
Fast Attributed Graph Embedding via Density of States
Saurabh Sawlani

Carnegie Mellon University
saurabh.sawlani@gmail.com

Lingxiao Zhao
Carnegie Mellon University
lingxia1@andrew.cmu.edu

Leman Akoglu
Carnegie Mellon University
lakoglu@andrew.cmu.edu

Abstract—Given a node-attributed graph, how can we effi-
ciently represent it with few numerical features that expressively
reflect its topology and attribute information? We propose A-
DOGE, for Attributed DOS-based Graph Embedding, based on
density of states (DOS, a.k.a. spectral density) to tackle this
problem. A-DOGE is designed to fulfill a long desiderata of
desirable characteristics. Most notably, it capitalizes on efficient
approximation algorithms for DOS, that we extend to blend in
node labels and attributes for the first time, making it fast and
scalable for large attributed graphs and graph databases. Being
based on the entire eigenspectrum of a graph, A-DOGE can
capture structural and attribute properties at multiple (“glocal”)
scales. Moreover, it is unsupervised (i.e. agnostic to any specific
objective) and lends itself to various interpretations, which makes
it is suitable for exploratory graph mining tasks. Finally, it pro-
cesses each graph independent of others, making it amenable for
streaming settings as well as parallelization. Through extensive
experiments, we show the efficacy and efficiency of A-DOGE on
exploratory graph analysis and graph classification tasks, where
it significantly outperforms unsupervised baselines and achieves
competitive performance with modern supervised GNNs, while
achieving the best trade-off between accuracy and runtime.

Index Terms—attributed graphs, spectral embedding, graph
filters, band-pass, density of states

I. INTRODUCTION

Graphs are widely used to model structured data from
different domains such as chemistry [1], biology [2], cyberse-
curity [3], finance [4], etc. The effectiveness and popularity
of data-driven machine learning algorithms has necessitated
expressive vector representations of different kinds of complex
data, and graphs are no exception. Different from images
or text, graphs pose novel challenges in finding effective
representations as graph databases may contain graphs that vary
in size and structure, and do not necessarily exhibit alignment
(i.e. correspondence) between the nodes of different graphs.

Formally, we want to design a function R : G 7→ zG ∈ RD,
where D is a fixed embedding size that does not depend on
the input graph size. Ideally, given a graph database with N
graphs (with n nodes and m edges per graph on average),
we want R to be (i) permutation and size invariant; where
graphs with similar structure and label/attribute distribution
have similar embeddings irrespective of node ordering and
number of nodes, (ii) flexible; that leverages information from
node labels and/or multi-attributes as well as edge weights,
(iii) multi-scale/glocal; that can capture local/microscopic,
mesoscopic, as well as global/macroscopic properties of a
graph, and (iv) task-agnostic/unsupervised; that can produce
embeddings independent of any downstream task or related

102 103 104

Runtime in seconds

40

50

60

70

80

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy RED-5K
COLLAB
Cong-L

102 103 104

Runtime in seconds

52.5

55.0

57.5

60.0

62.5

65.0

67.5

70.0

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy

ADOGE
FGSD
NetLSD
G2V
WL
PK
DOSGK
ChebNet
GCN
GIN

Figure 1. A-DOGE achieves superior runtime-performance trade-off. (left)
Runtime (log-scale) vs. accuracy on three individual datasets (with largest N ,
max(m) and the largest synthetic dataset). (right) Average runtime vs. graph
classification accuracy across datasets.

class labels, where not being tied to a specific task allows
embeddings to be general-purpose for use e.g. in graph mining
and exploratory data analysis. In addition, as with any algorithm,
we want R to be (v) efficient and scalable to large graphs (large
n, m) as well as large databases (large N). Finally, R that can
produce one embedding at a time (vi) independently per graph
(as opposed to “collective processing”) may be desirable, which
allows on-the-fly embedding per incoming graph in streaming
settings, as well as embarrassing parallelization for speed.

Spectrally-designed embeddings are a popular class of
techniques based on the graph eigenspectrum [5], as it captures
key structural graph properties, such as cuts [6], random walk
stationarity [7], dynamical processes and epidemic thresholds
[8], diameter, connectedness, clustering, etc. [9]. However, the
high complexity of computing the eigenspectrum exactly has
proven to be a barrier for creating spectrum-based graph embed-
dings. Moreover, while the eigenspectrum can capture important
topological properties, blending in node attributes/labels into
spectrally-designed embeddings is nontrivial.

In this paper, we leverage fast algorithms for approximating
the spectral density of a graph [10], and use it to independently
construct unsupervised graph embeddings that are permutation
and size invariant, flexible and multi-scale. Here, the focus is
on representing the entire spectrum of the graph, which helps
capture any arbitrary “band” of eigenvalues (band-pass), rather
than only the extremal eigenpairs (low/high pass).

A. Prior Work

Table I gives a comparison with three categories of relevant
prior work in the context of desired properties for a graph
embedding. These existing work do not satisfy one or more of
the aforementioned properties (ii)–(vi) as we discuss next.

Unsupervised explicit graph embedding (UEGE): Several
unsupervised methods construct an explicit vector representa-

Table I
A-DOGE SATISFIES ALL PROPERTIES, WHILE PRIOR WORK MISS ONE OR

MORE OF THE INPUT GRAPH OR EMBEDDING PROPERTIES.
Inp. graph Embedding

Method

Pr
op

er
ty

N
od

e
la

be
ls

N
od

e
at

tr
ib

ut
es

E
dg

e
w

ei
gh

ts

B
an

d-
pa

ss

Ta
sk

-a
gn

os
tic

Sc
al

ab
le

In
dp

t.
pe

r
gr

ap
h

U
E

G
E FGSD [11], NETLSD [12] " " " "

G2VEC [13] " " "

G
K

WL [14], WL-OA [15] " "

SAGE [16], PK [17] " " " "

RETGK [18] " "

DOSGK [19] " " "

G
N

N GCN [20], GIN [21] " " " "

CHEBNET [22], CALEYNET [23] " " " " "

A-DOGE [this paper] " " " " " " "

tion for each graph. Among those, spectrum-based methods
have gained popularity in recent years. FGSD [11] treats a
graph as a collection of spectral distances between its vertices.
NetLSD [12] represents a graph as a collection of heat traces
of the graph at several time points. Both methods are effective
at capturing local and global structural properties of a graph,
however, they ignore node labels and attributes. graph2vec
[13] creates Weisfeiler-Lehman (WL) subtree based features,
and learns an embedding of the graph trained to predict the
existence of subtrees in the graph. It admits node labels, but
ignores node attributes as well as edge weights.

Graph kernels (GK): Due to the existence of many effective
distance measures between graphs, graph kernels are a more
widely studied method of graph representations [24]. While
most popular kernels are effective at capturing characteristics
of the graph structure, only a few, including the Propagation
Kernel (PK) [17] are able to factor in edge weights, node labels
and continuous node attributes (see Table 1 in [24]).

Several graph kernels which use spectral properties have
been developed in recent years. RetGK [18] represents each
graph as a collection of node embeddings, where the node
features are the return-probabilities of random walks of varying
lengths. SAGE [16] extends this idea to graphs with labeled
and attributed nodes by appending each node embedding with
its one-hot encoded label and/or attributes. However, both
these methods do not scale well for large graphs. Moreover,
computing return probabilities of random walks tends to over-
represent local features near a node, and often fails to capture
global properties of the graph [19]. These issues are addressed
by the Density Of States (DOS) GK, and its point-wise
(i.e. node-level) extension (PDOS)1, which uses Chebyshev
polynomials to efficiently capture global properties of random
walks, and uses fast approximation techniques [10]. However,
despite their efficiency, they are limited to plain graphs and
do not admit node labels or attributes.

