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Abstract
Suppose we are given a large graph in which, by some
external process, a handful of nodes are marked. What can
we say about these nodes? Are they close together in the
graph? or, if segregated, how many groups do they form?
We approach this problem by trying to find sets of simple
connection pathways between sets of marked nodes.

We formalize the problem in terms of the Minimum
Description Length principle: a pathway is simple when we
need only few bits to tell which edges to follow, such that
we visit all nodes in a group. Then, the best partitioning is
the one that requires the least number of bits to describe the
paths that visit all the marked nodes.

We prove that solving this problem is NP-hard, and in-
troduce DOT2DOT, an efficient algorithm for partitioning
marked nodes by finding simple pathways between nodes.
Experimentation shows that DOT2DOT correctly groups
nodes for which good connection paths can be constructed,
while separating distant nodes.

1 Introduction
Suppose we are given a large graph G = (V,E) in which,
by some external process, a handful of nodes M ⊆ V are
marked. How can we explain the relations among these
marked nodes? Do they ‘talk to’ each other, and thus are
‘close-by’? Or, are they ‘unrelated’, or ‘far away’, to each
other? More formally, the key question we address is:
How can we use the network structure to explain a given
set of marked nodes, by partitioning them such that there
are simple paths connecting the nodes in each group, while
nodes in different parts are not easily reachable?

For example, consider Figure 1. In (a), a list of 20
authors from DBLP are marked. In this plot, there is no
information (other than author names) that explains any
correlation among the authors. In (b), the marked nodes
are projected to and highlighted in the co-authorship graph.
In contrast, here it is hard to observe any patterns as there
is information overload. Our result is shown as (c), which
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(b) Any patterns? “Too many” connections.
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(c) The “right” connections→ Better sensemaking

Figure 1: 20 chosen researchers from DBLP (blue squares).
Edges denote co-authorship. DOT2DOT finds simple con-
nection pathways revealing two groups: VLDB and CHI.

explains the marked nodes with two well-separated groups,
revealing simple connections and connectors among all the
marked nodes.



To the best of our knowledge, this is a novel problem
that has not been studied before—though it has many use
cases. In this paper, we formally define and formulate the
problem using information and graph theoretic principles
and propose effective solutions. While the problem is the-
oretically interesting in its own right, it also has several mo-
tivating applications. We highlight two examples below, and
refer to [1] for more applications.

• Given a dynamic event over a network (e.g., people
affected by a certain disease or buying a particular
product), how can we group the nodes such that the
network structure can be associated with the spread of
the event within groups but not quite across groups?

• Given the Web graph and a set of top ranked pages
(nodes) returned by some keyword search like Google,
how can we group these pages into groups and reveal
connection pathways among them, rather than simply
listing them ignoring their relations on the Web?

Intuitively, we want to partition a given set of marked
nodes such that the nodes within a part are ‘close-by’ while
nodes across parts are far apart. In addition, for the ‘close-
by’ nodes in each part, we want to find a ‘succinct’ subgraph
connecting them. Moreover, we rather not visit nodes of very
high degree, such as hubs in social networks, because those
nodes connect to virtually everything in the graph, and they
do not provide much information by association. Therefore,
we think of such high degree nodes as separators, and try to
avoid including them in our ‘succinct’ subgraphs.

We formalize this problem in terms of the Minimum
Description Length principle [23]: a collection of paths
is simple when we need few bits to direct the user from
one node to the other. Hence we typically do not want
to visit nodes of high degree, as it is more expensive to
identify which edge to follow leading from it. Similarly, we
require more bits if we have to visit many unmarked nodes
in order to arrive to the next marked node. As such, the best
‘explanation’, is the one for which we need the least number
of bits to identify all marked nodes.

We show this problem is NP-hard, and has connections
to well-known other problems in graph theory. We discuss
a number of fast methods for finding a partitioning and
its respective simple paths, and introduce DOT2DOT, an
efficient algorithm for explaining marked nodes in large
graphs. Experimentation shows that DOT2DOT correctly
groups nodes for which simple paths can be constructed,
while separating distant nodes.

