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Abstract—Graph-based anomaly detection finds numerous
applications in the real-world. Thus, there exists extensive
literature on the topic that has recently shifted toward deep
detection models due to advances in deep learning and graph
neural networks (GNNs). A vast majority of prior work focuses
on detecting node/edge/subgraph anomalies within a single graph,
with much less work on graph-level anomaly detection in a graph
database. This work aims to fill two gaps in the literature: We
(1) design GLAM, an end-to-end graph-level anomaly detection
model based on GNNs, and (2) focus on unsupervised model
selection, which is notoriously hard due to lack of any labels,
yet especially critical for deep NN based models with a long
list of hyperparameters. Further, we propose a new pooling
strategy for graph-level embedding, called MMD-pooling, that is
geared toward detecting distribution anomalies which has not been
considered before. Through extensive experiments on 15 real-world
datasets, we show that (i) GLAM outperforms node-level and two-
stage (i.e. not end-to-end) baselines, and (ii) model selection picks
a significantly more effective model than expectation (i.e. average)
–without using any labels– among candidates with otherwise large
variation in performance.

Index Terms—graph-level anomaly detection, unsupervised
model selection, graph neural networks

I. INTRODUCTION

Given a collection of graphs, possibly with weighted edges,
and labeled or multi-attributed nodes, how can we identify the
anomalous graphs that stand out from the majority? Graph-
level anomaly detection, different from detecting anomalies in
a single graph, aims to discover unusual graphs among multiple
graphs in a (graph) database. The problem applies to many
real-world domains, where each graph may capture a chemical
compound [1], human pose [2], cargo shipment [3], system-call
[4], command flow [5], information cascade [6], etc.

Graph-based anomaly detection has been studied in the
literature [7]. However, majority of the work focuses on (node,
edge, subgraph) anomalies within a single graph, most often in
plain graphs [8], [9], and less often in labeled [10] or attributed
graphs [11]. Prior work on graph-level anomaly detection is
much sparser, majority of which are traditional substructure
mining based techniques [10], [4], [12]. These do not easily
generalize to graphs with complex properties; e.g. SpotLight
[12] cannot accommodate node labels or attributes, Subdue
[10] and StreamSpot [4] cannot handle weighted edges or
multi-attributed nodes.

With recent advances in deep learning, focus has shifted
toward deep neural network based anomaly detection models
(see surveys, [27], [14], [28]). However, we are not aware of
any existing work on end-to-end graph-level anomaly detection

based on GNNs. A conceptual comparison of related work
is given in Table I. In addition, deep methods rely on many
hyperparameters (HPs) that influence their performance, such
as number of hidden layers/units and epochs, drop-out/weight
decay/learning rates, to name a few [29]. Hence model selection
is challenging for unsupervised anomaly detection, in the
absence of any labeled data.

This work fills two gaps in the literature: We (1) design a
GNN-based end-to-end model called GLAM to address the
graph-level anomaly detection problem, and (2) address the
unsupervised model selection task, that is, effectively select the
hyperparameters of GLAM without using any labels. Further,
we specify two different types of (i. point and ii. distribution)
graph anomalies, design a novel pooling strategy for the latter.

• Deep Graph-level Anomaly Detection: We propose
GLAM, a novel Graph-Level Anomaly detection Model
based on GNNs. It embeds graphs in two ways: by mean-
pooling and our newly proposed MMD-pooling to detect
point and distribution anomalies, respectively. The latter
treats each graph as a set of its node embeddings, and
helps identify complementary anomalies.

• Unsupervised Anomaly Model Selection: Besides var-
ious advantages, GLAM also inherits a list of hyperpa-
rameters that require tuning for effective performance. We
systematically address the unsupervised model selection
(UMS) problem.

• Effectiveness: Through experiments on 15 real-world
graph databases, we show that (i) the effectiveness of
GLAM against 8 GNN-based (two-stage and node-level)
baselines, (ii) the ability of our UMS component to pick a
model with superior performance as compared to a model
with fixed configuration, and (iii) the contributing factors
behind GLAM through various ablation studies.

Our code is available at https://github.com/sawlani/GLAM.
For a full version of the paper we refer to arxiv.

