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ABSTRACT
The effect of the network structure on the dynamics of social
and communication networks has been of interest in recent
years. It has been observed that network properties such as
neighborhood overlap, clustering coefficient, etc. influence
the tie strengths and link persistence between individuals.
In this paper we study the communication records (both
phonecall and SMS) of 2 million anonymized customers of
a large mobile phone company with 50 million interactions
over a period of 6 months. Our major contributions are
the following: (a) we analyze several structural properties
in these call/SMS networks and the correlations between
them; (b) we formulate a learning problem to determine
whether existing links between users will persist in the fu-
ture. Experimental results show that our method performs
better than existing rule based methods; and (c) we propose
a change-point detection method in user behaviors using
eigenvalue analysis of various behavioral features extracted
over time. Our analysis shows that change-points detected
by our method coincide with the social events and festivals
in our data.

1. INTRODUCTION
Social network analysis has always been of great inter-

est to economists, physicists and social scientists. After the
emergence of telecommunications, phones have become the
central source of communication and an integral part of our
lives. As a result, the analysis of phone networks has indeed
become very important and attracted a lot of attention. Ini-
tially the studies were carried out using questionnaire data.
In recent years analysis of large scale networks has also been
explored. For example, Onnela et. al. [7, 8] have done such
a large-scale network analysis of one to one human com-
munications using phone data. In particular, they observed
the coupling between the tie strengths and the local net-
work structure of users. They also analyzed the information
diffusion through strong ties versus weak ties. Hidalgo et.
al. [4] analyzed different attributes from local network struc-
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ture and found their correlation with tie persistence. They
used rule based techniques to predict whether existing ties
would persist in the future. Many link-based methods are
surveyed in [3]. However note that tie persistence prediction
is a different problem than link prediction tasks.

Nanavati et. al. [6] study the structure and the global
shape of four geographically disparate mobile call graphs and
propose the Treasure-Hunt model to fit their observations.
Ye et. al. [11] study the formation of social communities in
temporal telecommunications records. Recently, Eagle et.
al. [1, 2] study massive amounts of mobile phone records and
infer social structure and behavior of users by their mobile
phone interactions.

There has also been work on the analysis of time-varying
networks. For example, Papadimitriou et. al. [9] introduced
a technique for pattern discovery in streaming graphs which
can incrementally and efficiently capture correlations and
discover trends and anomalies. Sun et. al. [10] proposed
GraphScope to dynamically detect communities and spot
discontinuities in time-evolving streaming large graphs.

In our work, we study the anonymous phone call records
of millions of users collected in a large city over a period of
6 months. These records include both their calling and SMS
text messaging communications. Our phone call and SMS
graphs constructed from this data include up to 2 million
users with 50 million interactions. Given these large time-
varying communication networks of millions of users, the
following important questions come up:

• What is the level of reciprocity in human communica-
tions? What can we say about the number of times i
calls j, given j calls i n times?

• Is a user’s number of contacts (degree) related to the
number of contacts of his/her contacts (neighbors’ de-
grees)?

• What is the relation between the topology of the com-
munication networks and the tie strengths between in-
dividuals?

• How can we predict which ties will continue existing
in the future?

• Can we detect the points in time when the user call-
ing/texting behaviors change? Can we characterize
the users mainly causing this change?

In this paper we answer the above questions. Our work is
mainly divided into three major parts:

1. Structure analysis: We study the structural prop-
erties of our phonecall/SMS graphs such as link re-
ciprocities, tie strengths and topological neighborhood
overlaps of users.



2. Tie persistence prediction: We extract node/tie
attributes and develop a learning model for the pre-
diction of tie persistence over time and show that our
model yields high prediction accuracy and outperforms
the earlier rule based methods.

3. Event detection: We develop a change-point detec-
tion method using the time-varying attributes of users
and show that our method can be used to find impor-
tant days in which the collective calling and texting
patterns of users change.

