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Abstract 
Given a labeled graph containing fraudulent and 

legitimate nodes, which nodes group together? How 

can we use the riskiness of node groups to infer a 

future label for new members of a group? This paper 

focuses on social security fraud where companies are 

linked to the resources they use and share. The 

primary goal in social security fraud is to detect 

companies that intentionally fail to pay their 

contributions to the government. We aim to detect 

fraudulent companies by (1) propagating a time-

dependent exposure score for each node based on its 

relationships to known fraud in the network;  (2) 

deriving cliques of companies and resources, and 

labeling these cliques in terms of their fraud and 

bankruptcy involvement; and (3) characterizing each 

company using a combination of intrinsic and 

relational features and its membership in suspicious 

cliques. We show that clique-based features boost the 

performance of traditional relational models. 

 

 

1. Introduction  
 

Fraud detection is a research domain that highly 

relies on the automated process of finding anomalous 

behavior in massive amounts of data. Automated 

algorithms are able to guide fraud experts by 

identifying potential high-risk observations. 

Distinguishing legitimate observations from fraudulent 

ones, however, is a nontrivial task, mainly due to the 

extremely imbalanced character of fraud. Indeed, less 

than 1% of the observations in fraud data sets are 

fraudulent. Traditionally, fraud is detected by applying 

simple if-then rules – e.g. if the amount due is not paid 

within a certain period, then the entity or transaction is 

marked as fraudulent. While such decision rules can 

identify straightforward types of fraud, subtle and 

adversarially planned effects of fraud are not captured. 

Machine learning offers a plethora of powerful 

techniques that are able to learn from historical data 

and discover useful patterns from the data. Extracting 

meaningful features that capture abnormal behavior, is 

a crucial step in efficiently detecting fraud through 

machine learning. An example of such features are 

ones that capture the interrelations between fraudsters 

(such as their group behaviors). We explore the 

usefulness of such features in this work.  

So far, the fraud detection literature has mainly 

focused on analyzing guilt-by-association [1], i.e. how 

relationships with fraudsters affect the probability that 

a person of interest will commit fraud. For example, 

suppose there are two fraudsters B and C who are both 

connected to person A (let’s say, by a friendship 

relation), then guilt-by-association analyzes each 

relationship to those neighbors separately. However, 

this approach does not take into account the 

relationships between the neighbors. In this work, we 

introduce guilt-by-constellation in which we derive 

suspicious cliques of nodes, and characterize each node 

in terms of its clique membership. A clique is a fully 

connected subgraph of the network where each node is 

Figure 1. Subgraph of companies (large nodes) 
connected to their resources (small nodes). 
Fraudulent companies are red-colored, currently-
legitimate companies are in blue. Companies form 
cliques (i.e., fully connected subgraphs) based on 
their use of the same set of resources. 

 
 



connected to every other node in the subgraph. For 

example, suppose now that persons B and C also know 

each other and, as a consequence, persons A, B and C 

form a clique of friends. Guilt-by-constellation 

investigates whether this will have a stronger effect on 

the fraud probability of person A.  

 

In this paper, we address social security fraud and 

show a successful example of how clique-based 

features are an important element in inferring future 

fraud. We define fraud as those companies that 

intentionally go bankrupt in order to avoid paying tax 

contributions: their debt to the government will be 

unrecoverable. We observe that after a certain time 

period a new company is founded which uses almost 

the same resources as the previous company, like 

machinery, equipment, employees, address, buyers, 

suppliers, etc. (see Figure 1). As opposed to many 

graph-related works, we exploit bipartite graphs, 

connecting two object types, i.e. companies and 

resources. We find that when a new company enters 

the market and inherits (a part of) the same set of 

resources previously associated with a fraudulent 

company (or companies), its fraud risk increases.  

