
D.MCA: Outlier Detection with Explicit Micro-Cluster Assignments

Shuli Jiang
Carnegie Mellon University

shulij@andrew.cmu.edu

Robson L. F. Cordeiro
University of São Paulo

robson@icmc.usp.br

Leman Akoglu
Carnegie Mellon University

lakoglu@andrew.cmu.edu

Abstract—How can we detect outliers, both scattered and
clustered, and also explicitly assign them to respective micro-
clusters, without knowing apriori how many micro-clusters exist?
How can we perform both tasks in-house, i.e., without any
post-hoc processing, so that both detection and assignment can
benefit simultaneously from each other? Presenting outliers in
separate micro-clusters is informative to analysts in many real-
world applications. However, a naı̈ve solution based on post-
hoc clustering of the outliers detected by any existing method
suffers from two main drawbacks: (a) appropriate hyperparam-
eter values are commonly unknown for clustering, and most
algorithms struggle with clusters of varying shapes and densities;
(b) detection and assignment cannot benefit from one another.
In this paper, we propose D.MCA to Detect outliers with explicit
Micro-Cluster Assignment. Our method performs both detection
and assignment iteratively, and in-house, by using a novel strategy
that prunes entire micro-clusters out of the training set to
improve the performance of the detection. It also benefits from a
novel strategy that avoids clustered outliers to mask each other,
which is a well-known problem in the literature. Also, D.MCA is
designed to be robust to a critical hyperparameter by employing
a hyperensemble “warm up” phase. Experiments performed on
16 real-world and synthetic datasets demonstrate that D.MCA
outperforms 8 state-of-the-art competitors, especially on the
explicit outlier micro-cluster assignment task.

Index Terms—outlier detection, outlier micro-cluster assign-
ment, hyperparameter robustness

I. INTRODUCTION

Outlier detection aims to identify rare or unusual instances
in the data that deviate from the majority. In many practical
domains outliers can form groups or (micro-)clusters, which
can be seen as anomalous patterns. Examples include bots
or malware under the same command-control in network
intrusion, coordinated attacks from multiple user accounts
toward spreading fake news in social platforms, opportunis-
tic fraud/scam/etc. that spread by word-of-mouth, adversarial
schemes that exploit the same loophole or vulnerability in a
system (e.g., medical insurance), to name a few.

Autonomous outlier detection systems are rarely used in
the real world, where it is typical for the flagged outliers to
go through a verification/vetting process by a domain analyst,
especially when the cost of false positives is high, such as
shutting down credit cards, blacklisting certain software or
user accounts from access, charging a physician or hospital
by fraud, etc. It is exactly in such scenarios that reporting

Note this is a short version of the paper. Please check out arXiv.org for the
full version including Appendix.

Acknowledgement This work is partly sponsored by the PwC Risk and
Regulatory Services Innovation Center at Carnegie Mellon University, and
by the Brazilian foundations CAPES (finance code 001), FAPESP (grants
2021/05623-2, 2020/07200-9, 2018/05714-5 and 2016/17078-0), and CNPq.

(a) D.MCA (b) iForest+X-means (c) Gen2Out

Fig. 1: Example dataset with two inlier modalities (gray dots),
with scattered and clustered outliers. (a) Proposed D.MCA
effectively flags the outliers (stars) and also explicitly assigns
to micro-clusters (colored differently). (b) Two-stage solutions,
detection+post hoc clustering, are not as effective. (c) SOTA
baseline underperforms, often missing interior outliers.

micro-clusters of outliers, if any, is useful for the domain
analyst whose job may be to go through hundreds of such
alerts a day. Rather than inspecting each outlier one by one, a
succinct presentation of the outliers by groups could speed up
sense-making, characterization and ultimately decision mak-
ing, where e.g. the analyst can take the same troubleshooting
action for all outliers in the same cluster, or quickly ignore all
in the same cluster provided a few have already been found
to be false positives or semantically uninteresting outliers.

The specific problem we consider in this work is then to
not only identify the outlier instances (both clustered and
scattered) but at the same time, output existing outlier micro-
clusters explicitly. We refer to the latter task as outlier micro-

cluster assignment (e.g. see Fig. 1(a)). Our goal is to design an
algorithm that addresses both problems in-house as a result of
its inherent detection mechanism, rather than post-hoc where
one employs a clustering algorithm upon first detecting the
outliers. Such straightforward approaches are arguably far
from trivial to get right due to multi-pronged challenges.
First, the detection algorithm should be very effective as those
outliers are fed downstream to clustering. Second, clustering
itself is a non-trivial task with small, i.e. micro, clusters of
possibly varying size and density, where further the number
of outlier clusters are not known apriori, all of which relate to
the challenge of hyperparameter selection. Finally, a two-stage
approach puts a barrier between the detection and assignment
tasks that prevents them from potentially benefiting from
each other. We compare to various two-stage baselines in
experiments, using SOTA detectors such as Isolation Forest [1]
and LOF [2], paired with parameter-free clustering algorithms
such as X-means [3] and OPTICS [4] (e.g. see Fig. 1(b)).

The vast body of prior work is for detecting outliers only,
without special focus on clustered outliers. In principle several
of those detectors are capable of spotting outliers that are
present in micro-clusters, provided suitable hyperparameter
values, however they do not specify which outliers are scat-
tered versus clustered. There exist work clustering detected
outliers which is post-hoc and mainly focuses on explanation
[5]. Some work have addressed detecting clustered or collec-
tive outliers specifically [6], [7], [8], however without explic-
itly assigning them to their respective clusters. The only work
(to our best knowledge), Gen2Out [9], that considers explicit
outlier assignment is based on the aforementioned naı̈ve two-
stage pipeline: it detects outliers first and then applies the post-
processing clustering algorithm DBSCAN [10] on the detected
outliers. It relies heavily on the accuracy of the detector which
falls short to spot outliers in the interior of the data manifold
(e.g. see Fig. 1(c)). See Appendix V for detailed related work.