Next, we give a more detailed description of the data we
used in this work. Then, we provide the methodology behind
our study for each part above in Sections 3.1, 3.2 and 3.3,
respectively. We show the experimental results and major
conclusions in corresponding sections 4.1, 4.2 and 4.3 for
each study. Finally, we conclude the paper in Section 5.

2. DATA DESCRIPTION
Our data consists of anonymous mobile communication

records of millions of users over a time period of six months
(December 1, 2007 through May 31, 2008). The dataset
contains both phone-call and SMS interactions.

From the whole six months’ of activity, we build two
graphs in which nodes represent users and directed edges
represent (phone-call and SMS) interactions between these
users. We call the who-calls-whom graph as the MCG (for
Mobile Call Graph) and the who-texts-whom graph as the
MTG (Mobile Text Graph).

By construction, our graphs are weighted and directed.
Here, we consider two types of weights on the arcs eij : (1)
total number of phone-calls wN , similarly total number of
SMSs wSMS ; and (2) total duration of phone-calls wD from
node i to j (only for MCG). Since our graphs are directed,
we study the reciprocity of edges between user pairs. An
edge eij from i to j is called reciprocated if there also exists
an edge eji from j to i. The MTG and MCG graphs that
contain only the reciprocated edges are called mutual.

To give a sense of the scale of the data we studied, we
show the number of customers (with at least one contact),
the number of (un)directed interactions, the total number
of phone-calls/SMSs, wN , wSMS and the total duration of
phone-calls wD, for both the mutual and non-mutual MCG
and MTG in Table 1.

Notice that the MTG shrinks considerably when only re-
ciprocated edges are considered, whereas the MCG remains
almost intact.

MTG MCG

n
o
n
m

u
tu

a
l Number of nodes 1,87M 1,87M

Number of directed edges 8,70M 49,50M
Number of undirected edges 7,70M 28,57M
Total number of SMS/calls 119,50M 483,70M
Total duration of calls N/A 5,49x1010

m
u
tu

a
l Number of nodes 0,53M 1,75M

Number of reciprocated edges 1,99M 41,84M
Total number of SMS/calls 91,80M 468,70M
Total duration of calls N/A 5,31x1010

Table 1: Data size statistics for (top) non-mutual
and (bottom) mutual networks MTG and MCG.

3. METHODOLOGY

3.1 Network Characteristics
We start our study by analyzing our MTG and MCG

graphs in terms of several network measures. Specifically,
the questions that we answer in this work can be listed as
follows:

1. Given that a user i calls/texts user j n times, what can
we say about the reciprocity, that is how many times
j calls/texts user i?

2. Is there a correlation between a node’s degree and its
neighbors’ degrees?

3. How does the total duration or the number of phonecalls
and SMSs grow by the number of contacts a user has?

4. Does the strength of a tie between i and j depend on
the overlap between their neighborhoods?

We study and answer these motivating questions in detail
in Section 4.1.

3.2 Tie Persistence
Our major goal here is to figure out the effect of several tie

and node attributes defined below on the tie persistence be-
tween users over time. We use all or subset of these features
to learn a logistic regression model and predict tie persis-
tence in our data. We also compare and evaluate the rule
based method proposed earlier [4] to our method in terms
of prediction accuracy.

We use the following definitions of tie persistence and user
perseverance as defined in [4].

Definition 1. Tie persistence: It is the stability of ties
across time as number of time-ticks in which a link is ob-
served, over the total number of time-ticks. That is, Pij =P

t Aij(t)/m, where Pij is the persistence of tie eij, Aij is 1
if users i and j communicated in time-tick t and 0 otherwise,
and m is the total number of time-ticks.

Definition 2. User perseverance: Perseverance of a
user is defined as the average of the persistences of all his/her
ties. That is, Pi = 1/Ki ∗

P
j Pij, where Pi is the persever-

ance of user i, Ki is i’s degree (number of neighbors), and
Pij is the persistence of tie eij as defined above.