 

We introduce clique-based features which are 

shown to outperform previous approaches to this 

problem. In particular, we define both complete- and 

partial-cliques (i.e., companies share all or part of their 

resources with each other) and investigate: (1) Does 

the probability of perpetrating future fraud increase 

when fraudulent companies are closely connected to 

each other, i.e. they form a dense group where they all 

share the same (set of) resources? (2) If a new 

company enters such a group, what would we say 

about its probability to commit fraud?  

Based on these analyses and observations, we 

define relational and clique-based features using a 

graph representation. Relational features aggregate the 

characteristics of close neighbors by treating each of 

them as a separate individual regardless of their links 

to other neighbors (i.e., guilt-by-association). Clique-

based features, on the other hand, also take into 

account the connectivity within the neighborhood (i.e., 

guilt-by-constellation). In addition to networked 

features (which capture peer pressure), we incorporate 

intrinsic features in our models. These intrinsic 

features are able to detect new types of fraud 

(e.g., ones that are not imitated). Remark that our 

models are dynamically updated, by extracting time-

dependent individual and clique membership scores for 

each company and by re-estimating the corresponding 

models. We contribute by proposing a novel approach 

to detect fraud by: 

- Defining cliques in a bipartite graph where one 

type of nodes (i.e., companies) are connected 

to another type of nodes (i.e., resources) (see 

Section 4.3). 

- Using a time-dependent individual exposure 

score (Section 4.2) of every node to label 

cliques in the network and infer a 

suspiciousness score (Section 4.3) for that 

clique. 

- Featurizing new instances based on the 

properties of the cliques they belong to, and 

integrating the extracted features with intrinsic 

and relational features (see Section 4.4). 

 

The remainder of the paper is organized as follows: 

background, related work, task description, empirical 

evaluation and conclusions. 

 

2. Social Security Fraud Detection 
 

Our proposed approach will be applied to social 

security fraud detection. While this is only one 

application to integrate clique memberships in 

detection algorithms, we believe that a similar 

approach is promising on comparable application 

domains, like credit card fraud detection, insurance 

fraud, opinion fraud, and so on. 

In this paper, we study social security data acquired 

from the Belgian Social Security Institution. In general, 

the Belgian Social Security Institution keeps track of 

companies registered in Belgium and a set of 

resources. Those resources are associated with 

companies. Due to confidentiality issues, we cannot 

elaborate further on the exact type of resources but the 

reader may understand those resources in terms of 

machinery, equipment, address, employees, buyers, 

suppliers, etc. As resources do not uniquely belong to 

one company, they can be shared or transferred among 

Figure 2. A company can end its economical 
lifecycle in three different ways: (1) regular 
suspension, (2) regular bankruptcy or (3) fraudulent 
bankruptcy. 



several companies. In addition, a company can make 

use of multiple resources.  

Companies need to contribute employer and 

employee taxes to the government. We say that if a 

company intentionally goes bankrupt so as not to pay 

its tax contributions, the company is fraudulent. 

Fraudulent companies often belong to a web of fraud, 

i.e. the resources of fraudulent companies are (partly) 

transferred to other companies which will commit 

fraud on their turn. E.g., fraudulent companies A, B and 

C operated at address p and used suppliers a and b. All 

those resources are now transferred to active company 

D. Company D is likely to commit fraud in the future. 

So far, all fraudulent companies detected by subject 

matter experts are identified ex post. This means that 

the companies are already bankrupt with unrecoverable 

debts to the government. In this paper, the goal is to 

identify those companies ex ante, such that experts can 

closely follow up companies with a high risk of not 

paying off their taxes, and curtailing the growth of 

existing and new webs of fraud.  

Remark that all fraudulent companies are bankrupt, 

but that not all bankrupt companies are fraudulent. This 

is depicted in Figure 2. While suspension is seen as a 

normal way of stopping a company’s activities (i.e., all 

debts redeemed), bankruptcy indicates that the 

company did not succeed to pay back all its creditors. 

Distinguishing between regular and fraudulent 

bankruptcies, is subtle and hard to establish. Experts 

expect that some regular bankruptcies are in fact 

undetected fraudulent bankruptcies.   

