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ABSTRACT
Given an unsupervised outlier detection task, how should one
select i) a detection algorithm, and ii) associated hyperparam-
eter values (jointly called a model)? Effective outlier model
selection is essential as different algorithms may work well for
varying detection tasks, and moreover their performance can
be quite sensitive to the values of the hyperparameters (HPs).
On the other hand, unsupervised model selection is noto-
riously difficult, in the absence of hold-out validation data
with ground-truth labels. Therefore, the problem is vastly
understudied in the outlier mining literature. There exists a
body of work that propose internal model evaluation strate-
gies for selecting a model. These so-called internal strategies
solely rely on the input data (without labels) and the output
(outlier scores) of the candidate models. In this paper, we
first survey internal model evaluation strategies including
both those proposed specifically for outlier detection, as well
as those that can be adapted from the unsupervised deep
representation learning literature. Then, we investigate their
effectiveness empirically in comparison to simple baselines
such as random selection and the popular state-of-the-art
detector Isolation Forest (iForest) with default HPs. To this
end, we set up (and open-source) a large testbed with 39
detection tasks and 297 candidate models comprised of 8 dif-
ferent detectors and various HP configurations. We evaluate
internal strategies from 7 different families on their ability to
discriminate between models w.r.t. detection performance,
without using any labels. Our study reports a striking find-
ing, that none of the existing and adapted strategies would
be practically useful : stand-alone ones are not significantly
different from random, and consensus-based ones do not out-
perform iForest (w/ default HPs) while being more expensive
(as all candidate models need to be trained for evaluation).
Our survey stresses the importance of and the standing need
for effective unsupervised outlier model selection, and acts
as a call for future work on the problem.

1. INTRODUCTION
Model selection aims to select a model from a set of candidate
models for a task, given data. We consider the model selec-
tion problem for the unsupervised outlier detection (UOD)
task. Specifically, given a dataset for UOD, how can we
identify – without using any labels – which outlier model
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(a detection algorithm and the value(s) of its hyperparame-
ter(s)) performs better than the others on the input dataset?
Importantly, note that as the outlier detection task is unsu-
pervised, so is the model selection task. That is, an outlier
model is to be selected without being able to validate any
candidate models on hold-out labeled data.

Motivation and Challenges. The notion of a universally
“best” outlier model does not exist; rather the best-performing
model depends on the given data. On the other hand, model
selection is a nontrivial one, provided there are numerous
outlier detection algorithms based on a variety of approaches:
distance-based [17; 36], density-based [4; 12; 43], angle-
based [19], ensemble-based [2; 27; 35], most recently deep
neural network (NN) based [7; 9; 40; 45], and so on. To
add to this “choice paralysis”, most models are sensitive
to their choice of hyperparameters (HPs) with significant
variation in performance [13], even more so for deep neural
network (NN) based outlier models that have a long list
of HPs [9]. Unsupervised model selection will likely be an
increasingly pressing problem for deep detectors, as their
complexity and expressiveness grow. Recent work hold out
some labeled validation data for tuning such deep outlier
models [22; 23; 40], which however is not feasible for fully
unsupervised settings. These factors make outlier model
selection a problem of utmost importance.

Despite its importance, the problem of Unsupervised Outlier
Model Selection (UOMS hereafter) is a notoriously challeng-
ing one. Mainly, the absence of validation data with labels
makes the problem hard. Moreover, there does not exist a
universal or well-accepted objective criterion (i.e. loss func-
tion) for outlier detection, which makes model comparison
infeasible. Besides its unsupervised nature, the search space
for UOMS can be quite large with the arrival/popularity of
deep NN based models with many HPs.

Existing work. Perhaps due to these challenges, UOMS
remains a vastly understudied area. Most work in the outlier
mining literature focus on designing new detection algorithms,
such as those for unique settings: streaming [14; 28; 42],
contextual [24; 31], human-in-the-loop [8; 21] detection, etc.

There exist a small body of work, specifically addressing
UOMS, that proposes internal (i.e. unsupervised) model
evaluation strategies to assess the quality of a model and
its output. These are called internal strategies as they use
heuristic measures that solely make use of the input data
and/or output outlier scores. To our knowledge, there are
only three such techniques (in chronological order) [30; 11;
34]. However, they employ their proposed strategies to select
only among 2-3 detectors on 8-12 real-world datasets. More



problematically, they do not systematically compare to one
another, nor do they use the same datasets. This makes it
difficult to fully understand the strengths and limitations of
these existing methods, and ultimately the extent to which
progress has been made on this subject.

More recently, we have designed a series of new approaches
for UOMS leveraging two key concepts; meta-learning [51;
48; 49] and hyper-ensembles [9]. Notably, the former works
utilize internal evaluation measures, the focus of this sur-
vey. The idea is to boost the relatively weak internal model
performance signals from these heuristic measures via meta-
learning from historical tasks that have labels. As such,
any future work on designing new internal model evaluation
strategies and improving their effectiveness and speed would
directly feed into and advantage these meta-learning based
UOMS approaches. (See Sec. 4 for detailed related work.)

Our survey. In this work, our goal is to survey internal
model evaluation strategies, and systematically evaluate and
compare their effectiveness. To this end, we first bring under
one umbrella the aforementioned three existing UOMS meth-
ods, adapt two state-of-the-art unsupervised model selection
techniques originally proposed for deep representation learn-
ing [10; 25], and design two new internal model selection
methods inspired by various consensus algorithms. We put
them to test on a large testbed against simple baselines,
including random model selection as well as the popular
isolation Forest (iForest) [27], with default HPs. To our
knowledge, this is the first work to systematically review and
evaluate the internal evaluation strategies toward unsuper-
vised model selection for outlier detection. We summarize
the contributions and findings of this paper as follows.

• Unified Comparison: We identify (to our knowl-
edge) all existing internal model evaluation strategies
for UOMS. For the first time, we systematically com-
pare them on their ability to discriminate between
models w.r.t. detection performance, as well as w.r.t.
running time, on the same testbed.
• Large-scale Evaluation: Our testbed consists of 8

state-of-the-art detectors, each configured by a com-
prehensive list of hyperparameter settings, yielding a
candidate pool of 297 models.We perform the model
selection task on 39 independent real-world datasets
from two different public repositories. We compare
different strategies through paired statistical tests to
identify significant differences, if any. We find that all
three existing strategies specifically designed for UOMS
are ill-suited. Alarmingly, none of them is significantly
different from random selection (!)
• New UOMS Techniques: All three existing meth-

ods specifically designed for UOMS are stand-alone;
evaluating each model individually, independent of oth-
ers. In addition to those, we repurpose four consensus-
based algorithms from other areas for UOMS; utilizing
the agreements among the models in the pool. We find
that consensus-based methods are more competitive
than stand-alone ones, and all of them achieve signifi-
cantly better performance than random. However, they
are not different from iForest (the best detector in our
pool), thus, would not be employed (on a pool) over
training a single (iForest) model.
• Open-source Testbed: We expect that UOMS will

continue to be a pressing problem, especially with the
advent of deep detection models with many hyperpa-

rameters. Our large-scale analysis reveals that there is
ample room for progress on this problem, and serves
as a call for future work. At the same time, our results
shed light onto the strengths and limitations of different
approaches that motivate future directions.

Reproducibility and Future Work. To foster progress
on this key problem, we open-source all datasets, our trained
model pool, and implementations of all the internal model
evaluation strategies at https://github.com/yzhao062/uoms.

2. PRELIMINARIES & THE PROBLEM
Model selection concerns with picking a model from a pool of
candidate models. Let M = {Mi}Ni=1 denote a pre-specified
pool of N models. Here each model Mi is a {detector,
HPconfiguration} pair, where detector is a certain outlier
detection algorithm (e.g. Local Outlier Factor (LOF) [5])
and HPconfiguration is a certain setting of the values for
its hyperparameter(s) (e.g. for LOF, value of n neighbors:
number of nearest neighbors to consider, and function of
choice for distance computation).

In this study, M is composed by pairing 8 popular outlier
detection algorithms to distinct hyperparameter choices, com-
prising a total of N = 297 models, as listed in Table 1. All
models are trained based on the Python Outlier Detection
Toolbox (PyOD) [50] on each dataset.

Let D = {Dt}Tt=1 denote the set of outlier detection datasets

(i.e. tasks), where Dt = {x(t)
j }

nt
j=1, nt = |Dt| is the number

of samples and ot is the true number of ground-truth outliers

in Dt. We denote by s
(t)
i ∈ Rnt the list of outlier scores

output by model Mi when employed (i.e. trained1) on Dt,

and s
(t)
ij ∈ R to depict individual sample j’s score. We omit

the superscript when it is clear from context. W.l.o.g. the
higher the sij is, the more anomalous is j w.r.t. Mi.

