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ABSTRACT

Anomaly and event detection has been studied widely 
for having many applications in fraud detection, network 
intrusion detection, detection of epidemic outbreaks, and 
so on. In this paper we propose an algorithm that operates 
on a time-varying network of agents with edges 
representing interactions between them and (1) spots 
"anomalous" points in time at which many agents 
"change" their behavior in a way it deviates from the 
norm; and (2) attributes the detected anomaly to those 
agents that contribute to the "change" the most. 
Experiments on a large mobile phone network (of 2 
million anonymous customers with 50 million interactions 
over a period of 6 months) shows that the "change"-points 
detected by our algorithm coincide with the social events 
and the festivals in our data.

1. INTRODUCTION

Anomaly detection has been studied widely in many 
settings such as “anomalous point detection” on clouds of 
multi-dimensional points, spatio-temporal “anomalous 
pattern detection”, “change-point detection” on a 
sequence of time series of data, and so on with many 
applications such as intrusion detection in networks 
[Sequeira et. al. 2002], detection of medical insurance 
claim fraud, credit card fraud, electronic auction fraud
[Bolton et. al. 2002, Chau et. al. 2006], fault detection in 
engineering systems [Fujimaki et. al. 2005] as well as
many others. In this paper, we focus on change-point 
detection in time-varying graph data.

The problem of discovering change-points at which 
properties of time-series data change significantly has 
also attracted a lot of interest in the research community 
[Basseville et. al. 1993, Brodsky et. al. 1993, Gustafsson 
2000, Yamanishi et. al. 2002 Kifer et. al. 2004, Kawahara 
et. al. 2007]. This problem is also referred as event 
detection [Guralnik and Srivastava 1999].

Although the change-point detection problem has been 
actively studied in the statistics and the data mining 
communities over the last several decades, there has been
much less focus on change-point detection particularly in 
graph data. More recently, [Ide and Kashima 2004] 

developed an eigen-vector based algorithm to detect faults 
in multi-tier Web-based systems represented as a time 
sequence of graphs. Another set of research [Bunke et. al. 
1998, Shoubridge et. al. 2002] derives “distance 
functions” between a pair of graphs, compute distances 
between consecutive graphs in a given sequence, and 
finally apply traditional anomaly detection methods on 
the time series of distance values. [Sun et. al. 2007] 
propose a parameter-free algorithm to discover 
communities in streams of graph and flag points in time 
as discontinuity points when the community structure 
changes significantly.

In this paper, we propose an algorithm to spot 
change-points in a time-varying graph at which many 
nodes deviate from their normal “behavior”. In a nut-shell 
our method works as follows. We first extract time 
sequence of several network features for all nodes in the 
graph. Next we build a correlation matrix representing the 
correlation of “behavior” between all pairs of nodes in the 
graph over a certain time window. Then, we derive a
“behavior” vector of all nodes and compare it to recent 
past “behavior” vectors detected over several previous 
time windows. If the current “behavior” is found to be 
significantly different than recent past, we flag the current 
time window as anomalous and report as an event has 
occurred.  

To demonstrate the effectiveness of our method, we
study the texting behavior of users of an anonymous 
mobile network in a large city in India. In this who-texts-
whom network, nodes represent the users and edges 
represent the SMS interactions between them. The data 
consists of six months’ of activity and is therefore time-
varying. Also, the edges are weighted, weights denoting 
the total number of SMSs sent/received between 
individual pairs. More specifically, the SMS network 
constructed from the SMS records includes over 2 million
users with 50 million SMS interactions between them 
over a period from Dec. 1, 2007 to May 31, 2008. Given 
this large, time-varying network, the main questions we 
answer in this paper are the following:

(1) At what points in time many of the nodes in a 
given time-varying graph change their behavior 
significantly?
(2) Can we attribute the change to specific nodes, 
that is, can we characterize which nodes change in 
behavior the most?   
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Fig. 1. 