 We will use the network of companies and 

resources to judge the fraud probability or risk of a set 

of active companies. Resources move in bulk from one 

fraudulent company to another, leaving a trail of fraud. 

Using the company-resource network, we propose to 

capture clique behavior of the resources to cluster 

together companies. We will extract both a fraud and 

bankruptcy score for each clique: resource involvement 

in many fraudulent companies increases the fraud risk 

of future companies that use the same set of resources. 

Resource involvement in many bankruptcies might 

increase the fraud risk as well, as this may uncover an 

undiscovered group of fraudulent companies. We 

expect that currently-legitimate members of cliques 

that are highly associated with fraud or bankruptcy, 

have a higher probability of committing fraud in the 

near future. In this work, we try to answer questions 

like (1) does guilt-by-constellation detect future fraud 

more efficiently (2) what effect does a suspicious (i.e., 

fraudulent) clique have on currently legitimate 

companies that are part of that clique? (3) what effect 

does a clique characterized only by (apparent) regular 

bankruptcies have on currently-legitimate companies 

that are part of that clique? 

 

3. Related work  
 

While previous literature acknowledges the 

importance of network analysis in fraud detection, 

most research focuses on the so-called guilt-by-

association. Many works aggregate relational 

information in features such as degree, proportion, 

count, etc. [2,3,4] or apply inference procedures to 

spread the fraudulent influence throughout the whole 

network [5,6,7,8]. The aforementioned techniques 

neglect the density among the neighborhood of the 

node of interest, i.e. the extent to which the 

surrounding nodes are connected to each other as well. 

This is known as clusters, communities or cliques in 

the network [9].  Cortes et al. [10] formulated the idea 

to compute the community of interest (COI) centered 

around each node in the network and compare the 

overlap between COI’s. A significant overlap with a 

fraudulent COI might indicate that the COI is also 

fraudulent. Fast et al. [3] developed a fraud detection 

approach for the National Association of Securities 

Dealers (NASD)  which uses tribes or clusters of 

representatives. The authors focused on suspicious 

pairs of representatives that do not comply with a 

normal pattern in the industry. Akoglu et al. [6] 

proposed FraudEagle, a novel approach to spot 

fraudulent reviewers and reviews for opinion fraud 

detection. The authors used a co-clustering [11] 

technique to group together the top high-risk users for 

visualization purposes.  

To the best of our knowledge, this paper is the first 

to define cliques in a bipartite graph and featurize 

currently-legitimate instances (here companies) based 

on their memberships in cliques. 

 

4. Proposed method  
 

4.1 Task description 

 

The primary goal of this paper is to predict which 

currently active companies form a threat to perpetrate 

Figure 3. Flow-chart of detection process. 



fraud in the future by estimating a detection model that 

consist of a combination of intrinsic, relational and 

clique-based features. Specifically, our approach 

consists of four steps, as illustrated in Figure 3:  

 

1. Individual scoring: The influence of few 

known fraudulent (bankrupt) companies is 

spread through the network, deriving a time-

dependent exposure score for every node. That 

is, each company and resource receive a score 

based on the presence of fraudulent (bankrupt) 

influence in their neighborhood.  

2. Clique detection and scoring: Resources and 

companies that are frequently associated with 

each other are clustered in a clique. We 

aggregate the individual exposure scores of the 

involved companies and the resources to derive 

a suspiciousness score for each clique. 

3. Feature extraction: We calculate the value of 

the features for each currently active company 

based on its clique memberships (31), and 

combine them with intrinsic (18) and relational 

(2) features. In total, we have 51 company 

characteristics.    

4. Model estimation: We integrate all extracted 

features and try to predict which companies are  

highly sensitive to commit fraud in the future.  

 

Next we introduce our definitions and notations. A 

network which includes two node types, is called a 

bipartite graph. 