In this paper, we simultaneously address the outlier
Detection and explicit outlier Micro-Cluster Assignment tasks.
Our proposed D.MCA alternatingly refines the micro-clusters
and the flagged outliers, aiming to synergize them to mutually
benefit from one another. In a nutshell, D.MCA builds on
the SOTA iNNE detector [11] which subsamples a set of
points, creates a hyperball centered at each one, and scores
outlierness as relative distance to those representatives. The
working assumption is that the subsample contains inliers with
high probability, and hence the hyperballs are representative of
the normal data distribution. Note that iNNE originally cannot
produce explicit micro-cluster assignments.

Our proposed D.MCA improves this base algorithm in two
key aspects. Firstly, it employs an iterative pruning strategy
where the top scoring points at each iteration are pruned.
In effect, this improves the probability that the subsampled
points in the next round are more likely to be inliers, which
lead to better outlier detection. Second, D.MCA employs a
hyperensemble “warm up” phase that makes it more robust to
the choice of its hyperparameter, namely the subsample size
 , which at the same time also helps alleviate the issue of
“masking”; when two or more points from an outlier cluster
are sampled, they mask/hide one another and cause all points
in the micro-cluster to be deemed inliers (i.e. false negatives).
We summarize our main contributions as follows.

• Outlier detection and micro-cluster assignment: We
consider the two-pronged problem of (scattered and clus-
tered) outlier detection and explicit outlier micro-cluster
assignment, and propose a new algorithm called D.MCA
to address both problems simultaneously.

• Tackling various challenges: D.MCA exhibits novel
procedures toward (i) effective outlier pruning – which
specifically aims to avoid pruning false positives (i.e.
inliers), (ii) reduced “masking” effect – which carefully
regulates the subsample size1 and prunes true positive
micro-clusters, and (iii) improved robustness to hyper-

1Note that a large sample is more likely to induce “masking”, leading to
false negatives (i.e. missed outlier micro-clusters), whereas a small sample
would contain insufficient representatives, leading to false positives.

parameter settings – which employs a hyperensemble
strategy as a “warm up” phase.

• A synergistic solution: D.MCA’s detection and micro-
cluster assignment steps work together in synergy under
a unified algorithm, rather than two independent com-
ponents: the pruning strategy reveals micro-clusters as a
by-product, and true-positive micro-clusters are pruned to
improve the subsample and hence the detection quality.

• Effectiveness: Through extensive experiments on syn-
thetic datasets, real-world datasets injected with known
clustered outliers, as well as benchmark real-world
datasets, we show that D.MCA sets the state-of-the-art,
significantly outperforming (to our knowledge) the only
SOTA baseline Gen2Out as well as a number of two-stage
baselines with paired detector and post-hoc clustering,
especially in the micro-cluster assignment task.

Reproducibility. All our source code and the datasets used
in the experiments are publicly shared at https://github.com/
11hifish/D.MCA.

II. PRELIMINARIES

Notation See Appendix I-A.
Problem Given a point-cloud dataset D, our goal is to

perform the following two tasks:
1) Detection: compute xi 2 D, 8i 2 [n] an outlier score

s(xi); the larger, the more anomalous and
2) Assignment: explicitly output outlier micro-clusters

C1, . . . , Cm, where m is apriori unknown to the algorithm.
iNNE Outlier Detector D.MCA uses individual models of

Isolation using Nearest Neighbor Ensemble (iNNE) [11] as
the base outlier detector. See Appendix I-B for more details.

III. PROPOSED APPROACH

The section is divided into two parts. We first present the
D.MCA-0 algorithm (Algorithm 1), a sequential ensemble that
alternates between detection and assignment at each iteration.
However, D.MCA-0 is sensitive to an important hyperparam-
eter , the subsample size, inherited from the iNNE base
detector. Next we present the proposed D.MCA (Algorithm 2),
a two-phase algorithm that builds a hyperensemble based on
varying values of in the first phase prior to employing
D.MCA-0 in the second phase, which is more robust to
compared to D.MCA-0.

A. Proposed D.MCA-0

The motivation of performing detection and assignment
interactively across iterations in a sequential ensemble is two-
fold: (i) to obtain a better assignment of the outliers based on
improved detection, and (ii) to leverage the identified micro-
clusters to improve the detection performance.

At a high level, D.MCA-0 builds upon iNNE to detect
outliers, which outputs an outlier score s for each instance
in D and a set of selected centers R as inlier representatives
per iteration. D.MCA-0 keeps a running average of the outlier
scores across iterations. We choose iNNE as the base model as
it is fast and efficient, able to detect non-axis aligned outliers,

https://github.com/11hifish/D.MCA
https://github.com/11hifish/D.MCA

adapts to data with varying density, and produces explicit sub-
samples R that our algorithm makes use of. D.MCA-0 keeps
track of the assignment of outlier micro-clusters by a weighted
neighbor graph G = (D, E) where E = (x,y), 8x,y 2 D. The
weight of an edge (x,y) 2 E denotes the number of times
both instances x,y 2 D receive high outlier scores and are
marked as “neighbors”. D.MCA-0 updates the weight of G
at each iteration, and outputs the final outlier micro-clusters
C = {C1, C2, . . . } based on the connected components of G
(Procedure FindClusters in Appendix II).

In what follows, we present four major steps of D.MCA-0
during a single iteration in the sequential ensemble: 1) finding
micro-cluster representatives via sampling, 2) filtering out false
positives from micro-cluster representatives toward pruning,
3) updating the neighbor graph G and 4) pruning true micro-
cluster representatives and their neighbors. We remark that
steps 1) and 3) are geared toward (i) to obtain outlier micro-
clusters and steps 2) and 4) are geared toward (ii) to improve
detection performance. Notice how these steps are interleaved,
creating synergy between the two tasks.