As we mentioned above, explaining marked nodes in a
graph is a novel problem that has not been explored before.
There, however, exist relations to existing proposals. Graph
clustering [9, 10, 15], for instance, is related in that we aim
at grouping nodes that are nearby—yet our goal is not to
cluster the full graph, but only the marked nodes, yet making

Figure 2: Toy graph with 8 marked (black) nodes. Our
DOT2DOT algorithm automatically ‘describes’ them in 3
groups, discovering ‘missing connectors’ (nodes ‘4’ and ‘9’).

use of the graph structure. Other related methods include
connection subgraphs [8], center-piece subgraphs [28], local
graph clustering [3], and seed set expansion [22]. Each of
these proposals, however, targets a different problem, and
does not provide sensemaking via partitioning. Section 5
includes more detailed discussion on related work.

Our major contributions are as follows, 1) we formally
define the problem of ‘describing marked nodes in graphs’,
2) we formulate it in terms of information theoretic princi-
ples, 3) we propose fast methods for finding good partitions
and high quality connection pathways, and 4) we experimen-
tally evaluate our methods on real and synthetic data.

2 Formulating Paths: Theory
2.1 Problem Definition Given a graph G = (V,E) and a
set of marked nodes M ⊆ V , we consider the following two
related problems.

Problem 1. Optimal partitioning Find a coherent partition-
ing P of M . Find the optimal number of partitions |P |.
Problem 2. Optimal connection subgraphs Find the mini-
mum cost set of subgraphs connecting the nodes in each part
pi ∈ P efficiently.

The two problems we consider above involve three sub-
problems: (sub-problem 1) how to define the ‘coherence’ of
a set of nodes, (sub-problem 2) how to define the ‘cost’ for
a connection subgraph, and (sub-problem 3) how to find the
connection subgraph(s) quickly in large graphs.

As an example, consider Figure 2. We depict a toy graph
in which 8 nodes have been marked. It is clear to see from
the figure that the marked nodes naturally form three groups:
p1 = {1, 2, 3}, p2 = {10}, and p3 = {5, 6, 7, 8}, all well
separated by the big star-node in the middle. Although only
marked nodes 5 and 6 are connected, for each part pi there
exists a simple dot-to-dot ‘road map’ we can follow, in order
to visit all marked nodes in that part—without having to visit
too many unmarked nodes, such as node 4 in p1.

As we aim to describe the given marked nodes as
succinctly as possible, we use the Minimum Description
Length (MDL) principle from Information Theory [23].



2.2 Objective Function The key idea behind our method
builds on an encoding scheme, involving one sender and
one receiver. We assume both the sender and receiver know
graph structure G = (V,E) and only the sender knows the
set of marked nodes M . The goal of the sender, then, is to
come up with an encoding to transmit to the receiver the info.
of which nodes are marked, using as few bits as possible.

One straightforward way to encode the set of marked
nodes is to encode their node-id’s separately, using log |V |
bits each. On the other hand, it might be more efficient to
exploit the neighborhood information for ‘close-by’ nodes.
In the simplest case, for example, if nodes u and v are both
marked and they are direct neighbors, i.e. e(u, v) ∈ E, then
the sender can encode u’s id and then use only log d(u) bits
to encode v, where we assume a canonical order on nodes
(say by increasing node-id) and d(u) denotes the degree of
u in G. As such, the sender follows a path from one marked
node to the other to encode ‘close-by’ nodes. Depending
on the graph structure, from time to time it might be more
efficient to restart encoding from a new node by directly
providing its id, in case the cost of the path to that node
exceeds log |V | bits. In fact, that is exactly what determines
the partitioning P of the nodes.

Simply put, one can imagine the way of encoding as
hopping from node to node for encoding close-by nodes
and from time to time flying to a completely new node for
encoding farther nodes until all marked nodes are encoded.
This resembles a tour on the graph that travels from a marked
node (or, dot) to another, so succinctly describing the marked
set. Hence, the name DOT2DOT.

In effect, we are after the shortest description for a
group of marked nodes M ⊆ V in a graph G = (V,E).
More generally, the idea is that per part pi of P , we find
the easiest/simplest subgraph T in G that spans at least all
marked nodes in pi. Simplicity of T is determined by the
number of nodes we visit in this tour, how many unmarked
nodes we visit, and in particular how easily per visited node
we can identify which edge we have to follow next; nodes
with (very) high degree hence make the path more complex,
or, less likely. Also notice that the simplest subgraph would
in fact be a tree since it would require less bits to refer to a
node we have already visited in our encoding.

