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ABSTRACT
Given a set of attributed subgraphs known to be from dif-
ferent classes, how can we discover their differences? There
are many cases where collections of subgraphs may be con-
trasted against each other. For example, they may be as-
signed ground truth labels (spam/not-spam), or it may be
desired to directly compare the biological networks of differ-
ent species or compound networks of different chemicals.

In this work we introduce the problem of characterizing
the differences between attributed subgraphs that belong to
different classes. We define this characterization problem
as one of partitioning the attributes into as many groups as
the number of classes, while maximizing the total attributed
quality score of all the given subgraphs.

We show that our attribute-to-class assignment problem is
NP-hard and an optimal (1− 1/e)-approximation algorithm
exists. We also propose two different faster heuristics that
are linear-time in the number of attributes and subgraphs.
Unlike previous work where only attributes were taken into
account for characterization, here we exploit both attributes
and social ties (i.e. graph structure).

Through extensive experiments, we compare our proposed
algorithms, show findings that agree with human intuition
on datasets from Amazon co-purchases, Congressional bill
sponsorships and DBLP co-authorships. We also show that
our approach of characterizing subgraphs is better suited for
sense-making than discriminating classification approaches.

1. INTRODUCTION
Besides connectivity, many graphs contain a state (or con-

tent) vector for each node. This type of graph is known as
an attributed graph, and is a natural abstraction for many
applications. For example, in a social network the profile
information of individuals (e.g. age, occupation, etc.) con-
stitute the attribute vector for each node. Biological data
can also be represented as attributed graphs; protein-protein
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interaction (PPI) networks can have gene encodings of pro-
teins as attributes, or gene interaction networks may contain
gene ontology properties as attributes [14, 22].

We consider the following question: Given a collection of
attributed subgraphs from different classes, how can we dis-
cover the attributes that characterize their differences? This
is a general question, which finds applications in various set-
tings depending on how ‘subgraphs’ and ‘classes’ are defined
and interpreted. In social networks, subgraphs could be the
local communities around each individual. That is because
one’s acquaintances carry a lot of information about them
due to the factors of homophily (phenomenon that“birds of a
feather flock together”) and influence (phenomenon that our
attitudes and behaviors are shaped by our peers) [7]. One
can also consider the subgraphs extracted by a community
detection algorithm, the social circles as defined by individ-
uals, or any collection of small graphlets that come from an
application (e.g. PPI networks of a collection of fly species).
On the other hand, a ‘class’ corresponds to a broad catego-
rization of subjects. In social network analysis, one may try
to understand the differences between individuals living in
different countries (e.g. U.S. vs. China), or having different
demographics (e.g. elderly vs. teenagers). In biology, one
may want to analyze PPI networks of healthy versus sick
individuals or of mice versus humans.1

In this work, we propose to characterize the different classes
through the attributes that their subgraphs focus on. Intu-
itively, we assume the nodes in each subgraph share a subset
of attributes in common (e.g. a circle of friends who go to
the same school and play baseball). That is, members of
a subgraph “click” together through a shared characterizing
attribute subspace, called the focus attributes [28]. It is ex-
pected that out of a large number of attributes, only a few
of them would be relevant for each subgraph.

Our main insight for comparing subgraphs is then that the
subgraphs from different classes would exhibit different focus
attributes. In other words, the attributes that characterize
the subgraphs of one class are different from the attributes
around which the subgraphs from another class center upon.
A stereotypical example to this insight is teenagers focusing
on attributes such as ‘selfies’ and ‘partying’ whereas elderly
being characterized by ‘knitting’ and ‘tea partying’. Note
that even though classes might share common attributes,
we aim to identify those that are exclusive and not the over-
lapping ones; as those best help characterize the differences.
Figure 1 presents a complete sketch of our problem.

1Here we focus on two classes for simplicity however our methods
easily generalize to subgraphs from any number of classes.
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Figure 1: Problem sketch on toy data. Given (b) node-attributed subgraphs (or (a) nodes around which we extract subgraphs)
from different classes (A and B), we find (c) the characterizing subspace (i.e., the focus attributes and respective weights) for
each subgraph, and (d) split and rank the attributes for characterizing and comparing the classes.

A vast body of methods for community detection has been
proposed for both simple [4, 8, 16, 26, 36] as well as at-
tributed graphs [2, 12, 13, 15, 23, 25, 28, 33, 37]. Those are
primarily concerned with extracting disjoint or overlapping
groups of nodes, while optimizing some graph clustering ob-
jective. Our problem is considerably different. Unlike them,
our goal is to understand the differences between distinct
classes of subgraphs (or communities) through the attributes
that characterize them, not to extract better ones.

Similar studies have been done in characterizing and com-
paring the social media use of different classes of subjects.
For example, features from a user’s social media interactions
have been shown to predict demographic information such
as gender [5], age [31, 29], occupation [30], location [9, 18],
and income [10]. More nuanced traits have also been pre-
dicted about individuals, such as personality [32], or mental
illness [6]. However, these studies tend to focus solely on
text attributes and do not consider broader levels of social
interactions in a network.