 

Notation A bipartite graph                is a 

graph that connects nodes       to nodes      , 

such that for each edge the following property holds: 

 

                           

 

Let    be the set of company nodes, and    the set of 

all resource nodes, then a company is uniquely 

connected to resources and vice versa. At a certain 

timestamp t, all companies are labeled according to 

their fraud involvement        {                } 

and their bankruptcy involvement        
{               }. Those labels are used to infer an 

individual fraud and bankruptcy exposure score for 

every company and resource.  

  

4.2. Individual exposure score 
 

Given a network of companies and resources, how 

can we use the label of few companies to infer a score 

of the other nodes. More specifically, the goal here is 

to derive an exposure score for each node, i.e. for each 

company and resource. As we are interested in both the 

fraudulence and the bankruptcy probability in social 

security fraud, we will infer both a fraud and 

bankruptcy exposure score. Those scores reveal 

whether the neighborhood of the company or the 

resource is frequently involved in fraud or bankruptcy 

respectively. 

Given a matrix representation of a bipartite graph 

M of size r   c with r the number of resources and c 

the number of companies, we want to diffuse or 

propagate the effect of a limited number of known 

fraudulent (bankrupt) companies through the network 

(see Figure 4). In earlier work [7], we proposed the 

GOTCHA! propagation algorithm to derive an 

exposure score for each node in a bipartite graph. In 

short, the GOTCHA! propagation algorithm inherits 

concepts from the Personalized PageRank as proposed 

by Page and Brin [12] to compute the ranking of n web 

pages, and: 

 

   ⃗         ⃗          ⃗  (1) 

with  ⃗  a vector containing the PageRank scores, 

depending with a probability   on the scores of the 

neighboring nodes as denoted by the adjacency 

matrix   of size n   n, and a probability     on a 

personalized vector  ⃗ . We call   the restart probability 

and  ⃗  the restart vector. 

 

In order to face the challenges imposed by the fraud 

detection domain, we will change Eq. 1 such that the 

GOTCHA! propagation algorithm complies with the 

following requirements concerning fraud: (1) Bipartite 

graphs: Resources are an important indicator of fraud. 

The network consists of both companies and resources. 

(2) Focus on fraudulent influence: Rather than 

diffusing any influence through the network, the 

algorithm should emphasize fraud and only allow to 

propagate fraudulent influence through the network. 

Figure 4. Illustration of the GOTCHA! propagation 
algorithm. The red node propagates its fraudulent 
influence to its neighbors (step 1). The neighbors 
absorb the influence and propagate  on their turn 
their fraudulent influence to their neighbors (step 
1 + 2). The iterations are repeated several times 
until convergence. 



(3) Dynamical character: First, relationships are time-

dependent. The edges in the network should be 

temporally weighted, giving a high weight to recent 

relationships. Second, fraud is time-dependent. 

Companies that were recently caught should diffuse a 

higher fraudulent influence in the network. (4) Degree-

independent propagation: fraud affects each resource 

equally whether the company has many resources or 

not. In order to avoid that low-degree companies 

spread more fraudulent influence to their resources 

than high-degree companies,  the fraudulent influence 

that companies spread through the network is 

proportional to the number of associated resources. 

Next, we will explain how each requirement is 

implemented. 

As our propagation algorithm scores both 

companies and resources, we transform the bipartite 

adjacency matrix   to a unipartite adjacency matrix 

according to requirement (1): 

 

   (
      
     

)  (2a) 

with   a symmetrical matrix. 

 

In order to propagate only fraudulent influence 

through the network, we will change the starting vector 

 ⃗, such that requirement (2) is fulfilled: 

 

{
                                                     

                                       
 

 

Requirement (3) takes into account the dynamic 

structure of networks. A network is a representation of 

a real-world concept where relationships between 

nodes are constantly added and removed. In a social 

security context, a new relation pops up in the network 

if a company starts using a specific resource. A current 

relation is removed if the company stops using a 

resource. As we believe that past relations are equally 

important to present global shifting patterns of the 

resources, instead of removing relationships, we opt to 

decay the influence between the two nodes dependent 

on the recency of the relation: 

 
               

 

with        the relation between resource i and 

company j (0, if no relation),        the weighted 

relation between resource i and company j (0, if no 

relation),   the decay value, and h the number of 

weeks passed since the  relationship was still active. 