Problem 1 (Unsupervised Outlier Model Selection).
(UOMS) The model selection problem for unsupervised outlier
detection can be stated as follows.

Given an unsupervised detection task D = {xj}nj=1,
all models in M trained on D
with corresponding output scores {si}Ni=1 ;

Select a model M ′ ∈M,
such that s′ yields good detection performance.

Note that the detection performance is to be quantified post
model selection, where ground-truth labels are used only for
evaluation (and not for model training or model selection).

In this work, we study 7 different families of internal strate-
gies (See Table 2): (1) three techniques that were proposed
to directly address the UOMS problem, (2) two unsupervised
model selection techniques adopted from deep learning, and
(3) two others that are not originally designed for model
selection that we adapt to UOMS.

To compare their effectiveness systematically, we construct a
large testbed of T = 39 real-world outlier detection datasets
from two different repositories (See Sec. 5.1). That is, we
perform UOMS using each technique 39 times, to select
one model from the pool of 297. Given that the datasets
are independent, a large testbed enables paired statistical
tests that conclusively identify significant differences between
these techniques and various simple baselines.

1Note that as we consider unsupervised outlier detection,
model “training” does not involve any ground-truth labels.

https://github.com/yzhao062/uoms


Table 1: Outlier Detection Models; see hyperparameter definitions from PyOD

Detection algorithm Hyperparameter 1 Hyperparameter 2 Total

LOF [4] n neighbors: [1, 5, 10, 15, 20, 25, 50, 60, 70, 80, 90, 100] distance: [’manhattan’, ’euclidean’, ’minkowski’] 36
kNN [36] n neighbors: [1, 5, 10, 15, 20, 25, 50, 60, 70, 80, 90, 100] method: [’largest’, ’mean’, ’median’] 36
OCSVM [41] nu (train error tol): [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9] kernel: [’linear’, ’poly’, ’rbf’, ’sigmoid’] 36
COF [43] n neighbors: [3, 5, 10, 15, 20, 25, 50] N/A 7
ABOD [19] n neighbors: [3, 5, 10, 15, 20, 25, 50] N/A 7
iForest [27] n estimators: [10, 20, 30, 40, 50, 75, 100, 150, 200] max features: [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9] 81
HBOS [12] n histograms: [5, 10, 20, 30, 40, 50, 75, 100] tolerance: [0.1, 0.2, 0.3, 0.4, 0.5] 40
LODA [35] n bins: [10, 20, 30, 40, 50, 75, 100, 150, 200] n random cuts: [5, 10, 15, 20, 25, 30] 54

297

3. REVIEW OF INTERNAL MODEL EVAL-
UATION STRATEGIES

Internal strategies evaluate the goodness of a model without
using any external information, especially with no access to
ground-truth labels. The internal information being used is
solely limited to (i) the input samples (feature values only),
(ii) the trained models in the candidate pool and the outlier
scores as output by these trained models. The common
thread among all internal model evaluation strategies in
this study is an estimated heuristic internal measure of
“model goodness”. Model selection is then addressed by top-1
selection: i.e. picking the model with the highest value of
the respective measure.

We categorize the 7 strategies we studied into two, depending
on how they estimate their internal measure: (1) stand-
alone and (2) consensus-based. (See Table 2.) Stand-
alone strategies solely rely on each model and its output
individually, independent of other models. All three existing
methods proposed specifically for UOMS fall into this cate-
gory. On the other hand, consensus-based strategies leverage
agreement between the models in the pool and hence utilize
candidate models collectively. Four strategies we adopt and
adapt2 from other areas all fall into this latter category.

In the following we provide a short description of each strat-
egy (and refer to the original articles for full details). We also
remark on the computational complexity of some methods
as they demand considerable running time. Ideal is to have a
lightweight and effective selection method with low overhead
incurred on top of model training. In the experiments, we
compare these methods w.r.t. their selection performance as
well as running time.

3.1 Stand-alone Internal Evaluation (Existing)

3.1.1 IREOS
The first known index proposed for the internal evaluation
of outlier detection results is by Marques et al., called In-
ternal, Relative Evaluation of Outlier Solutions (IREOS)
[30]. While their initial index is designed only for binary
solutions (referred to as “top-n” detection), their recent work
[29] generalized to numeric outlier scorings, which is the
setting considered in this study.

Their intuition is that an outlier should be more easily sep-
arated (discriminated) from other samples than an inlier.

2We adopt two strategies originally proposed for unsuper-
vised model selection for deep representation learning “as is”,
and adapt two techniques (from information retrieval and
ensemble learning) by repurposing them to UOMS problem
with small modifications.

Table 2: Overview of UOMS methods studied in this survey.

Method Type Based on Strategy

xb,rs,. . . [34] Stand-alone Outlier scores Cluster quality
EM, MV [11] Stand-alone Outlier scores Level sets
IREOS [30] Stand-alone O. scores + Input Separability
UDR [10] Consensus Outlier scores One-shot
MC [25], MCS Consensus Outlier scores One-shot
HITS [16] Consensus Outlier scores Iterative
Ens [52] Consensus Outlier scores Iterative

Then, a model is “good” the more it identifies as outlier
those samples with a large degree of separability. They pro-
pose to assess the separability of each individual sample using
a maximum-margin classifier (and specifically use nonlinear
SVMs).3 The IREOS score of a model Mi on a given dataset
is computed as

IREOS(si) =
1

nγ

nγ∑
l=1

∑n
j=1 p(xj , γl)wij∑n

j=1 wij
(1)

where p(xj , γl) is the separability of sample j as estimated by
a nonlinear SVM with kernel bandwidth (a hyper-parameter)
γl, and nγ is the number of different bandwidth values used
from the interval [0, γmax].4 They convert outlier scores
{sij}nj=1 to probability weights {wij}nj=1 using the approach
by [18] to push inlier scores toward zero so that they do not in
aggregate dominate the weighted sum. IREOS tends to give
high scores to those models whose outlier scores correlate
well with the separability scores by a nonlinear SVM.

Computationally, IREOS is quite demanding as it requires
training of a nonlinear classifier per sample. Their source
code10 provides ways to approximate IREOS scores, mainly
estimating separability via nearest neighbor distances, which
however are also expensive to compute.

3.1.2 Mass-Volume (MV) and Excess-Mass (EM)
Goix [11] proposed using statistical tools, namely MV and
EM curves, to measure the quality of a scoring function.
Formally, a scoring function s : Rd 7→ R+ is any measur-
able function integrable w.r.t. the Lebesgue measure Leb(·),
whose level sets are estimates of the level sets of the density.
Outliers are assumed to occur in the tail of the score distri-
bution as produced by a scoring function, where the lower
s(x) is, the more abnormal is x.

3Note that collective outliers (forming micro-clusters, or
clumps) do not have high separability. IREOS accounts for
this effectively, provided a user-specified clump size. For
details, we refer to the original articles.

4They use heuristics to automatically set γmax in code.



Given a scoring function s(·) (in our context, an outlier
model), the MV measure is defined as follows.

M̂V s(α) = inf
u≥0

Leb(s ≥ u) s.t. Pn(s(X) ≥ u) ≥ α (2)

where α ∈ (0, 1), and Pn is the empirical distribution; Pn(s ≥
v) = 1

n

∑n
j=1 1s(xj)>v.

For univariate real numbers, Leb(·) measures the length of
the given interval. Let smax denote the largest score produced
by s(·). Then, empirically Leb(s ≥ u) is equal to the length
|smax − u|. Given α, the u that minimizes the Lebesgue
measure Leb(s ≥ u) in Eq. (2) would be equal to the outlier
score at the (1−α)-th quantile, i.e. u = CCDF−1

s (α). Then,
|smax − u| would give the length of the range of scores for
α fraction of the samples with scores larger than u. In
their work, they consider α ∈ (0.9, 0.999).5,6 As they assume
a lower score is more anomalous, the Lebesgue measure
quantifies the length of the interval of scores for the inliers.
The smaller MV is, the better the scoring function is deemed
to be. Intuitively, then, MV measures the clusteredness of
inlier scores (or the compactness of high-density level sets).

The EM measure is quite similar, and is defined as

ÊMs(t) = sup
u≥0

Pn(s(X) ≥ u)− tLeb(s ≥ u) (3)

for t > 0. Similarly, they consider t ∈ [0, ÊM
−1

s (0.9)] with

ÊM
−1

s (0.9) := inf{t ≥ 0, ÊMs(t) ≤ 0.9}.
Intuitively, EM would identify as small a u value as possible
(so as to maximize the density mass in the first term) such
that the scores larger than or equal to u are as clustered
as possible (so as to minimize the Lebesgue measure in the
second term). Again, the more clustered are the scores of
the bulk of the samples (i.e. inliers), the larger EM gets, and
the better the scoring function is deemed to be.