Based on the analysis of several network measures we con-
sider the effect of the following attributes on tie persistence.
We divide them into two types: Tie attributes and Node
attributes.

• Tie Attributes

– Reciprocity (R): R is a Boolean attribute which
denotes whether the tie between i and j is recip-
rocated during a given time period. That is, R is
1 if both edges eij and eji exist, and 0 otherwise.

– Topological Overlap (TO): TO(i, j)=

r
O2

i,j

Ki∗Kj
,

where Oi,j is the number of common neighbors of
node i and node j, and Ki denotes the degree of
node i.

• Node Attributes

– Degree (K): Ki denotes the number of neighbors
of a given node i.



Figure 1: Flow of the change-point detection procedure.

– Cluster Coefficient (C): Ci = 2∗δi
Ki∗(Ki−1)

, where

δi is the number of local triangles that node i is
involved in.

– User Reciprocity (r): ri the fraction of ties of a
given user i that are reciprocated.

The main questions we focus on in this section are the
following:

1. Which link and node features are important in predict-
ing tie persistence?

2. How are they correlated to each other?
3. Which prediction method works best?

We answer these questions in detail in Section 4.2.

3.3 Behavior Change-Point Detection in Time
Anomaly detection has been studied widely in many set-

tings from anomalous point detection on clouds of multi-
dimensional points to spatio-temporal anomalous pattern
detection with applications to network intrusion detection,
medical insurance claim fraud, credit card fraud, electronic
auction fraud and many others, with much less focus on
anomaly detection in graph data.

In this section, we study the behavior of users in the MTG,
in which nodes represent the users and edges represent the
SMS interactions between these users. The data consists of
six months’ of activity and is therefore time-evolving. Also,
the edges are weighted, with weights denoting the total num-
ber of SMSs sent/received between individual pairs, for ex-
ample (See Section 2 for data description). In such a setting
of dynamic series of MTG graphs, the main questions we
answer are the following: (1) What points in time does the
collective behavior of the nodes change?, and (2) Can we
characterize which nodes cause most of that change?

3.3.1 Feature Extraction from Nodes
In order to find patterns that nodes of a graph follow,

we characterize the nodes with several features, so that each
node becomes a multi-dimensional point. In particular, each
node is summarized by a set of features extracted from its
egonet (egonet of a node includes the node itself, its neigh-
bors, and all the interactions between these nodes). The

7 features considered in this work are as follows: indegree,
outdegree, inweight, outweight, number of neighbors, number
of reciprocal edges, and number of triangles in egonet.

3.3.2 Change-Point Detection
The flow of the method used in this work to find change-

points in the behavior of nodes is illustrated in Figure 1.
This method is similar to Ide and Kashima [5], but differs in
the construction of the “dependency” matrix C. We explain
our methodology in more detail next.

Here, the data we have looks like the 3-D TxFxN tensor
on the top left corner of Figure 1, where T=183 days, N=∼
2M nodes, and F=7 features. Each entry etfi in this tensor
denotes the value of feature f for node i at time t. To start,
we take one slice of this tensor for a particular feature Fi, say
inweight, which is a TxN matrix. Next, we define a sliding
window of size W (days) over the time-series of values of
nodes for that particular feature, i.e., we consider the WxN
matrices. In each particular window, each node has a vector
v of length W of time-series of values for that particular
feature. Then, for each pair of nodes i and j, we compute
the correlation between their time-series vectors vi and vj

for a given time window using Pearson’s ρ as,˛̨̨̨
ρvi,vj =

cov(vi,vj)

σviσvj

=
E[(vi − µvi)(vj − µvj)]

σviσvj

˛̨̨̨
.

Then, for each window W we construct a correlation ma-
trix C, where C(i, j)=ρ(vi,vj) over that window W. For
each C, we slide the window down one day and do the same
for the next W days. As a result, we end up constructing
177 C matrices (top-right in Figure 1).