3. OUR METHOD

3.1 Feature Extraction from Nodes

In order to find patterns that nodes of a graph follow, 
we characterize the nodes with several features
each node becomes a multi-dimensional point. In 
particular, each node is summarized by a set of features
extracted from its egonet (egonet of a node includes the 
node itself, its neighbors, and all the interactions between 
these nodes). The 12 features considered in this work are 
as follows: 1) in-degree, 2) out-degree, 3) 
out-weight, 5) number of neighbors, 
reciprocal neighbors, 7) number of triangles
in-weight, 9) average out-weight, 10) maximum in
weight, 11) maximum out-weight, and finally 12) 
maximum weight ratio on reciprocated edges
egonet.

3.2 Change-Point Detection

The flow of our method to detect change
behavior of nodes is illustrated in Figure 1. This method 
is similar to [Ide and Kashima 2004], but differs in the 
construction of the “dependency” matrices
right in Figure 1) as follows. 

Here, the data we study looks like the 
the top left of Figure 1, where T denotes the number of 
time ticks (T=183 days), N denotes the number of nodes 
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Fig. 1. The Work-flow of Change-Point Detection

In order to find patterns that nodes of a graph follow, 
he nodes with several features so that 

dimensional point. In 
each node is summarized by a set of features

(egonet of a node includes the 
node itself, its neighbors, and all the interactions between 

features considered in this work are 
3) in-weight, 4) 

number of neighbors, 6) number of 
number of triangles, 8) average 

weight, 10) maximum in-
weight, and finally 12) 

maximum weight ratio on reciprocated edges in the 

change-points in the 
behavior of nodes is illustrated in Figure 1. This method 

], but differs in the 
ction of the “dependency” matrices C (See top 

looks like the 3-D tensor on 
denotes the number of 

denotes the number of nodes 

in our graph (N=2M customers)
number of features extracted for each node 
described in Section 3.1). To start with, 
“slice” of this 3-D TxNxF tensor for a particular feature 
Fi, say in-weight, which is a TxN
in Figure 1). Next, we define a window of size W over the 
time-series of values of all nodes for that particular 
feature Fi. Then for pair of nodes, we
correlation between their time-series vectors over the 
window of size W using Pearson’s rho as follows.

In the above equation, X and Y are the length
for node pair (X, Y). So, for each window we
correlation matrix C, where Cx,y = 
W. Next, we slide the window down one 
and compute the correlations over 
time ticks. Similarly we keep repeating this process until 
we reach the end of our data. To be representative and 
given the periodic behavior of human nature, we chose 
the size W as 7 days (one week). 
constructing 177 C matrices (See top 

By the Perron-Frobenius theorem
largest (principal) eigenvector of each of the 
positive. The value for each node in the eigenvector can 
be thought as the “activity” of that node; that is, the more 
correlated a node is to the majority of the nodes, the 
higher its “activity” value will be. Here, we 

customers), and F denotes the 
extracted for each node (F=12 as 

. To start with, we take one 
tensor for a particular feature 

matrix (See top middle 
define a window of size W over the 

nodes for that particular 
pair of nodes, we compute the 

series vectors over the 
window of size W using Pearson’s rho as follows.

X and Y are the length-W vectors 
So, for each window we construct a 

= rho(x,y) over window 
slide the window down one time tick (day)

compute the correlations over the next window of W 
time ticks. Similarly we keep repeating this process until 

To be representative and 
given the periodic behavior of human nature, we chose 
the size W as 7 days (one week). As a result, we end up 

top right in Figure 1). 

Frobenius theorem (1907, 1912), the 
largest (principal) eigenvector of each of the C matrices is 
positive. The value for each node in the eigenvector can 
be thought as the “activity” of that node; that is, the more 
correlated a node is to the majority of the nodes, the 

ctivity” value will be. Here, we call each such 
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eigenvector as the “eigen-behavior” of all the nodes in the 
graph on the whole. 

