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Abstract—Given a set of node-labeled directed weighted
graphs, how to find the most anomalous ones? How can we
summarize the normal behavior in the database without los-
ing information? We propose GAWD, for detecting anomalous
graphs in directed weighted graph databases. The idea is to
(1) iteratively identify the “best” substructure (i.e., subgraph
or motif) that yields the largest compression when each of its
occurrences is replaced by a super-node, and (2) score each
graph by how much it compresses over iterations — the more the
compression, the lower the anomaly score. Different from existing
work [1] on which we build, GAWD exhibits (i) a lossless graph
encoding scheme, (ii) ability to handle numeric edge weights, (iii)
interpretability by common patterns, and (iv) scalability with
running time linear in input size. Experiments on four datasets
injected with anomalies show that GAWD achieves significantly
better results than state-of-the-art baselines.

I. INTRODUCTION

Given a large graph database containing directed weighted
node-labeled graphs, how can we detect the anomalous
graphs? Many studies succeed in detecting anomalies but fail
to give satisfying interpretations. This raises another prominent
problem — how can we spot anomalies and summarize the
normal behavior without simultaneously losing information?

In recent years, graph [2], [3] and node embedding [4]
have attracted a lot of attention. These methods have been
used in anomaly detection in conjunction with off-the-shelf
anomaly detectors. Embedding-based models, however, lack
interpretability. In contrast, structure-based methods enable
domain experts to conduct post-analysis to reveal root causes
of anomalies. Several structure-based methods [5], [6] detect
anomalies by compressing graphs with a substructure that
yields the largest compression. The selected substructure is
replaced by a super-node and the process continues in iter-
ations. As a result, graphs with more common substructures
(and hence compress more) are deemed less anomalous than
those with fewer substructures.

However, neither embedding- nor structure-based methods
are perfect: (1) both of these methods cannot totally avoid
information loss, which causes difficulty in interpreting results,
and (2) none of the structure-based methods can handle
weighted graphs, which prevents them from detecting anoma-
lies caused by edge weights.
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Fig. 1: GAWD wins on both effectiveness and scalability:
We evaluate four datasets and show the big gap between it
and competitors w.r.t. average precision and run time.

Here we propose GAWD to address the aforementioned
problems. In a nutshell,
• Lossless encoding: GAWD builds on Noble and Cook

[5] in terms of identifying frequent subgraphs and com-
pressing the graphs in the input database by replacing
each of its occurrences by a super-node. This results
in a loss of connectivity information for nodes outside
the substructure that are connected to nodes within. We
address this issue by incorporating “rewiring” information
into our encoding, such that the compressed graph can be
reconstructed into the original graph losslessly.

• Handling Weighted Graphs: We propose a novel encod-
ing scheme for handling numeric edge weights. Given a
substructure we estimate a “representative” weight for its



edges, as well as extend the encoding of a compressed
graph to incorporate corrections for true weights such that
decompression can be done losslessly.

• Interpretability and Scalability: The (lack of) frequent
subgraphs common in the database provide a means to
explain anomalousness. Moreover, GAWD exhibits linear
scalability in the input size.

As shown in Figure 1, experimental results on four real-
world datasets with injected anomalies show that GAWD
provides better trade-off between detection performance and
running time compared to both existing graph embedding-
and structure-based methods. Moreover, GAWD is lossless
in contrast with lossy compression of existing methods [1],
[5], [6] and, therefore, able to backtrack the process after
compression, while other lossy methods lose those information
after compression.

The rest of this paper is organized as follows: we briefly
review related literature in Section 2. In Section 3 we introduce
the problem statement and detail our proposed method in
Section 4. Experimental results are presented in Section 5.
Section 6 concludes the work.

II. RELATED WORK

Being one of the closest real-world applications, anomaly
detection has drawn a lot of attention from academics [7]–[11].
Many anomaly detectors have been developed, such as LOF
[12], Isolation Forest [13] and LODA [14]. Some traditional
machine learning methods such as kNN [15] and PCA [16] can
be used as an anomaly detector as well. To this reason, a useful
toolkit for this field is also developed [17]. These detectors can
be easily used with feature-based or embedding-based methods
to achieve effective results. Our work introduces an anomaly
detection for graphs approach, while using popular graph
embedding methods (with anomaly detectors) as baselines. We
will discuss them both in this section.