By the Perron-Frobenius theorem, the largest (principal)
eigenvector u of each C matrix is positive. The value for
each node in the eigenvector can be thought as the“activity”
of that node; that is, the more correlated a node is to the
majority of the nodes, the higher its “activity” value will be.
Here, we call each such eigenvector as the “eigenbehavior” of
the nodes.

After finding all the eigenvectors for all 177 C matrices,
the change-point in the “eigenbehavior” of nodes is found as
follows: For the eigenvector computed at time say t denoted
by u(t), we compute an “average” typical “eigenbehavior”



denoted by r(t−1) from the last W eigenvectors back in time
(See bottom-right in Figure 1). Next, the “eigenbehavior” at
time t is compared to the “typical eigenbehavior” by taking
the dot-product of those two unit vectors, r(t−1) ·u(t). The
change metric we use then becomes Z = (1− r · u). Here, if
the new “eigenbehavior” u(t) is perpendicular to the typical
pattern r(t−1), their dot-product gives a value of 0 or Z=1,
whereas if u(t) is the same as r(t−1), then their dot-product
gives a value of 1, or Z=0. Therefore, Z changes between 0
and 1 and a higher value of Z indicates a change point and
is flagged accordingly. We present our experimental results
in Section 4.3.

4. EMPIRICAL STUDY

4.1 Analysis of Network Characteristics

4.1.1 Reciprocity in mutual MTG and MCG
Given a user i calls/texts user j n times, what can we say

about how many times j calls/texts user i?
In Figure 2 we show the reciprocal edge weights on a given

pair of reciprocal edges eij and eji between i and j for all
such pairs. (We denote the smaller weight as nST and the
larger weight as nTS , (S for Silent and T for Talkative) so
that the points lie above the diagonal).

Each blue dot in Figure 2(a) represents a reciprocal edge
pair and plots nTS versus nST , where the weights denote the
total duration of phonecalls wD between pairs (aggregated
in 10 mins). The pairs close to the diagonal have a more
balanced amount of reciprocity, whereas the pairs farther
from the diagonal have an uneven communication.

Due to over-plotting, the density of points is missing in
Figure 2(a). Therefore, we show the same plot using heatmaps
in Figure 2(b), in which dark red regions have a higher con-
centration of points. Also, Figure 2(c) and Figure 2(d) show
the reciprocity for total count of phonecalls wN in MCG
and SMSs wSMS in MTG, respectively. In all three cases
we notice the same pattern: the majority of the points re-
side closer to the origin and along the diagonal. This shows
that users usually have a small and balanced amount of reci-
procity in both their SMS and phonecall interactions. On
the other hand, there also exists pairs where in return to
a single SMS/call, over a thousand SMSs/calls have been
made. These pairs can be easily flagged as suspicious, how-
ever, it is not the scope of our work since we do not have
any ground truth in this dataset.

Observation 1. The weights on mutual edge pairs in MCG
and MTG are mostly even and small.

4.1.2 Assortative mixing of degrees
A network is said to show assortative mixing if the nodes

that have high degree tend to be connected to other nodes
with high degree. Here we study the mixing patterns in
MCG and MTG by showing the average degree of neighbors
knn versus its degree k for all the nodes. For a given node i,
knn,i = 1/ki

P
j∈N (i) kj denotes its average neighbor degree

where N (i) is the set of direct neighbors of i. One can also
weight the neighbors j of i by the amount of weight wij of
the link between them, that is, kw

nn,i = 1/si

P
j∈N (i) wijkj

(si =
P

j∈N (i) wij).