II. PROBLEM DEFINITION

We consider anomaly detection in a graph database G =
{G1=(V1, E1), . . . , GN=(VN , EN )}, containing graphs with
labeled or attributed nodes, which we define as follows.

Problem 1 (Graph-level anomaly detection (GLAD)). Given an
unlabeled graph database G = {Gi = (Vi, Ei)}Ni=1 containing
N unordered, node-labeled or node-attributed graphs; Identify
the unusual graphs that differ significantly from the majority
of graphs in G.

https://github.com/sawlani/GLAM


Table I
COMPARISON OF RELATED WORK IN TERMS OF DESIRED PROPERTIES FOR GRAPH-LEVEL ANOMALY DETECTION.

[13], [14] [15], [16], [17], [18] [19], [20] [21] [10] [4] [12] [22], [23] [24] [25], [26] this
Desired Properties point-cloud node-level traditional graph embedding paper

end-to-end anomaly detection ✓ ✓ ✓ ✓
unsupervised (vs. (semi-)supervised) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
graph-structured data (vs. point-cloud) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
graph-level detection (vs. node/edge-level) ✓ ✓ ✓ ✓ ✓ ✓ ✓
graph embedding ✓ ✓ ✓ ✓ ✓ ✓
handle labeled nodes ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
handle multi-attributed nodes ✓ ✓ ✓ ✓ ✓ ✓
handle weighted edges ✓ ✓ ✓ ✓ ✓ ✓ ✓
unsupervised model selection ✓

Importantly, GLAD comes bundled with an associated
problem: unsupervised model selection. As many models
(especially deep NNs) exhibit a list of hyperparameters and
the performance is sensitive to the choice of their values [30],
it is critical to address GLAD with a built-in UMS solution.

Problem 2 (Unsupervised Model Selection (UMS)). Consider
an anomaly detection model M(Θ) for GLAD, where Θ
denotes the set of hyperparameters. Given a new unlabeled
dataset G, Select an effective model – without using any labels –
among candidates {M(Θ1),M(Θ2), . . . } induced by different
Θ configurations/values.

III. PROPOSED METHOD: GLAM

We introduce GLAM for graph-level anomaly detection
(Problem 1), built-in with UMS (Problem 2). GLAM first
generates graph-level representations with GNNs using both
mean and MMD-pooling (Sec. III-A), on top of which it
employs an anomaly detection objective (Sec. III-B), and finally
performs UMS (Sec. III-C).

A. Graph-level Representation

The first step of GLAM is “flattening” each graph to a set of
node embeddings (i.e. vectors). To this end, we employ the GIN
model that was shown to be one of the most expressive among
a large class of MPNNs [23]. To model the COMBINE and
AGGREGATE functions, GIN employs multi-layer perceptrons
(MLPs), with learnable parameters, for their injectiveness
property. As MLPs can represent the composition of functions,
the update equation of node embeddings at layer l is written
as

h(l)
v = MLP(l)((1 + ϵ(l)) · h(l−1)

v +
∑

u∈N (v)

h(l−1)
u

)
. (1)

Upon node embedding (by L-layer GIN), each graph Gi ∈ G
can be regarded as a set Si = {h1,i , h2,i , . . . , hni,i}
(superscript (L)’s dropped) with cardinality ni = |Vi| where
hv,i ∈ Rd′

is the (vector) embedding of node v ∈ Vi. Then,
the graph database can be seen as a set of sets.

In this work, we aim to detect graph-level anomalies of two
different types: (See Figure 1 for an illustration.)

• Point graph anomaly: defined as a graph that is a set
containing anomalous nodes, and

• Distribution graph anomaly: defined as a graph that is
an anomalous set of not-necessarily-anomalous nodes.

Correspondingly, we derive two different graph representa-
tions: the typical Mean-pooling and the newly-proposed MMD-
pooling, described as follows.

1) Mean-pooling for Point Anomalies: To detect graphs
containing anomalous nodes, we simply use MEAN as the
READOUT aggregation function, that is,

hGi
=

1

ni

ni∑
l=1

hl,i , for all Gi ∈ G . (2)

The intuition is that anomalous nodes would not only
have significantly different embeddings, but also affect the
embeddings of other nodes in their local neighborhood due to
message-passing. Mean-pooling would be effective in capturing
sets with such anomalies as average is sensitive to outliers.