In this section, we describe the cost function for a given
partitioning P and the given connection trees for each part
pi. We use this cost function as our objective function that
we aim to minimize for model selection.

More formally, we first transmit the number of partitions
|P |, for we need at most log |V | bits—as there will be at most
|V |marked nodes in total, which in the worst case are all put
in separate parts—so we have L(|P |) = log |V |.

Then, per part pi ∈ P , we have a tree T spanning at
least the marked nodes of pi. To identify the root node of T
in G we have to spend log |V | bits.

Then, recursively per node t ∈ T , we transmit how
many branches t has, denoted by |t|. As t corresponds to
a node vt in G, and d(vt) gives us the degree of vt, we can
transmit |t| ≤ d(vt) in log d(vt) bits. On the other hand,
since a simple tree would presumably have small branch-
out factor, we choose to encode |t| using universal integer
encoding [11]. This encoding specifies that in order to
encode a non-zero positive integer n we require LN(n) =
log? n + log(c) bits with c =

∑
2− logn ≈ 2.865064, and

log?(n) = log n + log log n + · · · sums over all positive
terms. So, as |t| can be zero (for leaves), we transmit its
value in LN(|t|+ 1) bits.

Next, we identify which out-edges of vt have to be
visited. This we can encode most succinctly by assuming
a canonical order of all possible subsets of selected edges of
that size, and transmitting the index of the actual subset. This
takes log

(
d(vt)
|t|
)

bits.
Leaf-nodes are easily identified as their number of

branches is given as 0. If such is the case, we traverse back
up the tree until we find a node with an unvisited branch.
Once all branches have been visited, we stop transmitting
the structure of the tree.

Now that we know which nodes pi ⊂ V are in our tour,
we need to know which of these are marked. Let |T | denote
the number of nodes in T , and ||T || the number of marked
nodes in T . As the recipient now knows the tree, and hence
|T |, and ||T || ≤ |T | we need log |T | bits to transmit ||T ||.
Next, we need to identify which ||T || nodes of T are marked,
which we again do by a binomial: log

( |T |
||T ||
)
.

As such, for one part pi ∈ P , we have

L(pi) = log |V |+ L(t) + log |T |+ log

(
|T |
||T ||

)
in which L(t) for a node t in pi is defined recursively as

L(t) = LN(|t|+ 1) + log

(
d(vt)

|t|

)
+

|t|∑
j

L(b(t, j)) ,

where b(t, j) identifies the node t′ we reach from node t
by descending branch j. Notice that by being recursive,
L(t) encodes the branching cost for all tree-nodes. Putting
this together, we get as the total encoded size for a path P ,
marking a group of nodes M , in a graph G

L(P,M | G) = L(|P |) +
∑
i

L(pi) .

Note that our initial assumption that both the sender and
the receiver know G does not affect model selection: as
G is constant for all possible sets of marked nodes on G,
explicitly transmitting G would only add a constant cost
for all possible models under consideration, and hence not
influence measuring the quality of a model.



Given the above formalization, we now only have to find
the optimal partitioning P of M , and the optimal tours per
part pi ∈ P such that L(P,M | G) is minimized.

2.3 Problem Formulation and NP-hardness The total
encoding cost L(P,M | G) can score a given set of solutions
and point to the best among them, however it does not
provide direct means to find the optimal solution.

In this section, we show that this problem is NP-hard,
with a reduction to the Steiner tree problem: given an
undirected unweighted graph G = (V,E) and a subset of
nodes X ⊆ V , the objective is to find the minimum cost tree
that spans all the nodes in X . The cost of a tree is defined
as the total number of nodes, i.e. total number of edges plus
one, in the tree. Note that the tree may include nodes in X , as
well as other nodes which are typically referred to as Steiner
nodes. Steiner trees are well-known in graph theory, and find
application in multicast models for finding good server nodes
in computer networks for avoiding network congestion and
reducing latency in multi-user streaming data settings.