We show both knn,i and kw
nn,i for MTG in Figure 3 (a) and

(b), respectively, where weights denote the count of SMSs
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(a) MCG with wD (10 min.s) (b) MCG with wD (10 min.s)

(c) MCG with wN (d) MTG with wSMS

Figure 2: Weights nTS versus nST on the reciprocal
edge pairs in MCG and MTG. In (b), (c) and (d)
weights denote the total duration wD, total number
wN of phonecalls and total number wSMS of SMSs,
respectively. Figure best viewed in color.

wSMS and each dot represent a node in the graph. Figure 3
(c) shows the average among the nodes for a given degree.
We notice that the nodes up to degree 20 exhibit disassor-
tative mixing. That is, the higher the degree gets, the lower
degree nodes they get linked to on average. On the other
hand, nodes with increasing degree k larger than 20 tend
to link to nodes with higher degree, pointing to assortative
mixing.

We also notice two similar groups of nodes marked as A
and B in Figure 3. These nodes are large hubs with very
large degrees that are linked to low degree nodes. In ad-
dition, they overlap in Figure 3 (c), which shows that the
weights on these links are all equal, and probably small.

The results are similar for MCG, but we omit the figure
for brevity.

Observation 2. Degree of a node and average degree of
its neighbors have an assortative mixing for nodes of degree
k>∼ 20, i.e. high degree nodes tend to connect to other high
degree nodes.

4.1.3 Node Strength w.r.t. Node Degree
Here, we want to understand how the strength s (total

weight, si =
P

j∈N (i) wij) grows with increasing degree k
among nodes in the MCG and MTG. In other words, we
study how the amount of time a user spends on the phone
is affected by the number of his/her contacts.

In Figure 4 we depict the (from top to bottom) total num-
ber of SMSs sSMS , total number of phonecalls sN , and the
total duration sD of phonecalls versus the number of con-
tacts (degree k) for each node in MTG and MCG, respec-
tively. In the figures on the left, data is logarithmically
binned (vertical dotted lines) and an LS line (red) is fit to
the median values (blue circles) obtained for each bin. Sim-
ilarly, in the right figures an LS line is fit to the median
values among all the nodes for each given degree (all fig-
ures are in log-log scales). We observe that the fitting lines
all have slope greater than 1, which point to a power-law.



(a) knn,i vs. k (b) kw
nn,i vs. k
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Figure 3: Average neighbor degree (a) knn,i and (b)
kw

nn,i versus degree k for all nodes in MTG. (c) shows
the averages among nodes with a given degree. No-
tice the disassortativity for nodes up to degree 20
(low degree nodes are linked to hubs). Nodes with
degree k >∼ 20 show assortative mixing (they tend
to connect to high degree nodes).

This indicates that the more number of contacts one has,
super-linearly more time s/he spends on the phone.

Note that the blue dots in the right figures which we did
not consider in our fitting (also shown with black squares
in left figures) correspond to users with extreme behavior.
That is, for example in Figure 4(c) they are the customers
who spend up to 10 minutes with their more than 150 (a.k.a.
the Dunbar’s number) contacts each (the gray line depicts
x=y). Similarly, those points in Figure 4(b) are the ones who
exchange only 1 phonecall mutually with their contacts (the
dots lie above the x=y line as the mutual MCG is considered
and the minimum edge weight wN in that network is 2).

Observation 3. Total node strength (number of SMSs,
duration of calls) grows super-linearly (power-law) by in-
creasing degree (number of contacts).

4.1.4 Tie Strength w.r.t. Neighborhood Overlap
In this section, we study whether there is a correlation

between the strength wij of the tie eij between nodes i and
j and their neighborhood overlaps. Neighborhood overlap
Oij is taken to be the Jaccard coefficient of their common

neighbors. That is, Oij = N (i)∩N (j)
N (i)∪N (j)

, where N (i) denotes

the neighbor set of i.
To study the correlation, we sort all the edges eij in each

graph in increasing order by weight wij . Then, we take the
top α, 0 ≤ α ≤ 1, fraction of edges from that list and com-
pute the average neighborhood overlap Oij for the endpoints
i and j of those edges.