3.1.3 Clustering validation metrics
[34] point out that a drawback of IREOS, besides compu-
tational demand, is its dependence on classification – which
itself introduces a model selection problem – since the results
may depend on the selected classification algorithm and its
hyper-parameter settings.7 Despite citing IREOS, they do
not compare in experiments.

Their key proposal is to apply internal validation measures for
clustering algorithms to outlier detection. As clustering aims
to ensure samples within each cluster are similar and different
from samples in other clusters, these measures are mainly
based on compactness (capturing within-cluster similarity)
and/or separation (reflecting inter-cluster distance).

To that end, we split the outlier scores by a given model
under evaluation for dataset Dt into two clusters, denoted
Co and Ci, respectively consisting of the highest ot scores
and the rest. According to those measures, an outlier model
is “good” the more separated these two sets of scores are
and/or the more clustered the scores within each set are.

5Given fraction of outliers is bounded to 10% maximum.
6Area under the MV-curve is estimated as the sum of

empirical MV values by Eq. (2) for discretized values of α.
7Another paper [33] by the same authors proposed a classi-

fication based internal evaluation method, similar to IREOS.
Their experiments show that the current internal measures do
comparably well or better with less computational overhead,
hence we omit [33] from this study.

In their study, they compared 10 different existing clustering
quality measures, such as the Silhouette index [39], Xie-Beni
index [46], etc. (See others in the original article.) One of the
well-performing ones in our experiments, namely Xie-Beni
index of a model Mi, denoted xbi, is defined as follows.

xbi =

∑
j∈Co d

2(sij , co) +
∑
j′∈Ci d

2(sij′ , ci)

nt d2(co, ci)
(4)

where co =
∑
j∈Co sij/ot and ci =

∑
j′∈Ci sij′/(nt − ot)

depict the cluster centers and d(·, ·) is the Euclidean distance.
This index can be interpreted as the ratio of the intra-cluster
compactness to the inter-cluster separation.

Clustering quality based measures are typically easy to com-
pute; most of them being linear in the number of samples.

3.2 Consensus-based Internal Evaluation (Re-
purposed)

3.2.1 UDR

The first consensus-based approach, namely Unsupervised
Disentanglement Ranking (UDR), is adopted from deep
learning and is “the first method for unsupervised model selec-
tion for variational disentangled representation learning” [10].
Each model in their case corresponds to a {HPconfiguration,
seed} pair. Reciting Tolstoy who wrote “Happy families are
all alike; every unhappy family is unhappy in its own way.”,
their main hypothesis is that a model with a good hyper-
parameter (HP) setting will produce similar results under
different random initializations (i.e. seeds) whereas for a
poor HP setting, results based on different random seeds will
look arbitrarily different.

In a nutshell, UDR follows 4 steps: (1) Train N = H × S
models, where H and S are the number of hyperparameter
settings and random seeds, respectively. (2) For each model
Mi, randomly sample (without replacement) P ≤ S other
models with the same HP as Mi, but different seeds. (3)
Perform P pairwise comparisons between Mi and the models
sampled in Step 2 for Mi. (4) Aggregate pairwise similarity
scores (denoted UDRii′) as UDRi = mediani′ UDRii′ , for
i = 1, . . . , N . Finally, they pick the model (among N) with
the largest UDRi. Intuitively, UDR selects a model with
an HP setting that yields stable or consistent results across
various seeds.

Notice that adopting UDR for the UOMS task is trivial by
making the analogy between {HPconfiguration, seed} and
{detector, HPconfiguration}. While trivially applied, one
may question whether the implied hypothesis (that a good
detector has consistent results across different HP settings)
holds true for outlier models, since one of the key reasons for
UOMS in the first place is that most detectors are sensitive
to their HP settings [13].

The key part of UDR is how pairwise model comparisons are
done in Step 3. We measure the output ranking similarity
of the samples by two models, based on three well-known
measures from information retrieval [26] (See Sec. 5.1).

3.2.2 MC

A follow-up work to UDR proposed ModelCentrality (MC),
which is another consensus-based strategy for what they call
“self-supervised” model selection for disentangling GANs [25].

Their premise is similar, that “well-disentangled models
should be close to the optimal model, and hence also close



to each other”. Provided the similarity Bii′ between two
models Mi and Mi′ can be computed, ModelCentrality of
Mi is written as MCi = 1

N−1

∑
i′ 6=iBii′ . They then select

the model with the largest MCi, which coincides with the
medoid in the pool of models – hence the name MC.

Computationally, MC is quadratic in the number of models
as it requires all pairwise comparisons. We also experiment
with a lightweight version, called MCS , where we randomly
sample P ≤ N models and compute MCi of Mi as the
average of its similarities to P models, effectively reducing
its complexity down to that of UDR.

In their experiments, [25] report that MC outperforms UDR
schemes (Sec. 3.2.1). Our results are consistent with their
finding, possibly because it is an unrealistic hypothesis for
outlier models that a good model would have consistent
results across HP settings.

3.2.3 Model Centrality by HITS
We can build on the idea of ModelCentrality through com-
puting centrality in a network setting. Unlike MC that
is computed in one shot, network centrality is recursive—
wherein a node has higher centrality the more they point to
nodes that are pointed by other high-centrality ones.

One of the earliest methods for computing centrality, namely
hubness hp and authority ap, of pages on the Web is the
HITS algorithm [16], where

hp ∝ sum of ai for all nodes i that p points to , and

ap ∝ sum of hi for all nodes i pointing to p ,

which are estimated alternatingly over iterations until con-
vergence. Besides ranking on the Web, HITS-like ideas have
been used to estimate user trustworthiness in online rating
platforms [20; 44], physician authoritativeness in patient re-
ferral networks [32], polarity of subjects in political networks
[3], as well as truth discovery [47].

It is easy to adapt HITS for UOMS by constructing a com-
plete bipartite network between the N models and nt samples
in a given dataset Dt. Then, the models can be evaluated by
their hubness centralities. The analogous interpretation is
that a a sample has higher authority (outlierness), the more
trusted models (with high hubness) point to it (with large
outlierness score, i.e. large edge weight). Then, a model
is more central or trusted, the more it points (with large
outlierness score) to samples with high authority.

Note that a by-product of this strategy is a consensus-
based ranking of the samples based on authority scores (i.e.
centrality-based outlierness) upon convergence. We com-
pare this (aggregate) ranking, called HITS-auth, against
selecting a (single) model by hubness in the experiments.

3.2.4 Unsupervised outlier model ensembling
HITS has a built-in advantage that is the iterative refinement
of model trustworthiness. Specifically, given the trustworthi-
ness of models, outlier scores can be better estimated by a
trustworthiness-weighted aggregation of scores across models.
Then, given those refined outlier scores, model trustworthi-
ness can also be better estimated; where the more similar
their output is to the updated scores, the more a model is
deemed trustworthy.

Here we build on another iterative scheme, originally designed
for unsupervised selective outlier model ensembling [38; 52].
The idea is to infer reliable “pseudo ground truth” outlier
scores via aggregating the output of a carefully-selected

Algorithm 1 Ensemble-based Internal Model Evaluation

Input: set of outlier scores from all models, {si}Ni=1
Output: internal scores for all models
1: S := ∅ , E := ∅, C := 0
2: for i = 1, . . . , N do I convert scores to inverse rank
3: S := S ∪ {1/rank(sij)}nj=1

4: end for
5: target := avg(S) I initial pseudo ground truth scores
6: repeat
7: sort S by rank correlation to target in desc. order
8: {m, corrm} := fetchFirst(S)
9: if corr(avg(E ∪m), target)× |E| ≥ C then

10: E := E ∪m, C+= corrm
11: target := avg(E) I pseudo ground truth by E
12: end if
13: until {S = ∅ or E is not updated}
14: return rank correlation of si to target, i = 1, . . . , N

subset of trustworthy models. The ensemble is constructed
bottom-up in a greedy iterative fashion (see Alg. 1).

Similar to HITS, the “pseudo ground truth” and model
trustworthiness are estimated alternatingly. The latter is
computed as the ranking based similarity of a model’s output
to the “pseudo ground truth” (i.e. target in Alg. 1) at a
given iteration. We adapt this framework to UOMS by using
these similarities at convergence to evaluate the models. We
call this strategy Ens. In experiments, we also compare the
(aggregate) ranking by the ensemble (based on target), called
Ens-pseudo, to selecting a (single) model (with highest
similarity to target).

To wrap up, we give a summary of the 7 families of UOMS
techniques as described in this section in Table 2.

4. RELATED WORK
In the outlier mining literature, several evaluation and bench-
marking surveys draw attention to the fact that most (classi-
cal) outlier detectors are sensitive to their HPs [1; 6; 13; 15].
This is even more so for the recently booming deep learning
based detection methods, as we empirically studied recently
[9]. Despite its critical importance, however, related work on
unsupervised outlier model selection (UOMS) is slim, with
only a few existing works that address the problem.