A recent work in the same lines with ours is by DellaPosta
et al. [7], which studied network effects for explaining how
political ideology becomes linked to lifestyles, such as “latte
liberals” and “bird-hunting conservatives”. Their simulated
models reveal strong indications for influences operating be-
tween individuals in political “echo chambers” rather than
within individuals, demonstrating evidence toward “one is
the company they keep”, i.e., that social ties matter.

In this work, we analyze the differences between individu-
als from different classes. Unlike previous work which has fo-
cused primarily on the individual’s attributes (mostly text),
we use local communities around individual nodes in ad-
dition to attributes to characterize them. Specifically, our
contributions include the following:

• We introduce the general characterization problem for
a given collection of attributed subgraphs from differ-
ent classes—which leverages both the structure of so-
cial ties as well as the attributes. Our formulation
entails partitioning the attributes into as many groups
as the number of classes, while maximizing the total
attributed quality score of the input subgraphs (§3).
• We show that our attribute-to-class assignment prob-

lem is NP-hard and an optimal (1−1/e)-approximation
algorithm exists (§4.1). We also propose two different
faster heuristics that are linear-time in the number of
attributes and subgraphs (§4.2).
• Through extensive experiments, we compare the per-

formance of the algorithms, present findings that agree
with human intuition on real-world scenarios from 3
datasets, and demonstrate that our characterization

approach is better suited to sense-making than dis-
criminative classification approaches (§5).

2. PROBLEM DEFINITION
In this section, we introduce the notation used through-

out text and present the formal problem definition. An
attributed graph G = (V,E,A) is a graph with node set
V , undirected edges E ⊆ V × V , and a set of attributes
A = {a1, . . . ad} associated with every node, where ai ∈ <d

denotes the d-dimensional attribute vector for node i. In
this work we consider real-valued and binary attributes. A
categorical attribute can be transformed to binary through
one-hot encoding.

Given a collection of attributed subgraphs from c classes,
our aim is to split the attributes in A into c disjoint groups
such that the total quality score Q of all the subgraphs based
on function q(·) and their assigned attributes is maximized.
Here we use the normality measure [27] for q(·), which can
be replaced with any other measure of interest that can uti-
lize both graph structure and attributes in general.

Our problem statement is given for two classes as follows
for simplicity, which can be generalized to multiple classes.

Definition 1 (Characterization Problem).
Given

• p attributed subgraphs g+1 , g
+
2 , . . . , g

+
p from class 1,

• n attributed subgraphs g−1 , g
−
2 , . . . , g

−
n from class 2,

from graph G, and attribute vector a ∈ <d for each
node;

Find

• a partitioning of attributes to classes as A+ and A−,
where A+ ∪A− = A and A+ ∩A− = ∅,
• focus attributes A+

i ⊆ A
+ (and respective weights w+

i )
for each subgraph g+i , ∀i, and

• focus attributes A−j ⊆ A
− (and respective weights w−j )

for each subgraph g−j , ∀j;

such that

• total quality Q of all subgraphs is maximized, where
Q =

∑p
i=1 q(g

+
i |A

+) +
∑n

j=1 q(g
−
j |A

−);

Rank attributes within A+ and A−.

The above problem contains three subproblems, in par-
ticular, (P1) how to measure the quality of an attributed
subgraph, (P2) how to find the focus attributes (and their
weights) of a given subgraph, and (P3) how to assign and
rank the attributes for different classes so as to maximize



total quality. In practice, classes focus on a small set of
attributes. Further, our ranking of the attributes ensures
those irrelevant to both classes and those common between
them are ranked lower and only a few of the most differ-
entiating attributes stand out. Figure 1 shows an example
for our problem for 5 subgraphs from 2 classes, where 6 at-
tributes are split into two and ranked for characterizing and
comparing the classes.

In the next section, we address the subproblems in the
given order above, in §3.1 through §3.3 respectively, to build
up a solution for our main problem statement.

3. FORMULATION
3.1 Quantifying Quality

To infer the characterizing subspace for a given subgraph,
we use a measure of subgraph quality. The idea is to find
the attribute subspace and respective weights that maximize
the quality of each subgraph. In this work, we use the nor-

mality measure [27], which not only utilizes both subgraph
structure as well as attributes, but also quantifies both in-
ternal and external connectivity of the subgraph.

For a given subgraph g, its normality N(g) is given as
in Eq. (1), where W is the adjacency matrix, ki is node i’s
degree, sim(·) is the similarity function of attribute vectors
weighted by wg, e is the number of edges, and B(g) denotes
the nodes at the boundary of the subgraph (for isolated sub-
graphs, B(g) is empty). The two terms in (1) respectively
quantify g internally and externally: many, surprising, and
highly similar connections inside g increase internal qual-
ity, whereas if such edges are at the boundary, they decrease
external quality. For technical details of normality, see [27].

