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ABSTRACT
Fairness and Outlier Detection (OD) are closely related, as it is ex-
actly the goal of OD to spot rare, minority samples in a given pop-
ulation. However, when being a minority (as defined by protected
variables, such as race/ethnicity/sex/age) does not reflect positive-
class membership (such as criminal/fraud), OD produces unjust out-
comes. Surprisingly, fairness-aware OD has been almost untouched
in prior work, as fair machine learning literature mainly focuses on
supervised settings. Our work aims to bridge this gap. Specifically,
we develop desiderata capturing well-motivated fairness criteria
for OD, and systematically formalize the fair OD problem. Further,
guided by our desiderata, we propose FairOD, a fairness-aware
outlier detector that has the following desirable properties: FairOD
(1) exhibits treatment parity at test time, (2) aims to flag equal
proportions of samples from all groups (i.e. obtain group fairness,
via statistical parity), and (3) strives to flag truly high-risk sam-
ples within each group. Extensive experiments on a diverse set
of synthetic and real world datasets show that FairOD produces
outcomes that are fair with respect to protected variables, while
performing comparable to (and in some cases, even better than)
fairness-agnostic detectors in terms of detection performance.
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1 INTRODUCTION
Fairness in machine learning (ML) has received a surge of atten-
tion in the recent years. The community has largely focused on
designing different notions of fairness [4, 14, 49] mainly tailored
towards supervised ML problems [20, 23, 50]. However, perhaps
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surprisingly, fairness in the context of outlier detection (OD) is
vastly understudied. OD is critical for numerous applications in
security [21, 51, 55], finance [26, 33, 48], healthcare [8, 36] etc. and
is widely used for detection of rare positive-class instances.

Outlier detection for “policing”: In such critical systems, OD
is often used to flag instances that reflect riskiness, which are then
“policed” (or audited) by human experts. For example, law enforce-
ment agencies might employ automated surveillance systems in
public spaces to spot suspicious individuals based on visual charac-
teristics, who are subsequently stopped and frisked. Alternatively,
in the financial domain, analysts can police fraudulent-looking
claims, and corporate trust and safety employees can police bad
actors on social networks.

Group sample size disparity yields unfair OD: Importantly,
outlier detectors are designed exactly to spot rare, statistical mi-
nority samples1 with the hope that outlierness reflects riskiness,
which prompts their bias against societal minorities (as defined by
race/ethnicity/sex/age/etc.) as well, since minority group sample
size is by definition small.

However, when minority status (e.g. Hispanic) does not reflect
positive-class membership (e.g. fraud), OD produces unjust out-
comes, by overly flagging the instances from theminority gro-
ups as outliers. This conflation of statistical and societal minorities
can become an ethical matter.

Unfair OD leads to disparate impact: What would happen
downstream if we did not strive for fairness-aware OD given the ex-
istence of societal minorities? ODmodels’ inability to distinguish so-
cietal minorities (as induced by so-called protected variables (𝑃𝑉 s)),
from statistical minorities, contributes to the likelihood of minority
group members being flagged as outliers (see Fig. 1). This is fur-
ther exacerbated by proxy variables which partially-redundantly
encode (i.e. correlate with) the 𝑃𝑉 (s), by increasing the number of
subspaces in which minorities stand out. The result is overpolicing
due to over-representation of minorities in OD outcomes. Note
that overpolicing the minority group also implies underpolicing
the majority group given limited policing capacity and constraints.

Overpolicing can also feed back into a system when the policed
outliers are used as labels in downstream supervised tasks. Alarm-
ingly, this initially skewed sample (due to unfair OD), may be am-
plified through a feedback loop via predicting policing where more
outliers are identified in more heavily policed groups. Given that
OD’s use in societal applications has direct bearing on social well-
being, ensuring that OD-based outcomes are non-discriminatory
is pivotal. This demands the design of fairness-aware OD models,
which our work aims to address.

Prior research and challenges: Abundant work on algorithm
fairness has focused on supervised ML tasks [6, 23, 50]. Numerous

1In this work, the words sample, instance, and observation are used interchangeably
throughout text.
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Figure 1: (left) Simulated 2-dim. data with equal sized groups i.e. |X𝑃𝑉=𝑎 |=|X𝑃𝑉=𝑏 |. (middle) Group score distributions induced
by 𝑃𝑉 = 𝑎 and 𝑃𝑉 = 𝑏 are plotted by varying the simulated |X𝑃𝑉=𝑎 |/|X𝑃𝑉=𝑏 | ratio. Notice that minority group (𝑃𝑉 = 𝑏) re-
ceives larger outlier scores as the size ratio increases. (right) Flag rate ratio of the groups for the varying sample size ratio
|X𝑃𝑉=𝑎 |/|X𝑃𝑉=𝑏 |. As we increase size disparity, the minority group is “policed” (i.e. flagged) comparatively more.

notions of fairness [4, 49] have been explored in such contexts, each
with their own challenges in achieving equitable decisions [14].
In contrast, there is little to no work on addressing fairness in
unsupervised OD. Incorporating fairness into OD is challenging, in
the face of (1) many possibly-incompatible notions of fairness and,
(2) the absence of ground-truth outlier labels.

The two works tackling2 unfairness in the OD literature are
by P and Abraham [41] which proposes an ad-hoc procedure to
introduce fairness specifically to the LOF algorithm [9], and Zhang
and Davidson [54] (concurrent to our work) which proposes an
adversarial training based deep SVDD detector. Amongst other
issues (see Sec. 5), the approach proposed in [41] invites disparate
treatment, necessitating explicit use of 𝑃𝑉 at decision time, leading
to taste-based discrimination [15] that is unlawful in several critical
applications. On the other hand, the approach in [54] has several
drawbacks (see Sec. 5), and in light of unavailable implementation,
we include a similar baseline called arl that we compare against
our proposed method.

Alternatively, one could re-purpose existing fair representation
learning techniques [7, 18, 52] as well as data preprocessing strate-
gies [19, 27] for subsequent fair OD. However, as we show in Sec. 4
and discuss in Sec. 5, isolating representation learning from the de-
tection task is suboptimal, largely (needlessly) sacrificing detection
performance for fairness.

Our contributions: Our work strives to design a fairness-aware
OD model to achieve equitable policing across groups and avoid an
unjust conflation of statistical and societal minorities. We summa-
rize our main contributions as follows:

(1) Desiderata & Problem Definition for Fair Outlier De-
tection: We identify 5 properties characterizing detection
quality and fairness in OD as desiderata for fairness-aware
detectors. We discuss their justifiability and achievability,
based onwhichwe formally define the (unsupervised) fairness-
aware OD problem (Sec. 2).

(2) FairnessCriteria&New, Fairness-AwareODModel: We
introduce well-motivated fairness criteria and give mathe-
matical objectives that can be optimized to obey the desider-
ata. These criteria are universal, in that they can be embedded
into the objective of any end-to-end OD model. We propose

2[16] aims to quantify fairness of OD model outcomes post hoc, which thus has a
different scope.
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Figure 2: Fairness (statistical parity) vs. GroupFidelity (group-
level rank preservation) of baselines and our proposed
FairOD (red cross), (left) averaged across 6 datasets, and
(right) on individual datasets. FairOD outperforms existing
solutions (tending towards ideal), achieving fairness while
preserving group fidelity from the base detector. See Sec. 4
for more details.