A. Indirect Approaches via Graph Embedding

Graph embedding has been widely studied in the last
decade. One reason for its popularity is its flexibility concern-
ing downstream applications. Graph embedding can be used
to detect anomalous graphs in conjunction with off-the-shelf
anomaly detectors.

One of the most famous branches is node embedding,
where each node in the graph is mapped to low dimensional
space. node2vec [4] could highly identify graph structures with
biased random walks using BFS and DFS. GraphSAGE [2]
increases the generalizability to the unseen nodes by training
the aggregator function by node features. A simple way to
extend node embedding to graph embedding is to sum all node
vectors up, which has been widely used as a baseline in graph
embedding approaches. Unlike node embedding, graph embed-
ding aims to directly map each graph in the graph database
into a vector. graph2vec [3] uses document embedding neural
networks to embed node-labeled graphs. Node embedding
methods could also be used in graph embedding by averaging
the embedding of nodes. Variational graph autoencoder [18]

TABLE I: GAWD matches all specs, while competitors miss
one or more of the desired properties. ∗ implies the method
can only accept (categorical) edge labels—weights need to be
discretized.
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encodes the graph by a two-layer graph convolutional network
and decodes by an inner-product decoder.

However, few graph embedding methods could handle node
labels and edge weights at the same time. An additional
drawback of graph embedding is the low interpretability of
the representations, and as a result, anomalousness.

B. Direct Anomaly Detection for Graphs

In order to seek higher interpretability, we turned to graph-
based anomaly detection. Anomaly detection has been studied
extensively for its applicability to real-world scenarios. Careful
scrutiny of these studies can be found in [21].

On the one hand, some studies try to spot the graph
anomalies by mining graphs’ structural features. OddBall [19]
detects anomalous nodes in a single weighted graph, but does
not extend to graph databases. ReFeX [22] includes recursive
features to extract information even beyond direct neighbors.
To increase the interpretability, features are analyzed in pairs in
[23], which can be easily visualized and point out the outliers.
Moreover, LookOut [24] further turns the anomaly detection
into a 2-dimension plots selection problem, and picks up the
most explainable plots to the anomalies.

On the other hand, some researchers seek to explain the
graph anomalousness by frequent patterns among graphs.
Cook et al. [1] proposed a graph substructure discovery frame-
work, which Noble and Cook [5] leverage in anomaly detec-
tion by using compression rates in each iteration. Eberle et al.
[6] detect unexpected structural deviations, defined as frequent
patterns with slight changes. These structure-based methods
do not take edge weights into consideration. For numerical
weights, Yagada [20] uses discretization to assign edges with
discrete labels. However, discretization loses information and
underperforms as we demonstrate in our experiments.

Nevertheless, none of the above methods fulfills all the specs
of GAWD. Table I contrasts GAWD against the existing state-
of-the-art.

III. PROBLEM DEFINITION AND GENERAL FRAMEWORK

We consider a graph database consisting of I node-labeled
directed weighted graphs G = {G1(V1, E1), . . . , GI(VI , EI)},



TABLE II: Notations used in the paper.

Symbols Definitions
G Graph database
Gi i-th graph in the database
I Number of graphs in database
J Total number of iterations in our algorithm
Vi Node set of i-th graph
Ei Edge set of i-th graph
T Set of unique node labels
t(v) Label of node v
w(u, v) Edge weight of edge (u, v)
Pj Substructure found in iteration j

where each graph Gi(Vi, Ei) has a set of labeled nodes Vi and
a set of weighted edges Ei. For each node v ∈ Vi, t(v) ∈ T
denotes the label of node v, where T represents the set of
unique node labels, e.g., types of accounts in a company. Each
edge (u, v) ∈ Ei is associated with a weight w(u, v), e.g.,
number of transactions between 2 accounts. Table II defines a
comprehensive list of our notations.

A. Problem Definition

Our anomaly detection problem is concisely defined as
follows:

Definition 1 (Anomaly Detection in Directed Weighted
Graph Database). Given a node-labeled directed weighted
graph database G = {G1(V1, E1), ..., GI(VI , EI)}, compute
anomaly scores ai for each graph Gi ∈ G.