N(g) = I +X =
∑

i∈g,j∈g

(
Wij −

kikj
2e

)
sim(ai,aj|wg)

−
∑

i∈g,b∈B(g)
(i,b)∈E

(
1−min(1,

kikb
2e

)
)
sim(ai,ab|wg)

= wg
T · (aI + aX) (1)

One can handle highly heterogeneous attributes simply by
choosing the right sim(·) function. Also note that aI and
aX are vectors that can be directly computed from data.
Attributes with large non-zero weights in wg are called the
focus attributes of subgraph g.

3.2 Discovering Characterizing Subspaces
For a subgraph we can use Eq. (1) to compute its nor-

mality provided wg, the weights for the (focus) attributes.
However the focus is often latent and hard to guess without
prior knowledge, especially in high dimensions where nodes
are associated with a long list of attributes. Even if the focus
is known apriori, it is hard to manually assign weights.

Instead, we infer the attribute weight vector for a given
subgraph, so as to maximize its normality score. In other
words, we leverage normality as an objective function to
infer the best wg for a given g. This objective is written as

max.
wg

wg
T · (aI + aX)

s.t. ‖wg‖p = 1, wg(a) ≥ 0, ∀a = 1 . . . d (2)

Note that wg is normalized to its p-norm to restrain the so-
lution space. We also introduce non-negativity constraint on

the weights to facilitate their interpretation. In the following
we let x̂ = (aI + aX), where x̂(a) ∈ [−1, 1].

If one uses ‖wg‖p=1, or the L1 norm, the solution picks
the single attribute with the largest x̂ entry as the focus.
That is, wg(a) = 1 where max(x̂) = x̂(a) and 0 otherwise.
This can be interpreted as the most important attribute that
characterizes the subgraph. Note that x̂ may contain only
negative entries, in which case the largest negative entry is
selected, and the subgraph is deemed as low quality.

If there are multiple attributes that can increase normal-

ity, we can also select all the attributes with positive entries
in x̂ as the subgraph focus. The weights of these attributes,
however, should be proportional to the magnitude of their
x̂ values. This is exactly what ‖wg‖p=2, or the L2 norm
yields. It is shown (see [27]) that under p = 2,

wg(a) =
x̂(a)√∑

x̂(i)>0 x̂(i)2
, (3)

where x̂(a) > 0 and 0 otherwise, such that wg is unit-
normalized. The normality score of subgraph g then be-

comes N(g) = wg
T · x̂ =

∑
x̂(a)>0

x̂(a)√∑
x̂(i)>0 x̂(i)2

x̂(a) =√∑
x̂(i)>0 x̂(i)2 = ‖x̂+‖2, i.e., the 2-norm of x̂ induced on

the attributes with positive x̂ entries.

3.3 Identifying Class Differences

3.3.1 Splitting attributes between classes
In this last part we return to our main problem statement,

where we seek to split the attribute space between different
classes so as to be able to identify their differences. We aim
to obtain such an assignment of attributes with a goal to
maximize the total quality (i.e., normality) of all the sub-
graphs from both classes. This ensures that the subgraphs
are still characterized well, even under the constraint that
the attributes are not shared across classes.

Let S+ = {g+1 , . . . , g+p } and S− = {g−1 , . . . , g−n } denote
the sets of all subgraphs in class 1 and class 2, respectively,
where each subgraph is now associated with a d-dimensional
non-negative vector x. This is the same as the x̂ vector
introduced in §3.2, except that all the negative entries are set
to zero. Recall that the entries of x̂ depict the contribution
of each attribute to the quality of the subgraph. Therefore,
we can drop the negative entries (recall that the optimization
in (2) selects only the positive entries, if any).2

The goal is then to find two disjoint attribute groups A+

and A−, A+ ∪A− = A and A+ ∩A− = ∅, such that the to-
tal quality of all subgraphs is maximized (see problem state-
ment in §2). Given a set of selected attributes S, the quality
of a subgraph g can be written as

N(g|S) =

√∑
a∈S

x(a)2 = ‖x[S]‖2 (4)

i.e., the 2-norm of x induced on the attribute subspace.
Therefore, the overall problem can be (re)formulated as

max.
A+⊆A,A−⊆A

1

p

∑
i∈S+

‖xi[A
+]‖2 +

1

n

∑
j∈S−

‖xj [A
−]‖2

such that A+ ∩A− = ∅ (5)

2There may be subgraphs for which x̂ contains only negative
entries. We exclude such subgraphs from the study of discovering
class differences, as they are deemed low quality.



Note that we normalize the terms by the number of sub-
graphs in each class to handle class imbalance. We also
emphasize that our objective in (5) is different from a clas-
sification problem in two key ways. First, we work with x
vectors that embed information on subgraph connectivity
as well as focus attributes rather than the original attribute
vectors a’s. Second, our objective embraces characteriza-
tion and aims to find a partitioning of attributes that maxi-
mizes total quality, which is different from finding a decision
boundary that minimizes classification loss as in discrimi-
native approaches (See §5).

