
Jilles Vreeken
University of Antwerp

Hanghang Tong
IBM T.J. Watson Research

Leman Akoglu
Stony Brook University

Christos Faloutsos
Carnegie Mellon

Polo Chau
Georgia Tech

Mining and Visualizing Connection Pathways
in Large Information Networks

Fig 1.

Dot2Dot is an efficient
framework that groups
selected nodes in a graph
and finds simple connection
pathways among nodes
within each group.

Problem
How to make sense of selected nodes in a large graph
(e.g., anomalies, infected people, activated genes) ?

How are they connected? Are they close by or segregated?
How many groups do they form? Are there simple paths to
connect nodes in a group? Who are good connectors?

Idea of encoding: We seek to find easy to
“describe” paths between selected nodes,
based on the Minimum Description Length
principle, so that each node-2-node path needs
few bits to describe, e.g., avoid high-degree
nodes, unless need to visit many of its spokes.

Visualization implemented in Java,
using the JUNG library.
Algorithm written in Matlab 7.10.

Interactive Visualization

2 Select nodes. Go.
Turn your nodes of
interest into squares.
Dot2Dot will find simple
paths among them.

You can also group
nodes visually.

3 Visualize. Interact.
Dot2Dot visualizes paths
among marked nodes.

You can interact with
them: add or delete
nodes, mark or unmark
them, see their
neighbors, and more.

Search. Select.
Find nodes and drag
them into the view.1

L. Akoglu, J. Vreeken, H. Tong, D. H. Chau, and C. Faloutsos.
Islands and bridges: Making sense of marked nodes in large graphs.
Technical Report CMU-CS-12-124, Carnegie Mellon University, 2012.

[1]

Dot2Dot showing connection pathways
among authors from DBLP coauthorship
graph (300K nodes, 1M edges).
• Blue square: selected nodes
• Orange circle: connectors
• Thick orange edge: simple path

found by Dot2Dot

 Algorithm

Problem hardness: We show this is an NP-hard
problem (reduction from the Steiner Tree Problem).

Fast heuristic methods: Our algorithm is based on
building k-level trees iteratively, where intermediate
nodes decrease encoding cost, details are in [1].