2) MMD-pooling for Distribution Anomalies: Differently,
a distribution anomaly can arise from non-anomalous nodes,
rendering mean-pooling ineffective. Solely node-level detection
approaches [20], [19] would also fall short for the same
reason. Distinctly, GLAM takes into account the distribution
information provided by each Si to identify such anomalies.

Suppose the samples (i.e. node embeddings) in each Si are
distributed according to a (unknown) probability distribution
Pi ∈ P , where P is the set of all probability distributions on
the node embedding space. Given two graphs Gi and Gj , we
define their similarity by a distribution kernel κ(·, ·) on P , i.e.
κ : P × P 7→ R, applied to their probability distributions as

κ(Pi,Pj) = ⟨µPi , µPj ⟩H , (3)

which is equal to the inner product between the kernel
embeddings of Pi and Pj in RKHS H.

Based on MMD’s properties,

MMD2(P,Q) = ⟨µPi , µPi⟩H + ⟨µPj , µPj ⟩H − 2⟨µPi , µPj ⟩H (4)

and we can derive κ(Pi,Pj) as equal to

⟨µPi , µPj ⟩H = Eh,h′ [k(h,h′)] =

∫ ∫
k(h,h′)dPi(h)dPj(h

′). (5)

Given the (finite) sample sets Si and Sj , we can estimate the
distribution kernel similarity in Eq. (5) empirically, as

κ(P̂i, P̂j) =
1

ni · nj

ni∑
u=1

nj∑
v=1

k(hu,i,hv,j) (6)

where we use the (characteristic) Gaussian kernel for k(·, ·).
We refer to Figure 1 for an intuitive comparison of MMD- vs.

Mean-pooling, and an understanding of their complementary
strengths.
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Figure 1. Node embedding space by (left) MMD- and (middle) Mean-pooling in PROTEINS. Heatmap (gray) reflects the background distribution; i.e. density of
all node embeddings across G. Symbols w/ same color are nodes of the same graph (see legend). Notice that MMD is complementary to Mean: (i) Distribution
of node-embeddings (red and orange dots) for MMD-anomalies (on left) differs significantly from background, yet (in middle) Mean-pooling misses them as
their means (red&orange crosses) are close to the means of inlier graphs (light/dark green crosses). (ii) On the other hand, node-embeddings of Mean-anomalies
blend well into background distribution (on left) while (in middle) their means (light/dark blue crosses) are far away from those of inliers (light/dark green
crosses). (right) E.g. inliers, and top Mean- and MMD-anomalous graphs. MMD anomalies have distinct distributions, w.r.t. graph structure and/or node labels.

Efficient and Explicit Graph Embedding: The kernel
κ(·, ·) is a positive definite kernel on P . Given a graph database
G = {Si = {h1,i, . . . , hni,i}}Ni=1, we can use Eq. (6) to obtain
the (N ×N) empirical kernel (a.k.a. Gram) matrix K that can
be directly input to the quadratic program (QP) solver for the
dual OCSVM. However, this would be expensive for graph
databases with very large N , and even infeasible if N is too
large for K to fit in memory. Apart from computational reasons,
the kernel embedding of a distribution P ∈ P is a function
–rather than a vector embedding– in the RKHS of functions, just
like a distribution in essence is a probability density function
in the input space. Having an explicit vector representation for
each graph would provide flexibility, enabling the use of other
detectors. Therefore, we aim to obtain a decomposition of the
Gram matrix K = HHT such that H ∈ RN×r can act as an
empirical kernel map, where r is the rank of K. Then,

Kij = κ(P̂i, P̂j) = ⟨Hi,Hj⟩ (7)

which can be seen akin to ⟨ϕ(Gi), ϕ(Gj)⟩, that is the empirical
inner product of the implicit embeddings in the RKHS as
induced by the kernel, corresponding to Eq. (3). Notably, H
would consist of a vector embedding for each graph, i.e. Hi ≡
hGi , this time capturing characteristics w.r.t. the distribution
of node embeddings. Following earlier terminology, we refer
to this procedure as MMD-pooling.