FairOD, a new detector which directly incorporates the pre-
scribed criteria into its training. Notably, FairOD (1) aims to
equalize flag rates across groups, achieving group fairness
via statistical parity, while (2) striving to flag truly high-
risk samples within each group, and (3) avoiding disparate
treatment. (Sec. 3)

(3) Effectiveness on Real-world Data: We apply FairOD on
several real-world and synthetic datasets with diverse ap-
plications such as credit risk assessment and hate speech
detection. Experiments demonstrate FairOD’s effectiveness
in achieving both fairness goals (Fig. 2) as well as accurate
detection (Fig. 6, Sec. 4), significantly outperforming alterna-
tive solutions.

Reproducibility: All of our source code and datasets are shared
publicly at https://tinyurl.com/fairOD.

2 DESIDERATA FOR FAIR OUTLIER
DETECTION

Notation. We are given 𝑁 samples (also, observations or instances)
X = {𝑋𝑖 }𝑁𝑖=1 ⊆ R𝑑 as the input for OD where 𝑋𝑖 ∈ R𝑑 denotes

https://tinyurl.com/fairOD


Table 1: Frequently used symbols and definitions.

Symbol Definition

𝑋 𝑑-dimensional feature representation of an observation
𝑌 true label of an observation, w/ values 0 (inlier), 1 (outlier)
𝑃𝑉 binary protected (or sensitive) variable, w/ groups 𝑎 (majority), 𝑏 (minority)
𝑂 detector-assigned label to an observation, w/ value 1 (predicted/flagged outlier)
𝑏𝑟𝑣 base rate of/fraction of ground-truth outliers in group 𝑣 , i.e. 𝑏𝑟𝑣 = 𝑃 (𝑌 = 1|𝑃𝑉 = 𝑣)
𝑓 𝑟𝑣 flag rate of/fraction of flagged observations in group 𝑣 , i.e 𝑓 𝑟𝑣 = 𝑃 (𝑂 = 1|𝑃𝑉 = 𝑣)

the feature representation for observation 𝑖 . Each observation is
additionally associated with a binary3 protected (also, sensitive)
variable, PV = {𝑃𝑉𝑖 }𝑁𝑖=1, where 𝑃𝑉𝑖 ∈ {𝑎, 𝑏} identifies two groups
– the majority (𝑃𝑉𝑖 = 𝑎) group and the minority (𝑃𝑉𝑖 = 𝑏) group.We
useY = {𝑌𝑖 }𝑁𝑖=1, 𝑌𝑖 ∈ {0, 1}, to denote the unobserved ground-truth
binary labels for the observations where, for exposition, 𝑌𝑖 = 1
denotes an outlier (positive outcome) and 𝑌𝑖 = 0 denotes an inlier
(negative outcome). We use 𝑂 : 𝑋 ↦→ {0, 1} to denote the predicted
outcome of an outlier detector, and 𝑠 : 𝑋 ↦→ R to capture the
corresponding numerical outlier score as the estimate of the out-
lierness. Thus, 𝑂 (𝑋𝑖 ), 𝑠 (𝑋𝑖 ) respectively indicate predicted outlier
label and outlier score for sample 𝑋𝑖 . We use O = {𝑂 (𝑋𝑖 )}𝑁𝑖=1 and
S = {𝑠 (𝑋𝑖 )}𝑁𝑖=1 to denote the set of all predicted labels and scores
from a given model without loss of generality. Note that we can
derive 𝑂 (𝑋𝑖 ) from a simple thresholding of 𝑠 (𝑋𝑖 ). We routinely
drop 𝑖-subscripts to refer to properties of a single sample without
loss of generality. We denote the group base rate (or prevalence)
of outlierness as 𝑏𝑟𝑎 = 𝑃 (𝑌 = 1|𝑃𝑉 = 𝑎) for the majority group.
Finally, we let 𝑓 𝑟𝑎 = 𝑃 (𝑂 = 1|𝑃𝑉 = 𝑎) depict the flag rate of the
detector for the majority group. Similar definitions extend to the
minority group with 𝑃𝑉 = 𝑏. Table 1 gives a list of the notations
frequently used throughout the paper.

Having presented the problem setup and notation, we state our
fair OD problem (informally) as follows.

Informal Problem 1 (Fair Outlier Detection). Given samples
X and protected variable values PV , estimate outlier scores S and
assign outlier labels O, such that

(i) assigned labels and scores are “fair” w.r.t. the 𝑃𝑉 , and
(ii) higher scores correspond to higher riskiness encoded by the

underlying (unobserved) Y.

How can we design a fairness-aware OD model that is not biased
against minority groups? What constitutes a “fair” outcome in OD,
that is, what would characterize fairness-aware OD? What specific
notions of fairness are most applicable to OD?

To approach the problem and address these motivating ques-
tions, we first propose a list of desired properties that an ideal
fairness-aware detector should satisfy, and whether, in practice,
the desired properties can be enforced followed by our proposed
solution, FairOD.

2.1 Proposed Desiderata
D1.Detection effectiveness: We require an ODmodel to be accu-
rate at detection, such that the scores assigned to the instances by
OD are well-correlated with the ground-truth outlier labels. Specif-
ically, OD benefits the policing effort only when the detection rate
3For simplicity of presentation, we consider a single, binary protected variable (PV).
We discuss extensions to multi-valued PV and multi-attribute PVs in Sec. 3.

(also, precision) is strictly larger than the base rate (also, prevalence),
that is,

𝑃 (𝑌 = 1 | 𝑂 = 1) > 𝑃 (𝑌 = 1) . (1)

This condition ensures that any policing effort concerted through
the employment of an OD model is able to achieve a strictly larger
precision (LHS) as compared to random sampling, where policing
via the latter would simply yield a precision that is equal to the
prevalence of outliers in the population (RHS) in expectation. Note
that our first condition in (1) is related to detection performance,
and specifically, the usefulness of OD itself for policing applications.

How-to: We can indirectly control for detection effectiveness
via careful feature engineering. Assuming domain experts assist
in feature design, it would be reasonable to expect a better-than-
random detector that satisfies Eq. (1).

Next, we present fairness-related conditions for OD.

D2.Treatment parity: OD should exhibit non-disparate treatment
that explicitly avoid the use of 𝑃𝑉 for producing a decision. In
particular, OD decisions should obey

𝑃 (𝑂 = 1 | 𝑋 ) = 𝑃 (𝑂 = 1 | 𝑋, 𝑃𝑉 = 𝑣), ∀𝑣 . (2)

In words, the probability that the detector outputs an outlier label
𝑂 for a given feature vector 𝑋 remains unchanged even upon ob-
serving the value of the 𝑃𝑉 . In many settings (e.g. employment),
explicit 𝑃𝑉 use is unlawful at inference.

How-to: We can build an OD model using a disparate learning
process [34] that uses 𝑃𝑉 only during the model training phase,
but does not require access to 𝑃𝑉 for producing a decision, hence
satisfying treatment parity.

Treatment parity ensures that OD decisions are effectively “blind-
folded” to the 𝑃𝑉 . However, this notion of fairness alone is not suffi-
cient to ensure equitable policing across groups; namely, removing
the 𝑃𝑉 from scope may still allow discriminatory OD results for
the minority group (e.g., African American) due to the presence
of several other features (e.g., zipcode) that (partially-)redundantly
encode the 𝑃𝑉 . Consequently, by default, OD will use the 𝑃𝑉 indi-
rectly, through access to those correlated proxy features. Therefore,
additional conditions follow.