Moreover, although graph kernels have proven effective at

1This is called LDOS in their paper, but we use PDOS to avoid confusion
with our definition of LDOS in this paper.

modelling graph structure, and in some cases node labels and
attributes, for many kernel methods, computing an N×N -sized
kernel matrix can be restrictive in terms of both time and space,
which do not scale to large databases with many graphs.

Graph Neural Networks (GNNs): While most existing
unsupervised embedding and kernel methods are ill-equipped
to handle continuous node attributes, GNNs are able to leverage
such data to a great extent. However, deep parameterized
models come with their own drawbacks. They are resource-
hungry, not task-agnostic, and can be slow to train. Moreover,
when viewed through a spectral lens [25], most neighborhood-
aggregation based GNNs such as GCN [20] and GIN [26] can
only act as low-pass or high-pass filters on a graph spectrum.
Only spectrally designed GNNs such as ChebNet [22] and
CaleyNet [23] can act as band-pass filters.

A perhaps subtle characteristic of graph embedding methods
is independent versus dependent/collective processing of the
graphs. By design, all GNN-based methods including graph2vec
require collective processing due to end-to-end training. WL
and PK respectively obtain the compressed labels and histogram
bins based on all graphs which makes them dependent. RetGK,
DOSGK, and SAGE obtain graph-level embeddings through
kernelizing the set of node-level embeddings, which is of
different sizes across graphs, and hence they are inherently
bound to create N×N pairwise kernel values rather than an
explicit/independent embedding for each graph.

B. Our Contributions

We propose A-DOGE (Attributed DOS-based Graph Embed-
ding), for extremely fast unsupervised embedding of attributed
graphs that is permutation and size invariant, flexible, and
multi-scale, which is produced independently per graph.

Our main technical contributions are as follows:
New graph-level embedding algorithm: We introduce a

new spectrally-designed graph embedding approach, called
A-DOGE, that leverages the whole (eigen)spectrum of a
graph. A-DOGE capitalizes on recent algorithms that can
efficiently approximate the (local) density of states (L)DOS
[10], extending to attributed graphs for the first time.

Desired characteristics: Thanks to efficient approximations,
A-DOGE is extremely fast. It can handle node labels, contin-
uous multi-attributes, and edge weights. Leveraging the whole
spectrum, it enables variable band-pass filtering as well as
features that capture multi-scale properties. Further, it processes
each graph independently of others, which makes it amenable
for streaming scenarios as well as parallelization.

Exploratory graph analysis: A-DOGE is not tied
to any specific objective, which makes it suitable for both
un/supervised tasks. In fact, our embedding features lend
themselves to various interpretations, related to graph signal
convolution, random walks, and band-filters, which prove useful
in data mining and exploratory analysis of real-world graph
datasets as we show through experiments.

Efficacy and Efficiency: Extensive experiments show
that A-DOGE is on par with or superior to all unsupervised
baselines, and competitive against modern supervised GNNs

on graph classification tasks. Notably, it achieves the best
runtime-accuracy trade-off. (See Fig. 1.)

Reproducibility: We share all datasets and source code at
https://github.com/sawlani/A-DOGE.

II. PROBLEM STATEMENT & PRELIMINARIES

Notation. We denote scalars, vectors, matrices and sets by
lowercase (x), lowercase boldface (x), uppercase boldface (X),
and calligraphic (X) letters, respectively. X:j and Xij refer to
the j-th column and the (i, j)-th entry of a matrix.

We consider undirected, weighted node-attributed graphs
G = (V, E ,X,A) where V = {v1, . . . , vn} denotes the set of
n nodes, and E ⊆ V×V denotes the set of m edges. W depicts
the weighted adjacency matrix where Wij > 0 if (vi, vj) ∈ E ,
and 0 otherwise. X is the n× d node-attribute matrix, where
A = {a1, . . . , ad} denotes the set of d attributes, with dom(aj)
depicting the domain of attribute aj . In terms of Graph Signal
Processing (GSP) terminology, any x = X:j can be thought
as a graph signal on the nodes, with one scalar per node.

Problem 1 (Unsupervised Graph-level Embedding). Given a
set of undirected, weighted and node-attributed/labeled graphs
G = {G1, . . . , GN}, for Gi = (Vi, Ei,Xi,A), where
(i) graphs in G can be of varying sizes, (ii) there exists no

particular correspondence between the nodes of different
graphs, and (iii) the (categorical and/or continuous)
attributes and their domain are shared among all graphs,

Find D-dimensional graph-level embedding zG ∈ RD for each
G ∈ G that captures both structural and attribute information.

Let W̃ = D−1/2WD−1/2 denote the symmetrically nor-
malized adjacency matrix, where D is the diagonal degree
matrix with Di,i =

∑
j Wi,j . Let L̃ = I − W̃ denote the

Laplacian matrix, and P = D−1W the random walk matrix.
For a connected graph, W̃ has eigenvalues −1 = λ0 < λ1 ≤
. . . ≤ λn−1 = 1 with corresponding eigenvectors {uk}n−1k=0 . W̃

has the same set of eigenvectors as L̃ whose eigenvalues are
the shifted set {µk = 1− λk}n−1k=0 ∈ [0, 2]. W̃ also shares the
same eigenvalues as P. As such, the spectral density function
has bounded support for these graph matrices. Following GSP
convention, we refer to the eigenvalues as the graph frequencies.

In this work we use W̃ as the so-called graph shift operator
S which generalizes to any symmetric matrix of a graph. Let
S = UΛUT depict the eigendecomposition, where Λ :=
diag([λ1 . . . λn]) and U = [u1 . . .un].

Definition 1 (Graph spectrum). The spectrum of a graph is
composed of the set of graph eigenvalues together with their
multiplicities of the (normalized) adjacency matrix.

Graph Fourier transform. The graph Fourier transform
(GFT) of a graph signal x ∈ Rn is defined as the projection

ŷ = F(x) = UTx

and the inverse GFT of ŷ ∈ Rn is given as
x = F−1(ŷ) = Uŷ

Graph filtering. A graph filter is an operation on a graph
signal with output in the graph frequency domain, that is,

ŷflt = φ(Λ)ŷ , (1)

where φ(Λ) is a diagonal matrix with filter frequency response
values as its diagonal elements.

Definition 2 (Frequency Response Function (FRF)). The
frequency response function of a graph filter is written as

φ : C 7→ R, λi → φ(λi) , (2)

which, simply put, assigns a scalar value φ(λi) to each graph
frequency (i.e., eigenvalue) λi.

By applying the inverse GFT on both sides of Eq. (1), we
can get the filter output in the node domain as

xflt = Uφ(Λ)ŷ = Uφ(Λ)UTx = φ(S)x .

Signal convolution. Graph convolution of two signals, say x
and x′, each in Rn, yields another signal c ∈ Rn as

cx,x′ = x ∗G x′ = U(UTx�UTx′) =

n∑
i=1

ui(u
T
i x)(uTi x′)

where � depicts the Hadamard product. We can write the
Fourier transform of the convolution as

F(cx,x′) = ĉx,x′ = {(uTi x)(uTi x′)}ni=1 . (3)

Density of States. Spectral density is the overall distribution
of the eigenvalues as induced by any symmetric n× n graph
matrix S = UΛUT . It is also referred to as the density of
states (DOS) in the physics literature, reflecting the number of
states at different energy levels [27]. Formally,

Definition 3 (Density of States (DOS)). DOS or the spectral
density induced by S is the density function

f(λ) =
1

n

n∑
i=1

δ(λ− λi) , (4)

where δ(·) is the Dirac delta function.

