
Ranking in Heterogeneous Networks  
with Geo-Location Information

Abhinav Mishra
Amazon

Leman Akoglu
CMU

SIAM SDM 2017
Houston, Texas

2

Ranking in networks
§  Which nodes are the most important,

central, authoritative, etc.?
q  Pagerank [Brin&Page, ‘98]

q  HITS [Kleinberg, ’99]

q  Objectrank [Balmin+, ’04]

q  Poprank [Nie+, ’05]

q  Rankclus [Sun+, ’09]

q  …

3

Type A

Type B

Ranking in rich networks
n  How to rank nodes in a directed, weighted graph

with multiple node types and location information?

n  Different types of nodes ranked separately

4

Weighted medical referral network (directed)

Example
Town A Town B

5

Weighted medical referral network (directed)
+ physician expertise

Example
Town A Town B

6

Weighted medical referral network (directed)
+ physician expertise
+ location (distance)

Example
Town A Town B

7

Ranking Problem: Which are the top k nodes
of a certain type?

e.g.: Who are the best cardiologists in the
network, in my town, etc.?

Example
Town A Town B

8

Outline
Goal: ranking in directed heterogeneous
information networks (HIN) with geo-location

§  HINside model
§  Parameter estimation

q  via learning to rank
§  Experiments

9

Outline
Goal: ranking in directed heterogeneous
information networks (HIN) with geo-location
§  HINside model

1.  Relation strength
2.  Relation distance
3.  Neighbor authority
4.  Authority transfer rates
5.  Competition
v  Closed form solution

§  Parameter estimation
§  Experiments

10

HINside model
§  Relation Strength and Distance

q  edge weights

q  pair-wise distances

distance traveled (in this case by i’s patients to visit j)
speaks to the quality of (physician) j.

3. (In-)Neighbor Authority: The more authority the
source (physician) i has, the more authority the target
(physician) j obtains through a link (referral) from i to
j. Similar to Pagerank [2], authority of a node is a func-
tion of the authority of its (in-)neighbors.

4. Authority Transfer Rates: The authority the target
(physician) j obtains through a link (referral) from i
also depends on i’s type along with j’s type itself. In the
example case, while an optometrist referring a patient
to an ophthalmologist may be ordinary in case the
patient needs a surgery, an ophthalmologist referring
their patient to another ophthalmologist may imply a
significant (rate of) authority transfer.

5. Competition: The number and the authorities of the
entities (physicians) of type t

j

that are in close physical
distance to i is another important factor. The more
and the higher-rated entities of type t

j

around i exist,
the larger the authority score of j would get by a link
(referral) from i—as such a link implies i’s preference
of j over other entities of type t

j

in its vicinity.

Figure 1 gives an illustrative example. The network
contains 6 nodes of 2 types (gray and white circles), from
two different geo-regions (boxes). The transfer rates are set
to 0.7 for within same-type edges and 0.3 for across the
types. HINSIDE ranks node 3 highest, as it has many in-
links, particularly (1, 3) and (2, 3) from distant and same-
type nodes. In comparison, Pagerank ranks node 1 with
the largest total relation strength the highest. Node 2 is
ranked second by Pagerank, whereas HINSIDE ranks node
1 at second position, above 2. This is mainly due to link
(4, 1) that ‘prefers’ node 1 over the competing node 2 of the
same type. Among type-white nodes, node 6 has highest
Pagerank. HINSIDE in contrast ranks node 5 above 6, due
to the link from the highest ranked node 3 that makes node 5
more competent than 6. Both models rank node 4 the lowest.

3 Proposed HINSIDE Model
We describe our ranking model by incrementally incorporat-
ing the five main elements as listed in the previous section.

3.1 Relation Strength and Distance Let W denote the
n⇥n log-weighted adjacency matrix of G, where W (i, j) =
log(w(i, j) + 1). Similarly, we define the n ⇥ n distance
matrix D such that D(i, j) = log(d(l

i

, l
j

) + 1).
To account for the relation distance, we combine the

adjacency matrix W with the distance matrix D, in order
to increase the value of the edges that connect nodes with
longer distance and subsequently decrease the value of those
edges that connect nodes with less distance. That is,

(3.1) M = W � D

Figure 1: Example network with two node types (colors).
Edges annotated by weight/distance.

where � is the Hadamard or element-wise product.