D3. Statistical parity (SP): One would expect the OD outcomes to
be independent of group membership, i.e. 𝑂 ⊥⊥ 𝑃𝑉 . In the context
of OD, this notion of fairness (also, demographic parity, group
fairness, or independence) aims to enforce that the outlier flag rates
are independent of 𝑃𝑉 and equal across the groups as induced by
𝑃𝑉 .

Formally, an OD model satisfies statistical parity under a distri-
bution over (𝑋, 𝑃𝑉 ) where 𝑃𝑉 ∈ {𝑎, 𝑏} if

𝑓 𝑟𝑎 = 𝑓 𝑟𝑏 or equivalently,
𝑃 (𝑂 = 1|𝑃𝑉 = 𝑎) = 𝑃 (𝑂 = 1|𝑃𝑉 = 𝑏) . (3)

SP implies that the fraction of minority (majority) members in the
flagged set is the same as the fraction of minority (majority) in the
overall population. Equivalently, one can show

𝑓 𝑟𝑎 = 𝑓 𝑟𝑏 (SP) ⇐⇒ 𝑃 (𝑃𝑉 = 𝑎 |𝑂 = 1) = 𝑃 (𝑃𝑉 = 𝑎)
and 𝑃 (𝑃𝑉 = 𝑏 |𝑂 = 1) = 𝑃 (𝑃𝑉 = 𝑏) . (4)



The motivation for SP derives from luck egalitarianism [30] – a
family of egalitarian theories of distributive justice that aim to coun-
teract the distributive effects of “brute luck”. By redistributing equal-
ity to those who suffer through no fault of their own choosing, me-
diated via race, gender, etc., it aims to counterbalance the manifes-
tations of such “luck”. Correspondingly, SP ensures equal flag rates
across 𝑃𝑉 groups, eliminating such group-membership bias. There-
fore, it merits incorporation in OD since OD results are used for
policing or auditing by human experts in downstream applications.

How-to: We could enforce SP during OD model learning by com-
paring the distributions of the predicted outlier labels 𝑂 amongst
groups, and update the model to ensure that these output distribu-
tions match across groups.

SP, however, is not sufficient to ensure both equitable and ac-
curate outcomes as it permits so-called “laziness” [4]. Being an
unsupervised quantity that is agnostic to the ground-truth labelsY,
SP could be satisfied while producing decisions that are arbitrarily
inaccurate for any or all of the groups. In fact, an extreme scenario
would be random sampling; where we select a certain fraction of
the given population uniformly at random and flag all the sampled
instances as outliers. As evident via Eq. (4), this entirely random
procedure would achieve SP (!). The outcomes could be worse –
that is, not only inaccurate (put differently, as accurate as random)
but also unfair for only some group(s) – when OD flags mostly
the true outliers from one group while flagging randomly selected
instances from the other group(s), leading to discrimination despite
SP. Therefore, additional criteria is required to explicitly penalize
“laziness,” aiming to not only flag equal fractions of instances across
groups but also those true outlier instances from both groups.

D4. Group fidelity (also, Equality of Opportunity): It is desir-
able that the true outliers are equally likely to be assigned higher
scores, and in turn flagged, regardless of their membership to any
group as induced by 𝑃𝑉 . We refer to this notion of fairness as
group fidelity, which steers OD outcomes toward being faithful to
the ground-truth outlier labels equally across groups, obeying the
following condition

𝑃 (𝑂 = 1|𝑌 = 1, 𝑃𝑉 = 𝑎) = 𝑃 (𝑂 = 1|𝑌 = 1, 𝑃𝑉 = 𝑏) . (5)

Mathematically, this condition is equivalent to the so-called Equal-
ity of Opportunity4 in the supervised fair ML literature, and is a
special case of Separation [23, 49]. In either case, it requires that
all 𝑃𝑉 -induced groups experience the same true positive rate. Con-
sequently, it penalizes “laziness” by ensuring that the true-outlier
instances are ranked above (i.e., receive higher outlier scores than)
the inliers within each group.

The key caveat here is that (5) is a supervised quantity that re-
quires access to the ground-truth labels Y, which are explicitly
unavailable for the unsupervised OD task. What is more, various im-
possibility results have shown that certain fairness criteria, includ-
ing SP and Separation, are mutually exclusive or incompatible [4],
implying that simultaneously satisfying both of these conditions
(exactly) is not possible.

4Opportunity, because positive-class assignment by a supervised model in many fair
ML problems is often associated with a positive outcome, such as being hired or
approved a loan.

How-to: The unsupervised OD task does not have access to Y,
therefore, group fidelity cannot be enforced directly. Instead, we
propose to enforce group-level rank preservation that maintains
fidelity to within-group ranking from the base model, where base
is a fairness-agnostic OD model. Our intuition is that rank preserva-
tion acts as a proxy for group fidelity, or more broadly Separation,
via our assumption that within-group ranking in the base model is
accurate and top-ranked instances within each group encode the
highest risk samples within each group.

Specifically, let 𝜋base represent the ranking of instances based on
base OD scores, and let 𝜋base

𝑃𝑉=𝑎
and 𝜋base

𝑃𝑉=𝑏
denote the group-level

ranked lists for majority and minority groups, respectively. Then,
the rank preservation is satisfied when 𝜋base

𝑃𝑉=𝑣
= 𝜋

𝑃𝑉=𝑣
;∀𝑣 ∈ {𝑎, 𝑏}

where 𝜋
𝑃𝑉=𝑣

is the ranking of group-𝑣 instances based on outlier
scores from our proposed OD model. Group rank preservation aims
to address the “laziness” issue that can manifest while ensuring
SP; we aim to not lose the within-group detection prowess of the
original detector while maintaining fairness. Moreover, since we
are using only a proxy for Separation, the mutual exclusiveness
of SP and Separation may no longer hold, though we have not
established this mathematically.

D5. Base rate preservation: The flagged outliers from OD re-
sults are often audited and then used as human-labeled data for
supervised detection (as discussed in previous section) which can
introduce bias through a feedback loop. Therefore, it is desirable
that group-level base rates within the flagged population is reflec-
tive of the group-level base rates in the overall population, so as
to not introduce group bias of outlier incidence downstream. In
particular, we expect OD outcomes to ideally obey

𝑃 (𝑌 = 1|𝑂 = 1, 𝑃𝑉 = 𝑎) = 𝑏𝑟𝑎 , and (6)
𝑃 (𝑌 = 1|𝑂 = 1, 𝑃𝑉 = 𝑏) = 𝑏𝑟𝑏 . (7)

Note that group-level base rate within the flagged population (LHS)
is mathematically equivalent to group-level precision in OD out-
comes, and as such, is also a supervised quantity which suffers the
same caveat as in D4, regarding unavailability of Y.

How-to: As noted,Y is not available to an unsupervised OD task.
Importantly, provided an OD model satisfies D1 and D3, we show
that it cannot simultaneously also satisfy D5, i.e. per-group equal
base rate in OD results (flagged observations) and in the overall
population.

Claim 1. Detection effectiveness: 𝑃 (𝑌 = 1|𝑂 = 1) > 𝑃 (𝑌 = 1)
and SP: 𝑃 (𝑂 = 1|𝑃𝑉 = 𝑎) = 𝑃 (𝑂 = 1|𝑃𝑉 = 𝑏) jointly imply that
𝑃 (𝑌 = 1|𝑂 = 1, 𝑃𝑉 = 𝑣) > 𝑃 (𝑌 = 1|𝑃𝑉 = 𝑣), ∃𝑣 .