The question is how to obtain such a decomposition.
Eigendecomposition of K = UΣUT is an option, where
the empirical kernel map can be written as H = UΣ1/2, i.e.
as the eigenvectors of K scaled by the square-root of their
corresponding eigenvalues. However, it takes O(N2r) time
and O(N2) space as K needs to be explicitly constructed in
memory. Therefore, it does not address the aforementioned
efficiency challenges.

Instead, we use the Nyström method, widely used for scaling
kernelized algorithms [31]. Given G, it selects a subsample

B ⊂ G of size k < N ,1 and provides a rank-k approximation:

K ≈ KG,B K−1
B,B KT

G,B (8)

where KG,B ∈ RN×k is the Gram matrix between all examples
in G and those in the subsample B. Similarly, KB,B ∈ Rk×k

is the Gram matrix between pairs of examples in B. Note
that the Nyström method does not require the (N × N) K
matrix explicitly in memory. It only necessitates the kernel
computation between Nk + k2 graph pairs, effectively down-
scaling complexity to linear in the database size. The matrix
inverse K−1

B,B can also be carried out efficiently, considering k
is a small constant. Upon eigendecomposition of the (k × k)
matrix KB,B = VΛVT , we can derive the approximation for
the empirical kernel map H as

H ≈ KG,B V Λ−1/2 . (9)

This way MMD-pooling produces explicit graph-level embed-
dings efficiently.

B. Anomaly Detection

Having obtained explicit vector embeddings of graphs,
we train a one-class classifier, optimizing the Deep-SVDD
objective [32]:

min
W

1

N

N∑
i=1

∥GIN(Gi;W)− c∥22 +
λ

2

L∑
l=1

∥W(l)∥2F (10)

where GIN(Gi) = hGi denotes the vector embedding for Gi

(based on Mean- or MMD-pooling), Wl denotes the (MLP)
parameters of GIN at the l-th layer, W = {W(1), . . . ,W(L)},
c is the center of the hypersphere in the representation space
(set to the average of all graph representations upon initializing
the GIN), and finally λ is the weight-decay hyperparameter.

As discussed in [32], deep SVDD classification suffers
from “hypersphere collapse”, where the trained model maps
all input instances directly to the fixed center c. We employ

1Nyström method’s performance depends on the sampling scheme; we use
random sampling for efficiency, with multiple sample sizes as hyperparameter.



the regularizations proposed therein (no bias terms, etc.) to
prevent this problem.

After training the model on all graphs, the distance to center
is used as the anomaly score for each graph, that is

score(Gi) = ∥GIN(Gi;W)− c∥2 . (11)

Overall, GLAM consists of an L-layer GIN architecture
(with 2-layer MLPs, see Eq. (1)) for node embedding, followed
by readout (i.e. Mean- or MMD-pooling), trained end-to-end
via stochastic gradient descent, optimizing the deep SVDD
objective at the output layer.

C. Unsupervised Model Selection

Recently, two model selection techniques have been proposed
for deep unsupervised disentangled representation learning,
namely UDR [33] and ModelCentrality (MC) [34].2 Both are
simple consensus-based approaches, leveraging the agreement
between models in the candidate pool to assign a “reliability”
score to each model. We extend on these ideas for GLAM by
fine-tuning the reliability scores recursively. We compare to
UDR and MC in the experiments.

Specifically, we extend the idea of MC [34] by computing
centrality recursively based on a weighted bipartite network
between candidate models and input graphs—wherein a model
gains higher centrality (i.e. reliability) the more they point with
high anomaly score (edge weight) to graphs that are pointed
by other high-centrality (reliable) models.

One of the earliest methods for computing centrality, namely
hubness h and authority a, of pages on the Web is the
HITS algorithm [37]. Here, we employ this idea to estimate
model “reliability” by constructing a complete bipartite network
between M candidate models and N graphs, where

hi ∝ sum of aj’s of all graphs j that model i points to ,
aj ∝ sum of hi’s of all models i that point to graph j ,

which are estimated alternatingly over iterations. Upon con-
vergence, the model with the largest hubness can be selected.
However, we recognize that this approach also provides an
ensemble ranking of the graphs based on the final authority
scores. We employ this strategy (called HITS-ENS) for GLAM.