3.2 (In-)Neighbor Authority To compute the authority
of each node, we take the weighted sum of the authorities
of its (in-)neighbors in (directed) G. The (in-)edges are
weighted by relation strength (i.e., edge weight) and distance
as described above.

(3.2) r
i

=

X

j2V
M(j, i) r

j

where r
i

denotes the authority score of node i. Thus far,
our model is similar to PageRank. The key difference is
in modifying the adjacency matrix by accounting for the
distance between the connected pairs.

3.3 Authority Transfer Rates In this work we consider
a typed, i.e. heterogeneous network. As motivated in the
previous section, the neighbors of different types of a node
should count differently and have different impact on the
authority of the node. As such, we incorporate what is called
“authority transfer rates [1]” (ATR) �(a, b) � 0 between
type T (a) and type T (b), 8a, b = {1, . . . ,m}. These rates
represent the impact or importance of links between nodes
of various types.

The authority score of a node i then becomes

(3.3) r
i

=

X

j2V
�(t

j

, t
i

) M(j, i) r
j

.

The m⇥m ATR matrix � contains vital parameters for
our ranking model since a meaningful ranking can only be
achieved by using the appropriate transfer rates.

3.4 Competition Finally we consider what we call the
concept of “competition in the vicinity of the source”. Con-
sider the edge e(j, i) from a type t

j

node to a type t
i

node.
Intuitively, when j links to i, it “prefers” i over other nodes
of type t

i

that are in close proximity to j (see Figure 1). Re-
calling our earlier examples, if a dietician j refers a patient to
a cardiologist i while there exist other cardiologists close-by
to j, then i has supposedly higher authority than those oth-
ers. Similarly, if an energy company j trades goods with a
transportation company i while there exist other transport in-

distance traveled (in this case by i’s patients to visit j)
speaks to the quality of (physician) j.

3. (In-)Neighbor Authority: The more authority the
source (physician) i has, the more authority the target
(physician) j obtains through a link (referral) from i to
j. Similar to Pagerank [2], authority of a node is a func-
tion of the authority of its (in-)neighbors.

4. Authority Transfer Rates: The authority the target
(physician) j obtains through a link (referral) from i
also depends on i’s type along with j’s type itself. In the
example case, while an optometrist referring a patient
to an ophthalmologist may be ordinary in case the
patient needs a surgery, an ophthalmologist referring
their patient to another ophthalmologist may imply a
significant (rate of) authority transfer.

5. Competition: The number and the authorities of the
entities (physicians) of type t

j

that are in close physical
distance to i is another important factor. The more
and the higher-rated entities of type t

j

around i exist,
the larger the authority score of j would get by a link
(referral) from i—as such a link implies i’s preference
of j over other entities of type t

j

in its vicinity.

Figure 1 gives an illustrative example. The network
contains 6 nodes of 2 types (gray and white circles), from
two different geo-regions (boxes). The transfer rates are set
to 0.7 for within same-type edges and 0.3 for across the
types. HINSIDE ranks node 3 highest, as it has many in-
links, particularly (1, 3) and (2, 3) from distant and same-
type nodes. In comparison, Pagerank ranks node 1 with
the largest total relation strength the highest. Node 2 is
ranked second by Pagerank, whereas HINSIDE ranks node
1 at second position, above 2. This is mainly due to link
(4, 1) that ‘prefers’ node 1 over the competing node 2 of the
same type. Among type-white nodes, node 6 has highest
Pagerank. HINSIDE in contrast ranks node 5 above 6, due
to the link from the highest ranked node 3 that makes node 5
more competent than 6. Both models rank node 4 the lowest.

3 Proposed HINSIDE Model
We describe our ranking model by incrementally incorporat-
ing the five main elements as listed in the previous section.

3.1 Relation Strength and Distance Let W denote the
n⇥n log-weighted adjacency matrix of G, where W (i, j) =
log(w(i, j) + 1). Similarly, we define the n ⇥ n distance
matrix D such that D(i, j) = log(d(l

i

, l
j

) + 1).
To account for the relation distance, we combine the

adjacency matrix W with the distance matrix D, in order
to increase the value of the edges that connect nodes with
longer distance and subsequently decrease the value of those
edges that connect nodes with less distance. That is,

(3.1) M = W � D

Figure 1: Example network with two node types (colors).
Edges annotated by weight/distance.

where � is the Hadamard or element-wise product.