B. General Framework

Our method follows a general information-theoretic frame-
work depicted in Algorithm 1. This framework generalizes
previous graph anomaly detection methods, i.e., [1], [5]. Given
a graph database, the idea is to iteratively identify the “best”
substructure that yields the largest compression, replacing
each of its occurrences with a super-node. Each graph in
the database is then scored by how much it compresses over
iterations—the more the compression, the lower the anomaly
score. In Algorithm 1, blue texts pinpoints the differences in
GAWD compared to those in [1], [5].

In particular, the existing method in [5] detects the frequent
patterns in line 2 by beam search. To identify the best pattern,
they use the one that can minimize the total description length
of graphs in the database in line 6. However, they only take
the compressed node and edge information into consideration
(lossy encoding). They then compress the graphs by that
pattern in line 7. This process will keep running until no more
pattern is found. The heart of their approach is the encoding
scheme of graphs by Minimum Description Length (MDL)
principle, which includes encoding the structure of graphs,
i.e., nodes and edges, as follows:

The total encoding length for nodes is:
vbits(Gi) = log∗ |Vi|+ |Vi| log2 |T |, (1)

Data: A graph database
Result: Anomaly scores for all graphs

1 while True do
2 Detect frequent patterns in graph database;
3 if No pattern is found then
4 Break;
5 end
6 Identify the pattern which can compress the graphs

in database the most;
7 Compress the graphs by this pattern;
8 end
9 Compute the anomaly scores by compression rate;
Algorithm 1: General Framework for Graph Anomaly
Detection (followed by [1], [5], blue text points out the
differences with GAWD)

where |T | denotes the number of unique node labels in Gi.
log∗ is the universal code length used to encode the numeric
value. We first need log∗ |Vi| bits to encode the number of
nodes, and then need log2 |T | bits to encode the label for
each node.

The total encoding length for the adjacency matrix is:

rbits(Gi) = log∗ b+

|Vi|∑
p=1

log2 (b+ 1) + log2

(
|Vi|
kp

)
, (2)

where b denotes the highest out-degree in Gi, and kp denotes
the particular out-degree of pth node. log∗ b bits are needed
to encode the highest out-degree. For each row of adjacency
matrix, log2 (b+ 1) bits are needed to encode the degree of
node. Given kp as the number of 1(s) occurring in pth row, we

know that there are only
(
|Vi|
kp

)
possible permutations, so

we need log2

(
|Vi|
kp

)
bits to encode the positions of 1(s) in

the pth row.
The total encoding length for edges is:

ebits(Gi) = log∗m+ |Ei| log2 m, (3)
where m denotes the largest edge weight. We first need log∗m
bits to encode the largest edge weight, and then log2 m bits
to encode the weight for each edge.

Thus, the total encoding length for Gi in j-th iteration is:
DL(Gi(j)) = vbits(Gi(j))+rbits(Gi(j))+ebits(Gi(j)), (4)

Different from [5], in GAWD, we replace the beam search
in line 2 by gSpan, which is a much faster subgraph mining
technique; we design a novel graph encoding scheme, being
used in line 6, which accepts edge weight (described in
Section IV-A) and is lossless (described in Section IV-B).

IV. PROPOSED METHOD - GAWD

Next we provide the details of GAWD. Given a substructure
Pj = (Vj , Ej) at iteration j, which is a node-labeled simple
graph, the first task is to identify a “representative” weight for
edge (u, v) ∈ Ej , denoted w∗Pj

(u, v). Given the edge-weighted
Pj , our encoding scheme involves:



1) encoding Pj ,
2) encoding each compressed graph Gi = (V i, Ei) resulted

from replacing each occurrence/instance of Pj (ignoring
edge weights) in Gi with a super-node, and

3) encoding auxiliary information for lossless reconstruction
of Gi, given Pj and Gi.

Steps (1) and (2) use the encoding scheme in Subdue [1], the
details of which we omit due to space limit. Here we describe
our novel contributions in Step (3), specifically, weight and
rewiring encoding, respectively (i) handling edge weights and
(ii) enabling lossless reconstruction. Total compression cost
(or description length) of the graph database is the sum of
bits used for encoding (1)–(3).