The value of   defines the pace at which the 

relationship degrades. Accordingly, Eq. 2a equals: 

 

   (
      
     

)  (2b) 

 

The same reasoning holds for valuing the 

importance of the fraudulent influence of companies. 

The starting vector  ⃗ is exponentially decayed, and 

defined as: 

           

 

with   the decay value, and h the number of weeks 

passed since fraud was detected at company j. 

 

Finally, in order to avoid emphasizing low-degree 

fraudulent companies, the starting vector is adapted 

such that the neighborhood of each company absorbs 

an equal amount of fraudulent influence according to 

requirement (4): 

 

 ⃗   ⃗    ⃗ 

 

with  ⃗ the degree-adapted starting vector which is 

the element-wise product of  ⃗ the time-weighted 

starting vector and  ⃗ the degree vector.  

 

Eq. 1 implies a matrix inversion. This is often not 

feasible in practice, due to the large size of input 

graphs
1
. As such, we will use the power-iteration 

method which iterates the following equation until 

convergence: 

 

  ⃗             ⃗         ⃗      (3) 

with  ⃗  the exposure scores after k iterations,   the 

restart probability,       the row-normalized 

connectivity matrix and  ⃗     the normalized degree-

adapted restart vector such that  ⃗     sums to 1. 

Vector  ⃗  is a random vector with values between 

[0,1]. Convergence is reached after a predefined 

number of iterations or until the change in exposure 

scores is insignificant. 

This step results in an exposure score for every 

node, i.e. companies and resources. For each node, we 

will compute both the fraud and bankruptcy exposure 

score. Those scores will be used in the next steps to 

characterize each identified clique in terms of its fraud 

and bankruptcy accumulation. 

 

4.3 Clique detection and scoring 
 

Given present and past relationships of the 

companies and their resources, can we build cliques of  

                                                           
1
 Complexity of the best performing algorithm for matrix inversion 

equals O(n2.373) [13]. 



companies and their associated resources, and score 

each clique based on the fraudulence or bankruptcy 

that resides in each clique?  First, we define how we 

can extract all cliques in a bipartite graph. Second, we 

score each clique based on the exposure scores derived 

in the previous section.  

 

Clique Detection According to [14], a community 

is defined as a tightly connected group of nodes or 

subgraph in the network. A clique is the strongest 

definition and requires that all objects of a subgraph 

are connected to each other. In bipartite graphs, we 

define a clique as a subgraph in which each type-one 

object is connected to each type-two object. This 

means that we induce a subgraph from the network in 

which all companies are connected to all resources and 

vice versa. Note that our approach only tends to find 

company cliques, and uses resources to associate the 

companies. 

We apply a bottom-up approach to find all cliques 

in the network, which we describe in detail as follows. 

First, we start by enumerating all pairs of companies 

that share at least two resources. Since we are inclined 

to analyze strong relationships between companies, we 

require that each clique contains at least two 

companies and two resources. For each two companies 

in the data set, we list all of their shared resources. 

Next, we merge any two pairs of companies that share 

the same resources (or an intersection of the resources). 

If two pairs can be merged together in a complete-

clique based on an exact match of all resources, the 

original pairs are deleted from the set of cliques. If the 

resources of two pairs of companies partially overlap, 

the two pairs are merged if both groups share at least 

two resources together. Those cliques are considered 

partial-cliques. The original pairs are kept in the set of 

cliques. This step is repeated until no newly created 

cliques can be merged together, i.e. until there is no 

exact or partial overlap between the new cliques in the 

set. We illustrate examples of the types of cliques this 

procedure creates in Figure 5. 

