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Abstract—Given a user in a social network, which new
friends should we recommend, the dual goal being to achieve
user satisfaction and good network connectivity? Similarly,
which new products are better to recommend to satisfy
customers’ taste/needs as well as increase vendor profit? Typical
recommender systems use merely past purchases, product
ratings, demographic meta-data, and network ‘proximity’ to
make recommendations. This traditional approach, however,
does not take into account the profitability of products to
vendors in a customer-product network, or the efficacy of new
links in a social network. We argue that it is more appropriate
to view the problem of generating recommendations as an opti-
mization problem. In this paper, (a) we propose ValuePick, a
framework which incorporates the ‘value’ of recommendations
into the system while still providing accurate recommendations
that retain user trust; (b) our method is parsimonious (requires
only a single parameter τ ), flexible (τ is used to flexibly adjust
the level of balance between ‘user satisfaction’ and ‘gain’), and
general (can be used with any ‘value’ metric); and finally (c) we
examine the problem in the social networks setting, simulate
comprehensive experiments to compare our method to several
basic heuristics, and show that ValuePick yields higher ‘gain’
while keeping user satisfaction high.

Keywords-recommender systems; value analytics; optimiza-
tion; customer-product networks, social networks

I. INTRODUCTION

Due to the rapid growth of electronic commerce, target-
based marketing has become a core area of research that has
been shown to increase cross-sales, help customers become
aware of new products, and add to customer loyalty [1]. One
branch of target-based marketing focuses on recommender
systems, which track past purchases of users, try to learn
user preferences over time, and automatically recommend
products that fit customer needs. Recommender systems
proved to be very important tools for big companies such as
Amazon, Netflix, and MovieLens.

Recommender systems are also used in the context of on-
line social networks such as Facebook, Orkut and MySpace.
Such online sites try to recommend ‘good’ friends to users
to keep them engaged and thus have them spend more time
on the site.

Most work in this area so far, however, has considered
only the purchase/link probability and user preferences to
make recommendations. This is convenient from the users’

point of view as recommendations with high purchase/link
probabilities are likely to satisfy the users. On the other
hand, marketing strategies should satisfy both the needs of
users as well as provide a higher ‘gain’ to the vendors. Here,
increasing the gain of the vendors should obviously not mean
to recommend the most expensive (=‘valuable’) products to
customers in an online shopping site, for example. Value-
oriented recommendations should be made carefully such
that the user is kept satisfied. Otherwise the users could lose
trust in the recommendations and quit.

In this paper, we argue that the recommender systems
should be designed in a way such that both the value of
recommendations to the vendors (=vendor gain) and the
purchase/link probability of users (=user satisfaction) can be
integrated into the recommendation framework to properly
balance the views between the users and the vendors.

In traditional recommender systems, recommendations to
a certain node (e.g. a user) i are made based on the network
‘proximity’ of other nodes (e.g. another user or a product)
to i. Often top k nodes with the highest proximity to i are
recommended (network proximity is a.k.a. closeness, rele-
vance, similarity). In this type of recommendation schemes,
only the network structure is exploited to compute the so-
called proximity scores. Often, additional knowledge about
the users such as their age, interests, life routines in social
networks or similarly the price of products in customer-
product networks can not be directly incorporated into the
system. Next we give several example scenarios to show
why we think incorporating such knowledge is an important
task.

For example, consider the case in a social network setting
where the system can determine the ‘network-value’ of its
users, which is a measure of centrality (central users are
those who have small average distance to the rest of the
users in the network, i.e. they can reach everyone in a
small number of steps on average). Then, the system can
recommend ‘friends’ to a user i who are both in high
proximity to i, as well as have high centrality. This is a
win-win situation for both the users and the system: users
in a social network have high incentive to link to close-
by and central users as a user i gets ‘closer’ to others by
becoming friends with central users. More intuitively, say in



a professional network, people in fact want to meet central
people since that helps them meet others more easily and
build their own professional network faster. In addition, users
linking to central users make the network tighter and better
connected, with a small diameter [2]. In such networks,
everybody can reach one another in a small number of steps
and the system is more resilient to users leaving the network.
Here, the ‘value’ of a recommendation is referred to as
‘centrality’ and the system ‘gain’ as ‘network resilience’.