3.3.2 Ranking attributes
A solution to (5) (next section) provides a partitioning

of the attributes into two groups. We can analyze the spe-
cific attributes assigned to classes to characterize their dif-
ferences. Since this is an exploratory task, analyzing a large
number of attributes would be infeasible. For easier inter-
pretation, we need a ranking of the attributes.

One could think of using
∑

i∈S(c) N(gi|a ∈ A(c)) for scor-
ing each attribute a. This however does not reflect the differ-
entiating power but only the importance of a for class c. We
want both important and differentiating attributes to rank
higher as they truly characterize the difference between sub-
graphs of the two classes. Specifically, some attributes may
exhibit positive x entries for a particular class, however very
small values, indicating only slight relevance. We may also
have some attributes that exhibit large positive x entries,
however for both classes. While relevant, such attributes are
non-differentiating and would be uninformative for our task.

To get rid of only slightly relevant or non-differentiating
attributes and obtain a sparse solution, we define a relative
contribution score rc(·) for each attribute a as

rc(a) =
1

p

∑
i∈S+

xi(a)− 1

n

∑
j∈S−

xj(a) (6)

which is the difference between a’s contribution alone to the
average quality of subgraphs in class 1 and class 2. We then
rank the attributes within each class by their rc values.

4. ALGORITHMS

4.1 Optimal Approximation
It is easy to show that our quality function N(g|S) =
‖x[S]‖2 in Eq. (4) is a monotone submodular set function
with respect to S for non-negative x. That is, the quality of
a subgraph increases monotonically with increasing set size
S. In addition, the increase follows the diminishing returns
property known in economics, i.e., adding a new attribute a
to a set S increases the function less than adding the same
attribute to its smaller subset S′; N(g|a ∪ S) − N(g|S) ≤
N(g|a ∪ S′)−N(g|S′), S′ ⊆ S ⊆ A.

Under this setting, we find that our problem in (5) can be
stated as an instance of the Submodular Welfare Problem
(SWP), which is defined as follows.

Definition 2 (Submodular Welfare Problem).
Given d items and m players having monotone submodular
utility functions wi : 2[d] → <+, find a partitioning of
the d items into m disjoint sets I1, I2, . . . , Im in order to
maximize

∑m
i=1 wi(Ii).

In our formulation items map to the attributes for d = |A|,
whereas players correspond to the classes, in the simplest

case for m = 2. In addition, the utility function is written
for each class c ∈ {+,−} as

wc(Ic) = N(S(c)|A(c)) =
1

n(c)

∑
k∈S(c)

‖xk[A(c)]‖2 (7)

which is the average normality scores of subgraphs S be-
longing to class c. As ‖ · ‖2 is a monotone and submodular

function, so is N(S(c)) since the sum of submodular func-
tions is also submodular [21]. Note that although we focus
on two classes in this work, the SWP is defined more gen-
erally for m players, i.e., classes. As such, it is easy to
generalize our problem to more classes following the same
solutions introduced for the SWP.

The SWP is first studied by Lehmann et al. [19], who
proposed a simple on-line greedy algorithm that gives a 1/2-
approximation for this problem. Later, Vondrák proposed
an improved (1− 1/e)-approximation solution [35]. Khot et
al. showed that the SWP cannot be approximated to a fac-
tor better than 1− 1/e, unless P = NP [17]. Mirrokni et al.
further proved that a better than (1 − 1/e)-approximation
would require exponentially many value queries, regardless
of P = NP [24]. As such, Vondrák’s solution is the opti-
mal approximation algorithm for the SWP, which we use to
solve our problem in (5). The solution uses a multilinear
extension to relax the subset optimization into a numerical
optimization problem such that advanced optimization tech-
niques, in particular a continuous greedy algorithm, can be
applied. The continuous solution is then rounded to obtain
a near-optimal set with the aforementioned guarantee [35].

4.2 Faster Heuristics

4.2.1 Pre-normalized weights
For the formulation shown in (5), we unit-normalize the

attribute weights as in Eq. (3), only based on a selected

subset S: wg(a) = x(a)√∑
a∈S x(a)2

. This normalization yields

the quality function N(g|S) =
√∑

a∈S x(a)2, and requires

that S is given/known. A way to simplify this function is

to fix the attribute weights at wg(a) = x(a)√∑
a∈A x(a)2

, i.e., to

normalize them based on all the (known) positive attributes
in A rather than a (unknown) subset. This way the attribute
weights can be pre-computed and do not depend on the to-
be-selected attribute subsets. The simplified version of the
maximization in (5) is then written as

max.
A+⊆A,A−⊆A

1

p

∑
i∈S+

∑
a∈A+

xi(a)2

Di
+

1

n

∑
j∈S−

∑
a∈A−

xj(a)2

Dj

such that A+ ∩A− = ∅ (8)

where the denominator Di =
√∑

a∈A xi(a)2 = ‖xi‖2,

which can now be treated as constant as it does not depend
on A+ (same for Dj).