IV. EXPERIMENTS

A. Setup

1) Datasets: We evaluate GLAM on 15 public benchmark
graph databases, 11 with node-labeled graphs and 4 containing
node-attributed graphs.3 A summary of the datasets is given
in Table II. Detailed descriptions can be found in full version.

Our datasets are repurposed from binary graph classification
datasets, where we designate one class as the inlier class,
and down-sample the other class(es) at ≈5% to constitute the
anomalous class.3 For training and evaluation, we split each
dataset into two; training data consists exclusively of inliers
and test data contains both inliers and anomalies. Note that

2We found a couple of existing work on UMS for anomaly detection [35],
[36] to be computationally too expensive and relatively much less effective.

3 All datasets are from TU Datasets: https://chrsmrrs.github.io/datasets/docs/
datasets/.

Table II
DATASETS IN EXPERIMENTS. NUMBER OF ATTRIBUTES IN PARENTHESES.

Name Avg #nodes Type |Train| |Test|

MIXHOP 100 Node-Labeled 532 493
PROTEINS 39.06 Node-Labeled 358 333
TOX21 18.09 Node-Labeled 472 503
COLLAB 74.49 Node-Labeled 395 397
IMDB 19.77 Node-Labeled 270 240
NCI1 29.87 Node-Labeled 1014 1096
MUTAGEN 30.32 Node-Labeled 1189 1274
REDDIT 23.93 Node-Labeled 2418 2594
DD 284.32 Node-Labeled 375 336
AIDS-L 15.69 Node-Labeled 202 206
DHFR-L 42.43 Node-Labeled 154 147

BZR 35.75 Attributed (3) 170 154
COX2 41.22 Attributed (3) 195 176
AIDS-A 15.69 Attributed (4) 202 206
DHFR-A 42.43 Attributed (3) 154 147

there exists no validation set containing labeled anomalies,
since we consider unsupervised detection.

2) Baselines: We compare to two types of baselines:
i) Two-stage baselines first use unsupervised graph-level

embedding/kernel techniques to obtain vector/kernel represen-
tations of the graphs (stage 1: • Weisfeiler-Lehman (WL)
kernel [26], • Propagation kernel (PK) [24], and graph2vec
(G2VEC) [25]), and then employ point outlier detectors in the
embedding/kernel space (stage 2: • density-based LOF [38] and
• one-class based OCSVM [39]). Note that WL and G2VEC
apply to labeled graphs only.

ii) Node-level baselines: These are recent GNN based node
anomaly detection methods in a single graph. We repurpose
them to graph-level detection by scoring each graph with the
average anomaly scores of its nodes.

• OCGNN [19] builds on GNN-based node embeddings
learned through the OCSVM objective;

• DOMINANT [20] employs a reconstruction-based loss
for both graph structure and node attribute vectors.

B. Results

1) Detection Performance: Table III gives the ROC-AUC
performances for GLAM and all the baselines on each dataset.4

On average across HPs, GLAM outperforms all the baselines.
Owing to different characteristics of the datasets, we do not
expect GLAM to be the best model on every dataset. However,
we observe that this is still true on a majority (8 out of 15)
of the datasets. Moreover, no baseline stands out as a clear
runner-up – some baselines which exhibit the best performance
for a dataset can be seen to be arbitrarily bad on others.

The comparison can be further demonstrated in Figure 2,
which displays the results of pairwise one-sided Wilcoxon
signed rank tests between all competing methods. The entry
in cell (i, j) is the p-value, given the (alternative) hypothesis
that method j performs better than method i against the null
(that they are not different). Each paired test is done on the
ROC-AUC values from 15 datasets.