Figure 5 shows the average Oij for a given α fraction of the
least weighted edges. Notice that in all three graphs, there
exists a positive correlation between the two: tie strength
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(a) strength sSMS versus degree k
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(b) strength sN versus degree k
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(c) strength sD versus degree k

Figure 4: Node strength s (total weight) versus de-
gree k (number of contacts) for (from top to bot-
tom) number of SMSs sSMS in MTG, number sN ,
and duration sD of phonecalls in MCG. Notice the
super-linear growth in strength by increasing degree
(the more number of contacts one has, even longer
time s/he will spend on the phone).

wij gets larger with increasing neighborhood overlap Oij on
average, and vice versa.
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Figure 5: Average cumulative neighborhood overlap
Oij versus the proportion of the links considered in
the list of edge weights wij sorted in increasing order
of weight for (a) wSMS

ij , (b) wN
ij , and (c) wD

ij . The
more the larger weighted edges are included, the
larger the average neighborhood overlap gets.

Observation 4. Tie strength increases by increasing neigh-
borhood overlap on average.

4.2 Analysis of Tie Persistence

4.2.1 Tie strengths and persistence in MCG
For the purpose of studying persistence of ties, we took a

random sample of nodes preserving the local network struc-
ture. The sample has around 5K users and 14.6K links be-



tween them. We divided the data into 6 panels of 15 days
each, spanning over a period of 3 months. We first give the
list of notation used throughout this section in Table 2.

Symbol Definition
Ci Cluster coefficient of user i
Ki Degree of user i
r User reciprocity
UP User perseverance
DeltaC Difference in cluster coefficients of two users
DeltaK Difference in degrees of two users
Deltar Difference in reciprocities of two users
R Reciprocity of a tie
TO Topological overlap between two users
TP Tie persistence

Table 2: List of notations used in text.

In Figure 6, we show the distribution of the links in panel
1 w.r.t. their persistence over the 6 panels. Here, we ob-
serve that the tie persistence distribution is bi-modal, which
indicates that the links are either always active (ties persist
in all 6 panels) or rarely active (ties persist in only panel 1
and then disappear).
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Figure 6: Count vs. Tie persistence

We also studied the influence of tie and node features (as
described in Section 3.2) which exploit local network struc-
ture of nodes on the tie persistence. Pearson correlation
coefficient is widely used to measure dependence between
two attributes. The results of our correlation analysis are
shown in Table 3. We note that the correlation analysis
shows the reciprocity R and topological overlap TO are the
most correlated features to tie persistence TP . Also DeltaC

is negatively correlated to TP . Cluster coefficient indicates
how tightly connected neighborhood of a user is. Large dif-
ference in cluster coefficients of two users is an indicator that
these users belong to different neighborhoods and therefore
the tie may not persist (hence the negative correlation). Fi-
nally, we observe that DeltaK and Deltar are weakly corre-
lated to TP .

DeltaC DeltaK Deltar R TO TP
DeltaC 1.0000 0.2184 0.1274 -

0.1226
-
0.0692

-
0.0019

DeltaK 1.0000 -
0.1271

-
0.4083

-
0.4087

0.0735

Deltar 1.0000 0.0835 0.0664 0.0428
R 1.0000 0.4126 0.5064
TO 1.0000 0.2237
TP 1.0000

Table 3: Pearson correlation coefficient for tie at-
tributes and tie persistence

We conducted a similar analysis for user perseverance.

As can be seen from Table 4, cluster coefficient C and reci-
procity r of the users are highly correlated with user per-
severance UP . This seems reasonable since high clustering
coefficient indicates the user belongs to a tight neighbor-
hood, which means s/he will be in touch with his neighbors
and hence will have high perseverance. Also, degree k is
weakly correlated with UP , since high degree may indicate
some strong ties and many weak ties, resulting in weaker
UP .