3.3 Metric to Score Time Points for “anomalousness”

After finding all the eigenvectors for all the 177 C
matrices, the change-point in the “eigen-behavior” of the 
nodes is found as follows. For the eigenvector computed 
at time say t denoted by u(t), we compute a “typical
eigen-behavior” denoted by r(t-1) from the last W’
eigenvectors back in time (See bottom right in Figure 1). 
We experimented with two different ways to compute the 
mentioned typical eigen-behavior. Firstly, we simply took 
the arithmetic average of all previous W’ eigenvectors. 
Secondly, we constructed a new NxW’ matrix, each 
column being an eigenvector over that window, and then 
we computed the left singular vector of that new matrix 
using SVD decomposition. Similar to the principal 
eigenvector for square positive matrices, the left singular 
vector of a positive non-square matrix yields an average 
“behavior” score for all nodes. One can think of the left 
singular vector as the weighted average of eigenvectors in 
window W’.

Finally, after we obtain the “typical eigen-behavior” 
for each C matrix (for each week) using either SVD or 
regular averaging, the “eigen-behavior” u(t) computed at 
time t is compared to the “typical eigen-behavior” r(t-1)
by taking the dot-product of those two unit vectors. The 
change metric we used is Z = (1-uTr). Here, if u(t) is 
perpendicular to r(t-1), then their dot-product gives a 
value of 0 (Z=1), whereas if u(t) is exactly the same as 
r(t-1), then their dot-product gives a value of 1 (Z=0). 
Therefore, Z takes values between 0 and 1 and a higher 
value of Z indicates a change-point and is flagged 
accordingly (See bottom left in Figure 1).

4. EMPIRICAL STUDY

We start by looking at the distribution of correlation 
values Cx,y in the C matrices. Figure 2 shows the 
histogram as well as the CDF of Cx,y values for two 
different days, Dec. 1 and Dec. 26, for F:in-weight.

Here, one observation is that the distribution of
correlations between time-series of nodes is skewed as 
might be expected. Surprisingly, though, it is skewed 
towards large values. That is, there are lots of pairs with 
correlation score close to or equal to 1. This happens 
because over the time window W of 7 days, most of the 
nodes have no activity –their W-length vectors are all 0’s 
and thus the pair-wise correlations of such 0 vectors are 
computed to be 1. This suggests that the nodes have 
bursty activity where nodes have no activity for several 
weeks and have activity at bursts.

Another observation from Figure 2 is that the total 
number of correlation scores 1 reduces in Dec. 26 
compared to Dec. 1, suggesting for no activity weeks for 
fewer nodes, that is, more nodes become active during the 
week of Dec. 26. This is expected as this week is the New 
Year week. We note that the CDF distributions for these 
two days also look different. These observations 
strengthen our belief of studying correlations between 
behaviors of nodes would be important in detecting the 
change-points in our data.

Fig. 2. (top) Histogram and (bottom) CDF 
distribution of correlation scores Cx,y for (left) Dec.
1 and (right) Dec. 26 using F: in-weight.

Next, we compare the results when using SVD versus 
taking the regular average (AVG) for computing the 
“typical eigen-behavior” r(t-1) of earlier eigenvectors 
over a window of W’ (See Section 3.3). Figure 3 shows 
the so-called Z scores computed (1) when r(t-1) is 
computed with SVD (in blue bars) versus (2) when r(t-1)
is computed by simply taking the average (in red lines) 
for four different values of W’, (from left to right, top to 
bottom) {5, 7, 20, 50}. Notice that the red line almost 
exactly follows the blue bars. This means that SVD is 
giving equal weight (importance) to all W’ eigenvectors 
in the past same as the AVG does. Therefore, since 
computing the average is less expensive, we will use the 
AVG to compute r(t-1) in the rest of our experiments. 

We also note that in Figure 3 the Z scores follow 
somewhat a similar trend when different window sizes are 
considered. However, the larger the window gets, the 
more aggregated the results become (notice that the four 
spikes for W={5,7} reduce to two spikes only for 
W={20,50}). Thus in the rest of our experiments, we will 
use W = 5 over which the r(t-1) vector is computed by 
using AVG.
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Fig. 3. Z scores computed when the typical eigen-
behavior vector r(t-1) is computed by taking the SVD 
(blue bars) versus the regular AVG (red lines) for (from 
left to right top to bottom) W = {5, 7, 10, 20}. Notice 
AVG is very similar to SVD.