In this survey, we focus on internal model evaluation strate-
gies, which we reviewed in the previous section. In the fol-
lowing, we provide a critique and comparison between them.
More recently other novel approaches have been proposed
for UOMS, leveraging two main themes, meta-learning and
ensemble methods, which we also review for completeness.

Internal model evaluation strategies for UOMS: Clus-
ter quality based measures [34] and statistical mass based
EM/MV methods [11] rely only on output scores. In contrast
IREOS [29; 30] uses more information, that is both outlier
scores and the original input samples (See Eq. (1)). Verifying
that outlier scores align (correlate) with the separability of
samples in the feature space is potentially less error-prone
than simply looking at whether outlier/inlier scores are well
clustered or separated – e.g., a model that outputs a {0, 1}
score per point at random would be considered a good model
by the latter. The trade-off is the computational overhead
for quantifying separability per sample.

In their work, IREOS is employed for UOMS using only 2
detectors (LOF [4] and kNN [36]), each with 17 different
HP configurations (for a total of 34 models) on 11 datasets.



Being the seminal work, there is no comparison to any other
techniques (existing or adapted). [34] acknowledge IREOS
and criticize its computational demand, without any compar-
ison. They also do not perform any UOMS in experiments,
rather, they study the decay in internal measures as the
ground truth ranking is contaminated via random swaps at
the top based on 12 datasets. Finally, [11] performs UOMS
using only and exactly 3 models (LOF, iForest [27], OCSVM
[41]), each with a single (unspecified) HP configuration, on 8
datasets. None of these three compares to any other in their
work. Moreover, because the datasets, experimental design,
and the model pool specified by each work is different, it is
not possible to do any direct comparison. In this work, we
do a systematic comparison for the first time, using a much
larger testbed (8 detectors, 297 models, 39 datasets) than
originally considered by any prior work.

Other internal model evaluation strategies repurposed
for UOMS: All three existing methods for UOMS are stand-
alone, evaluating a model independently from the others.
Having trained all models among which to select from, it is
reasonable to take advantage of the similarities/agreement
among them. To this end, we have repurposed methods
from unsupervised representation learning [10; 25], network
centrality [16], and unsupervised ensemble learning [38; 52]
all of which are based on the “collective intelligence” of the
models in the pool.

As we will show in the experiments, these strategies produce
superior outcomes than existing, stand-alone methods. As
such, our study motivates future work on consensus-based
strategies, and calls for the transfer of prominent ideas from
other similar fields, such as truth discovery and crowdsourc-
ing, toward tackling the important problem of UOMS.

Recent novel approaches to UOMS: Most recently, two
promising new directions have been explored toward UOMS.
The first idea is building hyper -ensembles [9], which com-
bines the outlier scores from multiple models with various
HP configurations, rather than trying to select a single one
of them. They have shown that the hyper-ensemble is sig-
nificantly more robust to its own HPs (namely, the number
of models to assemble and the value range per HP). The
key challenge is similar to internal strategies covered in this
paper, specifically, training all the models for assembly at
test time is expensive, for which several speed up techniques
have been proposed in [9].

The second line of work leverages meta-learning [48; 49; 51],
where a database of historical outlier detection tasks with
labels are used to transfer “knowledge/experience” toward
UOMS on similar test tasks (without labels). Interestingly,
internal evaluation measures have been exploited in (meta-
)learning a mapping from such weak internal signals, dataset
characteristics, etc. onto model performance (which can be
computed for labeled historical tasks). Such a mapping is
then employed for model performance prediction on test tasks
without the need to access labels. This suggests that new
internal evaluation measures or any improvements that lead
to stronger internal signals of performance are to boost these
meta-learning based solutions to UOMS. Computationally,
meta-learning approaches are also more feasible than hyper-
ensembles, as most computation is off-loaded to the meta-
learning phase while fewer models are trained at test time. Of
course, fast yet effective internal measures would contribute
to further speed up model selection on a new test task.

5. EMPIRICAL EVALUATION OF INTER-
NAL MODEL EVALUATION STRATEGIES

5.1 Setup
Datasets and Model Pool. We already discussed the real-
world datasets and candidate models of this study in Sec.
2. We build the experiments on 39 widely used outlier
detection benchmark dataset. As shown in Table 3, 21
datasets are from the ODDS Library [37], and the other 18
datasets are from DAMI datasets [6]. The specifications
for all N=297 models have been listed in Sec. 2 Table 1.

Table 3: Real-world dataset pool composed by ODDS library
(21 datasets) and DAMI library (18 datasets).

Dataset Num Pts Dim % Outlier

1 annthyroid (ODDS) 7200 6 7.416
2 arrhythmia (ODDS) 452 274 14.601
3 breastw (ODDS) 683 9 34.992
4 glass (ODDS) 214 9 4.205
5 ionosphere (ODDS) 351 33 35.897
6 letter (ODDS) 1600 32 6.250
7 lympho (ODDS) 148 18 4.054
8 mammography (ODDS) 11183 6 2.325
9 mnist (ODDS) 7603 100 9.206
10 musk (ODDS) 3062 166 3.167
11 optdigits (ODDS) 5216 64 2.875
12 pendigits (ODDS) 6870 16 2.270
13 pima (ODDS) 768 8 34.895
14 satellite (ODDS) 6435 36 31.639
15 satimage-2 (ODDS) 5803 36 1.223
16 speech (ODDS) 3686 400 1.654
17 thyroid (ODDS) 3772 6 2.465
18 vertebral (ODDS) 240 6 12.500
19 vowels (ODDS) 1456 12 3.434
20 wbc (ODDS) 378 30 5.555
21 wine (ODDS) 129 13 7.751

22 Annthyroid (DAMI) 7129 21 7.490
23 Arrhythmia (DAMI) 450 259 45.777
24 Cardiotocography (DAMI) 2114 21 22.043
25 HeartDisease (DAMI) 270 13 44.444
26 InternetAds (DAMI) 1966 1555 18.718
27 PageBlocks (DAMI) 5393 10 9.456
28 Pima (DAMI) 768 8 34.895
29 SpamBase (DAMI) 4207 57 39.909
30 Stamps (DAMI) 340 9 9.117
31 Wilt (DAMI) 4819 5 5.333
32 ALOI (DAMI) 49534 27 3.044
33 Glass (DAMI) 214 7 4.205
34 PenDigits (DAMI) 9868 16 0.202
35 Shuttle (DAMI) 1013 9 1.283
36 Waveform (DAMI) 3443 21 2.904
37 WBC (DAMI) 223 9 4.484
38 WDBC (DAMI) 367 30 2.724
39 WPBC (DAMI) 198 33 23.737

Baselines. We compare the model selected by each tech-
nique (Sec. 3) to two baselines across datasets.

• Random, whose performance is the average of all (297)
models per dataset. This is equivalent to expected
performance when selecting a model from the candidate
pool at random.
• iForest-r, with performance as the average of all

(81) iForest models in the pool, equivalent to using
iForest [27] (a state-of-the-art ensemble detector) with
randomly chosen hyperparameters.8

8Family-wise performances across datasets in Supp. A
show that iForest is the most competitive among the 8 fami-
lies of detectors in this study, and thus the strongest baseline.



Method Configurations. For clustering-quality based
measures, we split into two clusters as the top ot (true
number of outliers) and the rest, i.e. give those strategies
the advantage of knowing ot. This avoids the clustering step,
which requires us to pick a clustering algorithm etc. and
directly focuses on the measures themselves.

For EM and MV9, we use the default values for α and t
respectively (See Sec. 3.1.2) and set n generated= 100K,
which is the number of random samples to generate for
estimating the null distributions.

For IREOS, we use the author recommended settings;10

γmax:=findGammaMaxbyDistances(·) with sampling=100,
tol=5× 10−3, and clump size=10.

For UDR, MC, and MCS , we experiment with three different
pairwise similarity measures: Spearman’s ρ, Kendall’s τ , and
NDCG [26]. For MCS , P =

√
N ≈ 18.

For HITS and Ens, we set edge weights between model Mi

and sample j in a dataset as 1/rij , where rij is the position
of j in the rankedlist by Mi. Raw outlier scores are not
used as they are not comparable across models. For com-
parison between selection versus consensus/ensembling, we
also report the performance of the consensus outcome, called
HITS-auth and Ens-pseudo; as ranked (resp.) by authority
scores and by the pseudo ground truth at convergence.

Performance metrics. We evaluate performance w.r.t.
three metrics. Two are based on the ranking quality: Average
Precision (AP): the area under the precision-recall curve
and ROC AUC: the area under the recall-false positive rate
curve. The third metric measures the quality at the top:
Prec@k, precision at top k where we set k = ot (i.e. true
number of outliers) for each Dt ∈ D. In Supp. B we show
that performances vary considerably across models for most
datasets, justifying the importance of model selection.