1) Finding Micro-cluster Representatives via Maximin Sam-

pling: To find outlier micro-clusters, the algorithm first applies
Maximin Sampling [12] on outliers that receive p topmost
outlier scores, i.e. points in H-top (Line 7), to get an outlier
representative set H which contains at least one representa-
tive per micro-cluster (Line 8). At each iteration, Maximin
Sampling samples an unselected point in the dataset that
has the maximum projection to the set of already sampled
points.2 When there are well-separated outlier micro-clusters,
Maximin Sampling guarantees that we sample at least one
point per micro-cluster. Furthermore, if all micro-clusters have
one subsample already by Maximin Sampling, the projection
of the next selected points is expected to have a large decrease,
which gives us an estimation of the number of outlier micro-
clusters. We stop sampling after such a large decrease so that
H does not include an unnecessarily large number of points
from the micro-clusters, to improve algorithm efficiency. We
later use such outlier representatives as “anchor points” to
identify different micro-clusters.

2) Filtering out False Positives from Micro-cluster Repre-

sentatives toward Pruning: D.MCA-0 prunes outlier micro-
clusters found at each iteration to improve the detection
performance. Pruning can reduce one major drawback of iNNE
at the presence of outlier micro-clusters, called “masking”.
Masking occurs when two or more points from the same
outlier micro-cluster is subsampled into R , which causes
the members of the micro-cluster to be masked or hidden as
inliers. Hence, training with a cleaner set with fewer outlier
micro-clusters decreases the probability of “masking” and
leads to better detection performance.

However, naı̈vely pruning points with the topmost outlier
scores is not effective as this leads to also pruning false
positives, i.e. inlier points that receive high outlier scores,
which leads to even worse performance than iNNE (e.g. Fig. 5

2Projection is the minimum distance from a point to a set.

Algorithm 1 D.MCA-0

Input: data D 2 Rn⇥d, subsample size , num. iterations t
(default: 100), num. check-points p (default: 0.1n)

Output: outlier scores s̄ 2 [0, 1]n, explicit set of outlier
micro-clusters C = {C1, C2, . . .}, neighbor graph G

1: Outlier scores s̄ 0 2 Rn (init.)
2: Neighbor graph G (V = D, E = ;) (init.)
3: Clean set R D (init.)
4: for i = 1, 2, . . . , t do
5: s(i), centers R(i)

 iNNE (train: R, test: D, :)
6: s̄ (s̄ ⇤ (i� 1) + s(i))/i
7: High-score set H-top {x 2 D : s̄[x] among top p}
8: Representative set H MaximinSampling(H-top)
9: maximum radius rmax maxx2H min

c2R
(i)

kx�ck2

10: A ; I # areas under “clothes-lines”
11: Sorted distances L ;
12: for x 2 H [R(i)

 do I #clothes-lines
13: distance Dist[x,y] ky � xk2, 8y 2 D
14: L[x] sorted Dist.s to x from smallest to largest
15: a sorted average neighboring outlier scores
16: A[x] weighted sum of a based on L[x] and

rmax (See Eq. (1))
17: end for
18: # Decide whether x is a true outlier
19: Candidate true set Hc {x 2 H : A[x] > mean(A)}
20: Pruning set P ;
21: for x 2 Hc do
22: threshold ⌧n FindFirstPeak(L[x])
23: # Find neighbors of x to prune
24: Neighbors N {y 2 D : kx� yk2 < ⌧n}
25: G increase edge weight (x,y) by 1, 8y 2 N
26: P P [N
27: end for
28: Clean set R D \ P
29: end for
30: C FindClusters(G) I # Procedure 1
31: return s̄, C,G

in the Appendix). Therefore, we perform pruning by first
deciding whether an outlier representative in H is a false
positive, following a careful procedure that leverages what we
call “clothes lines” (Lines 12-17), and prune only based on
points in H that are estimated to be true outliers.

The idea is that false positive points are closer to many inlier
points compared to those true outliers by definition, and thus
the average score of the neighbors of false positive points is
expected to be lower as compared to that of the true outliers.
We describe the details of clothes-lines, i.e. distinguishing
false positives from true positives next.

Computing Clothes-lines and Weighted Sums. To con-
struct the clothes-line for a point x, we first compute the
distances from all points in D to x (Line 13), and sort the dis-
tances from the smallest to the largest to get L[x] 2 Rn (Line
14). We then compute the average outlier score of the neighbor
points of x with an increasing distance to x, i.e. we compute

a 2 Rn (Line 15), such that ai =
P

y:ky�xkL[x]i
s̄[y]/i,

8i 2 [n]. The clothes-line of x is then a curve on a 2D plot
where the x-axis is L[x] and the y-axis is a. We illustrate in
Fig. 2 example clothes-lines at iteration 10 for an outlier (in
red) and an inlier (in green) in synthetic10 (one of our
datasets with ground-truth, see Appendix III-A).

Intuitively, for an outlier, the average outlier score of points
by increasing distance is large and remains large3, as such the
curve looks flat like a clothes-line. In contrast, for an inlier
(i.e. false positive), the average tends to drop fairly quickly
(i.e. within a shorter distance away). Then, we use the area
under the clothes-lines (shaded areas in Fig. 2) to distinguish
between true and false positives, which is computed through
a weighted sum of the outlier scores, where the weights are
the distances to neighboring points (Line 16). Specifically, the
weighted sum for x is given as

A[x] :=
X

i:L[x]irmax

wi · (L[x]i+1 � L[x]i) · ai (1)

where weight wi =
1
2 (L[x]i+1 + L[x]i). We weigh the sum

by distance to reflect the fact that outliers are separated in
distance from the inliers. Points with both large distances to
inliers and large average scores of the neighbors receive the
largest weighted sum, which makes true outliers well separated
from false positives with a larger weighted sum.

Note that we only compute the weighted sum for x based
on all neighbors y such that kx � yk2 rmax, instead of
computing the sum under the entire clothes line. In other
words, we only consider the average outlier scores of close
neighbors of x instead of all points in D. Here, rmax represents
the distance from x to the nearest inlier point in R (i.e. the
projection of x to R) and is an estimation of the neighboring
regions around x that should be focused. Setting rmax to be
the maximum over all projections of x 2 H to the inlier points
gives us a sufficiently large radius that includes neighbors
necessary to separate false positive points from true outliers. In
fact, the sum under the entire clothes line makes the difference
of the weighted sums between false positives and true outliers
less apparent (see Fig. 2). Computing the sum up to rmax also
makes the algorithm more efficient.