4.1 Detected Change-Points in Time

Here, after computing the Z scores for all time ticks 
as was explained above, we simply report the top k 
(k=10) days with the highest Z scores. In an online 
setting, this would be picking a threshold t and flag the 
days with a Z score greater than t.

In Figure 4 we show the top 10 time ticks with the 
highest Z scores in red bars when feature values F are 
taken to be the “in-weight”. Here, we observe that the 
week of Christmas (Dec. 26 - Jan. 1) is marked with the 
second highest Z score. This shows that during this week 
many people changed their behavior in terms of receiving 
SMSs, probably started receiving more than usual number 
of SMSs. Interestingly, although our data is collected in 
India and most people are not Christian, many would 
indeed “celebrate” the “Christian New Year”. We note 
that the reason the week starting on Jan 2 is marked with 
the highest Z score is because the week following 
Christmas is yet another change-point at which things go
back to “normal”.

Another surprising finding is the time tick with the 
third highest Z score which is April 7. Similar to the week 
of Jan 2, this week is also a change-point at which things 
turned back to “normal”. The actual interesting day here 
is indeed April 6. Our data spans months both in 2007-
2008, and according to http://www.infoplease.com/ 
ipa/A0777465.html, April 6 in 2008 corresponds to the 
“Hindi New Year”. 

These results suggest that our method is effective in 
finding points in time at which the collective behavior of 
the nodes deviate from the recent past.

Fig. 4. Top 10 time points flagged by our method (red 
bars) for feature F: in-weight. “Christmas” and “Hindi 
New Year” were successfully detected as major 
change-points.

For sanity check, we also performed experiments 
using other features such as “numrecip”: number of 
reciprocated edges and “out-degree”: number of contacts 
SMSs sent. Here we conjectured that these two features 
would be correlated with “in-weight” and for example in 
New Year not only people would ‘receive’ many SMSs 
(affecting in-weight) but they would also ‘reply’ to them 
returning good wishes (affecting both numrecip and out-
degree). In that sense, we wanted to check whether our 
method would flag similar time ticks when these two 
features are used.

Figure 5 shows that our method in fact flags the same 
time points including the weeks of Dec 26 and April 6 
also when “numrecip” and “out-degree” features are used. 
Moreover, the spikes in the Z scores are even clearer 
when these features are used. This is intuitive in the sense 
that even though the “in-weight” (number of SMSs 
received) is expected to increase on days such as 
Christmas and New Year, the number of reciprocated 
interactions are expected to increase even more (people 
tend to reply to celebration messages on such days much 
more than to messages for regular communication).

We also compared the results of our method to the 
results we obtain by using the sheer volume at each time 
tick. In particular, we computed the total number of SMSs 
received (in-weight) per day and marked the top k=10 
time points for which the most number of SMSs were 
received in total. We repeated the same process for total 
number of reciprocal replies (numrecip) and total number 
of out-going contacts (out-degree). We show the results in 
Figure 6 where the red bars depict the top 10 time points 
with highest volume. We observe that just the total 
volume for all three features was enough to detect change 
on for example Dec. 31 and Jan 1. However, we realize 
that the points reported for each feature also partly differ 
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from each other and are not as consistent as the earlier 
results. For instance April 6, even though was detected as 
a change-point using features “numrecip” and “out-
degree”, was not detected using “in-weight”. The main 
reason behind these observations is that our method 
considers every person in the network individually and    

flags change-points if the majority of them change their 
“normal” behavior whereas the total volume considers the 
aggregated behavior. The aggregated data loses 
information in the individual level and thus is prone to 
flag change-points if only a few people change their 
behavior sufficiently a lot. 

Fig. 5. Top time points flagged by our method (red bars) for features (left) F: numrecip and (right) F: out-degree.
Notice that using two correlated features our method detected the same time points as with F: in-weight (Fig. 4).  