Another example of integrating ‘value’ into the recom-
mendation process is when the system has meta-data of users
such as their personal interests, political views, etc. Based
on this knowledge, it could recommend ‘friends’ to a user i,
who are both in high proximity as well as have high personal
similarity to i. This again is a win-win situation for both the
users and the system: users in a social network have high
incentive to link to close-by and similar users as they are
the ‘familiar strangers’ with common interests. In addition,
ties between similar users as are expected to be strong ties
and thus yield a more robust network. Here, the ‘value’ of
a recommendation is referred to as ‘user similarity’ and the
system ‘gain’ as ‘network robustness’.

Finally, a more intuitive example can be given based on
customer-product networks. Consider the case in such a
network where the system has and wants to incorporate the
price of products into the recommendation process. Then,
it can recommend products to a customer i that are both
in high proximity to i, as well as have high price. Here
the proximity ensures that the customer will be presented
reasonably ‘good’ products that s/he will be satisfied with
and close-by and high price products ensures higher vendor
profit margin (hence a win-win situation). Here, the ‘value’
of a recommendation is referred to as ‘price’ and the system
‘gain’ as ‘profit’.

In this paper, we propose ValuePick, a recommenda-
tion framework that meets both goals as discussed in the
examples above. The main contributions of our work can be
listed as follows:

• Problem formulation: We formulate the problem of
generating recommendations as an optimization prob-
lem, in order to properly balance the viewpoints of
both parties: the users and the system. Our formulation
enables incorporating the systems’ external knowledge
(i.e., value of recommendations) into the recommenda-
tion process such that higher gain is achieved while the
user satisfaction is kept high (Section 3).

• Design of our method: Our method is parsimonious (it
only requires one parameter, τ ∈ [0, 1] for tolerance),
flexible (the parameter τ gives users the flexibility to ex-
periment: if the user tolerance τ is 0, ValuePick de-
faults to the conservative policy and make recommen-
dations by proximity only (without incorporating any
‘value’). Whereas, if the user is willing to experiment
and user tolerance τ is 1, then ValuePick makes the

SymbolDescription
G Graph representation of a dataset
N Number of nodes in G
E Number of edges in G
pi,j proximity between nodes i and j in G
r the ‘value’ vector of nodes
x the binary solution vector, x(i) ∈ {0, 1} in ValuePick.
k Number of nodes recommended to each node in G.
τ parameter in ValuePick to control perturbation. τ ∈ [0, 1]

Table I
TABLE OF SYMBOLS USED IN THE PAPER.

most ‘valuable’ recommendations that would yield the
highest gain to the system), and general (it can be used
with any ‘value’ metric, e.g. centrality, similarity, price,
and so on).

• Performance study: We perform experiments on the
‘dual-goal link recommendation in social networks’
problem, run comprehensive simulations on two real
networks, compare our results with other recommen-
dation strategies and basic heuristics, and show that
our method yields well-connected networks with rea-
sonably high user satisfaction, the level of which can
also be adjusted (by changing τ ) (Section 4).

We conclude our paper with a survey on related work in
Section 5 and conclusions in Section 6. See Table I for the
list of notation used throughout text.

II. BACKGROUND AND PRELIMINARIES

In our experiments, we used two “proximity” metrics:
(1) the Random-Walk-with-Restart (RWR)-based Pagerank
scores, and (2) the Katz scores. Also, as the “profit” of
a node in a social network, we used (1) the betweenness
centrality, and (2) the eigenvector centrality.