3.2 (In-)Neighbor Authority To compute the authority
of each node, we take the weighted sum of the authorities
of its (in-)neighbors in (directed) G. The (in-)edges are
weighted by relation strength (i.e., edge weight) and distance
as described above.

(3.2) r
i

=

X

j2V
M(j, i) r

j

where r
i

denotes the authority score of node i. Thus far,
our model is similar to PageRank. The key difference is
in modifying the adjacency matrix by accounting for the
distance between the connected pairs.

3.3 Authority Transfer Rates In this work we consider
a typed, i.e. heterogeneous network. As motivated in the
previous section, the neighbors of different types of a node
should count differently and have different impact on the
authority of the node. As such, we incorporate what is called
“authority transfer rates [1]” (ATR) �(a, b) � 0 between
type T (a) and type T (b), 8a, b = {1, . . . ,m}. These rates
represent the impact or importance of links between nodes
of various types.

The authority score of a node i then becomes

(3.3) r
i

=

X

j2V
�(t

j

, t
i

) M(j, i) r
j

.

The m⇥m ATR matrix � contains vital parameters for
our ranking model since a meaningful ranking can only be
achieved by using the appropriate transfer rates.

3.4 Competition Finally we consider what we call the
concept of “competition in the vicinity of the source”. Con-
sider the edge e(j, i) from a type t

j

node to a type t
i

node.
Intuitively, when j links to i, it “prefers” i over other nodes
of type t

i

that are in close proximity to j (see Figure 1). Re-
calling our earlier examples, if a dietician j refers a patient to
a cardiologist i while there exist other cardiologists close-by
to j, then i has supposedly higher authority than those oth-
ers. Similarly, if an energy company j trades goods with a
transportation company i while there exist other transport in-

distance traveled (in this case by i’s patients to visit j)
speaks to the quality of (physician) j.

3. (In-)Neighbor Authority: The more authority the
source (physician) i has, the more authority the target
(physician) j obtains through a link (referral) from i to
j. Similar to Pagerank [2], authority of a node is a func-
tion of the authority of its (in-)neighbors.

4. Authority Transfer Rates: The authority the target
(physician) j obtains through a link (referral) from i
also depends on i’s type along with j’s type itself. In the
example case, while an optometrist referring a patient
to an ophthalmologist may be ordinary in case the
patient needs a surgery, an ophthalmologist referring
their patient to another ophthalmologist may imply a
significant (rate of) authority transfer.

5. Competition: The number and the authorities of the
entities (physicians) of type t

j

that are in close physical
distance to i is another important factor. The more
and the higher-rated entities of type t

j

around i exist,
the larger the authority score of j would get by a link
(referral) from i—as such a link implies i’s preference
of j over other entities of type t

j

in its vicinity.

Figure 1 gives an illustrative example. The network
contains 6 nodes of 2 types (gray and white circles), from
two different geo-regions (boxes). The transfer rates are set
to 0.7 for within same-type edges and 0.3 for across the
types. HINSIDE ranks node 3 highest, as it has many in-
links, particularly (1, 3) and (2, 3) from distant and same-
type nodes. In comparison, Pagerank ranks node 1 with
the largest total relation strength the highest. Node 2 is
ranked second by Pagerank, whereas HINSIDE ranks node
1 at second position, above 2. This is mainly due to link
(4, 1) that ‘prefers’ node 1 over the competing node 2 of the
same type. Among type-white nodes, node 6 has highest
Pagerank. HINSIDE in contrast ranks node 5 above 6, due
to the link from the highest ranked node 3 that makes node 5
more competent than 6. Both models rank node 4 the lowest.

3 Proposed HINSIDE Model
We describe our ranking model by incrementally incorporat-
ing the five main elements as listed in the previous section.

3.1 Relation Strength and Distance Let W denote the
n⇥n log-weighted adjacency matrix of G, where W (i, j) =
log(w(i, j) + 1). Similarly, we define the n ⇥ n distance
matrix D such that D(i, j) = log(d(l

i

, l
j

) + 1).
To account for the relation distance, we combine the

adjacency matrix W with the distance matrix D, in order
to increase the value of the edges that connect nodes with
longer distance and subsequently decrease the value of those
edges that connect nodes with less distance. That is,

(3.1) M = W � D

Figure 1: Example network with two node types (colors).
Edges annotated by weight/distance.

where � is the Hadamard or element-wise product.