Proof. We prove the claim in Appendix5 A.1. □

Claim 1 shows an incompatibility and states that, provided D1
and D3 are satisfied, the base rate in the flagged population cannot
be equal to (but rather, is an overestimate of) that in the overall
population for at least one of the groups. As such, base rates in OD
outcomes cannot be reflective of their true values. Instead, one
may hope for the preservation of the ratio of the base rates (i.e. it

5https://tinyurl.com/fairOD
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is not impossible). As such, a relaxed notion of D5 is to preserve
proportional base rates across groups in the OD results, that is,

𝑃 (𝑌 = 1|𝑂 = 1, 𝑃𝑉 = 𝑎)
𝑃 (𝑌 = 1|𝑂 = 1, 𝑃𝑉 = 𝑏) =

𝑃 (𝑌 = 1|𝑃𝑉 = 𝑎)
𝑃 (𝑌 = 1|𝑃𝑉 = 𝑏) . (8)

Note that ratio preservation still cannot be explicitly enforced as (8)
is also label-dependent. Finally we show in Claim 2 that, provided
D1, D3 and Eq. (8) are all satisfied, then it entails that the base rate
in OD outcomes is an overestimation of the true group-level base
rate for every group.

Claim 2. Detection effectiveness: 𝑃 (𝑌 = 1|𝑂 = 1) > 𝑃 (𝑌 =

1), SP: 𝑃 (𝑂 = 1|𝑃𝑉 = 𝑎) = 𝑃 (𝑂 = 1|𝑃𝑉 = 𝑏), and Eq. (8):
𝑃 (𝑌=1 |𝑂=1,𝑃𝑉=𝑎)
𝑃 (𝑌=1 |𝑂=1,𝑃𝑉=𝑏) =

𝑃 (𝑌=1 |𝑃𝑉=𝑎)
𝑃 (𝑌=1 |𝑃𝑉=𝑏) jointly imply 𝑃 (𝑌 = 1|𝑃𝑉 =

𝑣,𝑂 = 1)>𝑃 (𝑌 = 1|𝑃𝑉 = 𝑣),∀𝑣 .

Proof. We prove the claim in Appendix A.2. □

Claim 1 and Claim 2 indicate that if we have both (𝑖) better-
than-random precision (D1) and (𝑖𝑖) SP (D3), interpreting the base
rates in OD outcomes for downstream learning tasks would not be
meaningful, as they would not be reflective of true population base
rates. Due to both these incompatibility results, and also feasibility
issues given the lack ofY, we leave base rate preservation – despite
it being a desirable property – out of consideration.

2.2 Problem Definition
Based on the definitions and enforceable desiderata, our fairness-
aware OD problem is formally defined as follows:

Problem 1 (Fairness-AwareOutlier Detection). Given samples
X and protected variable values PV , estimate outlier scores S and
assign outlier labels O, to achieve

(i) 𝑃 (𝑌 = 1|𝑂 = 1) > 𝑃 (𝑌 = 1) ,
[Detection effectiveness]

(ii) 𝑃 (𝑂 | 𝑋, 𝑃𝑉 = 𝑣) = 𝑃 (𝑂 | 𝑋 ), ∀𝑣 ∈ {𝑎, 𝑏} ,
[Treatment parity]

(iii) 𝑃 (𝑂 = 1|𝑃𝑉 = 𝑎) = 𝑃 (𝑂 = 1|𝑃𝑉 = 𝑏) ,
[Statistical parity]

(iv) 𝜋base
𝑃𝑉=𝑣

= 𝜋
𝑃𝑉=𝑣

,∀𝑣 ∈ {𝑎, 𝑏}, where base is a fairness-
agnostic detector. [Group fidelity proxy]

Given a dataset along with 𝑃𝑉 values, the goal is to design an
OD model that builds on an existing base OD model and satisfies
the criteria (𝑖)–(𝑖𝑣), following the proposed desiderata D1 – D4.

2.3 Caveats of a Simple Approach
A simple yet naïve fairness-aware OD approach to address Prob-
lem 1 can be designed as follows:

(1) Obtain ranked lists 𝜋base
𝑃𝑉=𝑎

and 𝜋base
𝑃𝑉=𝑏

from base, and
(2) Flag top instances as outliers from each ranked list at equal

fraction such that
𝑃 (𝑂 = 1|𝑃𝑉 = 𝑎) = 𝑃 (𝑂 = 1|𝑃𝑉 = 𝑏), 𝑃𝑉 ∈ {𝑎, 𝑏}

This approach fully satisfies (𝑖𝑖𝑖) and (𝑖𝑣) in Problem 1 by design,
as well as (𝑖) given suitable features. However, it explicitly suffers
from disparate treatment.

3 FAIRNESS-AWARE OUTLIER DETECTION
In this section, we describe our proposed FairOD – an unsupervised,
fairness-aware, end-to-end OD model that embeds our proposed
learnable (i.e. optimizable) fairness constraints into an existing base
OD model. The key features of our model are that FairOD aims for
equal flag rates across groups (statistical parity), and encourages
correct top group ranking (group fidelity), while not requiring 𝑃𝑉
for decision-making on new samples (non-disparate treatment). As
such, it aims to target the proposed desiderata D1 – D4 as described
in Sec. 2.

3.1 Base Framework
Our proposed OD model instantiates a deep-autoencoder (AE)
framework for the base outlier detection task. However, we re-
mark that the fairness regularization criteria introduced by FairOD
can be plugged into any end-to-end optimizable anomaly detec-
tor, such as one-class support vector machines [46], deep anomaly
detector [11], variational AE for OD [3], and deep one-class classi-
fiers [45]. Our choice of AE as the base OD model stems from the
fact that AE-inspired methods have been shown to be state-of-the-
art outlier detectors [13, 37, 56] and that our fairness-aware loss
criteria can be optimized in conjunction with the objectives of such
models. The main goal of FairOD is to incorporate our proposed
notions of fairness into an end-to-end OD model, irrespective of
the choice of the base model family.

AE consists of two main components: an encoder 𝐺𝐸 : 𝑋 ∈
R𝑑 ↦→ 𝑍 ∈ R𝑚 and a decoder 𝐺𝐷 : 𝑍 ∈ R𝑚 ↦→ 𝑋 ∈ R𝑑 . 𝐺𝐸 (𝑋 )
encodes the input 𝑋 to a hidden vector (also, code) 𝑍 that pre-
serves the important aspects of the input. Then, 𝐺𝐷 (𝑍 ) aims to
generate 𝑋 ′, a reconstruction of the input from the hidden vec-
tor 𝑍 . Overall, the AE can be written as 𝐺 = 𝐺𝐷 ◦ 𝐺𝐸 , such that
𝐺 (𝑋 ) = 𝐺𝐷 (𝐺𝐸 (𝑋 )). For a given AE based framework, the outlier
score for 𝑋 is computed using the reconstruction error as

𝑠 (𝑋 ) = ∥𝑋 −𝐺 (𝑋 )∥22 . (9)

Outliers tend to exhibit large reconstruction errors because they
do not conform to to the patterns in the data as coded by an
auto-encoder, hence the use of reconstruction errors as outlier
scores [2, 42, 47]. This scoring function is general in that it applies
to many reconstruction-based OD models, which have different
parameterizations of the reconstruction function 𝐺 . We show in
the following how FairOD regularizes the reconstruction loss from
base through fairness constraints that are conjointly optimized
during the training process. The base OD model optimizes the
following

Lbase =
𝑁∑
𝑖=1

∥𝑋𝑖 −𝐺 (𝑋𝑖 )∥22 (10)

and we denote its outlier scoring function as 𝑠base (·).