Definition 4 (Local Density of States (LDOS)). Likewise, for
any input vector v ∈ Rn, LDOS is given as

f(λ; v) =

n∑
i=1

|vTui|2δ(λ− λi) . (5)

The following related equalities can be derived easily
respectively for DOS and LDOS.∫

φ(λ)f(λ) =

n∑
i=1

φ(λi) = trace(φ(S)) (6)∫
φ(λ)f(λ; v) =

n∑
i=1

φ(λi)(v
Tui)(u

T
i v) = vTφ(S)v (7)

Scaling (L)DOS. The extremal (i.e., a few top largest
or smallest) eigenpairs of various graph matrices have been
associated with important graph characteristics, such as small-
cut partitions [6], convergence rate of random walks to
stationarity [7], unfolding of dynamical processes and epidemic
thresholds [8], etc. Obtaining those few eigenpairs is also
computationally easy. On the other hand, (L)DOS provides the
distribution of the entire spectrum, which opens the door for
the analysis of graph properties that are not evident from only
the extremal eigenpairs. However, computing all n eigenvalues

and eigenvectors of a graph with n nodes is considerably more
demanding. Therefore, analyzing large graphs through their
density of states has been obstructed by the lack of scalable
algorithms, until recently.

In their award-winning work, Dong et al. [10] introduced
highly-efficient approximation algorithms to compute spectral
densities, scalable to graphs with as large as tens of millions of
nodes and billions of edges. Their main focus has been scaling
the computation of these functions, with approximation-error
analysis on plain graphs. In this paper, we capitalize on their
work for speed and extend it to leverage node attributes for
the first time for fast, attributed graph-level embedding.

III. GRAPH-LEVEL EMBEDDING WITH A-DOGE

A. Motivation

Our spectrally-designed A-DOGE derives graph-level fea-
tures based on the node attributes and the entire spectrum of
W̃ (can be other symmetric graph matrix, w.l.o.g. referred
as S, see §II), where the spectrum is composed of all the
eigenvalues. Before delving into details, we discuss the motive
for using the full spectrum and present an illustrative example.

Why the entire spectrum? We design graph-level features
based on all of the eigenpairs of a graph matrix for two primary
reasons. First, a large number of studies have found that the full
eigenvalue spectra of different classes of real-world networks
differ considerably [9], [28], [29], [30]. This suggests that the
spectra can play a key discriminative role. Second, real-world
networks are observed to exhibit localization on low-order
eigenvectors, which are those eigenvectors associated with the
non-extremal eigenvalues (in the sense of being the largest or
smallest), but that are “buried” further down in the eigenvalue
spectrum [31]. Notably, they capture mesoscopic inhomogeneity
in networks which is defined as topologically distinct groupings
of nodes, from few nodes to large modules, communities, or
different interconnected subnetworks [32].

Illustrative example: To illustrate the valuable information
that non-extremal eigenpairs carry, we present a visual analysis
of low-order eigenvector localization using the MIG graph (See
§IV-A). It consists of the counties across 49 mainland U.S.
states as nodes, and an edge depicts the total number of people
that migrated between two counties during 1995-2000 [31].

Eigenvector localization arises when most of the entries of an
eigenvector are zero or near-zero, and implies that the nonzero
components of the eigenvector coincide with a particular set
of geometrically distinguished nodes in the graph. Extremal
eigenvectors typically exhibit low localization; as shown in
Fig. 2(a), the 2nd eigenvector has many non-zeros and mainly
captures macroscopic properties, in this case, the graph cut
depicting relatively fewer migrations between west- and east-
coasts. A lower-order eigenvector, namely the 41st in (b) reflects
mesoscopic structure in terms of migration patterns in and
around South Dakota. 128th eigenvector in (c) has even larger
localization, narrowing in a few counties within Texas near
Austin, reflecting microscopic patterns. It is remarkable that the
low-order eigenvectors align with geographical and political
boundaries, carrying useful information at multiple scales.

0 500 1000 1500 2000 2500 3000 3500
-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04 2-th largest eigenvalue

0 500 1000 1500 2000 2500 3000 3500
-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08 41-th largest eigenvalue

0 500 1000 1500 2000 2500 3000 3500
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15 128-th largest eigenvalue

-130 -120 -110 -100 -90 -80 -70 -60
20

25

30

35

40

45

50

-130 -120 -110 -100 -90 -80 -70 -60
20

25

30

35

40

45

50

-130 -120 -110 -100 -90 -80 -70 -60
20

25

30

35

40

45

50

(a) 2nd, macro (b) 41st, meso (c) 128th, micro
Figure 2. (top) Eigenvector entries (y-axis) versus node (i.e. U.S. county) index
(x-axis) for the top (from left to right) 2nd, 41st, and 128th eigenvectors of the
MIG graph (See §IV-A); (bottom) Eigenvector entries as heatmap (red:high
to blue:low) for nodes (U.S. counties) shown in 2-d coordinates, solid black
lines depict official U.S. state borders (best in color).

B. Spectrum as Histogram

Density of states (DOS) or spectral density as given in Eq.
(4) is a continuous probability density function f(λ) of the
eigenvalues. We represent it with a histogram density estimator,
denoted hDOS(λ) that partitions the eigenvalue range [−1, 1]

for W̃ into B = 2/∆ disjoint bins of equal width ∆. Let
us denote their centers by λ̃b for b ∈ {1, . . . , B}. For any
i ∈ {1, . . . , n}, let Bin(λi) denote the bin that λi belongs to.
We define our DOS histogram features for a graph as follows.

Definition 5 (DOS histogram features). DOS histogram is a
B-dimensional vector, denoted hDOS ∈ RB , where

hDOS(λ̃b) =
1

∆

∑n
i=1 I(λi ∈ Bin(λ̃b))

n
, b ∈ {1, . . . , B} (8)

We also represent the local density of states (LDOS) in Eq.
(5) similarly and define LDOS histogram features.

Definition 6 (LDOS histogram features). For a given vector
v ∈ Rn, the LDOS histogram is a B-dimensional vector,
denoted hLDOS

v ∈ RB , where

hLDOS
v (λ̃b) =

1

∆

∑n
i=1 |vTui|2 I(λi ∈ Bin(λ̃b))

n
,∀b (9)

Note that by abusing convention slightly, we use the word
histogram to refer to Eq. (9) although it is not a normalized
density mass function. Fig. 3 shows examples to DOS (top)
and LDOS (bottom) histograms with B = 40 each.

Computing both histograms requires all of the eigenvalues
λi, i = {1 . . . n} for a graph with n nodes. Further, LDOS
requires all the corresponding eigenvectors ui’s. For even
moderate size graphs, computing the complete set of eigenpairs
is prohibitive. Most recently, Dong et al. [10] introduced fast
and scalable approximation algorithms to estimate these spectral
densities. Our work is inspired by and builds on their work
to efficiently obtain both hDOS and hLDOS based on the Gauss
Quadrature and Lanczos (GQL) algorithm [33].

On the other hand, both in [10] and their follow-up work [19],
v = ei is used in Eq. (5) to capture the spectral information
about each particular node i = {1, . . . , n}, called point-wise

-1 -0.5 0 0.5 1
�

0

0.0125

0.025

0.05

0.1

hD
O

S (�
) DOS h

-1 -0.5 0 0.5 1
�

0

5

10

15

20

hLD
O

S (�
; v

)

0

2

4

6

8

�
(�

)

 low-pass �
 mid-pass �
 low&high-pass �
 LDOS h

Figure 3. Example (top) histogram density estimator of the spectral density,
a.k.a. density of states (DOS), of a graph for symmetrically-normalized W̃
with eigenvalues (i.e. frequencies) in [−1, 1], (bottom) local density of states
(LDOS) histogram for a given vector v. Also shown (in color) are three
different frequency response functions depicted by curves over the spectrum.

density of states (PDOS), where ei is the i-th standard basis
vector with i-th entry equal to 1 and 0 elsewhere. As such, both
work are limited to plain graphs without node labels/attributes.
We extend the use of LDOS to attributed graphs for the first
time, by setting v ∈ Rn in Eq. (9) to capture a graph signal
on the nodes associated with an attribute.