We emphasize that in our experiments, instead of using
the direct centrality scores, we define a new score called
‘recursive’ centrality r. To compute r, we multiply the all-
pairs-proximity matrix R with the direct centrality vector
rdir, i.e. r = R ∗ rdir. Intuitively, the ‘recursive’ centrality
score is high for those nodes which have both high direct
centrality as well as high proximity to other central nodes.

III. OUR METHOD ValuePick

In this section we first give the intuition behind our
proposed method by a running toy example, and then we
formulate the dual-goal recommendation problem as an
optimization problem which can be solved by using integer
programming.

A. The toy example

1) Problem specification:: Consider the toy graph in
Figure 1(a) in which assume that the vertices represent users
and edges represent friendship links. Top 10 users with
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Figure 1. (top) The toy social network of users and friendship links. Annotated red nodes show the top 10 users with the highest ‘betweenness centrality’.
Top 3 recommendations (green) to vertex v200 (orange) w.r.t. (a) proximity only (tolerance τ=0, baseline), (b) 8% more, (c) 12% more, and (d) 16%
more expected gain than the baseline, with increasing τ . Purple nodes show the direct neighbors of v200. Figure best viewed in color.

the highest betweenness centrality are colored in red and
annotated.

Here, we want to make recommendations to the users,
that is, we want to suggest new friends, say to user i, the
goal being twofold: First, the recommended users should
be among those with high proximity to i. Second, the
recommended users should be among those with high ‘cen-
trality’ scores such that the new links should make user
i get ‘closer’ to the rest of the nodes in the network. In
short, the recommendation system should return the top k
recommendations to user i that (1) are likely to occur and so
will satisfy the user i, and (2) have high ‘recursive centrality’
(Section II).

2) Recommendations by proximity only:: Let us consider
the vertex v200 in Figure 1(a) shown in orange color. If
we start from v200, and do a random walk with some
restart probability (RWR), the steady state probabilities of
landing at each vertex (Pagerank score) gives the proximity
scores of all the vertices w.r.t. the starting vertex v200. If
we are to make 3 recommendations, top 3 vertices with
the highest Pagerank scores would be v253, v162 and

vertex ID RWR-proximity Expected Gain(prox*RBC)
253 0.0255 6.76687e-005
162 0.0253 7.788615e-005
261 0.0241 8.703078e-005
327 0.0233 0.00010628
165 0.0102 2.167184e-005

Table II
TOP 5 VERTICES WITH THE HIGHEST RWR PROXIMITY SCORES TO

VERTEX v200 IN THE COLLABORATION NETWORK OF SCIENTISTS IN
FIGURE 1(A) AS WELL AS THEIR RWR-PROXIMITY SCORES. THE LAST
COLUMN SHOWS THE EXPECTED GAIN TO v200 FROM GETTING LINKED

TO THESE VERTICES, WHICH IS (RWR-PROXIMITY*RECURSIVE
BETWEENNESS CENTRALITY(RBC)).

v261, The expected gain of linking to these vertices, which
is (proximity*centrality) (assuming linking probability is
proportional to proximity), is shown in green in Figure 1(a)
with corresponding proximity scores shown in Table II. also
shown in the last column. We will consider this set of
vertices as our baseline recommendations.

3) Integrating ‘value’:: As we can see from Table II,
v327 which has the 4th rank in proximity to v200 has the



highest expected gain. This is intuitive, v327 is both in close
neighborhood of v200 and is connected to two highly central
nodes, Newman and Jeong in the graph. The main idea
behind our proposed method is that if we are allowed to
perturb the rank-list of vertices by proximity, that is the
first column in Table II, we can recommend another set
of 3 vertices with greater total expected gain. Of course,
this perturbation should not be drastic such that the trust of
the customer is compromised, i.e. even though the expected
gain of a vertex that is ranked say 1000th by proximity is
the highest, we should not be recommending it in top 3
recommendations as it might not well satisfy the user. On
the other hand, in our toy example the vertex with the highest
expected gain is ranked 4th by proximity, so if we switch the
places of vertices with ranks 3 and 4, and recommend v253,
v162 and v327 instead, we end up with greater expected
gain (in particular 8% more gain over the baseline) with
little perturbation. See Figure 1(b).