A. Weight Encoding
1) Representative Weight Discovery: Given a substructure

Pj , the representative edge weight w∗Pj
(u, v) for each edge

(u, v) ∈ Ej need to be identified before evaluating the
substructures toward compression. Let Ej,(u,v) denote all the
edges in the instances of substructure Pj in the database cor-
responding to (u, v) ∈ Ej . We turn this into an optimization
problem based on the Minimum Description Length (MDL)
encoding. Given a candidate weight w, we denote the bits
needed to correct with respect to the true weight of an edge
instance (s, t) ∈ Ej,(u,v) by L(w,wPj (s, t)) (details in Section
IV-A2). The optimization problem is then formulated as:

w∗Pj
= min

w

∑
(s,t)∈Ej,(u,v)

L(w,wPj
(s, t)) (5)

While not convex, the optimization in (5) is only 1-
dimensional and hence relatively easy to solve. We employ
Dichotomous Search [25], which returns the optimal solution
in most cases. It efficiently takes only O(|Ej,(u,v)| log2 R),
where R is the numeric search range of weights.

2) Weight Corrections: After discovering w∗Pj
, we now

encode the weights in each instance. For each super-node
s ∈ V i of Gi, we denote by gs = (Vs, Es) the substructure
instance in Gi corresponding to s, which is isomorphic to Pj

in structure. For each edge (u, v) ∈ Es, we encode its weight
correction using:

L(w,w′) =

{
1 bit, if w − w′ = 0

2 log2(|w − w′|) + 3 bits, otherwise
,

where w = w∗Pj
(u, v) and w′ = wgs(u, v). 1 bit is used to

identify whether the weight correction is needed. If so, an extra
1 bit is used to record the sign of the error. 2 log2(|w−w′|)+1
bits is used to encode the numeric value by universal code.

We remark that instead of discretizing edge weights into
labels, our encoding scheme handles the numeric value and is
lossless. Thus, the total encoding length of weight corrections
is:

mbits(Gi) =
∑
s∈V i

∑
(u,v)∈Es

L(w,w
′
) (6)

B. Rewiring Encoding
After replacing Pj with a super-node, all the edges con-

nected to Pj merge into super-edges. (Weight of a super-edge

21
B: 2A: 1

B: 2A: 1

P1: 3

P2: 3

(a) Case 1: A super-edge is created between two super-nodes after
compression.

21
B: 2A: 1

A: 1

P: 3

A: 1

(b) Case 2: A super-edge is created between one super-node and one
regular node after compression.

Fig. 2: Rewiring Encoding: Two possible cases that the edge
(re)connectivity information are different.

e = (x, y) ∈ Ei, denoted wGi
(x, y), is the sum of the weights

of all edges that it represents.) For lossless reconstruction,
the edge (re)connectivity information needs to be encoded.
There are two possible cases: (1) both x and y are super-
nodes corresponding to non-overlapping instances of Pj , and
(2) only one of them is a super-node.

For the former case, we first encode the cardinality of e,
denoted ce, depicting how many edges it represents, using:

L(ce) = log2(|Vj |2) = 2 log2(|Vj |) bits . (7)
For each edge, we encode substructure node IDs of its source
and its destination using 2 log2(|Vj |) bits total, and then
encode its weight using log2(wGi

(x, y)) bits.

For the latter case, w.l.o.g. let x be the super-node. We
encode how many edges e branches to, denoted by , using:

L(by) = log2(|Vj |) bits . (8)
In other words, by denotes how many distinct nodes within gx
that y connects to. For each edge we encode the substructure
node ID of y’s neighbor n ∈ Vx using log2(|Vj |) bits. We then
encode the weight of each edge the same as in the former case.

The total encoding length for rewiring is:
wbits(Gi) =

∑
e=(x,y)∈Ei

(|e| − 1) log2(wGi
(x, y))

+

{
(|e|+ 1)L(ce) if x, y are both super nodes
(|e|+ 1)L(by) if x is super node

(9)

where e = (x, y) denotes the super-edge connecting from node
x to node y in compressed graph Gi, and |e| denotes the
multiplicity of the super-edge.



Data: A database G = {G1, ..., GI}, min support range
(msmax,msmin), decay rate d (i.e., 0.9 by default.)

Result: Anomaly scores a = {a1, ..., aI} for all graphs in G
1 initialization: ms = msmax; j = 0;
2 while ms ≥ msmin do
3 Pj = gSpan(G,ms);
4 Discover w∗

Pj
(u, v) for all Pj ∈ Pj (See § IV-A1);

5 Identify P ∗
j ∈ Pj yielding largest (positive) compression;

6 if no P ∗
j is found then

7 ms := ms ∗ d;
8 Continue;
9 end

10 Compress G by P ∗
j and save cji in (11) for all Gi ∈ G;

11 j := j + 1;
12 end
13 ai = 1− 1

j

∑j
k=1

[
(j − k + 1) ∗ cki

]
, for all Gi ∈ G;

Algorithm 2: GAWD-Anomaly Scoring

C. Overall Algorithm

The total encoding length of graph Gi in j-th iteration is
given as the following:
DL∗(Gi(j)) = DL(Gi(j)) + mbits(Gi(j)) + wbits(Gi(j)).