C K r UP
C 1.0000 0.0675 0.2740 0.2594
K 1.0000 0.0679 0.0695
r 1.0000 0.3853

UP 1.0000

Table 4: Pearson correlation coefficient for node at-
tributes and user perseverance

4.2.2 Predicting Tie Persistence
Next, we formulate a learning problem on tie persistence.

Given the links in panel 1 along with tie and node attributes
(using panel 1 data), we predict whether any link existing
in panel 1 will persist in panel 2, 3, 4 etc. Hidalgo et. al. [4]
use rule based techniques for this problem. The rule based
method predicts that all links which are reciprocal and have
topological overlap greater than some threshold will persist
in the future. We, on the other hand, learn a logistic regres-
sion function to predict whether a tie will persist in future
panels. We then compare the performance of the methods
using F1 measure computed with 10-fold cross-validation
(F1 measure is the harmonic mean of the precision and the
recall, hence a better way to evaluate model performance).

In Figure 7(left), we first show the prediction accuracy
versus time in number of days for variants of logistic re-
gression using different subsets of features. As we can see
LR with node attributes only performs very poorly while LR
with tie attributes only gives better than 0.7 F1 score. We
also observe that using tie as well as node attributes gives
the best performance on average. This indicates that though
node attributes are weakly correlated to tie persistence, they
together with tie attributes result in better prediction.
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Figure 7: (left) F1 score for predicting tie persis-
tence using different sets of features with Logistic re-
gression. (right) F1 score on tie persistence predic-
tion with Logistic Regression vs. rule based method.

We also compared our method’s performance with the rule
based method proposed in [4]. For the rule based method,
we chose the best rule and threshold that gives the high-
est accuracy. As can be seen from Figure 7(right), our
LR method with all attributes always outperforms the rule
based method.



4.3 Analysis of Change-Point Detection

4.3.1 Detected Change-Points
After computing the deviation scores Z as was explained

in Section 3.3, we use a simple heuristic to flag the high
Z scores. Rather than using a threshold value, we simply
compute the difference between two consecutive Z scores
and rank the time points according to |Z(t)−Z(t−1)|. Fig-
ure 8 shows the top 10 time ticks for which the difference
score is the highest. Here, feature F is taken to be the “in-
weight”. Experiments with other features such as “number
of reciprocal edges” and “outdegree” also flag similar time
points which we will discuss later in this section.
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Figure 8: Top 10 time points with highest Z-
scores flagged by our method (red bars) for feature
F :inweight. Numbers on the bars indicate the rank
of each day by the Z-score.

In Figure 8, we observe that the top 2 time periods cor-
respond to the weeks of Christmas and New Year (Dec 26,
Jan 2). This shows that even though our data comes from
India and mostly people are not Christian, they would be
“celebrating”the Christmas. The reason that Jan 2nd rather
than Jan 1st is flagged is it shows that it is a change-point
in which things went back to normal.

Another surprising finding is with the 3rd time tick which
is Apr 7th. Similar to Jan 2nd, this is also a time-point
where things turned back to normal. The actual interesting
day here is indeed Apr 6th: http://www.infoplease.com/

ipa/A0777465.html lists Apr 6th as the “Hindi New Year”
(our data is in 2008). These results suggest that our method
is effective in finding points in time for which the collective
behavior of the nodes deviate from the recent past.

As a sanity check, we ran our method on other features
such as number of reciprocal edges and outdegree. Figure 9
shows that our method flags almost the same time points
including Jan 2nd and April 7th also with these features.
Moreover, the difference/spike in the Z score is even clearer
with these methods. This is intuitive in the sense that even
though the“inweight”(number of SMSs received) is expected
to increase on days such as Christmas and New Year, the
number of reciprocated interactions are expected to increase
even more (people tend to reply to celebration messages on
such days).

4.3.2 Detecting the nodes most effective in change
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Figure 9: Top 10 time points with highest Z-scores
flagged by our method (red bars) for (left) F :number
of reciprocal edges and (right) F :outdegree. Notice
the flagged time points are similar to those using
F :inweight in Figure 8.