The amount of gain by perturbation in rankings depends
on how much we are willing to compromise the original
ordering of vertices. If we are willing to compromise more
of user satisfaction/trust, then instead of switching v261 with
v327, we can switch v162 with a lower expected gain than
v261 (Figure 1(c)). Here, we obtain 12% more gain over the
baseline, but drop the 2nd ranked vertex instead of the 3rd

in place of v327. Finally, if we increase the perturbation
tolerance even more, we can flip v327 for v253 which is
ranked 1st and obtain 16% more gain over the baseline
which is the best we can do (Figure 1(d)). This is also
intuitive because even though v253 is in the very close
neighborhood of v200, it is farther from the central vertices
in the graph compared to v261, v327 and v162 that are only
one or two hops away to the most central vertices.

B. Definition and Formulation of the Meta-problem

In this paper we focus on the dual-goal recommendation
problem in the context of social networks. However, the
ideas can be generalized to any type of network with any
given ‘value’ metric. The meta-problem we solve is, given a
graph G and a node i in this graph, which k nodes should we
recommend to i such that node i is reasonably satisfied with
the recommendations as well as the network becomes tighter
with shorter average distance between nodes. The heart of
our solution can be stated as “perturbing the proximity-
ranklist of vertices in order to increase the total expected
gain”, which formulate as an optimization problem.

Here we assume that the ‘value’ of linking to a vertex i
is denoted as its ‘recursive centrality’ ri. (Again the ‘value’
can be any other metric; in the experiments we used both
‘betweenness’ and ‘eigenvector’ centrality scores). We also
assume that the probability of vertex i to accept to link to a
recommended vertex j is the proximity pi,j between i and
j. (Again the proximity can be any preferred measure; in
the experiments we used both Katz and RWR proximities).

Then, our objective function is to maximize the total
expected gain from the k recommended vertices, which is
the sum of the multiplication of value r and proximity p of
those k vertices. Table III(1a) denotes the objective function
of the problem, where x is a vector of size N , the number of
vertices. In this vector, x(i) can take values of either 1 or 0
(Table III(1b)), being 1 if vertex i is in the solution set and 0
otherwise. Also since we want to make k recommendations,
the values in vector x should sum to k (Table III(1c)).

maximize
X

NX
i=1

(r(i) ∗ p(i)) ∗ x(i) (1a)

subject to: x(i) ∈ {0, 1}, (1b)
NX

i=1

x(i) = k, (1c)

PN
i=1(M − p(i)) ∗ x(i)

k
≤ τ. (1d)

Table III
THE MAIN PROBLEM FORMULATION OF ValuePick TO MAKE k

RECOMMENDATIONS TO A GIVEN VERTEX. r IS THE GLOBAL PROFIT
VECTOR AND p IS THE PROXIMITY VECTOR OF ALL THE VERTICES WITH

RESPECT TO THE GIVEN VERTEX. M =
Pk

i=1
ˆp(i)

k
, IS THE MEAN OF

THE TOP-k VALUES IN THE SORTED LIST OF PROXIMITIES p̂. x(i) IS 1 IF
VERTEX i IS IN THE SOLUTION SET, AND 0 OTHERWISE. τ IS THE

TOLERANCE WHICH CONTROLS THE AMOUNT OF DEVIATION FROM THE
ORIGINAL RANKING OF VERTICES. FINALLY, N IS THE TOTAL NUMBER

OF VERTICES IN THE GRAPH.