Specifically, given a categorical or binary attribute aj , we
create a separate v for each unique value val ∈ dom(aj)
where vi := 1 if Xij = val and 0 otherwise. For numerical
attributes, we set v := X:j where X denotes the column-wise
standardized attribute matrix. Notably, LDOS can be extended
to structural node-level attributes, such as degree or other node
centrality measures, eccentricity, etc.

Interpreting LDOS. There is an intuitive interpretation of
a LDOS feature in Eq. (9). The term vTui, that is the dot
product between an attribute vector and a graph eigenvector,
is to reflect the alignment between attribute values and the
structurally distinct group of nodes that the eigenvector captures.
The better the alignment, the larger is the LDOS feature value
for the bin that the corresponding eigenvalue falls into.

In addition to original LDOS, we also create interaction
features between pairs of node attributes. Accordingly, the
coupled-LDOS histogram features are defined as follows.

Definition 7 (cLDOS histogram features). For two input
vectors v,v′ ∈ Rn, the coupled-LDOS histogram is a B-
dimensional vector, denoted hcLDOS

v,v′ ∈ RB , where

hcLDOS
v,v′ (λ̃b) =

1

∆

∑n
i=1(vTui)(u

T
i v′) I(λi ∈ Bin(λ̃b))

n
,∀b

(10)
Note that (vTui)(u

T
i v′) is the i-th entry of ĉv,v′ (from

Eq. 3). Hence hcLDOS
v,v′ can simply be viewed as ĉv,v′ , binned

according to the corresponding eigenvalues of each entry.
Moreover, recall that we use the GQL algorithm to approx-

imate the LDOS features, where the terms vTui or uTi v′

are not computed using the individual eigenvectors explicitly.
Nevertheless it is easy to acquire cLDOS features in Eq. (10)
using the LDOS features in Eq. 9 and simple algebra. Given

the separate LDOS features for v and v′, we also create those
for (v + v′). Then,

hcLDOS
v,v′ = [hLDOS

v+v′ − hLDOS
v − hLDOS

v′]/2. (11)

C. Functions over the Spectrum

DOS, LDOS and cLDOS histograms provide “raw” informa-
tion about the graph spectrum and the attributes. In addition, we
define aggregate scalar features by specifying various frequency
response functions (FRF) [25] (Eq. (2)) over these histograms.

Definition 8 ((cL)DOS aggregate features). Given a DOS,
LDOS or cLDOS histogram h ∈ RB , and a frequency response
func. φ(·), a (cL)DOS aggregate feature gφ ∈ R is written as

gφ =

B∑
b=1

h(λ̃b) φ(λ̃b) (12)

Each FRF φ(·) focuses on a different part of the spectrum,
inducing a variety of graph filters. In Fig. 3 (bottom) we
show three example FRFs; a low-pass one (blue) that has high
values for smaller eigenvalues, a mid-pass one (red) as well as
one that is both low-and-high pass (orange). To extract graph
connectivity and attribute information broadly, we construct a
portfolio of these graph filters, i.e. associated FRF’s {φ(·)},
called a filterbank.

Before delving into the details of our filterbank, we make
a few remarks. First, note that the sum in Eq. (12) is an
approximation of the integral in Eq. (6) for hDOS, that of Eq.
(7) for hLDOS, and accordingly an approximation of vTφ(S)v′

for hcLDOS. Second, given the efficiently-computed histograms
thanks to the GQL algorithm, computing the aggregate features
by Eq. (12) is extremely fast and simply involves a weighted
sum. This allows us to employ a large filterbank containing
many different FRF’s almost for “free”. Finally, we have
seen that our cLDOS aggregate features relate to graph signal
convolution. Denoting the vector of frequency responses by
φ := {φ(λi)}ni=1, based on Eq.s (7) and (3),∫
φ(λ)f(λ; v,v′) =

n∑
i=1

φ(λi)(v
Tui)(u

T
i v) = φT ĉv,v′ (13)

In the following, we present two classes of FRF’s that A-
DOGE employs to extract (cL)DOS aggregate features.

1) Chebyshev polynomials: We use the series of Cheby-
shev polynomials as a set of FRF’s defined by the recur-
rence φ1(λ) = 1, φ2(λ) = 2(λ/λmax) − 1, and φk(λ) =
2φ2(λ)φk−1(λ) − φk−2(λ), where λmax is the maximum
eigenvalue.

Interpretation. As shown in Fig. 4(a), Chebyshev polyno-
mials provide frequency profiles that cover various parts of
the spectrum. For example, the 2nd one is mostly a low- and
high-pass filter and stops the middle band, while the 3rd one
passes the middle bands as well as very high and very low
bands of the spectrum, and so on. Given a number of these
FRF’s, emphasis can be put on passing/stopping specific bands
by a weighted combination of them.

The flexibility of any-band filtering by A-DOGE is favorable
over several modern graph neural networks (GNNs). GCN [20],
for instance, works as a low-pass-only filter and hence does

(a) Chebyshev polynomials (b) Power functions
Figure 4. Frequency response functions φk(λ) (magnitude in absolute val.s)

Table II
SUMMARY OF A-DOGE GRAPH-LEVEL FEATURES BASED ON SPECTRAL

DENSITIES (CL)DOS, ORGANIZED AS HISTOGRAM AND AGGREGATE
FEATURES USING CHEBYSHEV POLYNOMIALS AND POWER FUNCTIONS.

DOS LDOS cLDOS

hist agg. gφ hist agg. gφ hist agg. gφ
Cheb. Pow. Cheb. Pow. Cheb. Pow.

B K K BD KD KD B
(D
2

)
K
(D
2

)
K
(D
2

)
not cover the whole spectrum. GIN [21] has a learnable scalar
parameter ε that determines which band to stop, however its
FRF is a linearly decreasing function, which is not a strong
low-pass or high-pass filter. (See Fig. 2 in [25].) In contrast,
spectrally-designed ChebNet [22] is more expressive and also
employs the Chebyshev polynomials. We compare to these
modern GNNs in the experiments on graph classification tasks.

2) Power functions: The second class of FRF’s in our
filterbank uses (both positive and negative) powers of the
spectrum, that is,

φk(λ) = λk , k = ±{1, . . . ,K/2}

Interpretation. Our aggregate features using the power
functions relate to random walks on the graph. Consider positive
values of k and S = W̃. Recall that for hDOS, Eq. (12)
is an approximation of trace(φ(S)), which is equal to the
total return-probability of a k-step random walk to a node.
For hLDOS, aggregate features approximate vTφ(S)v. For a
binary/categorical attribute where v depicts a certain value, e.g.
val := (party_affiliation:democrat), it corresponds
to the probability that a k-step random walk starting at any node
with value val “hits”/reaches another node with the same value.
For hcLDOS, similarly, it is the probability that such a walk
starting at any node with a certain val will reach another node
with a different val′. Moreover, for two continuous attributes
v and v′, approximating vTφ(S)v′ via hcLDOS would capture
the covariance of the attributes over “k-hop connected” pairs
of nodes that can reach each other within k-steps.