Fig. 6. Top time points flagged by using total volume (red bars) for features (left) F: in-weight, (middle) F: numrecip, 
and (right) F: out-degree.

Here the question we try to answer is that for a given 
change-point detected, can we go back and characterize
which node(s) contributed to the change the most? 

Figure 7 shows the scatter plot of the values of the 
eigen-scores u(t) versus the typical pattern scores r(t-1)
for all the nodes on Dec. 26. Here, we observe that most 
of the values lie on the diagonal, which shows that a 
majority of the nodes did not change much on their 
typical behavior (ui(t) ~ ri(t-1)). On the other hand, some 
points that are far off-diagonal are marked in red that 
contribute to the Z score the most.

Similarly, Figure 8 shows the amount of change ratio 
(%) for 10K randomly picked nodes (bottom row shows

the values in sorted order). Again, the same top 5 nodes as 
in Figure 7 are marked in red.

Since our data does not contain any labels about any 
type of anomalies or change-points, in Figure 9 we depict
the time series of total SMSs received (in-weight) over 
183 days for the top 5 nodes (that are marked in red on 
Figures 7 and 8) each row representing a node. Here we 
observe that, three of the nodes (rows 1, 4 and 5) have no
activity on the week of Dec. 26. They are marked because 
they are observed to have some activity over the previous 
weeks. On the other hand the other two nodes (rows 2 and 
3) have the opposite behavior. They start receiving SMSs 
after the Christmas week. Interestingly, we also observe 
that these two sets of nodes lie in different sides of the 
diagonal in Figure 7, indicating an opposite change in 
their behaviors.

4.2 Attributing Change to Nodes
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Fig. 7. Scatter plot u(t) versus r(t-1). Each blue dot 
indicates a node. Nodes far away from the diagonal 
change in “behavior” the most (top 5 marked in red).

Fig. 8. (top) Change ratios (%) of 10K nodes in 
and r(t-1). Each bar indicates a node (top 5 shown in 
red). (bottom) Ratio values sorted.

In addition, Figures 10 and 11 show corresponding 
results for April 7 (the change point with the third highest 
Z score) (as before, we use F: in-weight). 
the drop in activity over the week starting on
high activity on April 6 (Hindi New Year in 2008).

Finally, we also mention that similar results are 
obtained when we use other features such as 
and “out-degree” but we omit them here for brevity. The 
comparison of nodes detected by using different features 
is subtle: Although one can look at the overlap of nodes in 
the top k ranked list of result, we choose to
series of the top 5 nodes detected to contribu
“change” the most. Here, our goal is to 
results make intuitive sense, that is, the behaviors of 
nodes indeed do change significantly for the flagged time 
intervals. 

6

. Each blue dot 
indicates a node. Nodes far away from the diagonal 
change in “behavior” the most (top 5 marked in red).

(top) Change ratios (%) of 10K nodes in u(t)
Each bar indicates a node (top 5 shown in 

show corresponding 
with the third highest 

weight). Note especially
starting on April 7 after 

high activity on April 6 (Hindi New Year in 2008).

similar results are 
other features such as “numrecip” 

for brevity. The 
nodes detected by using different features 

is subtle: Although one can look at the overlap of nodes in 
choose to show the time 

to contribute to 
to show that our 

, that is, the behaviors of 
nodes indeed do change significantly for the flagged time 

Fig. 9. Time series of inweight values of  top 5 nodes 
marked in Figures 6 and Figure 7.

Fig. 10. (left)  Scatter plot u(t) versus 
(right) Change ratios (%) of 10K nodes in 
on April 7th.

Fig. 11. Time series of in-weight values of top 5 nodes 
marked in Figure 9.