3.2 (In-)Neighbor Authority To compute the authority
of each node, we take the weighted sum of the authorities
of its (in-)neighbors in (directed) G. The (in-)edges are
weighted by relation strength (i.e., edge weight) and distance
as described above.

(3.2) r
i

=

X

j2V
M(j, i) r

j

where r
i

denotes the authority score of node i. Thus far,
our model is similar to PageRank. The key difference is
in modifying the adjacency matrix by accounting for the
distance between the connected pairs.

3.3 Authority Transfer Rates In this work we consider
a typed, i.e. heterogeneous network. As motivated in the
previous section, the neighbors of different types of a node
should count differently and have different impact on the
authority of the node. As such, we incorporate what is called
“authority transfer rates [1]” (ATR) �(a, b) � 0 between
type T (a) and type T (b), 8a, b = {1, . . . ,m}. These rates
represent the impact or importance of links between nodes
of various types.

The authority score of a node i then becomes

(3.3) r
i

=

X

j2V
�(t

j

, t
i

) M(j, i) r
j

.

The m⇥m ATR matrix � contains vital parameters for
our ranking model since a meaningful ranking can only be
achieved by using the appropriate transfer rates.

3.4 Competition Finally we consider what we call the
concept of “competition in the vicinity of the source”. Con-
sider the edge e(j, i) from a type t

j

node to a type t
i

node.
Intuitively, when j links to i, it “prefers” i over other nodes
of type t

i

that are in close proximity to j (see Figure 1). Re-
calling our earlier examples, if a dietician j refers a patient to
a cardiologist i while there exist other cardiologists close-by
to j, then i has supposedly higher authority than those oth-
ers. Similarly, if an energy company j trades goods with a
transportation company i while there exist other transport in-

distance traveled (in this case by i’s patients to visit j)
speaks to the quality of (physician) j.

3. (In-)Neighbor Authority: The more authority the
source (physician) i has, the more authority the target
(physician) j obtains through a link (referral) from i to
j. Similar to Pagerank [2], authority of a node is a func-
tion of the authority of its (in-)neighbors.

4. Authority Transfer Rates: The authority the target
(physician) j obtains through a link (referral) from i
also depends on i’s type along with j’s type itself. In the
example case, while an optometrist referring a patient
to an ophthalmologist may be ordinary in case the
patient needs a surgery, an ophthalmologist referring
their patient to another ophthalmologist may imply a
significant (rate of) authority transfer.

5. Competition: The number and the authorities of the
entities (physicians) of type t

j

that are in close physical
distance to i is another important factor. The more
and the higher-rated entities of type t

j

around i exist,
the larger the authority score of j would get by a link
(referral) from i—as such a link implies i’s preference
of j over other entities of type t

j

in its vicinity.

Figure 1 gives an illustrative example. The network
contains 6 nodes of 2 types (gray and white circles), from
two different geo-regions (boxes). The transfer rates are set
to 0.7 for within same-type edges and 0.3 for across the
types. HINSIDE ranks node 3 highest, as it has many in-
links, particularly (1, 3) and (2, 3) from distant and same-
type nodes. In comparison, Pagerank ranks node 1 with
the largest total relation strength the highest. Node 2 is
ranked second by Pagerank, whereas HINSIDE ranks node
1 at second position, above 2. This is mainly due to link
(4, 1) that ‘prefers’ node 1 over the competing node 2 of the
same type. Among type-white nodes, node 6 has highest
Pagerank. HINSIDE in contrast ranks node 5 above 6, due
to the link from the highest ranked node 3 that makes node 5
more competent than 6. Both models rank node 4 the lowest.

3 Proposed HINSIDE Model
We describe our ranking model by incrementally incorporat-
ing the five main elements as listed in the previous section.

3.1 Relation Strength and Distance Let W denote the
n⇥n log-weighted adjacency matrix of G, where W (i, j) =
log(w(i, j) + 1). Similarly, we define the n ⇥ n distance
matrix D such that D(i, j) = log(d(l

i

, l
j

) + 1).
To account for the relation distance, we combine the

adjacency matrix W with the distance matrix D, in order
to increase the value of the edges that connect nodes with
longer distance and subsequently decrease the value of those
edges that connect nodes with less distance. That is,

(3.1) M = W � D

Figure 1: Example network with two node types (colors).
Edges annotated by weight/distance.

where � is the Hadamard or element-wise product.