Deciding True Outlier Candidates. We compute the
weighted sum for both x 2 Hc and x 2 R , and build a
candidate true outliers set as the points with a weighted sum
that is greater than the average weighted sum mean(A) (Line
19). The weighted sums of x 2 R , representing such sums
of the inlier points, are used as comparison against that of the
true outliers to make mean(A) a meaningful threshold.

3) Update the Neighbor Graph G: The points in the can-
didate set Hc can be seen as refined outlier micro-cluster
representatives. Then, the neighbors of x 2 Hc can be marked
as points in the same outlier micro-cluster. To this end, we
first estimate the diameter of the micro-cluster that includes
x, denoted ⌧n, based on L[x] (Line 22), and then compute

3This is the case for both scattered and clustered outliers, where for the
former the average includes only the point itself for a large radius around it.

Fig. 2: Example clothes-line of an outlier (red curve) and an
inlier (green curve). For an outlier (i.e. true positive), average
neighboring scores (y-axis) by distance (x-axis) remains high
and flat, and hence looks like a “clothes-line” while the curve
for a false positive inlier drops relatively quickly, even if they
both receive a high score initially (as shown at distance 0).

the neighbors of x, denoted N , as points y 2 D within the
diameter, i.e. ky � xk2 ⌧n (Line 24). The diameter ⌧n is
found by a peak finding algorithm, detecta4, on the sorted
distances L[x]. Since outlier micro-clusters are separated in
distance from the other points by definition, the first peak
in the sorted distance L[x] indicates such a gap between the
micro-cluster and the rest of the points in D. We store the
information of the neighbors N in graph G by increasing the
edge weight (x,y) by one, 8y 2 N (Line 25).

4) Pruning True Micro-cluster Representatives and Their

Neighbors: Finally, we prune the candidate true positive points
x 2 Hc along with their neighbors (Line 28). This effectively
prunes the entire micro-cluster that contains x, towards the
goal of reducing “masking”.

We remark that the synergy between micro-cluster as-
signment based on detection and leveraging micro-clusters
to improve detection via pruning during a single iteration
can be seen through the following perspectives: (1) We find
outlier representatives H based on outlier scores (i.e. current
detection results); (2) The candidate set Hc is computed based
on both outlier representatives H and neighboring outlier
scores; and (3) The candidate set Hc is used for both pruning
toward improving detection as well as outlier micro-cluster
assignment – where we find micro-clusters as neighbors of
points x 2 Hc and prune both x 2 Hc and their neighbors.

Outputting Outlier Micro-clusters Based on G. At the
end of our sequential ensemble, we find outlier micro-clusters
based on the neighbor graph G. We first find a threshold ⌧e
to be the first peak of sorted edge weights (from the largest
to the smallest) using detecta4. We keep only those strong
edges with weights larger than ⌧e to get a pruned graph G0.
The outlier micro-clusters C = {C1, C2, . . . } are output as the
connected components of G0. See FindClusters in Appendix II.

B. Proposed D.MCA

Thus far, we have proposed D.MCA-0, a sequential ensem-
ble that alternates between outlier detection and micro-cluster
assignment. However, there exists a remaining key challenge:
the choice of the hyperparameter , i.e. the subsample size, for

4 detecta: https://github.com/demotu/detecta

https://github.com/demotu/detecta

the base detector. Although D.MCA-0 improves the robustness
to relatively thanks to “cleaning” the dataset via outlier
pruning, it remains sensitive to the choice (see e.g. Fig. 4 in
Appendix IV-B). In prior works (e.g. [11], [13]), only the best
detection performance of iNNE with a chosen hyperparameter
 via a grid search is reported. However, is far from trivial
to set in practice for fully unsupervised settings.

On one hand, cannot be smaller than the number of
inlier clusters; otherwise, a small R underrepresents the
inlier distribution, which leads to many false positives as the
hyperspheres constructed by a small R are unable to cover
the inliers effectively. On the other hand, cannot be too
large. A large increases the chance of “masking” which
leads to false negatives (micro-clusters) and hence overall
poor detection. Therefore we ask the question: Can we make

D.MCA-0 even more robust to ?

To this end, we propose D.MCA (Algorithm 2), where the
main idea is to take advantage of hyper-ensembling to increase
hyperparameter robustness to specific settings [14]. As such,
D.MCA consists of two phases: Phase 1 is a “warm up”
phase (Lines 2-8), consisting of a hyper-ensemble of D.MCA-0
models with varying values of 2 [2, max], and Phase 2
simply employs the D.MCA-0 algorithm one last time on the
cleaned dataset using max (Line 12).

As discussed earlier, a small is more likely to yield false
positive errors, whereas a large is to yield false negatives due
to “masking”. We do not have a mechanism to recover from
missed outliers, while the clothes-lines strategy can be applied
to filter out some false positives. That is why in Phase 1 we
vary 2 [2, max], starting small and gradually increasing it.

The outcome of Phase 1 is a set of outlier micro-clusters
by the hyper-ensemble (Line 9), which are pruned (Line 10)
before D.MCA-0 is employed in Phase 2, based on which the
outlier micro-clusters are updated and the outlier scores are
returned. Note that Phase 2 uses a fixed subsample size of
 max, i.e. the input and also the largest value that Phase 1 has
used. Since Phase 2 trains D.MCA-0 on the cleaned dataset, in
the absence of most outlier micro-clusters, a larger subsample
size poses a smaller risk for “masking”.

IV. EXPERIMENTS

We evaluate D.MCA against 16 datasets and 8 SOTA de-
tectors and 2 hyperparameter-free clustering algorithms w.r.t.
both detection and micro-cluster assignment. We also provide
an in-depth analysis of its various elements in the Appendix.

Datasets. Our datasets fall into three main categories:
1) 2D synthetic datasets; 2) Semi-synthetic datasets: Datasets
letter, musk, thyroid, optdigits, and satimage-2
3) Real-world benchmark datasets: Datasets lympho, ecoli,
musk_real, satellite, shuttle, smtp, and http.
Both Semi-synthetic datasets and Real-world benchmark

datasets come from the ODDS repository5 with preprocessing
that ensures the datasets contain small, compact outlier micro-
clusters. See Appendix III-A for more details.