Typically, a clique either consists of many 

companies that share only few resources or few 

companies with many resources. Since we do not 

delete partially overlapping groups, some cliques might 

be contained in other cliques (see the bottom figure in 

Figure 5). Thus, we are able to obtain insights in the 

intensity of the relationships between companies. For 

example, the bottom figure illustrates that company B 

is part of a “large” partial-clique   that connects it to 

companies A and C. This clique is formed based on 

two shared resources (c-d). Yet, company B is also 

contained in clique   based on four shared resources 

(a-d). As such, company A will have a larger influence 

on company B than company C, as company A is 

stronger connected to company B than to company C. 

 

Clique scoring To score the cliques in terms of 

fraud and bankruptcy involvement, we use the 

individual propagated exposure score of each node. 

More concretely, given the known fraudulent and 

bankrupt companies, we characterize each clique by: 

1. COUNT: The absolute number of fraudulent 

and bankrupt companies in the clique. 

2. PROPORTION: Relative number of fraudulent 

and bankrupt companies in the clique. 

3. (WEIGHTED) SUM: Sum of company 

(resource) fraud and bankruptcy exposure 

scores, optionally weighted by the number of 

companies (resources) in the clique. 

4. MAGNITUDE: Total size of the clique 

(companies and resources) and the number of 

companies and the number of shared resources 

contained in the clique. 

Note that most cliques are legitimate, not 

containing any company ever associated with fraud or 

bankruptcy before. Approximately 5% and 10% of all 

the identified cliques contain at least one company that 

was already labeled as fraudulent or bankrupt 

respectively. In the next section, we will introduce how 

we define clique-based features and characterize each 

company based on its clique memberships. 

 

Figure 5. Clique detection process. Companies A, B 
and C share the same (set of) resources. The top 
figure illustrates the merging process for an exact 
match between pairs of companies. The original 
pairs are deleted from the final set. Only clique   is 
in the remaining set of cliques. The bottom figure 
represents a partial overlap between pairs of 
companies. Here, the original pairs   and  , together 

with a new clique   are all added to the new set of 
cliques. 



4.4. Feature extraction 

 
The detection algorithm should be able to identify 

high-risk companies rather than high-risk resources. 

Therefore, we extract features for each active company 

at a certain timestamp. In general, we define three sets 

of features: intrinsic, relational and clique-based 

features.  

Intrinsic A company often exhibits suspicious 

characteristics without being influenced by others. 

Intrinsic features reflect company behavior as if the 

company was treated in isolation.  Those features 

include a.o. sector, size, age, financial statements, etc. 

Relational The fraud and bankruptcy exposure 

score embody the proximity of fraudulent or bankrupt 

influence in the company’s neighborhood. A high 

fraud score indicates that many companies in the 

surrounding environment were already caught by 

perpetrating fraudulent activities. The bankruptcy 

score reveals the extent to which neighboring 

companies are bankrupt. These scores are computed in 

Section 4.2. 

Clique-based While some companies are isolated, 

other companies highly interact with their 

neighborhood. Cliques of closely connected companies 

are interesting to analyze in a fraud detection context. 

We define three types of cliques: (1) innocent – this 

corresponds to the majority of the identified cliques 

(~90%), (2) bankruptcy – approximately 10% of the 

cliques are associated to at least one bankrupt 

company, and (3) fraudulent – around 5% of the 

cliques is sensitive to fraud. The cliques captured in (3) 

are also part of the cliques identified in (2). Since a 

company can belong to multiple cliques, clique 

behavior is aggregated. That is, for each company we 

derive the following clique-based features: 

1. COUNT: Number of cliques to which the 

company belongs. 

2. AVERAGE: The characteristics as defined in 

Section 4.3 are averaged over all the cliques 

the company belongs to. For example, the 

average fraud count reflects the average 

number of fraudulent companies that reside in 

a clique. 

3. MAXIMUM: The danger of considering the 

average values of all the associated cliques is 

that the effect of one highly suspicious clique 

can be filtered out by many innocent cliques. 

Therefore, we include the maximum value for 

each of the identified clique characteristics. For 

example, the maximum fraud count captures 

the maximum number of fraudulent companies 

that are within one clique. 