Here the question is for a given change-point detected
in the previous section, can we go back and detect which
node(s) contributed to the change the most?

Figure 10 shows the scatter plot of the values of the eigen-
scores u(t) versus the typical pattern r(t − 1) scores for all
the nodes on December 26th. Here, we observe that most of
the values lie on the diagonal, which shows that a majority
of the nodes did not change much on their typical behavior.
On the other hand, some points that are far off-diagonal
(marked with red stars) contribute to the Z score the most.
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Figure 10: Scatter plot u(t) versus r(t − 1) of nodes
on December 26th. Each blue dot depicts a node.
Nodes far away from the diagonal change in “behav-
ior” the most (top 5 marked with red stars).

Similarly, Figure 11 shows the amount of change ratio
|ui(t)−ri(t−1)|

ri(t−1)
(%) for 10K nodes. Again, the same top 5

nodes as in Figure 10 are marked in red.
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Figure 11: Change ratios (%) of top 10K nodes in
u(t) and r(t−1). Each bar depicts a node (top 5 with
highest change ratio is shown in red).

Since the data does not contain ground truth of anoma-
lies, in Figure 12 we plot the time series (inweights versus
days) of these top 5 nodes marked in Figures 10 and 11



(each row for each node). Here we observe that, three of
the nodes (rows 1, 4 and 5) have no activity on the week
of Dec 26th. This is flagged because they are observed to
have some activity over the previous weeks. On the other
hand the other two nodes (rows 2 and 3) have the opposite
behavior: they start receiving SMSs during Christmas. We
also observe that these two sets of nodes lie in the differ-
ent halves of the diagonal in Figure 10, also indicating an
opposite change in their behaviors.
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Figure 12: Time series of inweight values of top
5 nodes with highest deviation in “eigenbehavior”
marked in Figures 10 and 11. Beginning and end of
week December 26th is marked with red and green
vertical bars on the time line, respectively.

5. CONCLUSIONS
In this paper we studied a large network of mobile phone

users that grows and changes over time. Our study con-
sists of three major parts: (1) Analysis of structural prop-
erties; (2) Prediction of tie persistence; and (3) Event and
change-point detection. Our findings and conclusions can
be summarized as follows:

1. Structure analysis

• The weights (total duration, number of phonecalls and
SMSs) on reciprocated ties are usually even and small
in both networks MCG and MTG. Reciprocity pat-
terns can be used to spot outliers as users with low reci-
procity (many non-reciprocated links) and pairs with
unbalanced reciprocity (i calls j far more than j calls
i) are suspicious.

• Degree of a node and average degree of its neighbors
exhibit assortative mixing on average. In other words,
users with high number of contacts tend to connect to
other users with high number of contacts.

• Total node strength grows super-linearly (power-law)
by increasing degree. That is, the more number of
contacts users have indicates that super-linearly more
amount of time they will spend on the phone.

• Tie strength between a given pair of users increases by
increasing neighborhood overlap on average. In other
words, users who have more common neighbors tend
to exhibit stronger ties, i.e. spend more time commu-
nicating on the phone.

2. Tie persistence prediction

• Local network attributes such as clustering coefficient
and tie attributes such as reciprocity help to predict
whether ties will persist in the future.

• Our prediction results using logistic regression show
that tie attributes give better accuracy than node at-
tributes and using both types of attributes together
yields the best prediction accuracy.

• Regression techniques give better accuracy than rule
based techniques.

3. Change-point detection

• We used an“eigenbehavior”-based method on the time-
series of users and considered the amount of change in
their “eigenbehaviors” to flag change-points in time.

• Realistic anomaly detection is difficult with unlabeled
data, but our results have demonstrated that we were
able to detect events that coincide with major holidays
and festivals in our data.

• Our method can also be reverse-engineered to spot the
top users who contribute to the changes the most.
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