5http://odds.cs.stonybrook.edu

Algorithm 2 D.MCA

Input: data D2Rn⇥d, max subsample size max, num. itera-
tions t (default: 100), num. check-points p (default: 0.1n)

Output: outlier scores s̄ 2 [0, 1]n, explicit set of outlier
micro-clusters C = {C1, C2, . . .}

1: Neighbor graph G (V = D, E = ;) (init.)
2: # Phase 1: hyperensemble as “warm up”
3: t0 bt/2c
4: Pick t0 values in 2 [2, max] with equal gap
5: for i = 1, 2, . . . , t0 do
6: , ,G(i) D.MCA-0 (D : D, : [i], t : i, p : p)
7: G increase weight of (x,y) by edge weight in G(i)

8: end for
9: Cwarmup FindClusters(G) I # Procedure 1

10: Clean set R D \ Cwarmup
11: # Phase 2: sequential ensemble
12: s̄, ,G0 D.MCA-0 (D : R, : max, t : (t� t0), p : p)
13: G G [G0

14: C FindClusters(G)
15: return s̄, C

Baselines and Configurations. We evaluate both tasks,
detection and micro-cluster assignment, with separate ex-
periments; accordingly, we consider two different sets of
baselines: Detection baselines and Assignment baselines. See
Appendix III-B and III-C for details on baselines and config-
urations used in the experiments.

Performance Metrics. 1) Detection: We report both the
area under the ROC curve (ROC AUC) and the Average
Precision (AP). 2) Assignment: We report the average F1 score
against the true set of outlier micro-clusters. For methods with
hyperparameters, we report the averaged performance and one
stdev over the list of hyperparameter settings and 5 random
runs each. For hyperparameter-free algorithms, we report the
average performance and one stdev only over 5 random runs.

A. Assignment Evaluation

Here we evaluate the methods w.r.t. outlier micro-cluster
assignment. D.MCA, and D.MCA-0 do assignment in-house.
Gen2Out has a post-hoc assignment procedure. For the other
methods, we post-process the outliers they detect using two of-
the-shelf clustering algorithms: X-means, and OPTICS. They
are both parameter-free, and well-regarded in the literature.
Table I reports the results of this experiment. We use “+O” to
indicate post-hoc clustering with OPTICS; “+X” stands for X-
means. Note that our proposed methods are notably effective
in assignment. D.MCA, and D.MCA-0 obtain respectively the
best and the third best average rankings among all datasets.
Also, D.MCA is the best or the second best method in 10 out
of our 16 datasets; D.MCA-0 does the same for 9 datasets.
Finally, note that Gen2Out has the worst average ranking
among all 17 methods tested; interestingly, (to the best of our
knowledge) it is the only method in literature that is originally
designed to perform micro-cluster assignment.

http://odds.cs.stonybrook.edu

TABLE I: D.MCA excels in micro-cluster assignment: we report F1 scores of micro-cluster assignment for our methods
D.MCA, and D.MCA-0, and also for 8 state-of-the-art competitors. D.MCA outperforms everyone with the very best average
ranking; it is the winner or the runner up in 10 out of our 16 datasets. The first place is in bold, and second place is underlined.

Dataset
Method D.MCA-0 D.MCA iNNE+O iNNE+X LOF+O LOF+X kNN+O kNN+X iForest+O iForest+X SCiForest+O SCiForest+X COPOD+O COPOD+X HBOS+O HBOS+X Gen2Out

synthetic10 0.68 0.67 0.41 0.35 0.32 0.31 0.49 0.29 0.43 0.61 0.53 0.46 0.25 0.41 0.39 0.47 0.29
± 0.47 (1) ± 0.47 (2) ± 0.21 (9) ± 0.30 (12) ± 0.25 (13) ± 0.34 (14) ± 0.15 (5) ± 0.18 (15) ± 0.20 (8) ± 0.35 (3) ± 0.13 (4) ± 0.23 (7) ± 0.26 (17) ± 0.43 (10) ± 0.20 (11) ± 0.40 (6) ± 0.44 (16)

spiral 0.68 0.70 0.28 0.31 0.30 0.30 0.39 0.40 0.08 0.16 0.10 0.17 0.08 0.17 0.00 0.00 0.17
± 0.47 (2) ± 0.46 (1) ± 0.27 (8) ± 0.38 (5) ± 0.27 (7) ± 0.35 (6) ± 0.29 (4) ± 0.38 (3) ± 0.17 (14) ± 0.36 (12) ± 0.21 (13) ± 0.37 (10) ± 0.17 (14) ± 0.37 (10) ± 0.00 (16) ± 0.00 (16) ± 0.37 (10)

sandwich 0.97 0.96 0.40 0.37 0.26 0.23 0.54 0.56 0.46 0.53 0.56 0.43 0.29 0.41 0.19 0.10 0.35
± 0.18 (1) ± 0.20 (2) ± 0.26 (10) ± 0.30 (11) ± 0.28 (14) ± 0.30 (15) ± 0.13 (5) ± 0.32 (4) ± 0.26 (7) ± 0.39 (6) ± 0.14 (3) ± 0.16 (8) ± 0.31 (13) ± 0.42 (9) ± 0.27 (16) ± 0.16 (17) ± 0.35 (12)

vdensity 0.94 0.94 0.46 0.71 0.30 0.41 0.47 0.67 0.39 0.64 0.55 0.65 0.34 0.67 0.27 0.40 0.50
± 0.22 (1) ± 0.23 (2) ± 0.22 (11) ± 0.39 (3) ± 0.27 (16) ± 0.42 (12) ± 0.23 (10) ± 0.41 (5) ± 0.24 (14) ± 0.42 (7) ± 0.09 (8) ± 0.27 (6) ± 0.25 (15) ± 0.47 (4) ± 0.27 (17) ± 0.44 (13) ± 0.50 (9)