The simplified function N(g|S) =
‖x[S]‖22
‖x‖2

is now a mono-

tone modular function with respect to S. The contribution
of a particular new attribute to the quality of a subgraph
does not any more depend on the other attributes that are
already in the selected set. That is, N(g|a ∪ S)−N(g|S) =

N(g|a ∪ S′)−N(g|S′) = x(a)2

‖x‖2
, ∀S, S′ ⊆ A.
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Figure 2: Ratio of objective value achieved by each test algorithm (left) to optimal value found by brute-force (d = 3, 4, . . . , 20)
and (center) to maximum achieved value (d = 50, 100, . . . , 1000). (right) Performance of Simplified degrades as it assigns
nearly all attributes to the class with higher expected x values, ignoring the diminishing returns property of the objective
function, whereas SWA remains near-optimal under all settings. All results are averaged over 10 random datasets.

As a result, a simple linear-time algorithm can be em-
ployed to solve the objective in (8). The algorithm iter-
ates over the attributes (order does not matter), and as-
signs each attribute a to the class c for which the aver-
age subgraph quality is improved more than others, that

is, arg maxc
1

n(c)

∑
k∈S(c)

xk(a)
2

‖xk‖2
, breaking ties arbitrarily.

While the objective values of the solutions to (5) and (8)
are likely to differ due to the difference in computing the
attribute weights, the weight normalization does not change
the order of the attributes by importance within a given set.
Therefore, we conjecture that the two solutions will perform
similarly, which we investigate through experiments in §5.

4.2.2 Top-k attributes per class
For exploratory tasks, such as understanding the class dif-

ferences via characterizing attribute subspaces, it would be
most interesting to look at the top k most important at-
tributes from each class. We also expect each subgraph to
exhibit only a handful of focus attributes (experiments on
real-world graphs confirm this intuition). Therefore, limit-
ing the analysis to a top few attributes would be sufficient.

For a given (small) k, finding the top k attributes A∗k
that maximize N(g|A∗k) for a single subgraph g is easy—
that would be the k attributes with the largest values in g’s x
(see Eq. (4)). However, we have a multi-criterion objective,
with a goal to find the top k attributes that maximize the
total normality for all subgraphs from a class at once rather

than a single one, that is N(S(c)|A(c)
∗k ) (see Eq. (7)).

The multi-criterion optimization problem is NP-hard [21].
On the other hand, we know that ‖ · ‖2 is a monotone
submodular function, and so is the class quality function
N(·) =

∑
‖ · ‖2. As such, we find the top k attributes for

each class separately, using the lazy greedy hill-climbing al-
gorithm introduced in [21]. Since these (separate) solutions
may end up having common attributes, we resolve the solu-
tions by assigning each common attribute only to the class
for which its average contribution is higher (the individual
terms in Eq. (6)). The search repeats until each class gets
assigned k unique attributes. Finally, k is not a critical pa-
rameter to set, but rather can be chosen interactively.

5. EVALUATION
We evaluate our approach to the characterization problem

and proposed algorithms on both synthetic and real-world
datasets. Our goal is to answer the following questions:

• How do the proposed algorithms perform and compare
to each other? What is their scalability and runtime?
• Are the findings on real-world data meaningful?
• How does characterization compare to classification?

5.1 Analysis on Synthetic Datasets
Through synthetic data experiments, our goal is to com-

pare the algorithmic and computational performance of the
proposed algorithms, respectively in terms of objective value
achieved and running time. Specifically, we compare:

• SWA (Submodular Welfare Algorithm, §4.1)
• Simplified (with pre-normalized weights, §4.2.1)
• Top-k (§4.2.2)

We generate the x vectors for p = n = 100 subgraphs each
from c = 2 classes, while varying the number of attributes d.
The x(a) values of each feature a for subgraphs from class c
are drawn from a Normal distribution with a distinct µc

a and
σc
a. The µc

a’s themselves are drawn from a zero-mean unit-
variance Normal (note that those attributes with negative
mean tend to be less relevant for the class). The σc

a’s are
randomly drawn from a [0, 1] uniform distribution.

Algorithmic performance. In the first experiment, we
test the optimality of the algorithms by comparing their
achieved objective value to that of brute-force where we try
all possible partitionings to identify the optimal solution.
We experiment with d = {3, 4, . . . , 20} as brute-force is not
computationally feasible for more than 20 attributes, and
k = {3, 5} for Top-k.

In Figure 2 (left) we report the ratio between each test al-
gorithm’s objective value and the optimal as found by brute-
force (ratio 1 means they are equal) with varying attribute
size. The results are averaged over 10 random realizations
of the synthetic datasets as described above. We notice that
SWA achieves near-optimal performance throughout, which
Simplified catches up with as the number of attributes d
increases. Top-k loses optimality as k becomes smaller com-
pared to d, where the decline is faster for smaller k.