As is, that is without any further constraints, the solution
is the set of the top k vertices in the sorted list of vertices by
expected gain, r∗p. However, this set might be too different
than the set of top k vertices in the sorted list of vertices by
proximity only, and as a result might not satisfy the user and
cause him/her lose trust. Therefore, we introduce another
constraint to control the amount of perturbation w.r.t. the
original ranklist p so as to retain trust at high levels. In
Table III(1d),

PN
i=1(M−p(i))∗x(i)

k ≤ τ states that the total
proximity scores of the returned set of k vertices should
not deviate too much from the total proximity scores of the
top k vertices in the original ranklist p and is adjusted by
parameter τ ∈ [0, 1], which we call as the ‘perturbation
tolerance’. If τ is set to 0, that is if tolerance is zero,
the top k vertices with the highest proximity scores are
returned as they make

∑n
i=1(M − p(i)) ∗ x(i) equal to

0. On the other hand if τ is 1, then one could resort to
the k vertices that would yield the highest expected gain.
So, we note that the two extreme values of τ give the
two special cases of recommendations; (1) the traditional,
customer-oriented method which considers recommending
by proximity only, and (2) the vendor-oriented method which
considers recommending by maximum expected gain. τ in
ValuePick properly balances the both extremes.



1) Solution to the optimization problem:: As formulated,
the link recommendation task above is similar to the famous
0-1 Knapsack problem [3]. Informal description of the 0-1
Knapsack problem is that ‘given a set of n items, each with
a weight wi and a value vi, find a subset of items so that the
total weight of the items in the subset is less than a given
limit W and their total value is as large as possible.’ On the
same lines, we want to find a subset to recommend from N
vertices, each with weight wi that corresponds to (M − pi),
a value vi as (pi ∗ ri) and a total weight limit W as τ , such
that the total value of the subset is maximized. The problem
as described is NP-complete, however, there exists a pseudo-
polynomial algorithm that uses dynamic programming that
runs in O(nW ) time and uses O(nW ) space. We note
that in our setting we have an additional constraint: we
want the size of the subset to be k (Table III(1c)). As
a result it becomes a harder optimization problem. In our
experiments, we use the CPLEX [4] optimization package
to solve linear and integer programming problems. In our
experiments, we notice that the running time of CPLEX in
practice is reasonably small. We discuss the computational
cost of ValuePick in Section 4.5 in more detail.

IV. EMPIRICAL STUDY

In marketing, its often hard to predict the effect of an
intervention in the marketing scheme. The intervention in
our case is the perturbation of the rankings in the original
list of recommendations sorted by proximity. Here, it is not
very clear how users will respond to these ‘adjustments’.
That is, it is hard to predict how user satisfaction will be
affected in advance before the method is deployed. One
advantage of our method, on the other hand, is that it
provides the tolerance τ parameter to flexibly set the ‘level-
of-adjustment’ for each user. Empirical study [5] shows that
users can rate the same item differently at different times,
which indicates that users already have natural variability in
their decisions. This supports our conjecture that controlled
perturbation in the order of recommendations should not
affect the user decisions drastically.

As it is not possible for us to deploy our method in a
real setting, we resort to simulations in this section. In our
experiments we used two real networks:

• Netscience: the collaboration network of network the-
ory scientists compiled from the bibliographies of two
review articles by M.Newman and S. Boccaletti et. al.,
respectively. There exists a link between two scientists
if they have co-authored a paper. The giant connected
component (GCC) of this network contains 379 nodes,
and 914 edges.

• DBLP: the co-authorship network of authors in DBLP,
between the years 1959 and 1979. There exists 931
nodes and 1705 edges in the GCC.

In our simulations, we used four different recommenda-
tion strategies: (1) NoGainOpt: recommend the top k nodes

with the highest proximity score; (2) MaxGain: recommend
the top k nodes with the highest expected gain, i.e. (prox-
imity*value) score; (3) ValuePick: recommend the best
k nodes which maximize the total (proximity*value) score
such that average perturbation in proximity scores is less
than τ ; and (4) Random: recommend k nodes randomly.
(Note that NoGainOpt and MaxGain are the special cases of
ValuePick with τ=0 and τ=1, respectively). As we stated
in Section 2, we experimented with two proximity metrics
(Katz and RWR scores) and two network-value metrics
(betweenness and eigenvector centrality scores). Here, we
assume that the probability that node i will accept to link
to a recommended node j is proportional to the proximity
between i and j.