letter 0.88 0.98 0.36 0.46 0.26 0.34 0.42 0.46 0.63 0.52 0.63 0.79 0.63 0.76 0.63 0.42 0.00
± 0.33 (2) ± 0.15 (1) ± 0.34 (14) ± 0.44 (11) ± 0.34 (16) ± 0.42 (15) ± 0.37 (12) ± 0.42 (10) ± 0.26 (6) ± 0.30 (9) ± 0.26 (6) ± 0.32 (3) ± 0.26 (6) ± 0.32 (4) ± 0.26 (6) ± 0.25 (13) ± 0.00 (17)

musk 0.96 0.99 0.52 0.46 0.45 0.42 0.48 0.46 0.71 0.60 0.71 0.66 0.71 0.67 0.71 0.53 0.00
± 0.19 (2) ± 0.10 (1) ± 0.39 (11) ± 0.41 (14) ± 0.42 (15) ± 0.44 (16) ± 0.42 (12) ± 0.44 (13) ± 0.31 (4) ± 0.36 (9) ± 0.31 (4) ± 0.38 (8) ± 0.31 (4) ± 0.37 (7) ± 0.31 (4) ± 0.33 (10) ± 0.00 (17)

thyroid 0.92 0.96 0.27 0.35 0.10 0.16 0.41 0.48 0.62 0.70 0.62 0.77 0.62 0.83 0.62 0.87 1.00
± 0.27 (3) ± 0.20 (2) ± 0.32 (15) ± 0.43 (14) ± 0.21 (17) ± 0.34 (16) ± 0.32 (13) ± 0.43 (12) ± 0.15 (9) ± 0.32 (7) ± 0.15 (9) ± 0.28 (6) ± 0.15 (9) ± 0.26 (5) ± 0.15 (9) ± 0.21 (4) ± 0.00 (1)

optdigits 0.88 0.96 0.31 0.30 0.24 0.22 0.35 0.34 0.54 0.56 0.54 0.54 0.53 0.39 0.52 0.48 0.00
± 0.33 (2) ± 0.19 (1) ± 0.31 (13) ± 0.39 (14) ± 0.30 (15) ± 0.35 (16) ± 0.31 (11) ± 0.40 (12) ± 0.23 (6) ± 0.40 (3) ± 0.23 (4) ± 0.39 (5) ± 0.22 (7) ± 0.36 (10) ± 0.23 (8) ± 0.39 (9) ± 0.00 (17)

satimage-2 0.45 0.82 0.31 0.44 0.34 0.47 0.41 0.58 0.61 0.68 0.61 0.70 0.37 0.28 0.11 0.11 0.00
± 0.50 (8) ± 0.39 (1) ± 0.35 (13) ± 0.47 (9) ± 0.37 (12) ± 0.47 (7) ± 0.36 (10) ± 0.45 (6) ± 0.27 (5) ± 0.32 (3) ± 0.27 (4) ± 0.29 (2) ± 0.35 (11) ± 0.34 (14) ± 0.18 (15) ± 0.23 (16) ± 0.00 (17)

lympho 0.00 0.00 0.48 0.50 0.55 0.57 0.41 0.43 0.40 0.44 0.49 0.60 0.53 0.64 0.38 0.36 0.00
± 0.00 (16) ± 0.00 (16) ± 0.27 (8) ± 0.27 (6) ± 0.30 (4) ± 0.23 (3) ± 0.32 (11) ± 0.33 (10) ± 0.35 (12) ± 0.36 (9) ± 0.37 (7) ± 0.35 (2) ± 0.28 (5) ± 0.25 (1) ± 0.38 (13) ± 0.36 (14) ± 0.00 (16)

ecoli 0.42 0.38 0.26 0.25 0.31 0.26 0.38 0.36 0.40 0.33 0.46 0.38 0.22 0.20 0.30 0.24 0.00
± 0.42 (2) ± 0.41 (4) ± 0.29 (11) ± 0.29 (13) ± 0.27 (9) ± 0.23 (12) ± 0.35 (6) ± 0.33 (7) ± 0.31 (3) ± 0.24 (8) ± 0.36 (1) ± 0.30 (5) ± 0.17 (15) ± 0.16 (16) ± 0.24 (10) ± 0.20 (14) ± 0.00 (17)

musk_real 0.47 0.49 0.37 0.55 0.21 0.34 0.32 0.49 0.53 0.87 0.52 0.87 0.07 0.07 0.40 0.65 0.00
± 0.17 (9) ± 0.20 (8) ± 0.24 (11) ± 0.39 (4) ± 0.23 (14) ± 0.41 (12) ± 0.25 (13) ± 0.41 (7) ± 0.05 (5) ± 0.13 (1) ± 0.05 (6) ± 0.13 (1) ± 0.07 (15) ± 0.08 (16) ± 0.06 (10) ± 0.08 (3) ± 0.00 (17)

satellite 0.59 0.57 0.13 0.12 0.28 0.16 0.24 0.20 0.29 0.33 0.27 0.33 0.27 0.33 0.27 0.33 0.00
± 0.49 (1) ± 0.49 (2) ± 0.27 (15) ± 0.30 (16) ± 0.43 (8) ± 0.27 (14) ± 0.38 (12) ± 0.37 (13) ± 0.37 (7) ± 0.47 (4) ± 0.39 (10) ± 0.47 (4) ± 0.39 (10) ± 0.47 (4) ± 0.39 (10) ± 0.47 (4) ± 0.00 (17)

shuttle 0.14 0.21 0.40 0.25 0.37 0.24 0.55 0.34 0.60 0.64 0.65 0.59 0.45 0.53 0.22 0.32 0.00
± 0.35 (16) ± 0.40 (15) ± 0.45 (8) ± 0.32 (12) ± 0.44 (9) ± 0.31 (13) ± 0.44 (5) ± 0.34 (10) ± 0.23 (3) ± 0.31 (2) ± 0.40 (1) ± 0.37 (4) ± 0.32 (7) ± 0.33 (6) ± 0.22 (14) ± 0.37 (11) ± 0.00 (17)