For brevity, all results in this section are w.r.t. AP. Corre-
sponding results for other metrics are similar, all of which
are provided in Supp. C.

5.2 Results

5.2.1 Cluster quality based methods
We start by studying the 10 cluster quality based methods to
identify those that stand out. We report the p-values by the
one-sided11 paired Wilcoxon signed rank test in Table 4. std
is significantly worse than all other methods. Three strategies
that stand out are rs, ch, and xb, which are identical; in
the sense that despite differences in their values and overall
ranking, they select exactly the same model on each dataset.
Importantly, while both std and s are significantly worse
than Random at p = 0.05, none of the others is significantly
different from Random (!) All methods (including xb, rs,
and ch) are significantly worse than iForest-r.

These findings suggest that cluster quality based internal
evaluation methods would not be useful for UOMS.

5.2.2 Other stand-alone methods
As discussed in Sec. 3.1.2, EM and MV quantify (roughly)

9Code available at https://github.com/ngoix/EMMV_benchmarks
10We thank Henrique Marques who helped with running

their source code, https://github.com/homarques/ireos-extension
11Testing the hypothesis: row-method is better than col-

method (against the null hypothesis stating no difference).
For reverse order, p-value = 1 minus the reported value.

Table 4: Comparison of cluster quality based methods
and baselines by one-sided paired Wilcoxon signed rank
test. p-values bolded (underlined) highlight the cases where
the “row-method” is significantly better (worse) than the
“column-method” at p≤0.05.

std h s i db sd d Rnd iF

xb,rs,ch 0.004 0.240 0.038 0.212 0.370 0.127 0.357 0.500 0.981
std 0.997 0.961 0.997 0.982 0.967 0.999 1.000 1.000
h 0.373 0.500 0.725 0.379 0.675 0.849 0.996
s 0.627 0.949 0.557 0.881 0.953 0.999
i 0.730 0.384 0.742 0.882 0.997
db 0.307 0.647 0.522 0.982
sd 0.823 0.910 0.995
d 0.572 0.990
Rnd 1.000

the clusteredness of the inlier scores. Therefore, they are
conceptually similar to the clustering quality based methods.
Our findings confirm this intuition. As shown in Table
5, there is no significant difference between EM/MV and
xb/rs/ch or Random. Both of them are also significantly
worse than iForest-r. Thus, they do not prove useful for
UOMS. Findings are similar for IREOS; despite using more
information (input samples besides scores, see Eq. (1)) and
computational cost, it is only comparable to Random.

Table 5: Comparison of stand-alone methods and baselines.

EM MV IREOS Rnd iF

xb,rs,ch 0.533 0.500 0.862 0.500 0.981
EM 0.079 0.642 0.539 0.979
MV 0.716 0.687 0.994
IREOS 0.303 0.908

We provide an additional viewpoint by identifying the q-
th best model per dataset where there exists no significant
difference between the performance of the q-th best model
and that selected by a given UOMS strategy across datasets.
We report the smallest q for which one-sided Wilcoxon signed
rank test yields p>0.05 in Table 6. A method with smaller q
is better; the interpretation being that it could select, from a
pool of 297, the model that is as good as the q-th best model
per dataset. Stand-alone methods do not fare well against
iForest-r which is comparable to the 84-th best model.

5.2.3 Consensus-based methods
We first study one-shot methods UDR, MC, and MCS based
on different similarity measures. As shown in Table 6, all
versions provide similar results, which are significantly better
than Random, and not different from iForest-r. We note
that the faster, sampling-based MCS achieves similar perfor-
mance to MC and can be used as a practical alternative.

Iterative methods HITS and Ens produce similar results
to these simple one-shot methods, despite aiming to refine
estimates of model trustworthiness over iterations. Again, as
shown in Table 6, they significantly outperform Random and
are comparable to iForest-r. The same holds true for their
respective consensus scores, HITS-auth and Ens-pseudo,
where model aggregation provides no significant advantage
over selecting the best (single) model.

Table 7 shows a pairwise comparison of the consensus-based
methods by one-sided Wilcoxon signed rank test, confirming
mostly no significant difference between them.

5.2.4 Running time analysis
In Fig. 1 we present for each method the running times on all

https://github.com/ngoix/EMMV_benchmarks
https://github.com/homarques/ireos-extension


Table 6: Summary of results: p-values by one-sided paired
Wilcoxon signed rank test comparing UOMS methods to
the baselines, smallest q-th best model with no significant
difference, and mean/standard deviation AP across datasets.

Method Random iForest-r qAP mean AP std AP

S
-a

lo
n

e xb,rs,ch 0.500 0.981 127 0.354 0.298
EM 0.539 0.979 115 0.322 0.265
IREOS 0.303 0.908 99 0.335 0.261

C
o
n

se
n

su
s-

b
a
se

d

UDR-ρ 0.012 0.905 104 0.383 0.283
UDR-τ 0.019 0.952 109 0.379 0.282
UDR-NDCG 0.004 0.825 93 0.384 0.270
MC-ρ 0.000 0.217 89 0.395 0.289
MC-τ 0.002 0.062 81 0.396 0.297
MC-NDCG 0.000 0.182 82 0.404 0.291
MCS-ρ 0.007 0.706 108 0.385 0.289
MCS-τ 0.001 0.599 90 0.397 0.305
MCS-NDCG 0.001 0.205 83 0.391 0.285
HITS 0.000 0.494 95 0.397 0.299
Ens 0.002 0.730 81 0.371 0.282

A
g
g
. HITS-auth 0.000 0.577 94 0.401 0.286

Ens-pseudo 0.001 0.422 79 0.373 0.282

B
a
se

. Random – 1.000 144 0.342 0.234
iForest-r – – 84 0.399 0.300

Table 7: Comparison of consensus-based methods (UDR,
MC, MCS are based on NDCG).

MC MCS HITS Ens

UDR 0.810 0.364 0.739 0.400
MC 0.551 0.039 0.116
MCS 0.296 0.369
HITS 0.753

datasets.12 IREOS and EM/MV are both computationally
demanding, while ineffective. In fact, IREOS takes more
than 16 days (!) on the largest dataset (ALOI), due to kernel
SVM training for each sample. MC is the next most expen-
sive method, which is quadratic in the number of models,
although still takes less than 1 hr on ALOI. In short, MCS ,
Ens, and especially HITS prove to be both competitive as
well as fast UOMS methods, completing within 10 minutes
on our testbed.
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Figure 1: Run time comparison of UOMS methods.

5.3 Discussion of the Results
We conclude with the two key take-aways from our study:

1. None of the existing (stand-alone) UOMS methods is
significantly different from random model selection (!),
and with the exception of IREOS. All are significantly

12On an Intel Xeon E7 4830 v3 @ 2.1Ghz with 1TB RAM.
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Figure 2: Distribution of performance difference across
datasets: AP of selected model (by each UOMS method
studied) minus that of iForest-r. Stand-alone methods and
UDR are subpar, whereas other consensus-based method
differences concentrate around zero (indicating no notable
difference from iForest-r). Also shown for comparison is
Best model on each dataset, showcasing ample room for
improvement over iForest-r.

worse than iForest (with random hyperparameter con-
figuration). The slight advantage of IREOS can be
attributed to it utilizing input features in addition to
model outlier scores, unlike the other strategies that
solely use the output scores. However, this advantage
comes at the expense of significant running time.

2. All consensus-based methods that we repurposed for
UOMS are significantly better than random selection,
but not different from the fast, state-of-the-art iForest
detector with default HPs.

Fig. 2 illustrates these take-aways where we show, via box-
plots, the distribution of the performance difference between
the model selected by each UOMS method and iForest-r
across datasets. Consensus-based methods select models at
best as good as iForest-r, where the AP difference concen-
trates around zero, whereas others are inferior.

These results suggest that none of the UOMS methods
we studied would be useful in practice; because one
would not first train a large pool of models – which would
incur considerable computation – and then run a post hoc
UOMS method to select a model, only to achieve compa-
rable performance to a single iForest model (with default
configuration) – which, in contrast, is extremely fast to train
as it builds randomized trees on subsamples of data.

However, this is not to conclude that iForest is the best
that one can hope to do. As given in Table 6, iForest-r is
only as good as the 84-th best model per dataset. While it
is the most competitive detector on average, other families
outperform iForest on 28 out of 39 datasets in our study
w.r.t. AP (See Table 16 in Supp. A, also see Tables 17
and 18 respectively for ROC and Prec@k). In Fig. 2 we
also show the performance difference of the 1-st Best model
per dataset from iForest-r. (Also see Fig 3 in Supp. C.)
One can clearly recognize that there is considerable room for
progress in the area of UOMS.