3.2 Fairness-aware Loss Function
We begin with designing a loss function for our OD model that
optimizes for achieving SP and group fidelity by introducing reg-
ularization to the base objective criterion. Specifically, FairOD



minimizes the following loss:

L = 𝛼 Lbase︸︷︷︸
Reconstruction

+ (1 − 𝛼) L𝑆𝑃︸︷︷︸
Statistical Parity

+ 𝛾 L𝐺𝐹︸︷︷︸
Group Fidelity

(11)

where 𝛼 ∈ (0, 1) and 𝛾 > 0 are hyperparameters which govern
the balance between different fairness criteria and reconstruction
quality in the loss function.

The first term in Eq. (11) is the objective for learning the recon-
struction (based on base model family) as given in Eq. (10), which
quantifies the goodness of the encoding 𝑍 via the squared error
between the original input and its reconstruction generated from
𝑍 . The second component in Eq. (11) corresponds to regularization
introduced to enforce the fairness notion of independence, or sta-
tistical parity (SP) as given in Eq. (4). Specifically, the term seeks
to minimize the absolute correlation between the outlier scores
S (used for producing predicted labels O) and protected variable
values PV . L𝑆𝑃 is given as

L𝑆𝑃 =

�����
( ∑𝑁

𝑖=1 𝑠 (𝑋𝑖 ) − 𝜇𝑠
) ( ∑𝑁

𝑖=1 𝑃𝑉𝑖 − 𝜇𝑃𝑉
)

𝜎𝑠 𝜎𝑃𝑉

����� (12)

where 𝜇𝑠 = 1
𝑁

∑𝑁
𝑖=1 𝑠 (𝑋𝑖 ), 𝜎𝑠 = 1

𝑁

∑𝑁
𝑖=1 (𝑠 (𝑋𝑖 ) − 𝜇𝑠 )2, 𝜇𝑃𝑉 =

1
𝑁

∑𝑁
𝑖=1 𝑃𝑉𝑖 , and 𝜎𝑃𝑉 = 1

𝑁

∑𝑁
𝑖=1 (𝑃𝑉𝑖 − 𝜇𝑃𝑉 )2.

We adapt this absolute correlation loss from [6], which proposed
its use in a supervised setting with the goal of enforcing statistical
parity. As [6] mentions, while minimizing this loss does not guar-
antee independence, it performs empirically quite well and offers
stable training. We observe the same in practice; it leads to minimal
associations between OD outcomes and the protected variable (see
details in Sec. 4).

Finally, the third component of Eq. (11) emphasizes that FairOD
should maintain fidelity to within-group rankings from the base
model (penalizing “laziness”). We set up a listwise learning-to-rank
objective in order to enforce group fidelity. Our goal is to train
FairOD such that it reflects the within-group rankings based on
𝑠base (·) from base. To that end, we employ a listwise ranking loss
criterion that is based on the well-known Discounted Cumulative
Gain (DCG) [25] measure, often used to assess ranking quality in
information retrieval tasks such as search. For a given ranked list,
DCG is defined as

DCG =
∑
𝑟

2𝑟𝑒𝑙𝑟 − 1
log2 (1 + 𝑟 )

where 𝑟𝑒𝑙𝑟 depicts the relevance of the item ranked at the 𝑟𝑡ℎ posi-
tion. In our setting, we use the outlier score 𝑠base (𝑋 ) of an instance
𝑋 to reflect its relevance since we aim to mimic the group-level
ranking by base. As such, DCG per group can be re-written as

DCG𝑃𝑉=𝑣 =
∑

𝑋𝑖 ∈X𝑃𝑉 =𝑣

2𝑠
base (𝑋𝑖 ) − 1

log2
(
1 +∑

𝑋𝑘 ∈X𝑃𝑉 =𝑣
1[𝑠 (𝑋𝑖 ) ≤ 𝑠 (𝑋𝑘 )]

)
where X𝑃𝑉=𝑎 and X𝑃𝑉=𝑏 would respectively denote the set of ob-
servations from majority and minority groups, and 𝑠 (𝑋 ) is the
estimated outlier score from our FairOD model under training.

A key challenge with DCG is that it is not differentiable, as it
involves ranking (sorting). Specifically, the sum term in the denom-
inator uses the (non-smooth) indicator function 1(·) to obtain the
position of instance 𝑖 as ranked by the estimated outlier scores.

We circumvent this challenge by replacing the indicator function
by the (smooth) sigmoid approximation, following [44]. Then, the
group fidelity loss component L𝐺𝐹 is given as

L𝐺𝐹 =
∑

𝑣∈{𝑎,𝑏 }

©«1 −
∑

𝑋𝑖 ∈X𝑃𝑉 =𝑣

2𝑠
base (𝑋𝑖 ) − 1
dnm

ª®¬ (13)

dnm = log2
(
1 +

∑
𝑋𝑘 ∈X𝑃𝑉 =𝑣

sigm(𝑠 (𝑋𝑘 ) − 𝑠 (𝑋𝑖 ))
)
· 𝐼𝐷𝐶𝐺𝑃𝑉=𝑣,

sigm(𝑥) =
exp(−𝑐𝑥)

1+exp(−𝑐𝑥) is the sigmoid function where 𝑐 > 0 is

the scaling constant, and, 𝐼𝐷𝐶𝐺𝑃𝑉=𝑣 =
∑ |X𝑃𝑉 =𝑣 |

𝑗=1 ((2𝑠base (𝑋 𝑗 ) − 1)
/log2 (1 + 𝑗)) is the ideal (hence 𝐼 ), i.e. largest DCG value attainable
for the respective group. Note that IDCG can be computed per
group apriori to model training via base outlier scores alone, and
serves as a normalizing constant in Eq. (13).

Note that having trained our model, scoring instances does not
require access to the value of their 𝑃𝑉 , as 𝑃𝑉 is only used in Eq.
(12) and (13) for training purposes. At test time, the anomaly score
of a given instance 𝑋 is computed simply via Eq. (9). Thus, FairOD
also fulfills the desiderata on treatment parity.

Optimization and Hyperparameter Tuning. We optimize the parame-
ters of FairOD by minimizing the loss function given in Eq. (11) by
using the built-in Adam optimizer [29] implemented in PyTorch.

FairOD comes with two tunable hyperparameters, 𝛼 and 𝛾 . We
define a grid for these and pick the configuration that achieves the
best balance between SP and our proxy quantity for group fidelity
(based on group-level ranking preservation). Note that both of these
quantities are unsupervised (i.e., do not require access to ground-
truth labels), therefore, FairOD model selection can be done in a
completely unsupervised fashion. We provide further details about
hyperparameter selection in Sec. 4.