Time series of inweight values of  top 5 nodes 
and Figure 7.

versus r(t-1) on April 7. 
(right) Change ratios (%) of 10K nodes in u(t) and r(t-1)

weight values of top 5 nodes 
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4.3 Detecting Change-Points per Node

Next, we switch to applying the same method on the 
other dimension of the data tensor I started with. In 
particular, here instead of looking at the TxN matrix for a 
particular feature F, I take the TxF matrix for a particular 
Node X and try to detect “interesting”/change
that particular node only.

Since applying the method on all 2 m
not practical, we choose the top 2 nodes with the highest 

where X denotes the anonymous customer ID, MR is 
gender, next comes the listed birth-day and the rest are 
some extra information that are not relevant in this study. 

The second user is: 

Fig. 12. Top 10 time points flagged by 

For the first node, the week of Jan 6 is found to be 
the most important change-point. Figure 13
ratio of change for all the 12 features at that time. We 
observe that “in-weight”, “average in
“maximum in-weight” contribute to the change the most. 
Although these three are correlated features, it is 
surprising that on the contrary, the “in-degree
not change much (first bar). This suggests for receiving 
many more SMSs but from the same set of contacts (high 
“in-weight”, constant “in-degree”). Also, the 
changing feature is “numrecip”. This also shows that that
user is replying many more SMSs received than

Figure 14 on the other hand shows the time series of 
all the 12 features for node X=84332250336 on Jan
The start and end of the week is marked with red and 
green vertical bars in the time line
Unfortunately, it is hard to notice any change compared to 
recent past for this week since the node is highly active 
over the whole period of 6 months.
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Next, we switch to applying the same method on the 
other dimension of the data tensor I started with. In 
particular, here instead of looking at the TxN matrix for a 
particular feature F, I take the TxF matrix for a particular 

and try to detect “interesting”/change-points for 

Since applying the method on all 2 million nodes is 
top 2 nodes with the highest 

where X denotes the anonymous customer ID, MR is 
day and the rest are 

some extra information that are not relevant in this study. 

Here, we observe that some customers share the same ID 
–maybe two people sharing the same phone

We conjecture that the birth day 
informative in the sense that these days are expected to be 
flagged as change-points for these nodes. Unfortunately, 
for the first node, the birthday is 
spans only until May. Also, for one of the second users 
the listed birth day of 01-Jan-70 is the default date 
indicating the user indeed did not set his birthday 
correctly.

Figure 12 shows the top 10 change
for these two users. Unfortunately, it is hard to make any 
argument about how valid these results are because this 
time they are more subjective.  

flagged by our method (red bars) for two users with the most number of 

week of Jan 6 is found to be 
point. Figure 13 shows the 

ratio of change for all the 12 features at that time. We 
average in-weight” and 

contribute to the change the most. 
Although these three are correlated features, it is 

degree” itself does 
not change much (first bar). This suggests for receiving 
many more SMSs but from the same set of contacts (high 

). Also, the forth most 
changing feature is “numrecip”. This also shows that that

ing many more SMSs received than usual.

shows the time series of 
all the 12 features for node X=84332250336 on Jan 6. 
The start and end of the week is marked with red and 

vertical bars in the time line, respectively. 
Unfortunately, it is hard to notice any change compared to 
recent past for this week since the node is highly active 

Fig. 13. (top) Change ratios (%) of 12 features in 
and r(t-1). Each bar indicates a 
in red). (bottom) Ratio values sorted.

Here, we observe that some customers share the same ID 
people sharing the same phone-line/service. 

day in our data would be 
in the sense that these days are expected to be 

points for these nodes. Unfortunately, 
for the first node, the birthday is in Oct. and our data 

ay. Also, for one of the second users 
70 is the default date 

indicating the user indeed did not set his birthday 

shows the top 10 change-points detected 
for these two users. Unfortunately, it is hard to make any 
argument about how valid these results are because this 

users with the most number of SMSs received.

(top) Change ratios (%) of 12 features in u(t)
Each bar indicates a feature (top 5 shown 

in red). (bottom) Ratio values sorted.

number of SMSs received. The first user isis:
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Fig. 14. Time series of all the 12 features for Node 
X=84332250336 on Jan 6th. Red line marks the start 
whereas the green line marks the end of the week.