In total, we create 31 clique-based features for each 

active company. Around 70% of all companies are not 

included in a clique, and have zero values for the 

clique-based features. While most companies are not 

included in a clique, approximately 75% of all 

fraudulent companies are member of at least one 

clique. 

All the aforementioned features are combined and 

passed to the detection process. 

 

4.5. Detection model  
 

The data set provided by the social security 

institution is a dynamic data set which includes past 

and present company characteristics and past and 

present relationships between companies and their 

resources. In order to validate the detection power over 

time, we choose to (re-)estimate the model for four 

timestamps and three time windows. More concretely, 

for every timestamp, we extract the features of all 

active companies according to Section 4.4, and infer a 

model to predict which companies will perpetrate fraud 

within a certain time window. We define three time 

windows: short, medium or long term. Based on 

experts’ knowledge, we arbitrarily set the time 

windows to 6, 12 and 24 months. While short-term 

models are able to capture new fraud mechanisms, 

long-term models have more evidence to learn from. 

The models are re-estimated on a yearly basis, i.e. for 

timestamps year 1 – 4. Due to confidentiality issues, 

we do not specify the exact timestamp. 
 

Table 1. Extremely skewed data distribution for the 
social security institution 

 Short term Medium term Long term 

Year 1 0.03% 0.06% 0.11% 

Year 2 0.04% 0.08% 0.16% 

Year 3 0.04% 0.09% 0.16% 

Year 4 0.07% 0.11% 0.16% 

 

Fraud data sets commonly represent an extremely 

skewed distribution. This means that often less than 

1% of the observations are fraudulent. In particular, 

Table 1 represents the data distribution for the social 

security data set. Less than 0.05%, 0.10% and 0.20% 

of the companies will be fraudulent on short, medium 

and long term respectively. In order to rebalance the 

data set, we apply SMOTE (Synthetic Minority 

Oversampling Technique) as proposed by [15] on the 

training set. Based on empirical evidence of [15], the 

oversampling and undersampling percentage are set to 

400% and 200% respectively. 

Previous l i terature acknowledges that  the 

featurization of network-related characteristics of an 

object might create a multitude of input features which 

can deteriorate the results, and suggests the use of 

ensemble methods to carefully select the most 



 
(a) 

 
(c) 

important features [16]. Our models are estimated 

using Random Forests [17]. This ensemble method 

infers a set of decision trees by randomly selecting 

features. A voting process decides the label of each 

instance. 

 

For each timestamp, the data set is randomly split 

into training and test sets. The training set is 

manipulated by SMOTE to address the imbalanced 

data distribution. The next section will discuss the 

results of our detection models. The results reflect the 

performance of the derived models on the test set. 

 

5. Empirical Evaluation 
 

In this section, we evaluate our estimated models in 

terms of performance volatility over time, prediction 

power and precision on different time windows, and 

 
(b) 

 
(d) 

importance of the various sets of features. 

 

5.1. Data set 
 

For each timestamp, approximately 220,000 active 

companies and 5 million resources are registered with 

the social security institution. In order to derive 

exposure scores (Section 4.2) and suspicious clique 

memberships (Section 4.3), we include past fraudulent 

and bankrupt companies to the bipartite graph. Only 

regularly suspended companies were excluded from 

the analysis, as those companies do not contribute to 

the fraud detection process. In Year 4, the bipartite 

graph consists of around 400,000 companies and 5.6 

million resources. 

 

 

Figure 6. ROC curves for the different timestamps of our analysis. Notice that the combined model which 
includes all of the intrinsic, relational, and clique-based features outperforms the models using any one of 
those features alone. 