(10)
Algorithm 2 gives the steps of GAWD. We use gSpan

[26] for frequent substructure mining in Line 3. In Lines 4-
6, we search for the best weighted substructure yielding the
largest compression. To improve the efficiency, we gradually
decrease minimum support from maximum value to minimum
in Lines 7-9, if there is no substructure found. Once we
identify the best substructure Pj in iteration j, we compress
the graphs in the database by Pj and save the compression
rate cji , for each graph i, defined as:

cji =
DL∗j−1(Gi)−DL∗j (Gi)

DL∗0(G)
, (11)

where DLj(Gi) is the description length of Gi after j itera-
tions. Finally, we compute the anomaly scores in Line 13. The
anomaly score ranges from 0 to 1, where 1 means the most
anomalous and 0 means the least anomalous. The compression
rates are linearly weighted by the term j−k+1, where it means
that the earlier we identify the substructure as the best one,
the less anomalous that the graphs containing it are.

D. Complexity Analysis

Lemma 1. GAWD is linear on the input size, taking time
O(nI|E| log |V |), where n denotes the number of frequent
substructures, I denotes the number of graphs, and |V | and
|E| denote the average numbers of nodes and edges.

Proof. In the worst case, n frequent substructures are detected
by gSpan and all can be used for compression with no
conflict, then GAWD at most will iterate n times. Moreover,
O(I|E| log |V |) is the time complexity of gSpan, where I de-
notes the number of graphs in graph database, |E| denotes the
average edge number of graphs, and |V | denotes the average
node number. The Dichotomous Search is also efficient, taking
O(|Ej,(u,v)| log2 R), where Ej,(u,v) denotes all the edges in

the instances of substructure Pj , and R denotes the numeric
search range of weights. For compression, it takes O(I|E|)
to redirect edges for each graph. The complexity of GAWD
is O(n(|Ej,(u,v)| log2 R + I|E|+ I|E| log |V |)). Empirically,
|Ej,(u,v)| and log2 R are small constant values which are
negligible. Therefore, the complexity is O(nI|E| log |V |). �

V. EXPERIMENTS

We design experiments to answer the following questions:
Q1. Effectiveness: How well does GAWD work on anomaly

detection?
Q2. Scalability: How does GAWD’s running time grow with

input size?
Our code and injected datasets along with labels (except
Accounting Dataset due to privacy issue) are made publicly
available1. Experiments are run on a machine with 3.2GHz
CPU and 256 GB RAM.

A. Settings

1) Datasets: We use four datasets illustrated in Table III.
The detailed description of all datasets are shown as follows:
• UCI Message Dataset [27]: This recorded the communi-

cations between students at UCI where nodes and edges
denote students and messages respectively. To capture the
role information, we adopt role2vec [28] to embed nodes
in the complete graph, and use the 10 groups clustered
by Agglomerative Clustering as the node labels. The data
is split into hours to form a graph database.

• Enron Email Dataset [29]: This contains the emails
passing between colleagues in Enron Company from
2000 to 2002. We assign the job positions to each
employee as node labels. The data is split into day
communication graphs to form a graph database.

• Accounting Dataset: This is from an anonymous institu-
tion, containing accounts (nodes) and transactions (edges)
that precisely reflect the money flow between company
accounts. Each graph captures a set of transactions within
a unique expense report.

• Random Accounting Dataset: Since the accounting
dataset is proprietary, we generate a synthetic database
with generated graphs following the same statistical char-
acteristics as in the accounting graphs. The generation
process details are described in the appendix for clarity.

We treat edge multiplicities as weights for all four graph
databases. There are no ground truth anomalies in all the
databases. To evaluate effectiveness, we inject anomalies into
randomly sampled 3% of the graphs in each database as [21]
suggested, which had also been done by several other studies
[30], [31]. For each sampled graph, we (i) randomly select
an edge (u, v) ∈ Ei, and (ii) multiply its weight w(u, v) by
10d, where d denotes the digit count of the upper fence in
the boxplot of weights for (t(u), t(v)) edges. This aims to
simulate unusual behaviors between the users or accounts.