Generalizing to Multi-valued and Multiple Protected Attributes.
Multi-valued 𝑃𝑉 . FairOD generalizes beyond binary 𝑃𝑉 , and easily
applies to settings with multi-valued, specifically categorical 𝑃𝑉
such as race. Recall that L𝑆𝑃 and L𝐺𝐹 are the loss components
that depend on 𝑃𝑉 . For a categorical 𝑃𝑉 , L𝐺𝐹 in Eq. (13) would
simply remain the same, where the outer sum goes over all unique
values of the 𝑃𝑉 . For L𝑆𝑃 , one could one-hot-encode (OHE) the
𝑃𝑉 into multiple variables and minimize the correlation of outlier
scores with each variable additively. That is, an outer sum would be
added to Eq. (12) that goes over the new OHE variables encoding
the categorical 𝑃𝑉 .
Multiple 𝑃𝑉𝑠 . FairOD can handle multiple different 𝑃𝑉𝑠 simulta-
neously, such as race and gender, since the loss components Eq. (12)
and Eq. (13) can be used additively for each 𝑃𝑉 . However, the caveat
to additive loss is that it would only enforce fairness with respect to
each individual 𝑃𝑉 , and yet may not exhibit fairness for the joint dis-
tribution of protected variables [28]. Even when additive extension
may not be ideal, we avoid modeling multiple protected variables
as a single 𝑃𝑉 that induces groups based on values from the cross-
product of available values across all 𝑃𝑉𝑠 . This is because partition-
ing of the data based on cross-product may yield many small groups,
which could cause instability in learning and poor generalization.



Table 2: Summary statistics of real-world and synthetic datasets used for evaluation.

Dataset N d PV PV = b |XPV=a |/|XPV=b | % outliers Labels

Adult 25262 11 gender female 4 5 {income ≤ 50𝐾 , income > 50𝐾 }
Credit 24593 1549 age age ≤ 25 4 5 {paid, delinquent}
Tweets 3982 10000 racial dialect African-American 4 5 {normal, abusive}
Ads 1682 1558 simulated 1 4 5 {non-ad, ad}

Synth1 2400 2 simulated 1 4 5 {0, 1}
Synth2 2400 2 simulated 1 4 5 {0, 1}

120 140 160 180 200 220

Feature 1

0

5

10

15

20

F
ea

tu
re

2

Inlier, PV = a

Inlier, PV = b

Outlier, PV = a

Outlier, PV = b

(a) Synth1

−10 −5 0 5 10

Feature 1

−8

−6

−4

−2

0

2

4

F
ea

tu
re

2

Inlier, PV = a

Inlier, PV = b

Outlier, PV = a

Outlier, PV = b

(b) Synth2

Figure 3: Synthetic datasets. See Appendix B.1 for the details
of the data generating process.

4 EXPERIMENTS
Our proposed FairOD is evaluated through extensive experiments
on a set of synthetic datasets as well as diverse real-world datasets.
In this section, we present dataset description and the experimental
setup, followed by key evaluation questions and results.

4.1 Dataset Description
Table 2 gives an overview of the datasets used in evaluation. A brief
summary follows, with details on generative process of synthetic
data and detailed descriptions in Appendix B.1.

4.1.1 Synthetic. We illustrate the efficacy of FairOD on two syn-
thetic datasets, Synth1 and Synth2. These datasets present scenar-
ios that mimic real-world settings, where we may have features that
are uncorrelated with the outcome labels but partially correlated
with the 𝑃𝑉 (see Fig. 3a), or features which are correlated both to
outcome labels and 𝑃𝑉 (see Fig. 3b).

4.1.2 Real-world. We experiment on 4 real-world datasets from
diverse domains that have various types of PV: specifically gender,
age, and race (see Table 2).

4.2 Baselines
We compare FairOD to two classes of baselines: (𝑖) a fairness-
agnostic base detector that aims to solely optimize for detection
performance, and (𝑖𝑖) preprocessing methods that aim to correct
for bias in the underlying distribution and generate a dataset ob-
fuscating the 𝑃𝑉 .
Base detector model:

• base: A deep anomaly detector that employs an autoencoder
neural network. The reconstruction error of the autoencoder
is used as the anomaly score. base omits the protected vari-
able from model training.

Preprocessing based methods:
• rw [27]: A preprocessing approach that assigns weights to
observations in each group differently to counterbalance the
under-representation of minority samples.

• dir [19] A preprocessing approach that edits feature values
such that protected variables can not be predicted based on
other features in order to increase group fairness. It uses
𝑟𝑒𝑝𝑎𝑖𝑟_𝑙𝑒𝑣𝑒𝑙 as a hyperparameter, where 0 indicates no re-
pair, and the larger the value gets, the more obfuscation is
enforced.

• lfr: This baseline is based on [52] that aims to find a la-
tent representation of the data while obfuscating informa-
tion about protected variables. In our implementation, we
omit the classification loss component during representation
learning. It uses two hyperparameters –𝐴𝑧 to control for SP,
and 𝐴𝑥 to control for the quality of representation.

• arl: This is based on [7] that finds new latent representations
by employing an adversarial training process to remove infor-
mation about the protected variables. In our implementation,
we use reconstruction error in place of the classification loss.
arl uses 𝜆 to control for the trade-off between accuracy (in
our implementation, reconstruction quality) and obfuscat-
ing protected variable. This baseline optimizes an objective
similar to that proposed in [54] which substitutes SVDD loss
for reconstruction loss.

The OD task proceeds the preprocessing, where we employ the
base detector on the modified data transformed or learned by each
of the preprocessing based baselines. We do not compare to the
LOF-based fair detector in [41] as it exhibits disparate treatment
and is inapplicable in settings that we consider.

Hyperparameters The hyperparameter settings for the com-
peting methods are detailed in Appendix C.

4.3 Evaluation
We design experiments to answer the following questions:

• [Q1] Fairness: How well does FairOD (a) achieve fairness
as compared to the baselines, and (b) retain the within-group
ranking from base?

• [Q2] Fairness-accuracy trade-off:How accurately are the
outliers detected by FairOD as compared to fairness-agnostic
base detector?



• [Q3]Ablation study:How do different elements of FairOD
influence group fidelity and detector fairness?

4.3.1 Evaluation Measures.

Fairness. Fairness is measured in terms of statistical parity. We
use flag-rate ratio 𝑟 =

𝑃 (𝑂=1 |𝑃𝑉=𝑎)
𝑃 (𝑂=1 |𝑃𝑉=𝑏) which measures the statisti-

cal fairness of a detector based on the predicted outcome where
𝑃 (𝑂 = 1|𝑃𝑉 = 𝑎) is the flag-rate of the majority group and 𝑃 (𝑂 =

1|𝑃𝑉 = 𝑏) is the flag-rate of the minority group. We define Fairness
= min(𝑟, 1/𝑟 ) ∈ [0, 1]. For a maximally fair detector, Fairness = 1 as
𝑟 = 1.