6. CONCLUSION & CALL FOR FUTURE
WORK ON UOMS

In this review, we considered the unsupervised outlier model
selection (UOMS) problem: Given an unlabeled outlier de-



tection task, which detection algorithm and associated hyper-
parameter (HP) settings should one use? This is a question
of utmost importance not only for practitioners to do well on
their new task, but also for the research community for being
able to fairly compare new detection methods and keep an
accurate track record of progress in the field. On the other
hand, the problem is notoriously hard in the absence of any
labeled data, any well-accepted objective or loss function,
and potentially very large model space especially for deep
outlier detectors with many HPs.

We focused on the body of methods that proposed internal
(i.e., unsupervised) model evaluation strategies that leverage
implicit signals from the input features and /or the out-
put outlier scores alone. On a large testbed comprising 297
models and 39 real-world datasets, we evaluated 7 different
families of such internal evaluation strategies against simple
baselines. Strikingly, we found that while consensus-based
strategies are more promising against stand-alone ones which
are not significantly better than random, none of them pro-
vides significant improvement over the state-of-the-art iForest
detector with default HPs.

Our findings call for further research in this important area.
As our work recently showed [9], deep detectors are consid-
erably poor across varying HPs on average (i.e. when HPs
are chosen randomly in the absence of any other guidance).
As such, UOMS appears to stand as the biggest obstacle in
front of deep models to fulfill their potential for outlier detec-
tion. A promising future direction is to develop stronger and
faster internal strategies that can be leveraged within a meta-
learning framework as in [48; 49]. Our empirical evaluation
revealed consensus-based internal strategies to be relatively
more promising, which provides fertile ground for adaptation
of prominent ideas from related areas such as truth discov-
ery and crowdsourcing. To foster progress on this critical
problem, we publicly share all source code, trained models,
and datasets at https://github.com/yzhao062/uoms.
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APPENDIX
A. FAMILY-WISE MODEL PERFORMANCES
In this study we use 8 different families of outlier de-
tection algorithms, namely; LODA, ABOD, iForest, kNN,
LOF, HBOS, OCSVM, and COF. We build a total of 297
detection models based on various hyperparameter (HP)
configurations of these algorithms, as listed in Table 1.

Tables 16, 17, and 18 (resp. for AP, ROC AUC, and Prec@k)
show the family-wise average performance of each detection
algorithm (averaged over within-family models with different
HP settings) on each dataset, as well as mean and standard
deviation across datasets.

These show iForest to be the most competitive detec-
tor, which we compare to as a baseline to study whether
unsupervised model selection outperforms always using the
same (state-of-the-art) detector.

B. MODEL PERFORMANCES ON INDIVID-
UAL DATASETS

Figures 4, 5, and 6 (resp. for AP, ROC AUC, and Prec@k)
show the distribution of performances across all 297 models
via boxplots for each dataset. For most datasets, there
exists considerable difference between the best and
the worst performing model—suggesting that effective
model selection would be beneficial.

C. CORRESPONDING RESULTS BASED ON
OTHER METRICS

For brevity, we reported all performance results in Evaluation
(Sec. 5) based on Average Precision (AP). For completeness,
we provide the results of the same analysis corresponding to
ROC AUC and Prec@k metrics.

The conclusions are similar for these two metrics.

Cluster quality based methods. Specifically, Tables 8
and 12 present, resp. for ROC and Prec@k, the pairwise
comparison of cluster quality based methods and the base-
lines (Random and iForest-r). Three strategies rs, ch,
and xb appear to stand out from others. However, none of
the methods are not significantly different from (and few are
sometimes worse than) Random. Most of them are signif-
icantly worse than iForest-r, with otherwise a very large
p-value.

Other stand-alone methods. Tables 9 and 13 present,
resp. for ROC and Prec@k, the pairwise comparison of all
the stand-alone methods (only rs, ch, and xb from above)
and the baselines. We find that they are not different from
each other or Random—implying that stand-alone model
selection techniques would not be useful in practice.

Consensus-based methods. Tables 10 and 14 show, resp.
for ROC and Prec@k, that all consensus-based techniques,
namely UDR, MC, MCS , HITS, and Ens, are comparable
to each other in terms of selection performance.

Finally, Tables 11 and 15 provide, resp. for ROC and Prec@k,
a summary of the results for all the unsupervised model
selection methods we studied. Main take-aways are: (1)
Consensus-based model selection methods are more
competitive than stand-alone methods, where all of them
achieve significantly better performance than Random

selection. (2) Further, they are most often not different
from iForest-r (a state-of-the-art detector) and sometimes
even better (w.r.t. ROC). However, their absolute difference
(i.e. effect size) is negligible as shown in Figure 3 for both
ROC and Prec@k. Notably, their performance differences
are not far from zero, suggesting that consensus-based
selection would also not be preferrable in practice,
since training a single iForest-r model is much faster over
training a pool of models (with considerable running time
overhead) to select from.

Table 8: Comparison of cluster quality based methods and
baselines by one-sided paired Wilcoxon signed rank test on
ROC AUC. p-values bolded (underlined) highlight the cases
where row-method is significantly better (worse) than col-
method at p≤0.05.

std h s i db sd d Rnd iF

xb,rs,ch 0.001 0.407 0.007 0.389 0.272 0.099 0.518 0.358 0.980
std 1.000 0.990 1.000 0.994 0.995 1.000 1.000 1.000
h 0.021 0.500 0.487 0.320 0.831 0.818 1.000
s 0.974 0.816 0.704 0.994 0.994 1.000
i 0.487 0.323 0.849 0.821 1.000
db 0.368 0.815 0.662 0.996
sd 0.842 0.905 0.999
d 0.110 0.998
Rnd 1.000

Table 9: Comparison of stand-alone methods and baselines
w.r.t. ROC AUC.

EM MV IREOS Rnd iF

xb,rs,ch 0.364 0.422 0.934 0.358 0.980
EM 0.079 0.969 0.358 0.992
MV 0.977 0.369 0.997
IREOS 0.006 0.702

Table 10: Comparison of consensus-based methods (UDR,
MC, MCS are based on NDCG) w.r.t. ROC AUC.

MC MCS HITS Ens

UDR 0.462 0.070 0.408 0.232
MC 0.100 0.134 0.069
MCS 0.681 0.511
HITS 0.740

Table 11: Summary of results: p-values by one-sided
paired Wilcoxon signed rank test comparing UOMS methods
to the baselines, smallest q-th best model with no significant
difference, and mean/standard deviation ROC AUC across
datasets.

Method Random iForest-r qROC mean ROC std ROC

S
-a

lo
n

e xb,rs,ch 0.358 0.980 138 0.690 0.206
EM 0.358 0.992 142 0.682 0.216
IREOS 0.006 0.702 83 0.730 0.203

C
o
n

se
n

su
s-

b
a
se

d

UDR-ρ 0.000 0.279 82 0.763 0.180
UDR-τ 0.000 0.186 75 0.769 0.180
UDR-NDCG 0.000 0.175 75 0.769 0.183
MC-ρ 0.000 0.036 92 0.767 0.168
MC-τ 0.000 0.011 91 0.769 0.167
MC-NDCG 0.000 0.034 86 0.771 0.170
MCS-ρ 0.000 0.483 100 0.763 0.173
MCS-τ 0.000 0.121 94 0.761 0.167
MCS-NDCG 0.000 0.274 94 0.766 0.165
HITS 0.000 0.148 97 0.762 0.169
Ens 0.000 0.230 86 0.749 0.183

A
g
g
. HITS-auth 0.000 0.018 77 0.785 0.163

Ens-pseudo 0.000 0.135 87 0.749 0.184

B
a
se

. Random – 1.000 183 0.704 0.133
iForest-r – – 102 0.763 0.166



Table 12: Comparison of cluster quality based methods and
baselines by one-sided paired Wilcoxon signed rank test on
Prec@k. p-values bolded (underlined) highlight the cases
where row-method is significantly better (worse) than col-
method at p≤0.05.

std h s i db sd d Rnd iF

xb,rs,ch 0.000 0.125 0.031 0.109 0.173 0.026 0.274 0.090 0.716
std 0.998 0.985 0.999 0.989 0.956 1.000 1.000 1.000
h 0.447 0.704 0.623 0.191 0.581 0.500 0.967
s 0.488 0.815 0.313 0.875 0.757 0.961
i 0.631 0.203 0.632 0.544 0.978
db 0.166 0.719 0.423 0.915
sd 0.929 0.879 0.993
d 0.201 0.923
Rnd 0.999

Table 13: Comparison of stand-alone methods and baselines
w.r.t. Prec@k.