smtp 0.05 0.06 0.05 0.04 0.09 0.09 0.03 0.03 0.04 0.03 0.03 0.03 0.04 0.03 0.25 0.23 0.23
± 0.13 (8) ± 0.16 (6) ± 0.09 (7) ± 0.07 (10) ± 0.15 (5) ± 0.19 (4) ± 0.05 (16) ± 0.05 (13) ± 0.07 (9) ± 0.05 (13) ± 0.05 (17) ± 0.05 (13) ± 0.06 (10) ± 0.05 (13) ± 0.21 (1) ± 0.24 (2) ± 0.23 (3)

http 0.00 0.08 0.22 0.15 0.22 0.16 0.12 0.12 0.19 0.15 0.25 0.23 0.34 0.21 0.18 0.10 0.17
± 0.06 (17) ± 0.27 (16) ± 0.33 (5) ± 0.30 (12) ± 0.31 (4) ± 0.29 (10) ± 0.30 (14) ± 0.30 (13) ± 0.36 (7) ± 0.34 (11) ± 0.35 (2) ± 0.33 (3) ± 0.37 (1) ± 0.32 (6) ± 0.37 (8) ± 0.26 (15) ± 0.37 (9)

Avg. Rank 5.69 5.00 10.56 10.38 11.12 11.56 9.94 9.56 7.44 6.69 6.19 5.44 9.94 8.44 10.50 10.44 13.25

TABLE II: D.MCA is competitive in detection: we report Average Precision (AP) scores for 10 detectors. Our D.MCA obtains
the second best average ranking. Note that the best detector Gen2Out is actually the worst method in assignment; therefore,
we have a much better balance w.r.t. these two tasks. The first place is in bold, and second place is underlined.

Dataset
Method D.MCA-0 D.MCA iNNE iForest SCiForest LOF kNN COPOD HBOS Gen2Out

synthetic10 0.86 ± 0.17 (4) 0.88 ± 0.14 (2) 0.73 ± 0.29 (7) 0.71 ± 0.27 (8) 0.87 ± 0.29 (3) 0.57 ± 0.39 (9) 0.79 ± 0.30 (5) 0.53 ± 0.00 (10) 0.76 ± 0.00 (6) 0.95 ± 0.00 (1)
spiral 0.58 ± 0.37 (2) 0.57 ± 0.38 (3) 0.46 ± 0.38 (5) 0.16 ± 0.08 (8) 0.17 ± 0.06 (7) 0.57 ± 0.44 (3) 0.68 ± 0.45 (1) 0.03 ± 0.00 (10) 0.04 ± 0.00 (9) 0.22 ± 0.01 (6)
sandwich 0.98 ± 0.04 (2) 1.00 ± 0.01 (1) 0.67 ± 0.36 (6) 0.51 ± 0.31 (7) 0.81 ± 0.34 (5) 0.43 ± 0.36 (8) 0.84 ± 0.24 (4) 0.36 ± 0.00 (9) 0.27 ± 0.00 (10) 0.90 ± 0.01 (3)
vdensity 0.98 ± 0.07 (2) 0.98 ± 0.07 (2) 0.79 ± 0.30 (5) 0.59 ± 0.29 (8) 0.83 ± 0.28 (4) 0.47 ± 0.39 (10) 0.77 ± 0.33 (6) 0.69 ± 0.00 (7) 0.52 ± 0.00 (9) 1.00 ± 0.00 (1)
letter 0.89 ± 0.20 (5) 0.93 ± 0.11 (4) 0.64 ± 0.36 (9) 0.88 ± 0.31 (6) 0.88 ± 0.31 (6) 0.51 ± 0.34 (10) 0.71 ± 0.41 (8) 1.00 ± 0.00 (1) 1.00 ± 0.00 (1) 1.00 ± 0.00 (1)
musk 0.93 ± 0.14 (4) 0.93 ± 0.12 (4) 0.75 ± 0.34 (8) 0.88 ± 0.31 (7) 0.89 ± 0.30 (6) 0.66 ± 0.40 (10) 0.70 ± 0.42 (9) 1.00 ± 0.00 (1) 1.00 ± 0.00 (1) 1.00 ± 0.00 (1)

thyroid 0.92 ± 0.11 (5) 0.94 ± 0.09 (4) 0.48 ± 0.38 (9) 0.90 ± 0.29 (6) 0.90 ± 0.29 (6) 0.26 ± 0.26 (10) 0.73 ± 0.38 (8) 1.00 ± 0.00 (1) 1.00 ± 0.00 (1) 1.00 ± 0.00 (1)
optdigits 0.88 ± 0.19 (7) 0.94 ± 0.10 (4) 0.60 ± 0.39 (9) 0.90 ± 0.29 (5) 0.90 ± 0.29 (5) 0.48 ± 0.34 (10) 0.70 ± 0.42 (8) 1.00 ± 0.00 (1) 1.00 ± 0.00 (1) 1.00 ± 0.00 (1)
satimage-2 0.95 ± 0.06 (2) 0.93 ± 0.09 (3) 0.57 ± 0.36 (8) 0.58 ± 0.38 (6) 0.88 ± 0.29 (4) 0.58 ± 0.42 (6) 0.70 ± 0.42 (5) 0.53 ± 0.00 (9) 0.33 ± 0.00 (10) 0.97 ± 0.01 (1)

lympho 0.67 ± 0.14 (6) 0.67 ± 0.15 (6) 0.63 ± 0.16 (8) 0.54 ± 0.31 (9) 0.72 ± 0.35 (3) 0.68 ± 0.25 (5) 0.53 ± 0.10 (10) 0.88 ± 0.00 (1) 0.86 ± 0.00 (2) 0.72 ± 0.08 (3)
ecoli 0.54 ± 0.20 (3) 0.55 ± 0.21 (2) 0.40 ± 0.26 (5) 0.18 ± 0.19 (10) 0.39 ± 0.31 (6) 0.39 ± 0.18 (6) 0.67 ± 0.17 (1) 0.25 ± 0.00 (9) 0.44 ± 0.00 (4) 0.29 ± 0.05 (8)