1https://github.com/mengchillee/GAWD/tree/master/data



Method Precision Recall AUC AP Time@45 @90 @45 @90
node2vec 6.7 5.6 3 5.1 47.6 3.1 58.6s
graph2vec 2.2 1.1 1.0 1.0 48.7 3.1 2.9s

Noble et al. 0.0 0.0 0.0 0.0 47.6 3.1 43988s
Subdue-W 100.0 60.0 45.5 54.5 94.8 68.6 32621s

GAWD 100.0 92.2 45.5 83.8 93.8 90.3 760s

(a) UCI Message Dataset

Method Precision Recall AUC AP Time@10 @20 @10 @20
node2vec 10.0 5.0 4.0 4.0 58.7 4.6 24.6s
graph2vec 10.0 5.0 4.0 4.0 59.0 6.1 1.1s

Noble et al. 0.0 0.0 0.0 0.0 51.7 3.2 7768s
Subdue-W 10.0 5.0 4.0 4.0 48.2 4.9 8443s

GAWD 90.0 85.0 36.0 68.0 82.1 73.8 207s

(b) Enron Email Dataset

Method Precision Recall AUC AP Time@200 @400 @200 @400
node2vec 5.0 3.0 2.1 2.5 47.0 30. 31.3s
graph2vec 3.5 4.5 1.5 3.8 54.0 3.7 12.7s

Noble et al. 3.0 3.1 1.2 2.6 50.6 3.1 460s
Subdue-W 82.0 74.0 34.2 61.7 76.0 59.8 477s

GAWD 100.0 81.5 41.7 67.9 88.0 71.0 75s

(c) Accounting Dataset

Method Precision Recall AUC AP Time@200 @400 @200 @400
node2vec 2.5 3.3 1.0 0.8 48.3 2.8 25.9s
graph2vec 0.0 2.0 1.7 3.1 49.6 3 14s

Noble et al. 3.0 3.0 1.3 2.5 50.0 3 1426s
Subdue-W 63.5 35 26.6 29.3 71.5 36.8 6584s

GAWD 100.0 89.0 41.8 74.5 95.3 90.2 176s

(d) Random Accounting Dataset

Fig. 3: GAWD significantly outperforms all the baselines: We show the performance of GAWD and structure-based and
embedding-based baselines on four real-world and random graph datasets.

TABLE III: Summary of graph databases

Name Graphs Nodes [min, max] Edges [min, max]
UCI Message Dataset [27] 3320 [2, 159] [1, 193]
Enron Email Dataset [29] 843 [2, 87] [1, 127]

Accounting Dataset 16,026 [2, 13] [1, 20]
Random Accounting Dataset 15,935 [2, 13] [1, 18]

2) Evaluation Metric: Datasets may originally contain
anomalies, but we do not have ground truth. As shown in
Figure 4, there originally exist multiple graphs with high
anomaly scores along the horizontal axis, which strongly
disturb the quality of evaluation. To solve this, rather than
comparing all graphs in absolute terms, we look at the relative
change in anomaly scores before and after injection. We
quantify the relative change as RCi =

ainjected
i −aoriginal

i

aoriginal
i

∗100 (%).
To evaluate the performance of anomaly detection, we use

precision at k, recall at k, Area Under Curve (AUC) and
Average Precision (AP) as our evaluation metrics. The choices
of k are dependent on the database size since k cannot exceed
the number of injected graphs.

3) Baselines: We compare GAWD with 4 baselines:
• Noble et al. [5] iteratively finds the substructure gener-

ating the largest compression, and then assigns anomaly
scores based on the compression rate in each iteration.

• Subdue-W follows [5] but additionally discretizes edge
weights into labels by ten bins with equal size.

• node2vec [4] embeds each node into a vector, then inputs
sum of node vectors in each graph to Isolation Forest [13].

• graph2vec [3] embeds each graph into a vector and
inputs it to Isolation Forest [13].