GroupFidelity. We use the Harmonic Mean (HM) of per-group
NDCG to measure how well the group ranking of base detector is
preserved in the fairness-aware detectors. HM between two scalars
𝑝 and 𝑞 is defined as 1/( 1𝑝 + 1

𝑞 ). We use HM to report GroupFidelity
since it is (more) sensitive to lower values (than e.g. arithmetic
mean); as such, it takes large values when both of its arguments
have large values. We define GroupFidelity = HM(𝑁𝐷𝐶𝐺𝑃𝑉=𝑎,

𝑁𝐷𝐶𝐺𝑃𝑉=𝑏 ), where

𝑁𝐷𝐶𝐺𝑃𝑉=𝑎 =

|X𝑃𝑉 =𝑎 |∑
𝑖=1

2𝑠
base (𝑋𝑖 ) − 1

log2 (1 +
∑ |X𝑃𝑉 =𝑎 |
𝑘=1 1(𝑠 (𝑋𝑖 ) ≤ 𝑠 (𝑋𝑘 ))) · 𝐼𝐷𝐶𝐺

,

|X𝑃𝑉=𝑎 | is the number of instances in group with 𝑃𝑉 = 𝑎, 1(𝑐𝑜𝑛𝑑)
is the indicator function that evaluates to 1 if 𝑐𝑜𝑛𝑑 is true and
0 otherwise, 𝑠 (𝑋𝑖 ) is the predicted score of the fairness-aware
detector, 𝑠base (𝑋𝑖 ) is the outlier score from base detector and
𝐼𝐷𝐶𝐺 =

∑ |X𝑃𝑉 =𝑎 |
𝑗=1

2𝑠
base (𝑋𝑗 )−1
log2 ( 𝑗+1)

. GroupFidelity ≈ 1 indicates that
group ranking from the base detector is well preserved.

Top-𝑘 Rank Agreement. We also measure how well the final rank-
ing of the method aligns with the purely performance-driven base
detector, as base optimizes only for reconstruction error. We com-
pute top-𝑘 rank agreement as the Jaccard set similarity between
the top-𝑘 observations as ranked by two methods. Let 𝜋base[1:𝑘 ] de-
note the top-𝑘 of the ranked list based on outlier scores 𝑠base (𝑋𝑖 )’s,
and 𝜋𝑑𝑒𝑡𝑒𝑐𝑡𝑜𝑟[1:𝑘 ] be the top-𝑘 of the ranked list for competing meth-
ods where 𝑑𝑒𝑡𝑒𝑐𝑡𝑜𝑟∈{rw, dir, lfr, arl, FairOD }. Then the mea-
sure is given as Top-𝑘 Rank Agreement = |𝜋base

[1:𝑘 ] ∩ 𝜋𝑑𝑒𝑡𝑒𝑐𝑡𝑜𝑟
[1:𝑘 ] |/ |𝜋base

[1:𝑘 ] ∪
𝜋𝑑𝑒𝑡𝑒𝑐𝑡𝑜𝑟
[1:𝑘 ] |.

AUC-ratio and AP-ratio. Finally, we consider supervised parity
measures based on ground-truth labels, defined as the ratio of
ROC AUC and Average Precision (AP) performances across groups;
AUC-ratio = AUC𝑃𝑉=𝑎/AUC𝑃𝑉=𝑏 and AP-ratio = AP𝑃𝑉=𝑎/AP𝑃𝑉=𝑏 .

[Q1] Fairness
In Fig. 2 (presented in Introduction), FairOD is compared against
base, as well as all the preprocessing baselines across datasets. The
methods are evaluated using the best configuration of eachmethod6
on each dataset. The best hyperparameters for FairOD are the ones
for which GroupFidelity and Fairness7 are closest to the “ideal” point
as indicated in Fig. 2.
6In Appendix D, for all methods and all datasets, we report detailed values for different
metrics for each PV induced group.
7Note that we can do model selection in this manner without access to any labels,
since both are unsupervised measures.

In Fig. 2 (left), the average of Fairness and GroupFidelity for each
method over datasets is reported. FairOD achieves 9× and 5× im-
provement in Fairness as compared to base method and the nearest
competitor, respectively. For FairOD, Fairness is very close to 1,
while at the same time the group ranking from the base detector is
well preserved where GroupFidelity also approaches 1. FairOD domi-
nates the baselines (see Fig. 2 (right)) as it is on the Pareto frontier of
GroupFidelity and Fairness. Here, each point on the plot represents an
evaluated dataset. Notice that FairOD preserves the group ranking
while achieving SP consistently across datasets. Fig. 4 reports Top-𝑘
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Figure 4: (left) FairOD achieves the best Top-𝑘 Rank Agreement
compared to the competitors (base is shown for reference) in
addition to the best overall Fairness, across datasets on aver-
age, and (right) measures are shown on individual datasets.

Rank Agreement (computed at top-5% of ranked lists) of each method
evaluated across datasets. The agreement measures the degree of
alignment of the ranked results by a method with the fairness-
agnostic base detector. In Fig. 4 (left), as averaged over datasets,
FairOD achieves better rank agreement as compared to the com-
petitors. In Fig. 4 (right), FairOD approaches ideal statistical parity
across datasets while achieving better rank agreement with the
base detector. Note that FairOD does not strive for a perfect Top-𝑘
Rank Agreement (=1) with base, since base is shown to fall short with
respect to our desired fairness criteria. Our purpose in illustrating it
is to show that the ranked list by FairOD is not drastically different
from base, which simply aims for detection performance.

Next we evaluate the competing methods against supervised
(label-aware) fairness metrics. Note that FairOD does not (by de-
sign) optimize for these supervised fairness measures. Fig. 5a eval-
uates the methods against Fairness and label-aware parity crite-
rion – specifically, group AP-ratio (ideal AP-ratio is 1). FairOD ap-
proaches ideal Fairness as well as ideal AP-ratio across all datasets.
FairOD outperforms the competitors on the averaged metrics over
datasets (Fig. 5a (left)) and across individual datasets (Fig. 5a (right)).
In contrast, the preprocessing baselines are up to ∼5× worse than
FairOD over AP-ratiomeasure across datasets. Fig. 5b reports evalua-
tion of methods against Fairness and another label-aware parity mea-
sure – specifically, group AUC-ratio (ideal AUC-ratio = 1). As shown
in Fig. 5b (left), FairOD outperforms all the baselines in expectation
as averaged over all datasets. Further, in Fig. 5b (right), FairOD
consistently approaches ideal AUC-ratio across datasets, while the
preprocessing baselines are up to ∼1.9× worse comparatively.



We note that impressively, FairOD approaches parity across
different supervised fairness measures despite not being able to
optimize for label-aware criteria explicitly.

[Q2] Fairness-accuracy trade-off
In the presence of ground-truth outlier labels, the performance of a
detector could be measured using a ranking accuracy metric such
as area under the ROC curve (ROC AUC).
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Figure 5: FairOD outperforms all competitors on averaged
label-aware parity metrics over datasets (left) and for indi-
vidual datasets (right): we report Fairness against (a) Group
AP-ratio and (b) Group AUC-ratio.
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Figure 6: ROCAUC of FairOD vs. base: FairOD matches the
performance of base detector, while enforcing fairness crite-
ria (maintaining good performance with fairness).

In Fig. 6, we compare the AUC performance of FairOD to that of
base detector for all datasets. Notice that each of the symbols (i.e.
datasets) is slightly below the diagonal line indicating that FairOD
achieves equal or sometimes even better (!) detection performance
as compared to base. The explanation is that since FairOD enforces
SP and does not allow “laziness", it addresses the issue of falsely
or unjustly flagged minority samples by base, thereby, improving
detection performance.

From Fig. 6, we conclude that FairOD does not trade-off detec-
tion performance much, and in some cases it even improves perfor-
mance by eliminating false positives from the minority group, as
compared to the performance-driven, fairness-agnostic base.

[Q3] Ablation study
Finally, we evaluate the effect of various components in the design
of FairOD’s objective. Specifically, we compare to the results of
two relaxed variants of FairOD, namely FairOD-L and FairOD-C,
described as follows.