THEOREM 2.1. Minimizing L(P,M | G) is NP-hard.

Proof. See [1].

3 Finding Good Paths: Methods
Since minimizing L(P,M | G) is NP-hard, we are interested
in fast approximations. To find fast solutions, we will ex-
ploit heuristics for the directed Steiner (d-Steiner) tree prob-
lem [5], which is a well-studied combinatorial optimization
problem, for which algorithms that provide approximation
guarantees have been proposed [5, 12, 20, 32]. However,
while providing fairly good bounds, these algorithms all re-
quire great amounts of computing power, making them in-
tractable for application on large graphs. In this section we
therefore propose fast heuristics for large graphs.

Before we proceed with proposed solutions, we first
define how we transform the input graph G to a directed
weighted graph G′, which we use in obtaining a solution.

DEFINITION 1. Given an undirected unweighted graph
G = (V,E) and a set of marked nodes M ⊆ V , the trans-
formed graph G′ = (V,E′) is a directed weighted graph
in which each edge e(u, v) ∈ E is replaced by two directed
edges e′(u, v) ∈ E′ and e′(v, u) ∈ E′, for which the weights
w′(u, v) = log d(u) and w′(v, u) = log d(v).

3.1 Proposed Algorithms Given the transformed directed
weighted graph G′, we want to find the set of trees with
minimum total cost on the marked nodes. Without loss of
generality we assume that the marked nodes will be the leaf
nodes in the resulting trees (if a marked node is a non-leaf
node, we can always add its copy and connect it to its copy
with a zero-cost edge), therefore from hereafter we refer to
the marked nodes as the terminals.

Procedure 1: FindBoundedPaths (G,T )
Input: A graph G = (V,E), terminals T ⊆ V
Output: Asc. length short paths SP from terminals

1 lengths ← log(degree(V )), SP ← ∅
2 foreach t ∈ T do
3 paths ← ∅, pathcosts ← ∅, curlen← 0
4 paths.add({t}), pathcosts.add(lengths(t))
5 curlen← curlen + min(pathcosts)
6 while curlen < log(|V |) do
7 pathcosts ← pathcosts −min(pathcosts)
8 foreach v s.t. pathcosts(v) = 0 do
9 path ← paths(v)

10 foreach n ∈ Nv do
11 if n /∈ path then
12 SP .add(t, n, curlen, path)
13 paths .add({path, n})
14 pathcosts .add(lengths(n))

15 paths .remove(v), pathcosts .remove(v)

16 curlen← curlen +min(pathcosts)

17 return SP

3.1.1 Finding Bounded-length Paths Most of our pro-
posed methods use short paths between the terminals as
a starting point. Hence, we first present an algorithm,
FindBoundedPaths, to find multiple short paths up to
a certain length (hence, indirectly, up to a certain cost), in
order of increasing length between the terminal nodes. The
threshold on the length of the paths is not a parameter; as it
takes log |V | bits to start a new partition, we set it to log |V |.

FindBoundedPaths employs a BFS-like expansion
starting from each terminal until the threshold path length
is reached. The paths from the terminal to the nodes
encountered over this expansion as well as their total lengths
are stored. A major advantage of our transformed graph
formulation for the BFS-like expansion is that the cost of
all out-edges for a node v are the same and equal to log d(v).
As a result we only need to keep the length per node, rather
than per edge, in our BFS-list.

The pseudo-code is given in Procedure 1. lengths is a
vector of size |V | that holds log d(v) for each node v ∈ V ,
and SP is a structure list that stores the paths from a terminal
to other nodes encountered in the BFS expansion (line 1).
The paths are indexed by their end nodes and stored in
increasing order of their lengths. paths is a dynamic list that
stores all current list of paths during the BFS expansion, and
pathcosts stores their respective lengths (3).

In each iteration, we expand the node(s) with the min-
imum length (7). For each such node v (8), we expand to
its neighbors Nv (10). We first store the path information
to these neighbors (12), and then add the new paths from



the root to these neighbors to the paths list (13), and their
respective lengths to the pathcosts list (14) for further ex-
pansion. Note that a node can appear multiple times in our
BFS lists since each expansion is associated with only a sin-
gle unique path (that is, the path from the root in the BFS
tree), and a node may belong to multiple paths. We continue
iterating, i.e. expanding nodes with minimum length (16)
until the threshold length is reached (6).