B. Effectiveness

In Table 3, GAWD outperforms most of the baselines
significantly on all the datasets. Noble et al. and graph2vec

fail as it cannot handle edge weights. GAWD shows 31.6%,
1365%, 18.7% and 145% improvement over Subdue-W in
average precision on four datasets respectively, highlighting
the insufficiency of discretization to handle edge weights. Even
if node2vec accepts edge weights, it is not sensitive enough
to detect the anomalies on weights.

The effectiveness of GAWD shows the necessity of han-
dling numerical values instead of discretizing them into labels.
In addition to improving performance on anomaly detec-
tion, we simultaneously maintain interpretability, where the
common substructures identified in the course of iteratively
compressing the database provide a peek into the expected
structural patterns in the database, and the lack thereof in
anomalous graphs.

C. Scalability

To quantify the scalability, we empirically vary the (i)
number of total edges as well as (ii) number of graphs in the
database, both of which highly correlate with running time.
As shown in Table III, the total number of graphs in the
first experiment is 12,617, and the total edge number in the
second experiment is 24,137. As shown in Figure 5, GAWD
scales linearly w.r.t. both variables, with R2 scores of linear-fit
models higher than 0.97.

As shown in Figure 1, GAWD achieves the best trade-off
between detection performance and running time comparing
to the state-of-the-art approaches. In type injection, GAWD
is 3.7 times faster than Noble et al. and the average precision
is 1.3 times higher than node2vec; in path injection, GAWD
is 3.9 times faster than Noble et al. and the average precision
is also 1.1 times higher; in weight injection, GAWD is 4.1
times faster than Subdue-W and the average precision is also
1.5 times higher.
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Fig. 5: GAWD is scalable: linear on the number of total edges
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VI. CONCLUSION

We present GAWD, addressing the graph anomaly detection
problem in a directed weighted graph database. Using an
MDL-based approach for encoding, GAWD iteratively iden-
tifies the “best” substructure yielding the largest compression
of the database. Our novel encoding scheme includes lossless
encoding as well as ability to handle weighted graphs. Experi-
ments on four datasets with injected anomalies shows GAWD
achieves superior results among state-of-the-art baselines.
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[14] T. Pevnỳ, “Loda: Lightweight on-line detector of anomalies,” Machine
Learning, vol. 102, no. 2, pp. 275–304, 2016.

[15] S. Ramaswamy, R. Rastogi, and K. Shim, “Efficient algorithms for
mining outliers from large data sets,” in Proceedings of the ACM
SIGMOD, 2000, pp. 427–438.

[16] M.-L. Shyu, S.-C. Chen, K. Sarinnapakorn, and L. Chang, “A novel
anomaly detection scheme based on principal component classifier,” Mi-
ami Univ Coral Gables Fl Dept of Electrical and Computer Engineering,
Tech. Rep., 2003.

[17] Y. Zhao, Z. Nasrullah, and Z. Li, “Pyod: A python toolbox for scalable
outlier detection,” Journal of Machine Learning Research, vol. 20,
no. 96, pp. 1–7, 2019. [Online]. Available: http://jmlr.org/papers/v20/
19-011.html

[18] T. N. Kipf and M. Welling, “Variational graph auto-encoders,” arXiv
preprint arXiv:1611.07308, 2016.

[19] L. Akoglu, M. McGlohon, and C. Faloutsos, “Oddball: Spotting anoma-
lies in weighted graphs,” in Proceedings of PAKDD. Springer, 2010,
pp. 410–421.

[20] M. Davis, W. Liu, P. Miller, and G. Redpath, “Detecting anomalies in
graphs with numeric labels,” in Proceedings of the ACM CIKM, 2011,
pp. 1197–1202.

[21] L. Akoglu, H. Tong, and D. Koutra, “Graph based anomaly detection and
description: a survey,” Data mining and knowledge discovery, vol. 29,
no. 3, pp. 626–688, 2015.

[22] K. Henderson, B. Gallagher, L. Li, L. Akoglu, T. Eliassi-Rad, H. Tong,
and C. Faloutsos, “It’s who you know: graph mining using recursive
structural features,” in Proceedings of the ACM SIGKDD, 2011, pp.
663–671.

[23] U. Kang, J.-Y. Lee, D. Koutra, and C. Faloutsos, “Net-ray: visualiz-
ing and mining billion-scale graphs,” in Proceedings of the PAKDD.
Springer, 2014, pp. 348–361.

[24] N. Gupta, D. Eswaran, N. Shah, L. Akoglu, and C. Faloutsos, “Beyond
outlier detection: Lookout for pictorial explanation,” in Proceedings of
the ECML. Springer, 2018, pp. 122–138.