5.2. Performance over time 
 

Figure 6 depicts the ROC curves of the various 

timestamps of our analysis. All ROC curves present the 

model performance for a long-term time window. The 

ROC curves indicate that the combined models 

generate better results. In addition, a pairwise t-test 

confirms that the combined approach performs 

significantly better than the other models for all 

timestamps and time windows (α < 0.05).  Especially 

the steep slope of the curve clearly indicates that the 

combined model is particularly good in classifying 

companies as fraudulent that have a high cut-off value 

(i.e., companies with a high fraud probability 

according to the model are in reality often sensitive to 

fraud).  This high true positive rate is particularly 

important because experts have limited  resources 

available to investigate high-risk companies, and are 

able to inspect only a few companies in each 

timestamp.  

Note from the figures that the clique-based and the 

combined model have a similar increase for high cut-

off values. This might indicate that the clique-based 

features are mainly responsible for the high prediction 

power of the combined model when only a limited 

number of companies is selected. The relational model 

also follows a steep increase, but especially lifts up the 

curve of the combined model in the middle, when the 

clique-based model performs poorly.  

Finally, even without network-based features, the 

model achieves a relatively high performance. This is 

illustrated by the intrinsic model in the figures. 

However, relational and clique-based features are an 

important element in boosting the performance, and 

should therefore be included in the detection models. 

 

5.3. Precision   
 

Fraud inspection is a time-consuming task and 

experts only select few companies for further 

investigation. Detection models should comply with 

these requirements. Given that the experts can only 

process approximately 100 companies in each 

timestamp, which companies should be inspected?  

Our results (from the previous section) showed that the 

combined model is preferred above the other models, 

but are the models equally precise in finding high-risk 

companies on short, medium and long term?  

In Figure 7, we illustrate the precision for the 

combined model for each timestamp and each time 

window. Except for Year 1 where we have limited 

networked data, long-term models have a higher 

precision. More than 20 out of 100 companies that are 

classified as fraudulent in Year 4, do indeed perpetrate 

fraud in the future. This means that high-risk 

companies already radiate suspicious behavior and 

characteristics even before they effectively perform 

fraudulent activities.  

The precision of the detection model is in general 

low. However, given the extremely unbalanced data set 

of the social security institution, these are remarkable 

results. While our models are able to reach a precision 

of 22%, random classification would only result in a 

random precision of less than 0.2%. 

Figure 8. Precision of the top 100 most high-risk 
companies. Generally speaking, long-term models 
perform better than short- and medium-term 
models. 

Figure 8. Variable importance of the top 15 features 
in the combined model. 



5.4. Variable importance 
 

We would like to assess which variables contribute 

to the high prediction power of the estimated detection 

models.  

Figure 8 illustrates that the top 15 most important 

variables are mainly clique-based features, although 

one of the intrinsic features also has a high explanatory 

power. Note that the most important clique-based 

variables are bankruptcy, rather than the fraud related 

variables. We can conclude that an environment which 

is highly sensitive to bankruptcy might actually be a 

construction with hidden fraud.  

 

6. Conclusions  
 

While the challenge of fraudsters is to find the 

loopholes in the law, it becomes the challenge of the 

data analyst to characterize suspicious activities and to 

categorize new, similar activities as high-risk. In this 

work, instead of solely focusing on intrinsic behavior 

such as demographics, we choose to incorporate 

network-based features. First, we define an exposure 

score that quantifies both the fraudulent as well as the 

bankruptcy involvement of the neighborhood. Second, 

we form cliques of companies based on the resources 

they share, and score each clique in terms of the 

sensitivity of that clique to fraud and bankruptcy based 

on the computed exposure scores. For every defined 

timestamp, we derive features for each active company 

and learn a detection model to predict which 

companies exhibit a high risk of perpetrating fraud in 

the future. Our results indicate that the combination of 

clique-based, relational and  intrinsic features achieves 

the best performance. Also, long-term models have a 

higher precision when we analyze the top 100 high-risk 

companies, as more data becomes available. In 

particular, our model is able to uncover 22% fraud 

cases, which is very high considering the extremely 

skewed class distribution (< 0.2%). Moreover, we find 

that clique-based features have a high explanatory 

power and are an important indicator for future fraud. 
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