number of times two devices where close enough to
connect to each other. We again observe that vertices form
two clusters. The two triangles shown in the circle are the
same points as the ones discussed earlier in Figure 7a. These
vertices not only form very big star-like structures, but also
their total edge-weights are lower than expected. Hence, we
refer to these as “lightweight” stars.

We performed similar analysis on the LBNL graph, where
the vast majority of the vertices form star-like structures.
This is intuitive since the LBNL data is a sample of the net-
work traffic over a limited amount of time (≈1 hour), so we
have partial information about the interactions between all
vertices. Figure 7c and 7d show the total weight versus the
number of edges in the egonets of nodes in the LBNL graph
without and with scanning activities, respectively. Here the
weights denote the total number of packets sent between
pairs of machines. On each plot, we show the top 100 anoma-
lies we detected using a simple metric of the distance from
the fitting line. Note that we were able to detect non-scanner
vertices that sent much fewer packets than expected com-
pared to the number of machines they connected with (point
shown in square on the figures) as well as detect scanners
with a similar behavior: fewer packets than the norm over
links (points shown in circle on the same figures).

For the ENTP data, we observed a massive increase (of
10x) in communications around 9 AM on 2007.11.12. Look-
ing at the flow data, we observed a pair of machines that
opened over 10K connections in about a minute on a Bit-
Torrent related port. Moreover in early morning hours of
2007.11.13, we observed an order of magnitude increase in
λ1 of the weighted summary graph but did not see a cor-
responding jump in λ1 computed on the unweighted sum-
mary graph. This was a case where looking at traffic volume
alone could not detect the single heavy edge that caused λ1

to spike for several minutes. For brevity, we omit the plots.

5. Conclusions

Volatile graphs (such as IP-to-IP communication graphs)
are becoming more ubiquitous in network science applica-
tions. Challenges associated with mining of such graphs
include dealing with an ever-changing graph, analysis in
streaming or real-time fashion, and analysis at multiple tem-
poral and topological granularities. In this paper, we pre-
sented METRICFORENSICS: a multi-level framework for min-
ing volatile graphs that addresses the aforementioned chal-
lenges; and illustrated the generality and applicability of
METRICFORENSICS on several large real-world volatile graphs
(with up to∼32M edges). Its strong points are the following:

• METRICFORENSICS is effective, capable of spotting sus-
picious patterns like the “elbow” pattern, prolonged
spikes, broken correlations, and more.

• It is scalable, with carefully chosen operations, fast-to-
compute components (eigenvalues, wavelets, etc), and
global-to-local architecture, for efficient runtimes.



(a) ENTP: k-Means Clusters for (b) LBNL: Row-Group’s (c) RMBT: Variation-of-Information
Row-Group Fraction vs. λ1 Variation-of-Information on Column- vs. Row-Group

Figure 6. Community-Level Experiments with Cross-Associations (XA). (a) During Region 1 (shown in
Figure 2a), ENTP has behaviors that can be detected using XA (dark red cluster) but not using other
metrics (λ1 shown). (b) For the LBNL data, there is a pronounced increase in community stability
for about 5 minutes. (c) RMBT includes times where source vertices form stable communities but
targets do not, and vice versa as encircled by the dashed red ovals.

(a) RMBT: Ee vs. Ne (b) RMBT: W vs. degree

(c) LBNL’: We vs. Ee (d) LBNL: We vs. Ee

Figure 7. Local-Level Experiments with OddBall. LBNL’ is the LBNL data without scanning activity.
For a given vertex, W and Degree are its sum of edge-weights and its number of neighbors, respec-
tively. Ne, Ee, and We are the number of vertices, edges, and the total weight of all edges in a vertex’
egonet, respectively. The vertices circled have “lightweight” star-like neighborhoods.



• It is flexible, general and extensible, with room for many
more components, in addition to ones used (fractal anal-
ysis, OddBall, wavelets, etc.)
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