musk_real 0.78 ± 0.37 (3) 0.76 ± 0.39 (4) 0.71 ± 0.42 (5) 0.33 ± 0.42 (9) 0.65 ± 0.37 (6) 0.37 ± 0.45 (8) 0.60 ± 0.44 (7) 0.06 ± 0.00 (10) 0.88 ± 0.00 (2) 1.00 ± 0.00 (1)
satellite 0.66 ± 0.28 (6) 0.69 ± 0.23 (5) 0.35 ± 0.34 (9) 0.61 ± 0.32 (7) 0.73 ± 0.24 (4) 0.22 ± 0.29 (10) 0.42 ± 0.40 (8) 0.77 ± 0.00 (3) 0.82 ± 0.00 (1) 0.81 ± 0.01 (2)
shuttle 0.36 ± 0.16 (6) 0.36 ± 0.16 (6) 0.34 ± 0.20 (8) 0.62 ± 0.32 (4) 0.76 ± 0.27 (2) 0.20 ± 0.15 (10) 0.31 ± 0.18 (9) 0.53 ± 0.00 (5) 0.72 ± 0.00 (3) 0.79 ± 0.04 (1)
smtp 0.12 ± 0.10 (4) 0.12 ± 0.09 (4) 0.13 ± 0.09 (3) 0.08 ± 0.06 (8) 0.12 ± 0.04 (4) 0.12 ± 0.14 (4) 0.04 ± 0.02 (10) 0.07 ± 0.00 (9) 0.33 ± 0.00 (1) 0.17 ± 0.00 (2)
http 0.14 ± 0.05 (7) 0.15 ± 0.05 (6) 0.16 ± 0.05 (4) 0.10 ± 0.07 (9) 0.20 ± 0.09 (1) 0.20 ± 0.11 (1) 0.08 ± 0.05 (10) 0.11 ± 0.00 (8) 0.19 ± 0.00 (3) 0.16 ± 0.02 (4)

Avg. Rank 4.25 3.75 6.75 7.31 4.50 7.50 6.81 5.87 4.00 2.31

B. Detection Evaluation

The results of detection in AP scores are in Table II.
See Appendix IV for results in AUC scores. As it can be
seen, our methods are quite competitive in terms of detection.
Note that D.MCA and D.MCA-0 are respectively the second
and the fourth best methods in the average ranking of AP,
while a similar pattern is observed in the AUC scores. The
best performing method is Gen2Out. It is quite surprising as
Gen2Out is the worst performing method w.r.t. assignment
(Table I). A similar scenario is also seen for HBOS, which
is both one of the top performing detectors, yet one of the
worst performing in assignment. These results make it clear
that our proposal is undoubtedly the best option among all
the 10 methods studied; D.MCA and D.MCA-0 are the only
methods that excel both in detection as well as in assignment.

REFERENCES

[1] F. T. Liu, K. M. Ting, and Z.-H. Zhou, “Isolation forest,” in ICDM,
2008, pp. 413–422.

[2] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander, “LOF: Identifying
density-based local outliers,” SIGMOD, vol. 29, no. 2, p. 93–104, 2000.

[3] D. Pelleg and A. W. Moore, “X-means: Extending k-means with efficient
estimation of the number of clusters.” in ICML, 2000, pp. 727–734.

[4] M. Ankerst, M. M. Breunig, H.-P. Kriegel, and J. Sander, “OPTICS:
Ordering points to identify the clustering structure,” SIGMOD, vol. 28,
no. 2, pp. 49–60, 1999.

[5] M. Macha and L. Akoglu, “Explaining anomalies in groups with
characterizing subspace rules.” ACM DAMI, vol. 32, no. 5, 2018.

[6] F. T. Liu, K. M. Ting, and Z.-H. Zhou, “On detecting clustered anomalies
using sciforest,” in Mach. Learning and Knowledge Disc. in Databases.
Berlin, Heidelberg: Springer, 2010, pp. 274–290.

[7] G. D. Silva, L. Akoglu, and R. L. Cordeiro, “C-allout: Catching &
calling outliers by type,” arXiv preprint arXiv:2110.08257, 2021.

[8] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A survey,”
ACM computing surveys (CSUR), vol. 41, no. 3, pp. 1–58, 2009.

[9] M.-C. Lee, S. Shekhar, C. Faloutsos, T. N. Hutson, and L. Iasemidis,
“gen2Out: detecting and ranking generalized anomalies,” in 2021 IEEE

International Conference on Big Data (Big Data). IEEE, 2021.
[10] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A density-based algorithm

for discovering clusters in large spatial databases with noise,” in KDD,
ser. KDD’96. AAAI Press, 1996, p. 226–231.

[11] T. Bandaragoda, K. Ting, D. Albrecht, F. T. Liu, Y. Zhu, and J. Wells,
“Isolation-based anomaly detection using nearest-neighbor ensembles:
inne,” Computational Intelligence, vol. 34, 01 2018.

[12] O. A. Ibrahim, J. Keller, J. C. Bezdek, and M. Popescu, “Experiments
with maximin sampling,” in 2020 IEEE Inter. Conf. on Fuzzy Sys., 2020.

[13] K. M. Ting, B.-C. Xu, T. Washio, and Z.-H. Zhou, “Isolation distribu-
tional kernel: A new tool for kernel based anomaly detection,” in KDD.
New York, NY, USA: ACM, 2020, p. 198–206.

[14] X. Ding, L. Zhao, and L. Akoglu, “Hyperparameter sensitivity in deep
outlier detection: Analysis and a scalable hyper-ensemble solution,”
NeurIPS, 2022.

	Introduction
	Preliminaries
	Proposed Approach
	Proposed D.MCA-0
	Finding Micro-cluster Representatives via Maximin Sampling
	Filtering out False Positives from Micro-cluster Representatives toward Pruning
	Update the Neighbor Graph G
	Pruning True Micro-cluster Representatives and Their Neighbors

	Proposed D.MCA
	Experiments
	Assignment Evaluation
	Detection Evaluation
	References
	Preliminaries
	Notations
	iNNE Outlier Detector

	FindClusters Subroutine

	Experimental Setup
	Datasets
	Baselines
	Configurations
	Additional Results
	Detection Evaluation in AUC scores
	Sensitivity to hyperparameter
	Outlier Pruning & Masking
	Related Works
	Conclusion

	Appendix References