At the end of FindBoundedPaths, we have all the
paths from every terminal to all the nodes in G′ that are
within a length log |V | path, ordered in increasing length.
Notice that the expansion can be performed completely in
parallel for each terminal for speed.

Next, we present our fast approximate solutions for
finding a low-cost set of trees on the terminals.

3.1.2 DOT2DOT-ConnectedComponents A simple solu-
tion to partition the terminals is to consider the connected
components they induce on the graph. That is, the terminals
that are directly connected are put in the same and otherwise
separate parts. By definition, all the edges are reciprocated
in the transformed graph, and therefore the subgraph induced
on each part including two or more nodes is not a directed
acyclic tree (it may as well have cycles of length greater than
2). To find the minimum cost rooted directed tree(s) (a.k.a.
arborescence), we use the Chu-Liu algorithm [7].

3.1.3 DOT2DOT-MinArborescence Our second method
uses the transitive closure graph Gt = (T,Et) of the termi-
nals to find a minimum arborescence. Gt consists of the ter-
minals and directed edges e(ti, tj) ∈ Et between them hav-
ing weight equal to the shortest path length w(ti  tj) from
ti to tj , 1 ≤ i, j ≤ |T |. If the shortest paths between all pairs
of terminals are of length less than log |V |, then Gt is sim-
ply a directed clique graph. As we find up to length log |V |
paths from every terminal in FindBoundedPaths, a ter-
minal does not have an edge in Gt to those terminals that are
more than this threshold apart from it.

Having constructed the transitive closure graph, we add
a so-called universal node u with directed edges e(u, ti) to
every terminal ti with weight log |V |. We find the minimum
weight arborescence A in this new graph. Since the universal
node u does not have any incoming edges, it constitutes the
root of A. In fact, the number of out-edges of u in A gives
us the number of parts |P |, and its sub-trees constitute the
partitioning P . Next, we replace the edges in each of u’s
sub-trees with their corresponding paths in the transformed
graph G′. The expanded sub-trees may contain both marked
and unmarked nodes. Also notice that the expanded sub-
trees might no longer be trees but contain cycles. Therefore,
we rerun the arborescence algorithm on the expanded sub-
trees and remove any unmarked leaf nodes in the resulting
arborescences, which yields the final forest of Steiner trees.

The min-arborescence algorithm takes O(|V |2) for dense
graphs. As we run it on the closure of marked nodes only,
we get O(|M |2). The detailed pseudo-code is given in [1].

3.1.4 DOT2DOT-1-Level Tree Our third method builds a
(set of) level-1 tree(s) from the transitive closure graph on
the terminals. Simply put, we try each terminal as the root
and connect it to the other terminals with shortest paths on
the transformed graph G′. If the selected root does not have
shorter than length log |V | paths to all the terminals, a (set of)
level-1 tree(s) is built on the remaining terminals. We return
the tree(s) with the minimal total encoded length as the forest
of Steiner trees. Note that this heuristic algorithm provides a
|M |-approximation to the optimal solution [5]. The detailed
pseudo-code is given in [1].

3.1.5 DOT2DOT-k-Level Tree Our final method builds
on and generalizes the 1-level tree heuristic to k-level trees.
The goal is to start with a (set of) 1-level tree(s) and suc-
cessively refine each for lower cost. The main idea is the
following: for a given tree with root r, find one or more in-
termediate nodes v ∈ V , such that the total cost from r to
each v plus the costs of sub-trees rooted at v’s (each with a
mutual set of terminals as leaves) reduces the initial cost.

More specifically, we construct a k-level tree by a
union of sub-trees, each consisting of the root r, exactly
one intermediate node v, and all the descendants of this
intermediate node. We refer to such sub-trees of level k
as partial k-trees, and we find them in a greedy manner
described as follows. First, we find a partial k-tree Lp

k

(if any) that reduces the cost for a subset of terminals
that it spans. Next, we remove the terminals spanned by
Lp
k and iterate this process until all terminals are spanned.