EM MV IREOS Rnd iF

xb,rs,ch 0.272 0.193 0.405 0.090 0.716
EM 0.187 0.696 0.730 0.967
MV 0.770 0.829 0.987
IREOS 0.423 0.944

Table 14: Comparison of consensus-based methods (UDR,
MC, MCS are based on NDCG) w.r.t. Prec@k.

MC MCS HITS Ens

UDR 0.645 0.403 0.464 0.296
MC 0.145 0.227 0.341
MCS 0.375 0.488
HITS 0.608

Table 15: Summary of results: p-values by one-sided
paired Wilcoxon signed rank test comparing UOMS methods
to the baselines, smallest q-th best model with no signifi-
cant difference, and mean/standard deviation Prec@k across
datasets.

Method Random iForest-r qPrec mean Prec@k std Prec@k

S
-a

lo
n

e xb,rs,ch 0.090 0.716 91 0.348 0.277
EM 0.730 0.967 119 0.303 0.254
IREOS 0.423 0.944 102 0.316 0.255

C
o
n

se
n

su
s-

b
a
se

d

UDR-ρ 0.039 0.965 115 0.354 0.271
UDR-τ 0.025 0.942 110 0.356 0.263
UDR-NDCG 0.002 0.600 86 0.372 0.255
MC-ρ 0.002 0.555 98 0.369 0.271
MC-τ 0.002 0.833 103 0.370 0.280
MC-NDCG 0.000 0.228 89 0.378 0.270
MCS-ρ 0.008 0.937 115 0.361 0.276
MCS-τ 0.002 0.595 96 0.374 0.290
MCS-NDCG 0.002 0.210 92 0.367 0.274
HITS 0.001 0.583 99 0.376 0.280
Ens 0.004 0.595 92 0.351 0.261

A
g
g
. HITS-auth 0.000 0.293 89 0.380 0.263

Ens-pseudo 0.005 0.722 89 0.350 0.262

B
a
se

. Random – 0.999 153 0.325 0.217
iForest-r – – 91 0.374 0.280
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Figure 3: Distribution of performance difference across datasets: (left) ROC AUC and (right) Prec@k of selected model (by
each UOMS method studied) minus that of iForest-r. Stand-alone methods and UDR are subpar, whereas consensus-based
methods’ differences concentrate around zero (not notably different from iForest-r). Also shown for comparison is Best
model on each dataset, showcasing ample room for improvement over iForest-r.

Table 16: Family-wise model performance in AP. Values in bold highlight the model that outperforms for each dataset (per
row). iForest achieves the highest average performance across all datasets.

Dataset LODA ABOD iForest kNN LOF HBOS OCSVM COF

annthyroid (ODDS) 0.136 0.232 0.340 0.228 0.172 0.388 0.145 0.138
arrhythmia (ODDS) 0.387 0.315 0.470 0.392 0.362 0.431 0.250 0.404
breastw (ODDS) 0.964 0.702 0.972 0.942 0.331 0.959 0.544 0.304
glass (ODDS) 0.063 0.137 0.104 0.106 0.117 0.061 0.063 0.154
ionosphere (ODDS) 0.766 0.921 0.784 0.868 0.819 0.288 0.492 0.852
letter (ODDS) 0.092 0.319 0.089 0.258 0.359 0.080 0.138 0.459
lympho (ODDS) 0.447 0.555 0.957 0.763 0.668 0.905 0.418 0.464
mammography (ODDS) 0.218 0.147 0.234 0.169 0.102 0.096 0.156 0.064
mnist (ODDS) 0.203 0.329 0.261 0.401 0.273 0.097 0.204 0.195
musk (ODDS) 0.904 0.038 0.990 0.588 0.130 0.997 0.498 0.174
optdigits (ODDS) 0.025 0.057 0.049 0.021 0.037 0.177 0.031 0.048
pendigits (ODDS) 0.245 0.057 0.280 0.104 0.038 0.231 0.086 0.037
pima (ODDS) 0.445 0.508 0.492 0.524 0.441 0.521 0.385 0.429
satellite (ODDS) 0.630 0.430 0.664 0.562 0.375 0.711 0.456 0.368
satimage-2 (ODDS) 0.904 0.212 0.916 0.615 0.055 0.717 0.486 0.078
speech (ODDS) 0.018 0.093 0.020 0.024 0.031 0.025 0.022 0.034
thyroid (ODDS) 0.238 0.218 0.587 0.354 0.157 0.630 0.196 0.032
vertebral (ODDS) 0.089 0.098 0.094 0.090 0.101 0.087 0.131 0.116
vowels (ODDS) 0.140 0.690 0.134 0.487 0.348 0.083 0.080 0.408
wbc (ODDS) 0.603 0.367 0.599 0.533 0.497 0.673 0.321 0.261
wine (ODDS) 0.286 0.082 0.215 0.253 0.253 0.402 0.249 0.081
Annthyroid (DAMI) 0.097 0.137 0.160 0.126 0.134 0.145 0.079 0.130
Arrhythmia (DAMI) 0.685 0.668 0.757 0.711 0.702 0.745 0.523 0.712
Cardiotocography (DAMI) 0.433 0.254 0.433 0.316 0.280 0.344 0.314 0.267
HeartDisease (DAMI) 0.562 0.547 0.538 0.557 0.509 0.619 0.475 0.486
InternetAds (DAMI) 0.251 0.293 0.490 0.289 0.263 0.521 0.237 0.261
PageBlocks (DAMI) 0.464 0.416 0.449 0.526 0.360 0.201 0.268 0.232
Pima (DAMI) 0.448 0.506 0.494 0.529 0.467 0.487 0.392 0.432
SpamBase (DAMI) 0.370 0.357 0.487 0.406 0.364 0.532 0.366 0.392
Stamps (DAMI) 0.332 0.218 0.336 0.313 0.228 0.315 0.209 0.159
Wilt (DAMI) 0.039 0.065 0.045 0.053 0.075 0.044 0.065 0.101
ALOI (DAMI) 0.034 0.102 0.033 0.057 0.100 0.031 0.035 0.144
Glass (DAMI) 0.085 0.221 0.183 0.146 0.118 0.115 0.107 0.179
PenDigits (DAMI) 0.003 0.031 0.005 0.040 0.014 0.004 0.016 0.017
Shuttle (DAMI) 0.111 0.250 0.071 0.326 0.296 0.094 0.095 0.173
Waveform (DAMI) 0.052 0.055 0.057 0.115 0.095 0.053 0.069 0.102
WBC (DAMI) 0.743 0.595 0.858 0.671 0.359 0.683 0.424 0.146
WDBC (DAMI) 0.720 0.296 0.669 0.571 0.554 0.725 0.322 0.295
WPBC (DAMI) 0.235 0.231 0.229 0.233 0.230 0.239 0.237 0.219

average 0.345 0.301 0.399 0.366 0.277 0.371 0.246 0.245
STD 0.282 0.220 0.304 0.248 0.199 0.295 0.165 0.188



Table 17: Family-wise model performance in ROC AUC. Values in bold highlight the model that outperforms for each dataset
(per row). kNN (0.764) and iForest (0.763) achieve the highest average performance across all datasets.