• FairOD-L: We retain only the SP-based regularization term from
FairOD objective along with the reconstruction error. This relax-
ation of FairOD is partially based on the method proposed in [6],
which minimizes the correlation between model prediction and
group membership to the 𝑃𝑉 . In FairOD-L, the reconstruction
error term substitutes the classification loss used in the opti-
mization criteria in [6]. Note that FairOD-L concerns itself with
only group fairness to attain SP which may suffer from “laziness”
(hence, FairOD-L) (see Sec. 2).

• FairOD-C: Instead of training with NDCG-based group fidelity
regularization, FairOD-C utilizes a simpler regularization, aim-
ing to minimize the correlation (hence, FairOD-C) of the outlier
scores per-group with the corresponding scores from base detec-
tor. Thus, FairOD-C attempts to maintain group fidelity over the
entire ranking within a group, in contrast to FairOD’s NDCG-
based regularization which emphasizes the quality of the ranking
at the top. Specifically, FairOD-C substitutesL𝐺𝐹 in Eq. (11) with
the following.

L𝐺𝐹 = − ∑
𝑣∈{𝑎,𝑏 }

���� (∑𝑋𝑖 ∈X𝑃𝑉 =𝑣
𝑠 (𝑋𝑖 )−𝜇𝑠

) (∑
𝑋𝑖 ∈X𝑃𝑉 =𝑣

𝑠base (𝑋𝑖 )−𝜇𝑠base
)

𝜎𝑠 𝜎𝑠base

����
where 𝑣 ∈ {𝑎, 𝑏}, and 𝜇𝑠base , 𝜎𝑠base are defined similar to 𝜇𝑠 , 𝜎𝑠
respectively.

Fig. 7 presents the comparison of FairOD and its variants. In
Fig. 7 (left), we report the evaluation against GroupFidelity and Fair-
ness averaged over datasets, and in Fig. 7 (right), the metrics are
reported for each individual dataset. FairOD-L approaches SP and
achieves comparable Fairness to FairOD except on one dataset as
shown in Fig. 7 (right). This results in lower Fairness compared to
FairODwhen averaged over datasets as shown in Fig. 7 (left). How-
ever, FairOD-L suffers with respect to GroupFidelity as compared to
FairOD. This is because FairOD-L may randomly flag instances to
achieve SP since it does not include any group ranking criterion
in its objective. On the other hand, FairOD-C improves Fairness
when compared to base, while under-performing on the majority
of datasets compared to FairOD across metrics. Since FairOD-C
tries to preserve group-level ranking, it trades-off on Fairness as
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Figure 7: FairOD compared to its variants FairOD-L and
FairOD-C across datasets, to evaluate the effect of differ-
ent regularization components. FairOD-L achieves compa-
rable Fairness to FairOD while compromising GroupFidelity.
FairOD-C improves Fairness as compared to base, but is ill-
suited to optimizing for GroupFidelity.

measured against FairOD-L. We also observe that FairOD outper-
forms FairOD-C on all datasets, which suggests that preserving the
entire group-level rankings may be a harder task than preserving
top of the rankings; it is also a needlessly ill-suited one since what
matters for outlier detection is the top of the ranking.

5 RELATEDWORK
A majority of work on algorithmic fairness focuses on supervised
learning problems. We refer to [5, 39] for an excellent overview.
We organize related work in three sub-areas related to fairness in
outlier detection, fairness-aware representation learning, and data
de-biasing strategies.
Outlier Detection and Fairness Outlier detection (OD) is a well-
studied problem in the literature [2, 12, 22], and finds numerous
applications in high-stakes domains like health-care [36], secu-
rity [21], and finance [43]. However, only a few studies focus on
OD’s fairness aspects. P and Sam Abraham [41] propose a detector
called FairLOF that applies an ad-hoc procedure to introduce fair-
ness specifically to the LOF algorithm [9]. This approach suffers
from several drawbacks: (i) it mandates disparate treatment, which
may be at times infeasible/unlawful, e.g. in domains like housing
or employment, (ii) only prioritizes SP, which as we discussed in
Sec. 2, can permit “laziness,” (iii) it is heuristic, and cannot be con-
cretely optimized end-to-end. Concurrent to our work, Zhang and
Davidson [54] introduce a deep SVDD based detector employing
adversarial training to obfuscate protected group membership, sim-
ilar to our arl baseline. This approach also has issues: (i) it only
considers SP, and (ii) it suffers from well-known instability due to
adversarial training [10, 31, 38]. A related work by Davidson and
Ravi [17] focuses on quantifying the fairness of an OD model’s
outcomes after detection, which thus has a different scope.
Fairness-aware Representation Learning Several works aim to
map input samples to an embedding space, where the representa-
tions are indistinguishable across groups [35, 52]. Most recently, ad-
versarial training has been used to obfuscate PV association in repre-
sentations while preserving accurate classification [1, 7, 18, 38, 53].
Most of these methods are supervised. Substituting classification or

label-aware loss terms with unsupervised reconstruction loss can
plausibly extend such methods to OD (by using masked represen-
tations as inputs to a detector). However, a common shortcoming
is that statistical parity (SP) is employed as the primary fairness
criterion in these methods, e.g. in fair principal component analy-
sis [40] and fair variational autoencoder [35]. To summarize, fair
representation learning techniques exhibit two key drawbacks for
unsupervised OD: (i) they only employ SP, which may be prone
to “laziness", and (ii) isolating embedding from detection makes
embedding oblivious to the task itself, and therefore can yield poor
detection performance (as shown in experiments in Sec. 4).
Strategies for Data De-Biasing Some of the popular de-biasing
methods [27, 32] draw from topics in learning with imbalanced
data [24] that employ under- or over-sampling or point-wise weight-
ing of the instances based on the class label proportions to obtain
balanced data. These methods apply preprocessing to the data in a
manner that is agnostic to the subsequent or downstream task and
consider only the fairness notion of SP, which is prone to “laziness.”

6 CONCLUSIONS
Although fairness in machine learning has become increasingly
prominent in recent years, fairness in the context of unsupervised
outlier detection (OD) has received comparatively little study. OD
is an integral data-driven task in a variety of domains including
finance, healthcare and security, where it is used to inform and
prioritize auditing measures. Without careful attention, OD as-is
can cause unjust flagging of societal minorities (w.r.t. race, sex, etc.)
because of their standing as statistical minorities, when minority
status does not indicate positive-class membership (crime, fraud,
etc.). This unjust flagging can propagate to downstream supervised
classifiers and further exacerbate the issues. Our work tackles the
problem of fairness-aware outlier detection. Specifically, we first
introduce guiding desiderata for, and concrete formalization of the
fair OD problem. We next present FairOD, a fairness-aware, princi-
pled end-to-end detector which addresses the problem, and satisfies
several appealing properties: (i) detection effectiveness: it is effective,
and maintains high detection accuracy, (ii) treatment parity: it does
not suffer disparate treatment at decision time, (iii) statistical parity:
it maintains group fairness across minority and majority groups,
and (iv) group fidelity: it emphasizing flagging of truly high-risk
samples within each group, aiming to curb detector “laziness”. Fi-
nally, we show empirical results across diverse real and synthetic
datasets, demonstrating that our approach achieves fairness goals
while providing accurate detection, significantly outperforming un-
supervised fair representation learning and data de-biasing based
baselines. We hope that our expository work yields further studies
in this area.
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