Figure 2 (center) is similar, where we compare perfor-
mances under larger attribute sizes d = {50, 100, . . . , 1000}.
As d is larger, we also use larger k = {5, 25, 50}. As brute-
force cannot be computed in reasonable time, we report ra-
tios w.r.t. the maximum objective value achieved among the
tested algorithms. We find that Simplified achieves near-
identical performance to SWA. Again, the ratios of Top-
k methods drop as the attribute space grows. Interestingly,



Top-50 (out of 1000) attributes from each of both classes
yield 64.78% of the maximum objective value.

While it may appear that Simplified performs as well as
SWA, we can show that under certain conditions where the
diminishing returns property of submodular problems plays
a major role, it becomes inferior to SWA. To show such a
setting, we design an experiment where the x(a) values of an
attribute a are drawn uniformly from [P, 1] for class 1, and
from [0, 1−P ] for class 2 as we decrease P from 0.95 to 0.05.
Note that as the ranges (and hence the variance) of the val-
ues increase, the expected value of every attribute remains
higher for class 1. The results are shown in Figure 2 (right).
For large P , the values for class 1 are significantly larger
and both algorithms assign all attributes to class 1. As the
ranges start overlapping and the expected values get closer,
Simplified continues to assign all attributes to class 1 (with
higher expected value) even though the marginal increase to
the objective value decreases significantly as we go on due to
diminishing returns. As the variance gets even larger, Sim-
plified again performs similar to SWA as it starts assign-
ing some attributes to class 2 due to the random variation.
Arguably, it is unlikely to encounter this setting in real-
world datasets, where there exist many similarly-distributed
attributes for sufficiently different classes of subgraphs.

Computational performance. Finally, we compare the
proposed algorithms in terms of their running time and scal-
ability, as the number of attributes grows. Figure 3 shows
runtime in seconds for d = {50, 100, . . . , 1000}. We note that
all the algorithms scale near-linearly. SWA has the largest
slope with increasing d, while finishing under 8 seconds for
d = 1000 and p = n = 100 subgraphs from two classes. The
scalability of Top-k depends on k which decreases with in-
creasing k. Simplified heuristic lies in the bottom and is
reliably one of our fastest methods.
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Figure 3: Running time (seconds) with increasing number
of attributes. All algorithms scale near-linearly with d.

Overall, SWA and Simplified work best on all datasets.
Simplified can be parallelized easily, as each attribute is
processed independently. For massive datasets, one can also
fall back to Top-k, which is capable of identifying the few
key attributes for characterization.

5.2 Analysis on Real-world Datasets
For real-world data analysis we consider attributed graphs

where nodes are assigned class labels. We study the class dif-
ferences of nodes by the “company that they keep”. That is,
we characterize each node with a local community surround-
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Figure 4: Top 10 attributes in ranked order for Democrats
and Republicans in Congress. Characterizing attributes re-
veal the contrast between liberal and conservative ideas.
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Figure 5: Change of focus on attribute “National Security
and Armed Forces” among Democrats and Republicans. We
observe increased interest by Republicans in time of war.

ing them, using the local community extraction algorithm of
Andersen et al. [3]. One can also use ego-networks, where a
node is grouped with all its immediate neighbors.

We report the top-10 attributes by relative contribution in
(6) per class side by side for comparison. To be precise,
we randomly sample 90% of our subgraphs 100 times and
present the average relative contribution (bars) and standard
deviation (error bars) so as to ensure that our results are not
an artifact of the subgraphs at hand.

We experiment with 3 real-world attributed networks: (i)
bill co-sponsorships of Congressmen [11], (ii) co-purchase
network of Amazon videos [20], and (iii) DBLP co-
authorship network. We describe the individual datasets
and present our findings next.

Congress. We consider 8 co-sponsorship networks from the
103rd Congress to 110th. The nodes are congressmen. An
edge depicts co-sponsorship of a bill by two congressmen,
and the edge weight is the number of times two nodes spon-
sored a bill together. Each bill is assigned a phrase that
describes its subject, with a total of 32 such phrases. We
mirror these bill subjects to their sponsors to create node
attributes. The networks are highly dense, so we remove
low-weighted edges such that the size of the giant connected
component maintains more than 95% of its original size.

Figure 4 presents the top-ranking attributes among two
classes, Democrats and Republicans (averaged over 8 con-
gresses in the dataset). As expected, Democrats have a lib-
eral agenda centered upon social and environmental pro-
grams, while Republicans mainly focus on regulating gov-
ernment, immigration and financial issues.