Algorithm 1 formally describes the k-level tree heuristic.
To complete the k-level heuristic, we need to describe

its subroutine PartialkTree which, given a root r and
a set of terminals S, finds a low-cost partial k-level tree
rooted at r and spanning (a subset of) the terminals. The
PartialkTree heuristic is recursive: in order to find a
partial k-level tree, we need to first find certain partial (k-1)-
level trees that span all the given terminals. The base case
is reached for level k = 2, which works as the following.
For each candidate v for the intermediate node, we sort the
terminals S according to the potential savings of inserting
node v between the root r and each terminal in S. The
potential saving for a terminal ti stands for the difference
between the shortest path lengths w(r  ti) and w(v  ti).
These savings can take positive and negative values and are
sorted in decreasing order. Finally, we include consecutive
terminals from this sorted list while their inclusion decreases
cost of the partial 2-tree.

The detailed pseudo-code of PartialkTree and fur-
ther details on the k-level tree algorithm can be found in [1].



Algorithm 1: DOT2DOT-k-LEVELTREE

Input: A graph G = (V,E), terminals T ⊆ V
Output: Partitions P : a Steiner tree on each p ∈ P

1 SP ← FindBoundedPaths (G,T )
2 Build candidate-graph Gc=(Vc, Ec): union of all top

3 shortest paths between all pairs of terminals.
3 mincost←∞
4 foreach t ∈ T do
5 Lk ← ∅
6 L1 ← min-cost 1-level tree(s), one rooted at t
7 foreach L1 ∈ L1 do
8 S ← leaves(L1), r ← root(L1)
9 if |S| < 2 then continue

10 while S 6= ∅ do
11 Lp

k ←PartialkTree(Gc, SP, r, S, k)
12 Lk ← Lk ∪ Lp

k

13 S ← S\leaves(Lp
k)

14 P ← ExpandPartition (Lk, SP, T )
15 cost← L(P,M | G)
16 if cost < mincost then
17 mincost← cost, minP ← P

18 return minP

Name |V | |E| Description

Netscience 379 914 Author collaborations
GScholar 83K 148K Academic citations
DBLP 329K 1094K Author collaborations

Table 1: Dataset summary.

4 Empirical Study
In this section, we evaluate our proposed method; first we
give intuitive results on synthetic examples, second we quan-
titatively compare the performance of the four proposed
heuristic methods DOT2DOT-* (COMPONENTS, MINAR-
BORESCENCE, 1-, and 2-LEVELTREE), and finally we pro-
vide case studies to show qualitative performance on real-
world graphs. We provide our DOT2DOT as a standalone
tool1 for research purposes, and our datasets are all publicly
available (see Table 1).

4.1 Synthetic examples We start by testing our method
through three examples on a synthetic 100× 100 grid graph,
as well as one example on the well-known Zackary’s karate
club network [31].

As shown in Figure 3(a), we select 8 marked (blue

1Source code of DOT2DOT:
http://www.cs.stonybrook.edu/˜leman/pubs.html#code

(a) (b)

(c) (d) (e)

Figure 3: Examples: (a) 8 marked (square) nodes placed
close to each other on a grid, (b) 8 nodes placed apart on the
grid, forming 2 parts, (c) connecting the dots, (d) recovering
missing connector, (e) 7 marked nodes on Karate graph.

square) nodes relatively close to each other on the grid graph,
and run all four of our approximation methods. We highlight
(by orange bold edges) the minimum description cost tree
found (orange nodes: connectors)—notice that it provides
succinct connections among the marked nodes. When we
place 4 of the marked nodes farther apart in the grid graph,
our method successfully partitions the marked nodes and
provides 2 connection trees for each as shown in Figure 3(b).

Next, we place the marked nodes intermittently on
the grid in Figure 3(c). Intuitively, human would connect
these dots to form a rectangle—and so does our method.
Figure 3(d) shows a set of marked nodes forming an almost
full rectangle on the grid, except one node in the middle left
unmarked. Notice that our method successfully recovers this
‘left-behind’ node as a significant connector.

Finally, DOT2DOT partitions 7 marked nodes on the
Karate graph as depicted in Figure 3(e) into 3 parts; in which
parts are well separated through high degree hub nodes.