4DOMINANT threw out-of-memory error on REDDIT and DD. OCGNN
threw that error on REDDIT, and is incompatible with MIXHOP’s dense format.

https://chrsmrrs.github.io/datasets/docs/datasets/
https://chrsmrrs.github.io/datasets/docs/datasets/


Table III
ANOMALY DETECTION PERFORMANCE OF ALL METHODS. FOR BASELINES, WE RUN THE EXPERIMENT OVER A GRID OF HYPERPARAMETERS5 AND REPORT
THE AVERAGE AND STAND. DEV. OF ROC-AUC SCORES. AS GLAM EMPLOYS (UNSUPERVISED) MODEL SELECTION, IT ONLY OUTPUTS one RANKING, AND
WE SIMPLY REPORT ITS ROC-AUC. PER DATASET RANK PROVIDED IN PARENTHESES (THE LOWER THE BETTER). AVERAGE PERFORMANCE AND RANK

ACROSS DATASETS GIVEN IN THE LAST ROWS. SYMBOLS ▲ AND △ DENOTE THE CASES WHERE GLAM IS SIGNIFICANTLY BETTER THAN BASELINE W.R.T.
THE WILCOXON SIGNED RANK TEST, P<0.01 AND P<0.1 RESPECTIVELY. (O.O.M.: OUT-OF-MEMORY)

Dataset PK-LOF PK-OCSVM WL-OCSVM WL-LOF G2VEC-LOF G2VEC-OCSVM DOMINANT OCGNN GLAM

MIXHOP 0.67 ± 0.17(5) 0.69 ± 0.14(4) 0.72 ± 0.09(3) 0.57 ± 0.01(7) 0.67 ± 0.08(5) 0.51 ± 0.03(8) 1.00 ± 0.00(1) N/A 0.99(2)
PROTEINS 0.68 ± 0.12(5) 0.67 ± 0.09(6) 0.72 ± 0.05(4) 0.78 ± 0.03(2) 0.47 ± 0.05(8) 0.46 ± 0.09(9) 0.48 ± 0.23(7) 0.75 ± 0.34(3) 0.82(1)
TOX21 0.53 ± 0.05(5) 0.57 ± 0.04(4) 0.65 ± 0.05(3) 0.66 ± 0.02(2) 0.47 ± 0.06(8) 0.47 ± 0.06(8) 0.53 ± 0.02(5) 0.52 ± 0.05(7) 0.70(1)
COLLAB 0.73 ± 0.05(7) 0.78 ± 0.02(5) 0.81 ± 0.06(4) 0.84 ± 0.00(3) 0.54 ± 0.18(9) 0.75 ± 0.03(6) 0.85 ± 0.02(2) 0.58 ± 0.22(8) 0.87(1)
IMDB 0.61 ± 0.09(6) 0.68 ± 0.06(2) 0.65 ± 0.04(3) 0.63 ± 0.03(4) 0.45 ± 0.09(8) 0.35 ± 0.04(9) 0.62 ± 0.01(5) 0.51 ± 0.05(7) 0.70(1)
NCI1 0.64 ± 0.06(2) 0.45 ± 0.07(7) 0.73 ± 0.04(1) 0.60 ± 0.08(3) 0.48 ± 0.10(6) 0.33 ± 0.11(9) 0.49 ± 0.12(5) 0.45 ± 0.16(7) 0.59(4)
MUTAGEN 0.57 ± 0.05(4) 0.53 ± 0.02(7) 0.56 ± 0.03(6) 0.52 ± 0.03(8) 0.64 ± 0.04(1) 0.57 ± 0.05(4) 0.59 ± 0.07(2) 0.49 ± 0.06(9) 0.59(2)
REDDIT 0.45 ± 0.06(6) 0.75 ± 0.02(3) 0.54 ± 0.14(5) 0.83 ± 0.01(1) 0.43 ± 0.07(7) 0.58 ± 0.04(4) O.O.M. O.O.M. 0.76(2)
DD 0.83 ± 0.06(4) 0.76 ± 0.04(5) 0.92 ± 0.01(1) 0.91 ± 0.01(2) 0.31 ± 0.03(8) 0.46 ± 0.03(7) O.O.M. 0.60 ± 0.06(6) 0.84(3)
AIDS-L 0.77 ± 0.11(4) 0.73 ± 0.10(5) 0.95 ± 0.04(1) 0.94 ± 0.07(2) 0.30 ± 0.16(8) 0.12 ± 0.12(9) 0.68 ± 0.04(6) 0.42 ± 0.14(7) 0.91(3)
DHFR-L 0.64 ± 0.07(5) 0.74 ± 0.05(4) 0.77 ± 0.07(3) 0.81 ± 0.05(2) 0.62 ± 0.12(6) 0.40 ± 0.08(7) 0.36 ± 0.07(9) 0.37 ± 0.14(8) 0.83(1)
BZR 0.69 ± 0.11(1) 0.58 ± 0.06(2) - - - - 0.37 ± 0.01(5) 0.55 ± 0.07(3) 0.55(3)
COX2 0.70 ± 0.05(2) 0.55 ± 0.10(4) - - - - 0.42 ± 0.02(5) 0.56 ± 0.13(3) 0.71(1)
AIDS-A 0.53 ± 0.12(3) 0.84 ± 0.04(2) - - - - 0.05 ± 0.00(5) 0.43 ± 0.11(4) 0.94(1)
DHFR-A 0.70 ± 0.06(2) 0.62 ± 0.03(3) - - - - 0.43 ± 0.00(5) 0.58 ± 0.06(4) 0.82(1)