Since the Congress dataset is temporal, we can also ex-
plore how the focus of the two parties changes on a partic-
ular subject over time. A clear example of this is bills on
“National Security and Armed Forces”. Figure 5 shows the



Kids & Family
3-6 Years
7-9 Years

10-12 Years
Warner Home
Warner Video

Christian Video
Bible

Cartoon Network

Bible Stories

Performing Arts
Comedy
Musicals
Drama
Suspense
Mystery
Classic Comedy
Ma & Pa Kettle
Detectives
Romance

Animation Classics

(a) Ranking by relative contribution (Proposed)

Kids & Family
Animation

VHS
Clifford
Action

Adventure
Indiana Jones

Dinosaurs
Cartoon Network

Land Before Time

Comedy
Fitness
Documentary
Classic Comedy
Performing Arts
Horror
Musicals
Bible
Christian Video
Yoga

Under 13 Over 13

(b) Ranking by relative contribution (Proposed)

Animation Classics
Drama
Comedy
Performing Arts
Action
Westerns
Musicals
Mystery
French
Sesame Street
Puppets

Kids & Family
Educational

Dr. Seuss
7-9 Years
Holidays

Dragon Tales
Infantil y familiar

Nickelodeon
Warner Video

Franklin

(c) Ranking by coefficients (LR)

Under 13 Over 13
Fitness
Infantil y familiar
Comedy
Spanish Language
MGM Home
School Days
Military & War
Drama
Ballet & Dance
Eyewitness

Videos for Babies
Charlie Brown
Kids & Family

Magic School Bus
Mary-Kate & Ashley

For the Whole Family
There Goes A...

Rugrats - All Grown Up
Little Bear

Scooby-Doo

(d) Ranking by coefficients (LR)

Figure 6: Characterization vs. Classification: Logistic Regression (LR) prefers infrequent attributes that discriminate well.
Our proposed method discovers subspaces that characterize the data in a more natural way.

average contribution of this attribute for both parties (in-
dividual terms in Eq.(6)) over years. Starting with the US
conflict with Iraq, this attribute seizes Republicans’ atten-
tion, and it continues to grow after the 9/11 attacks and the
beginning of the war in Afghanistan. It reaches its peak dur-
ing the start of war in Iraq and then starts to lose attention
towards the last years when the US troops are withdrawn
from the middle-east. This abnormal change in interest in
national security and armed forces is especially interesting
since before and after the years of international crisis, this
attribute has close to zero attention, even achieves negative
values during the last years as a Democrat attribute, which
indicates it is not characteristic of neither of the parties.

Amazon. This network contains 4011 nodes, 9487 edges,
and 903 attributes. Nodes are videos from amazon.com, and
edges depict co-purchase relations between two videos, indi-
cating that they are frequently bought together. Attributes
range from describing the video genre such as “Comedy” and
“Drama”, to the age-range of the audience intended for the
videos such as “7-9 Years”, popular franchises like “Sponge
Bob Series”, the form of the videos like “Animation”, and
the device it comes in such as “VHS” or “DVD”.

We have experimented with two scenarios on Amazon to
showcase the strength of our method in characterizing dif-
ferent classes. We set semantically different attributes as
classes and use the rest for characterization. The specific
queries are (1) Animation vs. Classics and (2) Videos for
Under 13 years old and Videos for Over 13 years old. Un-
der 13 class consists of the videos exhibiting the attributes
“Birth - 2 Years”, “3 - 6 Years”, “7 - 9 Years” and “10 - 12
Years”. Rest of the videos belong to the Over 13 class.

Figure 6a and 6b respectively show top-10 attributes per
class as ranked by our method on these two scenarios. We
find that “Kids & Family” and age groups “3-12 Years”
are key characterizing attributes for Animation. “Warner
Videos” and “Cartoon Network” are also among the top
attributes. Perhaps surprisingly, “Christian” videos and
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Figure 7: Top 10 attributes in ranked order for ICC and
ICASSP conferences in DBLP.

“Bible” stories follow the above. On the other hand, we note
genre-related attributes that truly define Classics, such as
“Performing Arts”, “Comedy”, and “Musicals”.

For the second scenario, we observe “Kids & Family” and
“Animation” attributes to mostly characterize the Under 13
videos. In contrast, the characterizing attributes for Over
13 are those that cannot really be consumed by children,
including “Comedy”, “Fitness”, and “Documentary” videos.

DBLP. This network contains 134K nodes, 1.478M edges
and 2K attributes. Nodes are computer scientists and links
are co-authorship relations. Attributes are computer science
conferences and journals, where a node exhibits an attribute
if s/he has at least one publication in the venue.

The classes are ICC, a conference on communications, vs.
ICASSP, a conference on speech and signal processing. We
randomly sample 100 nodes from all nodes of each class and
find subgraphs around them, to maintain a manageable set
of subgraphs. Figure 7 shows top-10 attributes for the two
classes. We find that attributes for ICC revolve around
networking, communications and mobile technologies, in-
cluding “INFOCOM”, “GLOBECOM” and “PMIRC”, while
attributes for ICASSP are conferences on speech, video
and image processing and linguistics, including “INTER-
SPEECH”, “ICIP” and “EUSIPCO”.

5.3 Characterization vs. Classification



Here we examine the differences between characterization
and discriminative classification. Similar to our method, a
sparse solution from a regularized classifier will contain a
subspace of the attributes, which can be ranked using an at-
tribute importance score from the model. Such regularized
sparse methods are popular approaches for exploratory data
analysis and form the foundations of many interpretable
modeling methods.