4.2 Comparing the algorithms In this section, we aim to
understand the average performance of the four approxima-
tion methods proposed in § 3. To do so, we run simulations
on three real-world graphs and compare their average de-
scription cost. In each simulated run we test the algorithms
on a different set of marked nodes. We first describe the
datasets we used and then provide details on the simulations.

The dataset information is given in Table 1. Netscience2

is a co-authorship network of scientists working on net-
work theory and experiment. GScholar3 contains academic
articles published in venues of various fields of computer
science and their citation relations. DBLP4 is also a co-
authorship network of researchers in computer science. All
the datasets are publicly available.

For each simulation the set of marked nodes is selected

2http://www-personal.umich.edu/˜mejn/netdata/
3http://www.cs.stonybrook.edu/˜leman/pubs.html#data
4dblp.uni-trier.de/xml/

http://www.cs.stonybrook.edu/~leman/pubs.html#code
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Figure 4: Comparison of the methods: total cost (bits) versus various sampling rates s to choose the marked nodes. The
marked nodes are ‘closer’ in the graph for larger s—hence smaller expected cost. Among heuristics, COMPONENTS (CC)
is costliest and the best MINARBORESCENCE (ARB) achieves up to 49% savings over baseline on average.

via a variation of snowball sampling, which works as fol-
lows. To select a set of k marked nodes, we follow a random
walk sampling scheme. First, we fix a sampling rate s. Then,
we choose and mark a node at random in the given graph.
Next we randomly visit k′ < k of its neighbors, and mark
each visited neighbor with probability s. We continue this
process from a random node already visited (either marked
or unmarked) until we have k marked nodes in total.

In Figure 4, we show the average description cost (in
bits) versus sampling rate s = {0.1, . . . , 0.9} of our simula-
tions (k = 8-10, k′ is set to 3, k′ = {1, 2} gives similar re-
sults). The results are averaged over 100 runs for the smaller
Netscience, and 10 runs for the rest. We notice comparable
performance results on all three graphs; the simplest heuris-
tic COMPONENTS provides the costliest, while MINAR-
BORESCENCE gives the most succinct description among the
four methods on average. In addition, 2-LEVELTREE pro-
vides competitive results to MINARBORESCENCE, and out-
performs 1-LEVELTREE as would be expected.

In addition, notice the downward trend of the cost for
increasing sampling rate. This is expected, as for higher s
the marked nodes are chosen among closer ones. This also
explains the relatively larger gap in performance between 2-
LEVELTREE and MINARBORESCENCE for small s, as for
farther apart nodes a higher level tree may be required.

Note that by MDL, we only care about the relative cost
of the methods rather than their actual magnitude of cost.
The reason is that compression itself is not our goal, but a
means to identify the best model for the data. For exam-
ple, we find that the best performing method MINARBORES-
CENCE required 36%, 48%, and 49% fewer bits on average
for Netscience, GScholar, and DBLP, respectively than the
baseline k log |V | (encoding marked nodes directly). On the
other hand, since the number of marked nodes is often small,
the baseline cost is not drastic—less than 200 bits for our
graphs (see Figure 4). However while it has somewhat small
and comparable score, it provides no information about the
relations among marked nodes.
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Figure 5: Average run time of proposed methods.

Finally, we give the running time of our methods in
Figure 5. We notice that due to the iterative nature of looking
for good intermediate nodes, k-LEVELTREE heuristics (L1
and L2 in the figure) take longer than the others. At the
same time, L2 completes in about 50 seconds on our largest
graph DBLP and can be further sped up by providing it with
a smaller candidate graph. Since FindBoundedPaths
takes the most considerable time in our framework, we
propose to run all heuristics and report the best result with
the minimum cost among them.

4.3 Case studies on real graphs Our method can provide
useful insight about the connections and connectors among
a group of nodes in a given graph. As such, we develop
DOT2DOT as an interactive tool that aids in visualization and
sensemaking. In this section, we provide qualitative analysis
on two large real-world graphs.

Authors in DBLP We first employ DOT2DOT on the well-
known DBLPcitation graph. In particular, we select 2 major
conferences in certain fields and mark the top 10 authors
from each, who have the most number of papers appearing
at that particular conference.