avg (labeled) 0.65 ± 0.11 0.67 ± 0.11 0.73 ± 0.13 0.74 ± 0.14 0.49 ± 0.13 0.47 ± 0.15 0.62 ± 0.20 0.52 ± 0.11 0.78 ± 0.13
avg (all) 0.65 ± 0.10 0.66 ± 0.11 - - - - 0.53 ± 0.24 0.52 ± 0.10 0.77 ± 0.13
avg rank 4.07▲ 4.20▲ 3.09 3.27△ 6.73▲ 7.27▲ 4.77▲ 5.85▲ 1.8

PK+L PK+O WL+L WL+O G2V+L G2V+O OCGNN DOMNT GLAM

PK+L

PK+O

WL+L

WL+O

G2V+L

G2V+O

OCGNN

DOMNT

GLAM

0.53 0 0.03 0.99 0.99 1 0.97 0

0.47 0.03 0.03 0.99 1 0.99 0.96 0

1 0.97 0.52 1 1 0.99 0.89 0.09

0.97 0.97 0.48 1 1 1 0.88 0.16

0.01 0.01 0 0 0.81 0.15 0.06 0

0.01 0 0 0 0.19 0.1 0.01 0

0 0.01 0.01 0 0.85 0.9 0.76 0

0.03 0.04 0.11 0.12 0.94 0.99 0.24 0

1 1 0.91 0.84 1 1 1 1

Figure 2. Comparison of detection methods by one-sided paired Wilcoxon
signed-rank test. p-values smaller than 0.05 correspond to the cases where
col-method is significantly better than the row-method.

Not only does GLAM outperform all the baselines on
average (as shown in Table III), as these test results show, the
difference is also significant at p ≤ 0.01 against all baselines
but WL. WL appears more competitive than other baselines,
however p-values are still fairly low (0.09 w/ LOF and 0.16 w/
OCSVM), and it comes with the caveat that it only applies to
node-labeled graphs. Based on these results, we conclude that
end-to-end graph-level detection with GLAM is more effective
than these existing baselines.

2) Mean-pooling vs. MMD-pooling: In Table IV (left),
we compare the performance of the models in the MMD vs.
Mean pools on average (avg.’ed across HPs) for all 15 datasets.
The better pooling technique is not consistent across datasets.
Moreover, the differences can be quite large in both directions,
showcasing their complementary strengths. To leverage both,
GLAM combines these two pools, over which model selection
is performed. As shown in Table IV (right), using both Mean-
and MMD-pooling achieves improved results as compared
to vanilla Mean-only or MMD-only pooling. We see that
there is a drop in performance when model selection excludes
Mean-pooling and an even bigger drop in performance when
it excludes MMD-pooling.

Table IV
(LEFT) MEAN±STD. PERFORMANCE OF CANDIDATE MODELS (AVG’ED

OVER ALL HP CONFIGS) BASED ON MMD- VS. MEAN-POOLING. (RIGHT)
PERFORMANCE CHANGE (%) AFTER MODEL SELECTION FROM MEAN-POOL

only VS. MMD-POOL only (RATHEN THAN BOTH). MMD- AND MEAN-
POOLING ARE COMPLEMENTARY, BOOSTING OVERALL PERFORMANCE.