For this comparison, we use Logistic Regression (LR)
with LASSO regularization [34] to learn a sparse solution.
We first train a LR model for binary classification between
classes c+ and c− using raw node attributes as input. Af-
ter classification, we use the LR coefficients to partition the
attributes between the classes, assigning those with positive
coefficients to c+ and negative ones to c−, and rank by their
magnitude. To overcome class imbalance in the dataset, we
oversample from the small class to make the class sizes equal
and then do the classification. We repeat this procedure 10
times to eliminate the effect of such sampling.

Figure 6 compares the top-ranking attributes obtained
with our method to those found through LR. We see that LR
prefers infrequent, but highly discriminating attributes. For
example, consider the difference in attributes found between
our method and LR for the Animation vs. Classics classifi-
cation task (Fig. 6a and 6c). Here, LR completely fails to
assign high weight to two attributes (“3-6 Years” and “10-12
Years”) that are both very prevalent in the dataset. Instead
its third strongest attribute is“Dr. Seuss”, which is perfectly
discriminative (all items with this attribute are Animation),
but is present in only 4% of the nodes. This is a clear ex-
ample of sacrificing characterization for discrimination.

We see this behavior again in Figure 6d, where LR ranks
rare attributes highly (such as “Charlie Brown” and “Mary-
Kate & Ashley”) above more frequent attributes which are
quite discriminative (“Kids & Family” and “Animation”). In
contrast to LR, our proposed method ranks attributes by
their contribution across subgraphs, finding a subspace of
attributes which better characterizes the input subgraphs.

Intuitively, when an attribute is present in many of the
nodes that belong to a class, it is considered to be a char-
acterizing attribute of that class. On the other hand, when
observing an attribute at a node indicates a high probability
of the node belonging to a particular class, then the attribute
is a discriminative one for that class. To quantify these, we
use class support and confidence, metrics commonly used in
association rule mining [1].

Let #(c, a) denote the number of nodes in class c with
attribute a, #(a) total number of nodes with attribute a,
and #(c) total number of nodes from class c, then:

• Confidence(C): probability of belonging to class
c when attribute a is observed in some node:
Cfd(c, a) = Pr(c|a) = #(c,a)

#(a)

• Class Confidence(CC): probability of belonging
only to class c, when attribute a is observed in some
node: CC(c+, a) = Pr(c+|a)− Pr(c−|a)

• Support(S): percentage of nodes in class c that ex-

hibit attribute a: Sup(c, a) = #(c,a)
#(c)

• Class Support(CS): difference of support for a be-
tween classes: CS(c+, a) = Sup(c+, a)− Sup(c−, a)

As we seek distinct subspaces, we only use the relative
metrics, i.e. CC and CS. Ideally having an attribute high
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Figure 8: CS and CC for our method and LR. Our method
always has superior Average Class Support when compared
to LR, and also has competitive Average Class Confidence.
(LR is explicitly optimizing for discrimination, so it is ex-
pected to do better in this regard)

on both metrics is best, however this case happens rarely.
An attribute with high class support can be considered as a
good representative of a class while an attribute with high
class confidence can be used for classification purposes. To
measure the average characterization of the attributes as-
signed to a given class, we have:

CS(c, A(c)) =

∑
a∈A(c) waCS(c, a)∑

a∈A(c) wa
, (9)

where CS is the weighted average of CS over all attributes
assigned to class c. Weight wa here is the metric that we
use for ranking attributes in corresponding methods, which
is the relative contribution for our proposed approach and
the absolute coefficient values for LR. Likewise, to measure
the total discrimination of a set of attributes, we have:

CC(c, A(c)) =

∑
a∈A(c) waCC(c, a)∑

a∈A(c) wa
, (10)

where again, CC is the weighted average of CC for all at-
tributes assigned to class c.

Figure 8 presents both measures for the two ranking
methods for the real-world scenarios. Our method outper-
forms LR w.r.t. the characterization aspect (CS). This is to
be expected – as our method searches for attributes present
in a focused subspace across many subgraphs of a class and
ranks them accordingly. Surprisingly, in nearly all cases,
the subspaces we find also have a comparable discriminative
power (CC) to LR. The Under 13 case where we have low
CC is when most discriminating attributes (as ranked high
by LR) are infrequent and hence have low support. In fact,
8/10 of top attributes in Figure 6d have CS value < 0.1.

6. CONCLUSION
Studies have shown evidence for characteristic differences

between individuals of different genders, age groups, politi-
cal orientations, personalities, etc. In this work, we gener-
alized and mathematically formalized the characterization
problem of attributed subgraphs from different classes. Our
solution is through a lens into the node attributes as well as
the social ties in their local networks. We showed that our
problem, of partitioning attributes between classes so as to
maximize the total quality of input subgraphs, is NP-hard,



and that the proposed algorithms find near-optimal solu-
tions and scale well with the number of attributes. Extensive
experiments on synthetic and real-world datasets demon-
strated the performance of the algorithms, the suitability
of our approach for qualitative exploratory analysis, and its
advantage over discriminating approaches.
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