In Figure 6(a) we show the connection tree among
researchers from RECOMB (computational biology) and
KDD (data mining and machine learning). Notice the simple
connections among the authors within the same field and
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Figure 6: Connection trees among researchers from DBLP
with most number of papers at specified conferences. (a)
connector David Heckerman: mining biomedical data, (b)
two trees (researcher groups) sufficiently apart.

otherwise well separated communities. The connector is
David Heckerman, the director of the eScience team at
Microsoft Research whose work focuses on foundations of
learning and its applications on biological and medical data.

In the next example from DBLP we look at authors from
NIPS (machine learning) and PODS (database systems), 5
authors from each. DOT2DOT connects the authors from
each field through a few connectors as shown in Figure 6(b).
Notice that there are two parts in our partitioning; which
suggests that the authors from these two communities are
sufficiently apart in the graph.

Articles in GScholar We also apply DOT2DOT to summa-
rize academic articles on certain topics from GScholar. By
their titles, we mark nodes in the citation graph containing
specified keywords.

In Figure 7 we show 8 marked articles containing both
‘large graphs’ and ‘visual’ keywords in their title. Our vi-
sualization highlights the resulting partitioning on the can-
didate graph (recall that candidate graph contains the union
of top-3 shortest paths among all pairs of marked nodes).
We find that DOT2DOT partitions the marked nodes into 4
parts, 3 of which are singletons. The connection tree for the
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Figure 7: Connection trees among articles from GScholar
with keywords ‘large graphs’ and ‘visual’: one tree summa-
rizing 5 marked nodes while singletons reside farther apart.

largest part provides a concise summary for the 5 nodes in
this part, with only two connectors. Also notice that the sin-
gleton nodes are at least 3 hops apart from this tree, which is
evident looking at the candidate graph.

5 Related Work
In graph clustering [9, 10, 15], although related, the goal is
to cluster the whole graph—we try to partition and connect a
small subset of nodes, making use of the graph structure.

One closely related line of work is the connection sub-
graphs mining problem [8]. Later, [21, 24] extended [8] for
querying labeled graphs in which nodes and edges belong to
certain types or relations. On similar lines, [13] and [25]
propose techniques to discover a coherent chain of evidence
trails that connect two given concepts in text documents. All
these methods however, work only for pairs of nodes.

The center-piece subgraph problem [28, 29] finds the
most ‘centered’ node that has strong connections to most or
all of the query nodes. Koren et al. [16] extracts the subgraph
with at most a certain size which retains most of the proxim-
ity between query nodes. Connection subgraphs are also ex-
ploited for graph visualization and summarization [6, 14]. In
turn, [2, 3, 22, 27] focus on expanding communities around
a given set of seed nodes. [4] develops methods to find ef-
fective connection trees among keywords for browsing and
querying. Leskovec et al. [17] use features extracted from
query connection subgraphs together with ML techniques to
predict quality of query results. [30] finds the top-k nodes
with the highest ‘gateway-ness’ score with respect to a given
source and target node set, such that they collectively lie on
most of the short paths from source nodes to target nodes.

Our work differs from existing work in two major
aspects; (1) we do not assume any specific connection
structure among the query nodes (e.g., source-sink [8], star-



shape [28], etc.); and (2) we employ information theoretic
ideas to find the optimal partitioning and connections in a
principled way, without any user-defined parameters.

6 Concluding Remarks
We propose a novel problem—how to explain a set of
marked nodes using the connectivity structure of the graph.
Intuitively, the goal is to find groups of ‘close-by’ nodes,
together with ‘simple’ connections among them. To the best
of our knowledge, we are the first to give formal problem
definitions and initial solutions.

Our contributions are: (1) Problem formulation: We for-
malize the problem of ‘describing a set of chosen nodes in a
graph’ in terms of the Minimum Description Length princi-
ple: the best description is the one for which we need the
least number of bits to encode the marked nodes; (2) Fast al-
gorithms: We show this problem has connections to directed
Steiner trees [5], and prove that finding the optimal solution
is NP-hard. We propose fast solutions for large graphs; (3)
Experiments on synthetic and real collaboration and citation
graphs demonstrate the effectiveness of DOT2DOT in dis-
covering good connectors and connections.
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