The interpretations extend to the negative powers as well,
which correspond to many walks of different lengths in the
limit. In that respect, aggregate features using power functions
depict multi-scale properties, where increasingly positive values
of k capture microscopic to mesoscopic properties related to
short/local random walks, whereas negative powers relate to
the long-range walks and thereby macroscopic structure.

We conclude with an overview of all the graph-level features
described in this section. Table II gives the number of features
by category, where B is the number of histogram bins, K is

Input: Graph G (with D node attributes), parameters B, K.
• (Preprocess) Compute 2K agg. functions on B bin centers.
• W̃← normalized adjacency matrix of G
• vd ← attribute vector for each d ∈ {1 . . . D}
• Compute hDOS using GQL [10] on W̃
• For each d, compute hLDOS

vd
using GQL on W̃,vd.

• For each pair d, d′ ∈ {1 . . . D}, compute hLDOS
vd+vd′

using
GQL and then hcLDOS

vd,vd′
using Eq. (11).

• For each histogram computed above, dot product with all
aggregate functions to produce aggregate features.

Figure 5. Steps to generate all A-DOGE features (See Table II)

the number of Chebyshev/power FRF’s, and D ≥ d is the total
number of attributes upon one-hot-encoding the categorical and
binary attributes. A-DOGE yields (B + 2K)(1 + D +

(
D
2

)
)

features in total for an attributed graph, which are permutation-
and size-invariant, task-agnostic, variable band-pass, multi-
scale, and extremely efficient to compute. We outline the steps
in Fig. 5 and give detailed complexity analysis next.

D. Computational Complexity

Since A-DOGE computes an embedding for each graph
independently, it scales linearly with the number of graphs in
the dataset, i.e., N .

We analyze the asymptotic runtime of A-DOGE on a single
graph G with n nodes, m edges, and D total node attributes
(including one-hot encoded labels and categorical attributes).
We use the Gauss Quadrature and Lanczos algorithm described
by Dong et al. [10] to compute a (cL)DOS histogram. This
involves (i) running ηL Lanczos iterations, each requiring
O(m) operations, followed by (ii) the eigendecomposition
of a tridiagonal n×n matrix, with O(n2) operations. Note
that although a tridiagonal matrix eigendecomposition has a
quadratic worst-case complexity theoretically, this operation is
extremely fast in practice – especially for real-world matrices.
Each aggregate feature requires a dot product of two vectors
of size B for O(B), where we use 2K different frequency
response functions (i.e. φ(·)’s) in total (K each for Chebyshev
and powers). Then, the total complexity of computing one
histogram and its related aggregate features is O(n2 + ηLm+
KB). This gives a total runtime of O

(
(n2 + ηLm+KB) · α

)
,

where α denotes the number of desired graph-level features
(i.e. embedding size) in A-DOGE.

Notably, A-DOGE is modular and can include any subset
of the features in Table II. For datasets with a large number
of node attributes, one can skip cLDOS features, or only
choose important attribute-pairs to ensure α = O(D). Also note
that each aggregate feature for a given φ(·) can be computed
independently, and hence can be easily parallelized.

IV. EXPERIMENTS

To evaluate A-DOGE we design both quantitative and
qualitative experiments to answer the following questions.
Q1. Graph Classification How does A-DOGE (unsuper-

vised) compare to the modern GNNs and graph kernels
(un/supervised) on benchmark graph classification tasks?

Q2. Exploratory Graph Analysis Can A-DOGE provide in-
sights for mining real-world attributed graphs?

Q3. Efficiency How fast and scalable is A-DOGE?

A. Experiment Setup
Datasets. List of datasets and summary are in Table III.
For graph classification, we use eight benchmark datasets

from TUDataset repository2. Five are commonly used so-
cial network datasets, REDDIT-B, REDDIT-5K, COLLAB,
IMDB-BIN and IMDB-MUL. These contain only plain graphs–
a setting with which all the baselines are compatible. The other
three are biochemistry datasets, PROTEINS, DD and AIDS,
which have node labels and/or attributes.

We also use four other graph datasets to specifically showcase
the strengths of A-DOGE in leveraging the full graph spectrum.

BandPass is a synthetic dataset consisting of images
generated via sinusoidal patterns from two frequency ranges
[25]. Congress is based on the voting patterns in 41 U.S.
Senates (1927–2008) [31], where nodes represent senators
(labeled by party affiliation) and edge weights represent voting
agreement. To create separate classes of graphs, we add noise
to edge weights between same-party senators (class 1), and
randomly picked senators (class 2) in one randomly picked
congress. Congress-l is generated by picking one congress
at random and shuffling the labels of senators via random swaps;
50 swaps in class 1, and 300 in class 2. MIG is based on the
county-to-county migration in the U.S. [31]. To create separate
classes of graphs, we add noise to edges between a pair of
bordering states (class 1) or within a state (class 2).

In addition to the above datasets, we perform graph ex-
ploratory analysis using A-DOGE on two more datasets:

Facebook100 consists of Facebook college social
networks from 100 American institutions [34], with student
demographic information (major, dorm, status, class-year, etc.)
as node attributes. BorderStates is built from the MIG
dataset, by inducing 49 separate graphs - one for each mainland
state and its bordering states. We label counties of the selected
state as 1, and the counties of the neighbors as 2.

Baselines. We compare A-DOGE quantitatively to various
unsupervised and supervised graph embedding, graph kernel,
and graph neural network methods on graph classification tasks.

Unsupervised explicit graph embeddings are in the same
category as A-DOGE and hence most comparable. As baselines
from this category, we use FGSD [11], NETLSD [12] and

G2VEC [13], which we described briefly in §I-A.
Graph kernels are also unsupervised; here we use three of

the best performing kernels on classification benchmarks, and
a recent DOS-based graph kernel. WL [14]: the Weisfeiler-
Lehman graph kernel, WL-OA [15]: the Weisfeiler-Lehman
Optimal Assignment kernel, PK [17]: the Propagation Kernel,
and DOSGK [19], the Density of States Graph Kernel.

GNN baselines include state-of-the-art supervised models,
such as CHEBNET [22], GCN [20], and GIN [21].

Note that FGSD, NETLSD, and DOSGK are for plain
graphs only. G2VEC, WL, and WL-OA admit node labels

2https://chrsmrrs.github.io/datasets/docs/datasets/

Table III
DATASET SUMMARY STATISTICS.

N Cls. Avg. n Avg. m Lbl. Attr.

REDDIT-B 2000 2 429.6 497.7 - -
REDDIT-5K 5000 5 508.5 594.8 - -
COLLAB 5000 3 74.5 2457.8 - -
IMDB-BIN 1000 2 19.8 96.5 - -
IMDB-MUL 1500 3 13.0 65.9 - -
DD 1178 2 284.3 715.7 78 -
PROTEINS 1113 2 39.1 72.8 - 1
AIDS 2000 2 15.7 16.2 38 4

BandPass 5000 2 200 1072.6 - 1
Congress 200 2 4196 450662.5 3 -
MIG 200 2 3075 1092282.0 19 -

Facebook100 100 n/a 12083.2 469845.4 - 7
BorderStates 49 n/a 367.4 21633.9 2 -

but not (continuous) attributes. Therefore, they input only the
admissible parts of a graph dataset for classification.

Model configuration. In our experiments with A-DOGE,
we set ηL=100, B=200 and K=100 (see Table II). For plain
datasets, we use node degree as a continuous attribute. For
FGSD, we use L−1 as the distance function and 0.001 as
the binwidth. For NETLSD, we use heat trace signatures at
250 different values of t logarithmically spaced in [10−2, 102].
For G2VEC, we set the WL iteration count to 5 and output
dimension to 1024. For the kernels WL, WL-OA and PK,
we use the implemention from the GraKel package3, and the
default parameters suggested. For DOSGK, same as with A-
DOGE, we use 200 bins and 100 Chebyshev moments. For
all the GNNs, we use mean-pooling as the readout function.