[25] E. K. Chong and S. H. Zak, An introduction to optimization. John
Wiley & Sons, 2004.

[26] X. Yan and J. Han, “gspan: Graph-based substructure pattern mining,”
in Proceedings of IEEE ICDM. IEEE, 2002, pp. 721–724.

[27] T. Opsahl and P. Panzarasa, “Clustering in weighted networks,” Social
networks, vol. 31, no. 2, pp. 155–163, 2009.

[28] N. K. Ahmed, R. Rossi, J. B. Lee, T. L. Willke, R. Zhou, X. Kong, and
H. Eldardiry, “Learning role-based graph embeddings,” arXiv preprint
arXiv:1802.02896, 2018.

[29] B. Klimt and Y. Yang, “The enron corpus: A new dataset for email
classification research,” in Proceedings of European Conference on
Machine Learning. Springer, 2004, pp. 217–226.

[30] W. Yu, W. Cheng, C. C. Aggarwal, K. Zhang, H. Chen, and W. Wang,
“Netwalk: A flexible deep embedding approach for anomaly detection
in dynamic networks,” in Proceedings of the ACM SIGKDD, 2018, pp.
2672–2681.

[31] L. Zheng, Z. Li, J. Li, Z. Li, and J. Gao, “Addgraph: Anomaly detection
in dynamic graph using attention-based temporal gcn,” in Proceedings
of the IJCAI, 2019, pp. 4419–4425.

[32] D. J. Kleitman and D.-L. Wang, “Algorithms for constructing graphs
and digraphs with given valences and factors,” Discrete Mathematics,
vol. 6, no. 1, pp. 79–88, 1973.

http://jmlr.org/papers/v20/19-011.html
http://jmlr.org/papers/v20/19-011.html


APPENDIX

A. Random Transaction Graph Database Generation

1) Algorithm: Algorithm 3 illustrates the procedure of
generation. In line 2, we extract the statistics from the given
transaction graph database G, where Din and Dout denote
the in- and out-degree sequences for each graph respectively,
Pt denotes the probability distribution of node types in the
database, Pe denotes the probability distribution of edge types,
and Pw denotes the probability distribution of weights given
an edge type. We then create the random graph by in- and out-
degree sequences of each graph with Directed Havel Hakimi
Graph [32] in line 4. In line 5, we randomly initialize the first
node and assign the label by Pt. We then greedily assign labels
to other nodes by Pe in line 6-11. To those unassigned nodes
and edges, we finish the assignment after the greedy one.

Data: A transaction graph database G
Result: A random transaction graph database G∗

1 G∗ ← ∅;
2 Extract Din, Dout, Pt, Pe and Pw from G;
3 for din ∈ Din, dout ∈ Dout do
4 Create a random graph g by [32] with din and dout;
5 Randomly select a node ni and assign a label by Pt;
6 while ni exists any neighbour without label do
7 Randomly select nj from neighbours without label;
8 Assign a label to nj by Pe;
9 Assign a weight to edge (ni, nj) by Pw;

10 ni ← nj ;
11 end
12 Assign labels to those unlabeled nodes by Pt;
13 Assign weights to those unweighted edges by Pw;
14 G∗ ← G∗ ∪ g;
15 end
16 Return G∗;

Algorithm 3: Random Transaction Graph Database
Generator

2) Experimental Results: We examine the similarity be-
tween the real-world and random transaction graph database.
Since we use the same degree sequences to generate the
graphs, the distribution of node and edge number are the same
as well. Figure 6 illustrates the similar distributions of specific
structures in the real-world and random transaction graphs.
Number of triangles is a common statistical measure for the
graphs, and bidirectional edges represent an essential meaning
in transaction graphs, denoting the mutual money transfers. In
Figure 7, we show that the distributions node type, edge weight
and edge type are extremely similar, except for some of the
ones with small number of occurrences. Figure 8 depicts the
edge weight distribution for each edge type, where we can
find that they are also very similar. In summary, experimental
results demonstrate that our random transaction graph database
statistically follows the real-world one.
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Fig. 6: Comparison on distributions of triangle number and
bidirectional edge number
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Fig. 7: Comparison on distributions of node type, edge weight
and edge type
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Fig. 8: Box plot of edge type versus edge weight
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