Specifically, our experimental set-up is as follows: (Step
1) At each time step T , we make k recommendations to
each node i in the graph using one of the four methods
described above. (Step 2) Node i links to a recommendation
j with probability proportional to the proximity between
i and j. (Step 3) After all nodes are processed, since the
graph structure changes, the proximity scores as well as
the ‘recursive centrality’ scores are recomputed, and the
simulation goes back to Step 1. In our experiments we used
different values for T and k, but we report our results for
T=30 and k=5 for brevity.

For evaluation, we track the total number of recommen-
dations accepted (as an indicator of user satisfaction), as
well as the effective diameter of the network over time (as
an indicator of ‘gain’). Intuitively, the effective diameter
represents how much of a “small world” the network is –
how quickly one can get from one ‘end’ of the network to
another.

A. Results using RWR-proximity and Betweenness Centrality

In Figure 2 we show our first set of results for (left)
Netscience and (right) DBLP (Note that all the results are
averaged over 10 runs). In particular, (a) shows the number
of edges E in the network over time. We observe here
that both graphs reach the highest number of edges when
NoGainOpt is used. This is intuitive, because in this scheme
the centrality of nodes being recommended is not considered
and the ‘closest’ nodes are recommended. As we take the
link probability proportional to proximity, NoGainOpt yields
the most number of links accepted. We also observe that
E drops considerably when MaxGain is used, since the
perturbation when only the expected profit is considered
might be high and thus could cause users to be unsatisfied.
On the other hand with ValuePick, E stays somewhere
in the middle, compromising user satisfaction only partially.
Also notice here that, we ran simulations using different
values for tolerance τ . We can observe that user satisfaction
can be increased by choosing a smaller τ . Finally, notice
that Random is the least acceptable method as expected.
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Figure 2. Results on (left) Netscience and (right) DBLP, using RWR-proximity and betweenness-centrality-profit, T =30, k=5, averaged over 10
runs. (a) number of edges E and (b) effective diameter versus time are shown. Blue pluses represent NoGainOpt, red stars MaxGain, cyan circles
ValuePick(τ=0.01), pink triangles ValuePick(τ=0.02), and green dots Random. Notice that our proposed methods (τ=0.01 etc) achieve a balance:
high user satisfaction (#edges), and at the same time, high vendor profit (small diameter). Figure best viewed in color.
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Figure 3. Ranks w.r.t. proximity of nodes that are linked to via recommendations for different methods (from left to right) NoGainOpt(τ=0),
ValuePick(τ=0.01), ValuePick(τ=0.02), MaxGain(τ=1)and Random, over 10 runs in Netscience. Results for DBLP are similar and thus omitted.
Notice that the ranks get wider in range from left to right with increasing perturbation tolerance of the methods.

Figure 2(b), on the other hand, shows the effective diam-
eter over time. We observe that the diameter shrinks earlier
for profit-oriented methods MaxGain and ValuePick even
though at any given time the graph density is the highest for
NoGainOpt.
Observation A: ValuePick successfully achieves a bal-
ance between user satisfaction, with high number of rec-
ommendations accepted, and vendor gain, with a small
diameter which shrinks early in time.

The results using Katz-proximity and Eigenvector-
centrality are similar and so we exclude them for brevity.

B. Analysis of ranks

Next, we examine the ranks (in the sorted list of nodes by
proximity) of nodes to which new links were formed (recom-
mendations that were accepted) for all four recommendation
strategies, averaged among all the nodes over 10 runs.