We run all non-GNN experiments on one core of Intel(R)
Xeon(R) CPU E5-2667 v3 CPU @3.20GHz. GNN experiments
are run on a server with NVIDIA Tesla V100 GPU and one
core of Intel(R) Xeon(R) Gold 6248 CPU @2.50GHz.

B. Graph Classification

Classifier configurations. For classification with the em-
beddings produced by unsupervised methods, we use the kernel-
SVM4 classifier with the regularization parameter C chosen
from {10−3, 10−2, . . . , 103} via 10-fold cross-validation. We
perform this experiment 10 times using random splits. For
explicit embeddings, we normalize each feature, and set γ to
be the inverse of the median of pairwise `2 distances between
all embeddings. For A-DOGE, we also set the option of using
LDOS, cLDOS features, and the option of using aggregate FRFs
as hyperparameters. We normalize all kernels symmetrically.
For GNNs, we train them end-to-end using cross-entropy
loss, and hyperparameters (learning-rate at 0.005, layers in
{2,3,5,7}, hidden sizes from {32,64,128} and epochs up to
200) selected via 10-fold cross-validation. For each of the
above methods, we report the mean test accuracy for the best
choice of hyperparameters, and the corresponding standard
deviation on every dataset except BandPass, for which we
use the single train-validation-test split as specified in [25].

3https://ysig.github.io/GraKeL/
4SVM facilitates comparable results between implicit and explicit kernels.

Table IV
GRAPH CLASSIFICATION PERFORMANCE BY A-DOGE AND ITS DOS-ONLY (I.E. NO ATTRIBUTES) VARIANT DOGE, COMPARED WITH THREE TYPES OF
BASELINES. THE HIGHEST PERFORMANCE PER DATASET IS IN BOLD AND THE HIGHEST AMONG UNSUPERVISED METHODS IS UNDERLINED. E DENOTES
THE CODE OUTPUTTING AN ERROR; THE NUMBERS WITH SYMBOLS DENOTE THE PAPER FROM WHICH THE NUMBERS ARE TAKEN: ‡[24], ∗[19], †[25].

Graph Embedding (Unsupervised) Graph Kernels (Unsupervised) GNNs (Supervised)

A-DOGE DOGE FGSD NETLSD G2VEC WL WL-OA PK DOSGK CHEBNET GCN GIN

RED-B 91.6 (1.5) 90.3 (1.8) 82.4 (2.6) 85.6 (2.2) 74.2 (2.7) 83.9 (0.5)‡ 88.9 (0.1)‡ 85.5 (0.3)‡ 88.8 (0.3)∗ 90.2 (2.0) 89.9 (2.0) 91.7 (1.6)
RED-5K 55.6 (2.2) 53.8 (2.1) 47.0 (1.8) 45.9 (2.1) 41.5 (1.6) 51.2 (0.3)∗ E E 52.8 (0.2)∗ 55.0 (2.2) 54.2 (1.7) 54.7 (2.0)
COLLAB 72.2 (2.0) 72.2 (2.0) 70.2 (1.8) 68.4 (1.9) 57.9 (1.5) 74.8 (0.2)∗ 79.8 (1.6) 77.8 (1.7) 80.8 (0.2)∗ 84.6 (1.1) 84.2 (1.2) 83.8 (1.6)
IMDB-B 72.6 (4.3) 71.6 (4.3) 70.6 (4.1) 69.7 (4.1) 56.0 (4.1) 71.3 (1.0)‡ 73.5 (0.6) 71.2 (0.7)‡ 72.8 (0.9)∗ 80.2 (3.9) 79.9 (3.7) 80.8 (4.5)
IMDB-M 47.8 (3.5) 47.6 (3.7) 48.6 (3.4) 47.9 (3.7) 44.4 (3.8) 50.7 (0.6)‡ 50.7 (0.5)‡ 51.0 (0.7)‡ 49.4 (0.5)∗ 55.6 (2.7) 55.2 (2.7) 56.3 (3.1)
DD 80.1 (3.5) 76.2 (3.4) 76.5 (3.5) 76.6 (3.5) 76.2 (3.5) 80.9 (0.3) 79.9 (0.5) 81.6 (0.5) 73.4 (3.7) 78.9 (1.9) 78.0 (1.8) 79.3 (1.9)
PROTN 74.9 (3.5) 74.9 (3.5) 74.2 (3.3) 74.5 (4.0) 72.1 (3.1) 73.9 (0.7)‡ 75.9 (0.6)‡ 74.6 (0.5)‡ 72.1 (3.9) 78.3 (2.7) 76.7 (3.5) 78.4 (3.9)
AIDS 99.8 (0.3) 99.8 (0.3) 99.6 (0.4) 99.6 (0.5) 98.8 (0.7) 99.7 (0.0)‡ 99.7 (0.0)‡ 99.7 (0.0)‡ 99.1 (0.7) 96.9 (1.6) 95.5 (1.3) 98.6 (0.6)

Cong 99.5 (1.5) 54.7 (11.0) 95.1 (4.3) 99.5 (1.5) 86.8 (7.4) 84.8 (7.3) 81.1 (7.7) 68.6 (8.3) 60.0 (10) 50.0 (0.0) 50.0 (0.0) 57.0 (5.9)
Cong-l 78.0 (8.6) 58.9 (10.0) 50.0 (0.0) 60.4 (9.7) 59.8 (11) 62.2 (10) 62.3 (10) 58.2 (10) 55.7 (9.7) 50.0 (0.0) 50.0 (0.0) 71.5 (9.4)
MIG 100.0 (0) 62.3 (9.7) 99.5 (1.5) 99.9 (1.1) 50.0 (0.0) 99.8 (1.4) 99.8 (1.4) 100 (0.0) 53.5 (12) 100.0 (0.0) 78.5 (1.7) 100.0 (0.0)
BPass 90.8 51.9 47.9 51.4 50 50 51.6 70.4 48.5 98.2† 77.9† 87.6†

Avg. 82.5 69.1 74.1 75.8 66.0 75.6 76.6 76.3 68.6 78.4 74.2 80.5

Results. Table IV contains all the performance results of our
classification experiments. Among the benchmark datasets, A-
DOGE achieves on par performance with the most competitive
unsupervised baselines and is often comparable to (supervised)
GNNs, while being considerably more resource-frugal.

On the other four datasets, A-DOGE significantly out-
performs all baseline methods due to its ability to capture
the alignment of labels and attributes with graph structure
at a multi-scale level, even in databases with as few as 200
graphs. Provided A-DOGE uses considerably lower resources
in comparison with kernels and GNNs, and considering that
the latter are trained end-to-end, we do not expect A-DOGE
to exhibit state-of-the-art performance on every dataset. Still,
A-DOGE outperforms/equals all baselines on 7 of the datasets.
Moreover, A-DOGE stands out as the top choice based on
average performance across all datasets.

On the BandPass dataset, only the spectrally-designed
CHEBNET is able to outperform A-DOGE. This can be
attributed to the way that BandPass is created, wherein graph
classes are formed based on the frequency band used to generate
the underlying image. Fig. 6 depicts the LDOS histograms
of the graphs in the BandPass dataset. We can clearly see
that capturing specific bands of the eigenspectrum suffices to
characterize the disparity between the two graph classes.

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.000.00

0.05

0.10

0.15

hLD
OS

(
;v

) Class 1
Class 2

Figure 6. LDOS histograms for all graphs in BandPass, plotted as lines.
Each class can be characterized by specific bands of eigenvalues.