Dataset MMD-pool Mean-pool

MIXHOP 0.92 ± 0.07 0.98 ± 0.02
PROTEINS 0.79 ± 0.04 0.71 ± 0.11
TOX21 0.60 ± 0.04 0.70 ± 0.04
COLLAB 0.84 ± 0.04 0.87 ± 0.07
IMDB 0.62 ± 0.06 0.59 ± 0.05
NCI1 0.56 ± 0.04 0.62 ± 0.04
MUTAGEN 0.54 ± 0.06 0.61 ± 0.06
REDDIT 0.70 ± 0.06 0.55 ± 0.07
DD 0.70 ± 0.07 0.85 ± 0.04
AIDS-L 0.79 ± 0.07 0.86 ± 0.07
DHFR-L 0.77 ± 0.08 0.79 ± 0.06
BZR 0.50 ± 0.12 0.69 ± 0.05
COX2 0.65 ± 0.10 0.70 ± 0.07
AIDS-A 0.83 ± 0.10 0.64 ± 0.12
DHFR-A 0.72 ± 0.09 0.84 ± 0.05

GLAM: w/o MMD w/o Mean

1.00 0
-6.49 1.20

0 -1.11
9.09 -11.11
3.33 -1.16

-9.375 -4.47
6.35 -1.72

0 -1.22
10.60 -7.27
-40.74 5.00
5.61 -3.70

-42.42 0
21.43 16.67
1.39 4.05
5.75 1.20

avg : -2.29 -0.24

Case Study: Next we take a closer look at the anomalous
graphs detected by Mean- vs. MMD-pooling. Figure 1 shows
the node embedding spaces by MMD- vs. Mean-pooling,
respectively, on PROTEINS. Inlier nodes (green) span the whole
background, as expected, while those of MMD anomalous
graphs (red, orange) cluster in small zones, exhibiting distinct
distributions. MMD-anomalies also look quite distinct visually.
Notice that Mean-pooling alone, without the distributional
“lens”, falls short in spotting them.

3) Model Selection: To analyze the benefits of employing
unsupervised model selection techniques, in Figure 3 we
compare (using Wilcoxon signed rank test, as before) the
performance of the model as selected by UDR, MC, HITS, or
HITS-ENS across datasets.We also include the average model
in this comparison. We find that all strategies are competitive,
significantly outperforming Average at p ≤ 0.1. HITS-ENS, the
consensus ranking by HITS that GLAM employs, outperforms
others and is the most competitive.

In Figure 4, we show the performance for all candidate
models in the GLAM pool (Mean+MMD) per dataset (gray
dots), where Average (circle) and the GLAM-selected model’s
performance (triangle) are marked. Notice that the pools consist



Average MC UDR HITS HITSens

Average

MC

UDR

HITS

HITSens

0.08 0.07 0.02 0

0.92 0.29 0.17 0

0.93 0.71 0.36 0.1

0.98 0.83 0.64 0.03

1 1 0.9 0.97

Figure 3. Comparison of selection methods. Improvement over average
performance is significant at p ≤ 0.1.

of models with a large variation of performance, demonstrating
the potential value for selection. Notably, GLAM (with
selection) is consistently similar to or better than Average,
providing up to 16% improvement.

Figure 4. Performance of GLAM models w/ different HP configs in the pool.
GLAM (w/ selection) consistently improves over Avg. (i.e. random choice).

V. CONCLUSION

In this work we presented GLAM, a novel Graph-Level
Anomaly detection Model based on GNNs. GLAM employs an
end-to-end anomaly detection objective and targets distribution
graph anomalies as graphs with anomalous sets of nodes
with designed MMD-pooling. We also systematically address
the unsupervised model selection (UMS) problem. Extensive
experiments showed that GLAM significantly outperforms key
baselines in expectation across varying hyperparameter values.
We also showed that both MMD-pooling and UMS are key
players in GLAM’s effectiveness.
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