Figure 3 shows the % fraction versus the rank of such
links for (from left to right) NoGainOpt, ValuePick with
τ = 0.01 and τ = 0.02, MaxGain, and Random. As the
perturbation tolerance of the methods increase from left to
right, the range of ranks also gets wider from left to right.
Notice that in Netscience, by using ValuePick with low
tolerance τ = 0.01, links to nodes with rank up to 60 is
formed, while with MaxGain with tolerance τ = 1, the
highest rank goes over 100.

Here we note that in the simulations we used the same τ
for all the users in the network while making recommenda-
tions. In reality, however, τ can be chosen differently for
each user depending on how much a user is tolerant to

experiment. It can even be changed dynamically depending
on the feedback from each user. For example, if the user
starts rejecting the recommendations for a certain τ , then τ
can be lowered for that user; whereas if the user seems to be
satisfied, τ can be increased more for higher vendor gain.
Observation B: The tolerance parameter τ in
ValuePick successfully controls the amount of
perturbation, and thus the rank-range of recommended
nodes in the original rank-list by proximities.

C. Comparison to other heuristics

Given the idea behind ValuePick, is there a sim-
pler/faster way to introduce perturbations? Here we show
that this may be difficult: two simple heuristics, Rank and
MaxRank, we describe below do not perform well.

Particularly in Rank, to recommend k nodes to a given
node i, we start from the top of the list of nodes sorted
by their proximity to i, flip a coin and recommend that
node with probability C

Rankα , where C is the normalization
constant so that probabilities sum to 1. For example, the
node in the top of the list is recommended with proba-
bility C, the second one with probability C

2α , and so on.
MaxRank is similar but the list of nodes is sorted by their
(proximity*value). As one can notice, both of these methods
also introduce randomized perturbations to the original rank
list of recommendations as in ValuePick.

In Figure 4 we show the results of (left) Rank and
(right) MaxRank for Netscience (results look similar for
DBLPand thus omitted here for brevity). Here, we used
α = {0.5, 1, 2}; the higher the α, the narrower the range
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Figure 4. Results on Netscience with (left) C
Rankα , and (right) C′

MaxRankα for α={0.5,1,2} T =30, k=5, over 10 runs. (C and C’ are the normalization
constants so that probabilities sum to 1.) Results for DBLP are similar and thus omitted.

of ranks of the recommended nodes gets. For example in
Figure 4(left) Rank(α=2) is closer to NoGainOpt and (right)
MaxRank(α=2) is closer to MaxGain. We notice that even
though all Rank(0.5,1,2) yield less E (user acceptance) than
NoGainOpt, they cannot shrink the effective diameter as
much as NoGainOpt. That is, there is no return in place to
less user satisfaction. Similarly, all MaxRank(0.5,1,2) yield
less E than MaxGain, whereas MaxGain gives the shortest
effective diameter.
Observation C: Two simple heuristics, though introduce
perturbations in a simpler way, do not balance user-
satisfaction and gain properly. ValuePick, on the other
hand, fairly trades user acceptance as an exchange to better
network connectivity.

D. Analysis of computation time

In this section we provide a run-time analysis of the
CPLEX optimization tool that we used to solve the integer
programming problems in ValuePick. In Figure 5(a)
we show the time it takes to find the best k=5 nodes
to recommend to each node out of 379 nodes for (left)
Netscience and 931 nodes for (right) DBLP. We notice that it
only takes ∼ 0.047 seconds to solve an integer programming
problem with around 1K variables with CPLEX for DBLP.
This value is the average over T=30 time-steps times 10
runs, i.e. 300 trials per node.

In our simulations, we recommended k=5 nodes to all
the nodes in the graph. Then, for example for DBLP the
expected run-time for 1 run in which k recommendations
are made to all 931 nodes over T=30 iterations is 0.047 ∗
931 ∗ 30 ≈ 22 minutes. We show the total CPLEX run-
time over 30 iterations for both (left) Netscience and (right)
DBLP in Figure 5(b). The run-time is 22.3 minutes for
DBLP and 14 minutes for Netscience with 379 nodes. (All
experiments were performed on the same machine with a
3.2GHz Pentium CPU and 2GB memory.)
Observation D: A fast solution to ValuePick exists with
current optimization tools such as CPLEX. Finding the
solution set with up to 1K variables takes about 1

20 of a
second in practice.