Feature ablation. Table IV also shows the DOS-only version
of A-DOGE without using node labels and attributes, called
DOGE. We observe that in the benchmark datasets, graph
structure seems to hold most of the useful information needed
for classification, and hence there is only a small improvement

in performance from using node attributes. In the rest of
the datasets, node attributes play an important role, causing
significant improvements in results for A-DOGE by using
LDOS and cLDOS features.

0.02 0.04 0.06 0.08 0.1 0.12 0.14
�������

�����

0

0.1

0.2

0.3

0.4

0.5

�
��

�
��

� �
�
�

�
�

CarnegieCal6

UCSC

Rice
Caltech

Figure 7. Average homophily w.r.t. major vs. dorm in 100 Facebook college
social networks in the U.S., where vm and vd respectively refer to an attribute
vector corresponding to a particular major m and dorm d.

C. Graph Data Mining

To demonstrate the interpretability of the A-DOGE features,
we perform exploratory graph analysis on three real-world
datasets, Facebook100, Congress and BorderStates.
Facebook100. In Facebook100, we denote each

categorical feature (e.g. major) with its one-hot encoding,
and hence, each particular value (e.g. Computer Science)
has its own (binary) attribute vector. We first visualize the
Facebook100 graphs via LDOS aggregate features using
these attribute vectors, with small positive power functions
as FRF to capture the assortativity (homophily) of different
attributes across different college networks. In each graph,
we compute the aggregate feature that estimates vTmSvm for
every major captured by vm, and similarly vTd Svd for every
dormitory captured by vd. Fig. 7 plots the mean homophily
with respect to major and dorm for each of the 100 colleges.

While Carnegie pops up as having the highest correlation
between edges and students with the same major, comparing
the ranges of both axes suggests that dorm is a much stronger
indicator of students within a college being friends. Moreover,
this tendency seems to be more pronounced in Rice, Caltech
and UCSC. This is also backed up by findings in [34] and

-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6

��
� ���

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
�

� �
�

�
�

�

UIllinoisBU
UChicago

Harvard

0.66 0.68 0.7 0.72 0.74 0.76 0.78 0.8 0.82

��
� ���

0.1

0.2

0.3

0.4

0.5

0.6

0.7

�
� �
�
�
�

�
� Stanford

MIT

Dartmouth

Harvard

Figure 8. (left) Homophily w.r.t. class year based on k=1 and k=2-length
paths over all 100 colleges. vy refers to continuous attribute vector with class
years. (right) Homophily within student and non-student communities in all
100 colleges. Binary vector vs (vns) depicts student (non-student) status.

the real-world knowledge that Rice and Caltech are organized
predominantly by dorms and other on-campus housing.

We also analyze similar aggregate functions over the contin-
uous attributes. Fig. 8(left) plots the assortativity with respect
to class year for k=1 and k=2 for the power functions, which
capture 1- and 2-length paths. As we expect, these features are
highly correlated in most colleges—with the striking exception
of Harvard, where it appears that 2-length paths are common
between individuals of similar class year, but this is not
the case with 1-length paths. To investigate further, we plot
homophilies for student and non-student populations for all
colleges in Fig. 8(right) and we learn that the Harvard network
consists of a comparatively higher number of edges amongst
non-student members, most of whom have empty or very
disparate class year. Even if edges between students are fewer,
this is corrected when we look at 2-length paths instead.
Congress. Next, we want to explore scenarios where in-

teractions between attributes prove important to understanding
properties of a graph. To this end, we look at the Congress
graph, where the two attribute vectors are binary vectors vd
and vr corresponding to Democrat and Republican senators
respectively (ignoring the small minority of independents). We
plot within-party agreement (vTd Svd + vTr Svr)/2 and cross-
party agreement (vTd Svr) over the years in Fig. 9.

1931 1937 1943 1949 1955 1961 1967 1973 1979 1985 1991 1997 2003

Congress Year
0.2

0.4

0.6

vT 1
Sv

2

Voting agreement among party
Voting agreement across parties

Figure 9. Voting agreement within (dashed curve, v1=v2=vd or vr) and
across (solid curve, v1=vd, v2=vr) political parties over the years, for 41
Senates during 1927–2008.

We can observe that beginning from the 1990s, senators tend
to agree among their parties, and disagree with the opposite
party to a higher extent, hinting at a growing polarization in
politics. We note that agreement across parties is also low in
1937 (see the “dip”), however, this is better explained by the
fact that this congress had overwhelmingly more number of
democrats. There is no hint of polarization for that instance,
since there is no corresponding rise in the dashed (within-party)
curve. Fig. 9 shows that aggregate functions from A-DOGE not
only help us observe such phenomenon but also help quantify
them to a relative extent.

BorderStates. Lastly, we analyze BorderStates,
comparing within-state migration against cross-border migra-
tion for each of the 49 mainland states in the U.S. We focus
on LDOS aggregate features. this time using both positive
and negative power functions, to analyze both short and long-
range migration patterns. In other words, while small positive
powers (k=1) capture local migration patterns, negative powers
(k=−1) depicting paths of all lengths also reflect long-range
migration behavior on a relatively global scale.

0.6 0.7 0.8 0.9
vTSv

0.05

0.10

vT S
v

CADE
MI

NH

10 20 30
vTS 1v

5

10

15

vT S
1 v CA

DE MI

NH

Figure 10. Comparison of migration patterns for each U.S. state – within its
counties vs. across its borders; migration (left) over a local range, and (right)
on a global scale. vw and vb refer to binary vectors denoting within and
border-state counties, respectively. Node sizes correlate to size of state.

From Fig. 10(left), we observe that at the local scale,
most states have greater within-state migration than cross-
border migration. Comparatively, NH and DE, being the states
with the least number of counties, exhibit lower within-state
migration. Moreover, due to NH’s geographical and political
similarity with its bordering states, it shows highest cross-
border migration. On the other hand, larger states such as CA
and MI exhibit mostly within-state migrations on the local scale.
However, on the global scale (Fig. 10(right)), the difference
between these is more pronounced, since CA is a more popular
long-range migration destination than MI.

D. Scalability

A-DOGE is not directly comparable to all the baselines in
terms of resource requirements. GNNs and G2VEC need GPU
processing, which make them incomparable to CPU-based A-
DOGE and the rest. Other differences, such as supervised
training and collective processing of the graphs via multiple
passes over the dataset (in contrast to one-by-one/independent
processing by A-DOGE) put them in a different “league”.

On the other hand, kernel baselines need considerably more
memory. WL, WL-OA and PK compute intermediate data
(e.g. compressed labels) based on all the graphs in memory.
These and DOSGK produce a N×N kernel matrix that is also
memory-resident.

FGSD and NETLSD are comparable in the sense that,
similar to A-DOGE, they process the graphs independently
one-by-one. Likewise, they are also unsupervised. However,
they cannot handle node labels/attributes. Nevertheless, we
provide running time and scalability comparison in Fig. 11 that
plots the runtime vs. size in number of nodes for individual
graphs in the REDDIT-5K dataset. For any graph from the
dataset (up to 9500 edges), A-DOGE does not take more
than 1 second to compute. Fig. 1 compares this runtime for 3
of our largest datasets. We can see that A-DOGE achieves the
best time-accuracy trade-off among competing baselines. For
methods with comparable or better accuracy scores (e.g. GIN),

0 2000 4000 6000 8000
Number of edges

0

10

20

30

40

W
al

l-t
im

e
(s

)

A-DOGE
FGSD
NetLSD

Figure 11. Runtimes per graph in the REDDIT-5K dataset for each of the
A-DOGE and the two baselines which can compute embeddings independently.

A-DOGE is almost twice as fast on average. For baselines with
similar runtime (e.g., WL), A-DOGE achieves significantly
higher accuracy.