Dataset LODA ABOD iForest kNN LOF HBOS OCSVM COF

annthyroid (ODDS) 0.572 0.823 0.841 0.775 0.729 0.736 0.517 0.689
arrhythmia (ODDS) 0.735 0.751 0.803 0.777 0.764 0.806 0.522 0.757
breastw (ODDS) 0.980 0.898 0.988 0.980 0.500 0.985 0.481 0.459
glass (ODDS) 0.539 0.766 0.707 0.747 0.747 0.638 0.429 0.772
ionosphere (ODDS) 0.814 0.928 0.838 0.898 0.870 0.357 0.548 0.879
letter (ODDS) 0.584 0.880 0.629 0.842 0.846 0.581 0.554 0.880
lympho (ODDS) 0.814 0.936 0.998 0.971 0.938 0.985 0.607 0.834
mammography (ODDS) 0.854 0.822 0.862 0.845 0.729 0.799 0.629 0.700
mnist (ODDS) 0.586 0.797 0.794 0.856 0.708 0.515 0.536 0.615
musk (ODDS) 0.991 0.072 0.999 0.830 0.521 1.000 0.669 0.534
optdigits (ODDS) 0.414 0.477 0.713 0.383 0.463 0.877 0.463 0.526
pendigits (ODDS) 0.934 0.692 0.948 0.818 0.516 0.921 0.548 0.508
pima (ODDS) 0.629 0.685 0.652 0.717 0.630 0.634 0.497 0.583
satellite (ODDS) 0.644 0.594 0.703 0.703 0.546 0.785 0.506 0.519
satimage-2 (ODDS) 0.988 0.854 0.993 0.965 0.678 0.973 0.610 0.537
speech (ODDS) 0.474 0.688 0.473 0.500 0.525 0.473 0.492 0.584
thyroid (ODDS) 0.820 0.945 0.983 0.960 0.771 0.950 0.550 0.581
vertebral (ODDS) 0.315 0.375 0.349 0.333 0.380 0.297 0.482 0.454
vowels (ODDS) 0.712 0.976 0.736 0.944 0.905 0.676 0.529 0.877
wbc (ODDS) 0.941 0.918 0.938 0.935 0.892 0.950 0.603 0.792
wine (ODDS) 0.853 0.490 0.794 0.779 0.758 0.873 0.536 0.373
Annthyroid (DAMI) 0.491 0.717 0.679 0.658 0.679 0.646 0.471 0.666
Arrhythmia (DAMI) 0.687 0.725 0.750 0.736 0.732 0.736 0.506 0.736
Cardiotocography (DAMI) 0.689 0.458 0.689 0.503 0.544 0.566 0.489 0.522
HeartDisease (DAMI) 0.608 0.612 0.602 0.637 0.582 0.670 0.502 0.542
InternetAds (DAMI) 0.548 0.657 0.690 0.626 0.587 0.695 0.499 0.579
PageBlocks (DAMI) 0.785 0.780 0.894 0.889 0.759 0.679 0.558 0.610
Pima (DAMI) 0.624 0.666 0.644 0.706 0.650 0.594 0.504 0.587
SpamBase (DAMI) 0.433 0.403 0.635 0.535 0.441 0.676 0.463 0.450
Stamps (DAMI) 0.891 0.793 0.901 0.872 0.702 0.876 0.582 0.541
Wilt (DAMI) 0.363 0.628 0.457 0.538 0.626 0.419 0.489 0.695
ALOI (DAMI) 0.504 0.739 0.534 0.641 0.744 0.508 0.506 0.796
Glass (DAMI) 0.659 0.854 0.794 0.822 0.748 0.795 0.485 0.774
PenDigits (DAMI) 0.628 0.936 0.768 0.967 0.821 0.734 0.537 0.718
Shuttle (DAMI) 0.637 0.927 0.853 0.963 0.911 0.842 0.566 0.848
Waveform (DAMI) 0.664 0.666 0.707 0.743 0.716 0.703 0.492 0.689
WBC (DAMI) 0.983 0.954 0.991 0.979 0.842 0.985 0.611 0.703
WDBC (DAMI) 0.945 0.890 0.936 0.924 0.871 0.963 0.629 0.800
WPBC (DAMI) 0.509 0.501 0.498 0.509 0.503 0.536 0.485 0.463

average 0.688 0.725 0.763 0.764 0.689 0.729 0.530 0.645
STD 0.188 0.197 0.168 0.175 0.146 0.188 0.054 0.138



Table 18: Family-wise model performance in Prec@k. Values in bold highlight the model that outperforms for each dataset
(per row). iForest achieves the highest average performance across all datasets.

Dataset LODA ABOD iForest kNN LOF HBOS OCSVM COF

annthyroid (ODDS) 0.180 0.301 0.337 0.297 0.209 0.387 0.180 0.169
arrhythmia (ODDS) 0.403 0.372 0.481 0.411 0.386 0.495 0.237 0.407
breastw (ODDS) 0.924 0.788 0.929 0.923 0.271 0.938 0.445 0.152
glass (ODDS) 0.019 0.111 0.111 0.111 0.136 0.014 0.040 0.143
ionosphere (ODDS) 0.645 0.849 0.648 0.753 0.725 0.228 0.439 0.764
letter (ODDS) 0.100 0.354 0.092 0.312 0.358 0.080 0.140 0.440
lympho (ODDS) 0.401 0.476 0.881 0.639 0.560 0.808 0.347 0.405
mammography (ODDS) 0.286 0.197 0.261 0.251 0.194 0.114 0.192 0.114
mnist (ODDS) 0.212 0.376 0.293 0.420 0.315 0.095 0.218 0.246
musk (ODDS) 0.873 0.035 0.977 0.546 0.134 0.981 0.491 0.218
optdigits (ODDS) 0.001 0.045 0.025 0.000 0.029 0.211 0.018 0.067
pendigits (ODDS) 0.324 0.077 0.365 0.110 0.072 0.269 0.113 0.063
pima (ODDS) 0.466 0.530 0.504 0.551 0.463 0.476 0.361 0.423
satellite (ODDS) 0.533 0.417 0.573 0.511 0.379 0.619 0.382 0.361
satimage-2 (ODDS) 0.865 0.260 0.862 0.577 0.086 0.661 0.465 0.145
speech (ODDS) 0.019 0.138 0.031 0.039 0.045 0.032 0.039 0.049
thyroid (ODDS) 0.287 0.198 0.620 0.332 0.149 0.645 0.224 0.000
vertebral (ODDS) 0.011 0.043 0.044 0.018 0.056 0.012 0.074 0.090
vowels (ODDS) 0.194 0.641 0.175 0.474 0.333 0.121 0.094 0.429
wbc (ODDS) 0.558 0.361 0.536 0.496 0.475 0.614 0.324 0.293
wine (ODDS) 0.257 0.000 0.140 0.194 0.203 0.408 0.200 0.043
Annthyroid (DAMI) 0.116 0.153 0.213 0.134 0.165 0.191 0.074 0.162
Arrhythmia (DAMI) 0.604 0.630 0.655 0.637 0.643 0.632 0.459 0.652
Cardiotocography (DAMI) 0.407 0.266 0.396 0.311 0.288 0.303 0.259 0.264
HeartDisease (DAMI) 0.530 0.520 0.503 0.535 0.506 0.591 0.447 0.470
InternetAds (DAMI) 0.267 0.344 0.449 0.334 0.304 0.466 0.244 0.284
PageBlocks (DAMI) 0.458 0.425 0.397 0.506 0.376 0.158 0.264 0.268
Pima (DAMI) 0.476 0.512 0.499 0.547 0.485 0.448 0.369 0.421
SpamBase (DAMI) 0.351 0.359 0.518 0.421 0.338 0.562 0.357 0.382
Stamps (DAMI) 0.275 0.189 0.286 0.211 0.169 0.385 0.197 0.180
Wilt (DAMI) 0.001 0.012 0.012 0.003 0.058 0.006 0.043 0.121
ALOI (DAMI) 0.050 0.144 0.028 0.086 0.146 0.028 0.043 0.187
Glass (DAMI) 0.027 0.143 0.111 0.111 0.133 0.044 0.056 0.159
PenDigits (DAMI) 0.000 0.036 0.000 0.000 0.019 0.000 0.010 0.036
Shuttle (DAMI) 0.120 0.319 0.079 0.277 0.169 0.092 0.092 0.231
Waveform (DAMI) 0.057 0.069 0.065 0.191 0.161 0.063 0.083 0.143
WBC (DAMI) 0.630 0.429 0.723 0.644 0.328 0.713 0.356 0.086
WDBC (DAMI) 0.650 0.271 0.633 0.592 0.536 0.648 0.350 0.286
WPBC (DAMI) 0.166 0.164 0.146 0.160 0.172 0.206 0.202 0.161

average 0.327 0.296 0.374 0.350 0.271 0.352 0.229 0.244
STD 0.262 0.214 0.284 0.235 0.180 0.283 0.149 0.171
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Figure 4: Model performance boxplot (AP) for all datasets, where triangles mark the min and max. Model performance varies
significantly for most datasets, showing the importance of model selection.

an
nt

hy
ro

id
ar

rh
yt

hm
ia

br
ea

stw gla
ss

ion
os

ph
er

e
let

te
r

lym
ph

o
mam

mog
ra

ph
y

mnis
t

mus
k

op
td

igi
ts

pe
nd

igi
ts

pim
a

sa
te

llit
e

sa
tim

ag
e-2

sp
ee

ch
th

yr
oid

ve
rte

br
al

vo
we

ls
wb

c
wi

ne
An

nt
hy

ro
id

Ar
rh

yt
hm

ia
Ca

rd
iot

oc
og

ra
ph

y
He

ar
tD

ise
as

e
Int

er
ne

tA
ds

Pa
ge

Blo
ck

s
Pim

a
Sp

am
Ba

se
St

am
ps W
ilt

AL
OI

Gl
as

s
Pe

nD
igi

ts
Sh

ut
tle

W
av

efo
rm

W
BC

W
DB

C
W

PB
C

0.0
0.2
0.4
0.6
0.8
1.0

RO
C 

AU
C

Figure 5: Model performance boxplot (ROC AUC) for all datasets, where triangles mark the min and max. Model performance
varies significantly for most datasets, showing the importance of model selection.
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Figure 6: Model performance boxplot (Prec@k) for all datasets, where triangles mark the min and max. Model performance
varies significantly for most datasets, showing the importance of model selection.
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