V. RELATED WORK

There has been a wide range of research on recommender
systems and how to improve their recommendation quality,
however, much less has been done towards integrating
‘value’ into the system.

Brand [6] uses random walk based measures to compute
proximity in a customer-movie graph in which the goal is
to maximize the ‘expected discounted profit’ by “nudging”
customers into states from which the random walk will pass
through more profitable states earlier in the walk. [7] also
considers the profitability of products in recommender sys-
tems. Their method is, however, solely based on maximizing
‘expected profit’ which does not explicitly take into account
user satisfaction. More recently, Das et. al. [8] proposed a
method to maximize vendor profit while providing trust-
worthy recommendations to the customers. They did not
however conduct the empirical study. Anagnostopoulos et.
al. [9] also study the problem of query recommendation in an
optimization framework. In their setting there is no explicit
definition of vendor profit but only user satisfaction.

In their award-winning paper on the Netflix competition
[10] use factor models, among other concepts, but they also
do not consider profit in their formulation. Latent factor
models typically involve solving a non-convex optimization
(possibly using an EM-style algorithm or Alternating Least
Squares). These approaches usually require good initializa-
tion (or several random restarts) and has no guarantees on
the quality of the solution obtained. On the other hand,
we propose an Integer Programming (IP) approach to solve
the problem using CPLEX. CPLEX uses branch-and-cut
algorithms to solve these IP problems and in most cases
returns the optimal solution (along with a certificate of
optimality). In the cases when CPLEX does not find an
optimal solution it returns the value of the best solution
found so far along with a bound on the distance of this
solution from the optimal solution (either using an LP
relaxation or a dual certificate). We would also hasten to
point out that for the problems we discuss in the paper and
for the graphs we are interested in practically CPLEX has
always returned the optimal solution (indicating that typical
graphs do not result in hard IP problems).
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Figure 5. (a) Run time of CPLEX (in seconds) for each node averaged over 30 time-iterations x 10 runs = 300 trials (left) in Netscience, and (right) in
DBLP. Red lines show the average (∼ 0.074 and ∼ 0.047 sec.s,respectively), green lines show the 1 standard deviation below and above. (b) Total run
time of CPLEX for all the nodes for 30 iterations averaged over 10 runs. Note that 1 run of ValuePick takes about 14 minutes for (left) Netscience,
and 22 minutes for (right) DBLP with 379 and 931 nodes, respectively.

VI. CONCLUSIONS

This paper is one of the few work on recommender sys-
tems that focuses on integrating ‘value’ of recommendations
into the system in order to increase expected gain for the
vendors while keeping user satisfaction at high levels. Our
contributions can be summarized as follows:

1) Problem formulation: We formulated the problem of
link recommendation as an optimization problem and
proposed ValuePick, which incorporates the ‘value’
of recommendations into the system.

2) Design of our method: ValuePick is (a) parsi-
monious –requires only one parameter, tolerance τ ;
(b) flexible –τ can flexibly be set to properly bal-
ance the trade-off between maximizing expected gain
and achieving high user satisfaction. Two straight-
forward schemes, recommendation by proximity only
(τ=0) and recommendation by maximum expected
gain (τ=1), are the two special cases of ValuePick;
and (c) general –it can be used with any ‘value’ score.

3) Performance study: We ran extensive simula-
tions using two real collaboration networks, com-
pared our method to two other schemes Rank and
MaxRank that use simple heuristics, and showed that
ValuePick gives the best results satisfying the dual-
goal of obtaining a well-connected network with small
diameter and keeping user satisfaction at high levels.
Experiments show that CPLEX provides a fast solution
to ValuePick in practice.
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