V. CONCLUSION

We propose A-DOGE, an unsupervised graph embedding
technique designed to efficiently capture structural properties
as well as node labels and attributes of a graph. To this end
A-DOGE uses spectral density, or density of states (DOS),
derived from the eigenspectrum of the graph, as a tool to capture
both global and local properties of a graph. Further, we extend
local density of states to leverage node labels and attributes,
and capitalize on fast approximation algorithms making A-
DOGE efficient and scalable to large graphs both in terms
of time and space. Being unsupervised, it is not only suitable
for downstream supervised graph classification tasks, but also
applies well to exploratory graph analysis. Through both
quantitative and qualitative experiments, we show the efficacy
and efficiency of A-DOGE, where it outperforms unsupervised
baselines and performs comparably to the supervised GNNs
on graph classification tasks, and provides various insights into
the analysis of real-world attributed graphs.

ACKNOWLEDGMENTS

This work is sponsored by NSF CAREER 1452425. We also thank
PwC Risk and Regulatory Services Innovation Center at CMU. Any
conclusions expressed in this material are those of the authors and
do not necessarily reflect the views of the funding parties.

REFERENCES

[1] N. Wale, I. A. Watson, and G. Karypis, “Comparison of descriptor
spaces for chemical compound retrieval and classification,” Knowledge
and Information Systems, vol. 14, no. 3, pp. 347–375, 2008.

[2] N. Przulj, “Biological network comparison using graphlet degree
distribution.” Bioinform., vol. 26, no. 6, pp. 853–854, 2010.

[3] H. Duen, N. Carey, W. Jeffrey, W. Adam, and F. Christos, “Polonium:
tera-scale graph mining for malware detection,” in SIAM SDM, 2011.

[4] B. Ribeiro, N. Chen, and A. Kovacec, “Shaping graph pattern mining
for financial risk,” Neurocomputing, vol. 326, pp. 123–131, 2019.

[5] P. Van Mieghem, Graph spectra for complex networks. Cambridge
University Press, 2010.

[6] A. Pothen, H. D. Simon, and K.-P. Liou, “Partitioning sparse matrices
with eigenvectors of graphs,” SIAM J. on Matrix Analy. and Appl., vol. 11,
no. 3, pp. 430–452, 1990.

[7] J. A. Fill, “Eigenvalue bounds on convergence to stationarity for
nonreversible markov chains, with an application to the exclusion process,”
The Annals of Applied Probability, pp. 62–87, 1991.

[8] D. Chakrabarti, Y. Wang, C. Wang, J. Leskovec, and C. Faloutsos,
“Epidemic thresholds in real networks,” ACM TISSEC, vol. 10, no. 4, pp.
1–26, 2008.

[9] S. Jin and R. Zafarani, “The spectral zoo of networks: Embedding
and visualizing networks with spectral moments,” in KDD, 2020, pp.
1426–1434.

[10] K. Dong, A. R. Benson, and D. Bindel, “Network density of states,” in
KDD, 2019, pp. 1152–1161.

[11] S. Verma and Z.-L. Zhang, “Hunt for the unique, stable, sparse and fast
feature learning on graphs,” in NIPS, 2017, pp. 88–98.

[12] A. Tsitsulin, D. Mottin, P. Karras, A. Bronstein, and E. Müller, “Netlsd:
hearing the shape of a graph,” in KDD, 2018, pp. 2347–2356.

[13] A. Narayanan, M. Chandramohan, R. Venkatesan, L. Chen, Y. Liu, and
S. Jaiswal, “graph2vec: Learning distributed representations of graphs,”
arXiv preprint arXiv:1707.05005, 2017.

[14] N. Shervashidze, P. Schweitzer, E. J. van Leeuwen, K. Mehlhorn, and
K. M. Borgwardt, “Weisfeiler-lehman graph kernels.” J. Mach. Learn.
Res., vol. 12, pp. 2539–2561, 2011.

[15] N. M. Kriege, P.-L. Giscard, and R. C. Wilson, “On valid optimal
assignment kernels and applications to graph classification.” in NIPS,
2016, pp. 1615–1623.

[16] L. Wu, Z. Zhang, A. Nehorai, L. Zhao, F. Xu, and A. S. Learning, “Sage:
Scalable attributed graph embeddings for graph classification,” in ICLR
Workshop on Representation Learning on Graphs and Manifolds, 2019.

[17] M. Neumann, R. Garnett, C. Bauckhage, and K. Kersting, “Propagation
kernels: efficient graph kernels from propagated information.” Mach.
Learn., vol. 102, no. 2, pp. 209–245, 2016.

[18] Z. Zhang, M. Wang, Y. Xiang, Y. Huang, and A. Nehorai, “RetGK: Graph
kernels based on return probabilities of random walks.” in NeurIPS, 2018,
pp. 3968–3978.

[19] L. Huang, A. J. Graven, and D. Bindel, “Density of states graph kernels,”
in SDM. SIAM, 2021, pp. 289–297.

[20] T. N. Kipf and M. Welling, “Semi-Supervised Classification with Graph
Convolutional Networks,” in ICLR, 2017.

[21] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How Powerful are Graph
Neural Networks?” in ICLR, 2019, pp. 1–17.

[22] M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional neural
networks on graphs with fast localized spectral filtering.” in NIPS, 2016,
pp. 3837–3845.

[23] R. Levie, F. Monti, X. Bresson, and M. M. Bronstein, “CayleyNets:
Graph convolutional neural networks with complex rational spectral
filters,” IEEE Trans. Sign. Process., vol. 67, no. 1, pp. 97–109, 2019.

[24] N. M. Kriege, F. D. Johansson, and C. Morris, “A survey on graph
kernels.” Appl. Netw. Sci., vol. 5, no. 1, p. 6, 2020.

[25] M. Balcilar, R. Guillaume, P. Héroux, B. Gaüzère, S. Adam, and
P. Honeine, “Analyzing the expressive power of graph neural networks
in a spectral perspective,” in ICLR, 2021.

[26] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are graph
neural networks?” in ICLR. OpenReview.net, 2019.

[27] F. Wang and D. P. Landau, “Efficient, multiple-range random walk
algorithm to calculate the density of states,” Physical Review Letters,
vol. 86, no. 10, p. 2050, 2001.

[28] I. J. Farkas, I. Derényi, A.-L. Barabási, and T. Vicsek, “Spectra of real-
world graphs: Beyond the semicircle law,” Physical Review E, vol. 64,
no. 2, 2001.

[29] A. Banerjee and J. Jost, “Spectral plot properties: Towards a qualitative
classification of networks,” Networks & Heterogeneous Media, vol. 3,
no. 2, p. 395, 2008.

[30] P. N. McGraw and M. Menzinger, “Laplacian spectra as a diagnostic
tool for network structure and dynamics,” Physical Review E, vol. 77,
no. 3, 2008.

[31] M. Cucuringu and M. W. Mahoney, “Localization on low-order eigen-
vectors of data matrices,” arXiv preprint arXiv:1109.1355, 2011.

[32] M. Mitrović and B. Tadić, “Spectral and dynamical properties in classes
of sparse networks with mesoscopic inhomogeneities,” Physical Review
E, vol. 80, no. 2, p. 026123, 2009.

[33] G. H. Golub and G. Meurant, “Matrices, moments, and quadrature.” in
Milestones in Matrix Computation. Oxford U. Press, 2007, pp. 380–433.

[34] A. L. Traud, P. J. Mucha, and M. A. Porter, “Social structure of facebook
networks,” Physica A: Statistical Mechanics and its Applications, vol.
391, no. 16, pp. 4165–4180, 2012.