CONCLUSIONS

We propose an algorithm based on “eigen-behavior” 
analysis to (1) spot “change-points” in time at which the 
majority of the nodes in a given network deviate from 
their normal behavior; and (2) point out the specific nodes 
that are most related to the cause of a detected change-
point. We validate the effectiveness of our method on a 
network dataset of millions of mobile phone users and 
their SMS interactions over half a year. Although there 
exists no ground truth information in our SMS data 
analyzed, the experimental results suggest that our
method is able to detect interesting time points such as 
Christmas and the Hindi New Year. On the other hand, 
identifying the nodes that contribute to a change the most 
is harder to evaluate and needs more analysis for further
evaluation purposes. Moreover, given the 3-mode
characteristics of our data (nodes, features, time), we were 
also able to find change-points for a given node by 
tracking the eigen-behavior based on its network features. 

ACKNOWLEDGMENTS

This material is based upon work supported by the Army 
Research Laboratory under Cooperative Agreement No. 
W911NF-09-2-0053, the National Science Foundation 
under Grant No. IIS0808661, iCAST, and an IBM Faculty 
Award. Any opinions, findings, and conclusions or 
recommendations in this material are those of the authors 
and should not be interpreted as representing the official 
policies, either expressed or implied, of the Army 
Research Laboratory, the U.S. Government, the National 
Science Foundation, or other funding parties. The U.S. 
Government is authorized to reproduce and distribute 
reprints for Government purposes notwithstanding any 
copyright notation here on.

REFERENCES

Basseville, M. and Nikiforov, V., Detection of Abrupt
Changes: Theory and Application, Prentice-Hall, Inc., 
Englewood Cliffs, N. J., 1993.

Bolton, R. J. and Hand, D. J., Statistical Fraud Detection: A 
Review, Statistical Science, 17(3): 235-255, 2002.

Brodsky, B. and Darkhovsky, B., Nonparametric Methods in 
Change-Point Problems, Kluwer Publishers, 1993.

Bunke, H. and Shearer, K., A graph distance metric based on 
the maximal common subgraph, Pattern Recognition 
Letters, 19 (3/4), 1998, pp.255-259.

Chau D. H., Pandit S., Faloutsos C., Detecting fraudulent
personalities in networks of online auctioneers, PKDD 
2006.

Fujimaki, R., Yairi, T. and Machida, K., An Approach to 
Spacecraft Anomaly Detection Problem Using Kernel
Feature Space, ACM SIGKDD 2005, pp.401-410.

Guralnik, V. and Srivastava, J., Event Detection from Time 
Series Data. ACM SIGKDD 1999, pp.33-42.

Gustafsson, F., Adaptive Filtering and Change Detection,
John Wiley & Sons Inc., 2000.

Ide, T. and Kashima, H., Eigenspace-Based Anomaly
Detection in Computer Systems, ACM SIGKDD 2004, 
pp.440-449.

Karlton Sequeira and Mohammed Javeed Zaki. Admit: 
anomaly-based data mining for intrusions. KDD, 2002.

Kawahara, Y., Yairi, T. and Machida, K., Change-Point 
Detection in Time-Series Data Based on Subspace 
Identification. IEEE ICDM 2007, pp.559-564.

Kifer, D., Ben-David, S and Gehrke, J., Detecting Change in 
Data Streams, VLDB 2004, pp.180-191.

Shoubridge P., Kraetzl M., Wallis W. D., Bunke H., 
Detection of Abnormal Change in a Time Series of 
Graphs. Journal of Interconnection Networks, 2002 
Volume 3, pp.85-101.

Sun J., Faloutsos C., Papadimitriou S., Yu P. S.: 
GraphScope: parameter-free mining of large time-
evolving graphs. KDD 2007.

Yamanishi, K. and Takeuchi, J., A Unifying Framework for 
Detecting Outliers and Change Points from Non-
Stationary Time-Series Data, ACM SIGKDD 2002, 
pp.676-681.

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP

