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Mining and Visualizing Connection Pathways 
in Large Information Networks

Fig 1.

Dot2Dot is an efficient 
framework that groups
selected nodes in a graph 
and finds simple connection 
pathways among nodes 
within each group.

Problem
How to make sense of selected nodes in a large graph 
(e.g., anomalies, infected people, activated genes) ? 
 
How are they connected? Are they close by or segregated? 
How many groups do they form? Are there simple paths to 
connect nodes in a group? Who are good connectors?

 
 
Idea of encoding: We seek to find easy to 
“describe” paths between selected nodes, 
based on the Minimum Description Length 
principle, so that each node-2-node path needs 
few bits to describe, e.g., avoid high-degree 
nodes, unless need to visit many of its spokes.
 
 
 

Visualization implemented in Java, 
using the JUNG library.
Algorithm written in Matlab 7.10. 

Interactive Visualization

2 Select nodes. Go.
Turn your nodes of 
interest into squares. 
Dot2Dot will find simple 
paths among them.
 
You can also group 
nodes visually.  
 

3 Visualize. Interact.
Dot2Dot visualizes paths 
among marked nodes.
 
You can interact with 
them: add or delete 
nodes, mark or unmark 
them, see their 
neighbors, and more.
 

Search. Select. 
Find nodes and drag 
them into the view.1
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Dot2Dot showing connection pathways 
among authors from DBLP coauthorship 
graph (300K nodes, 1M edges). 
• Blue square: selected nodes
• Orange circle: connectors
• Thick orange edge: simple path 

found by Dot2Dot

 

 

 Algorithm
 
 
 
Problem hardness: We show this is an NP-hard 
problem (reduction from the Steiner Tree Problem). 
 
Fast heuristic methods: Our algorithm is based on 
building k-level trees iteratively, where intermediate 
nodes decrease encoding cost, details are in [1].
 
 