3.2 (In-)Neighbor Authority To compute the authority
of each node, we take the weighted sum of the authorities
of its (in-)neighbors in (directed) G. The (in-)edges are
weighted by relation strength (i.e., edge weight) and distance
as described above.

(3.2) r
i

=

X

j2V
M(j, i) r

j

where r
i

denotes the authority score of node i. Thus far,
our model is similar to PageRank. The key difference is
in modifying the adjacency matrix by accounting for the
distance between the connected pairs.

3.3 Authority Transfer Rates In this work we consider
a typed, i.e. heterogeneous network. As motivated in the
previous section, the neighbors of different types of a node
should count differently and have different impact on the
authority of the node. As such, we incorporate what is called
“authority transfer rates [1]” (ATR) �(a, b) � 0 between
type T (a) and type T (b), 8a, b = {1, . . . ,m}. These rates
represent the impact or importance of links between nodes
of various types.

The authority score of a node i then becomes

(3.3) r
i

=

X

j2V
�(t

j

, t
i

) M(j, i) r
j

.

The m⇥m ATR matrix � contains vital parameters for
our ranking model since a meaningful ranking can only be
achieved by using the appropriate transfer rates.

3.4 Competition Finally we consider what we call the
concept of “competition in the vicinity of the source”. Con-
sider the edge e(j, i) from a type t

j

node to a type t
i

node.
Intuitively, when j links to i, it “prefers” i over other nodes
of type t

i

that are in close proximity to j (see Figure 1). Re-
calling our earlier examples, if a dietician j refers a patient to
a cardiologist i while there exist other cardiologists close-by
to j, then i has supposedly higher authority than those oth-
ers. Similarly, if an energy company j trades goods with a
transportation company i while there exist other transport in-

11

HINside model
§  In-neighbor authority

§  Authority Transfer Rates (ATR)

distance traveled (in this case by i’s patients to visit j)
speaks to the quality of (physician) j.

3. (In-)Neighbor Authority: The more authority the
source (physician) i has, the more authority the target
(physician) j obtains through a link (referral) from i to
j. Similar to Pagerank [2], authority of a node is a func-
tion of the authority of its (in-)neighbors.

4. Authority Transfer Rates: The authority the target
(physician) j obtains through a link (referral) from i
also depends on i’s type along with j’s type itself. In the
example case, while an optometrist referring a patient
to an ophthalmologist may be ordinary in case the
patient needs a surgery, an ophthalmologist referring
their patient to another ophthalmologist may imply a
significant (rate of) authority transfer.

5. Competition: The number and the authorities of the
entities (physicians) of type t

j

that are in close physical
distance to i is another important factor. The more
and the higher-rated entities of type t

j

around i exist,
the larger the authority score of j would get by a link
(referral) from i—as such a link implies i’s preference
of j over other entities of type t

j

in its vicinity.

Figure 1 gives an illustrative example. The network
contains 6 nodes of 2 types (gray and white circles), from
two different geo-regions (boxes). The transfer rates are set
to 0.7 for within same-type edges and 0.3 for across the
types. HINSIDE ranks node 3 highest, as it has many in-
links, particularly (1, 3) and (2, 3) from distant and same-
type nodes. In comparison, Pagerank ranks node 1 with
the largest total relation strength the highest. Node 2 is
ranked second by Pagerank, whereas HINSIDE ranks node
1 at second position, above 2. This is mainly due to link
(4, 1) that ‘prefers’ node 1 over the competing node 2 of the
same type. Among type-white nodes, node 6 has highest
Pagerank. HINSIDE in contrast ranks node 5 above 6, due
to the link from the highest ranked node 3 that makes node 5
more competent than 6. Both models rank node 4 the lowest.

3 Proposed HINSIDE Model
We describe our ranking model by incrementally incorporat-
ing the five main elements as listed in the previous section.

3.1 Relation Strength and Distance Let W denote the
n⇥n log-weighted adjacency matrix of G, where W (i, j) =
log(w(i, j) + 1). Similarly, we define the n ⇥ n distance
matrix D such that D(i, j) = log(d(l

i

, l
j

) + 1).
To account for the relation distance, we combine the

adjacency matrix W with the distance matrix D, in order
to increase the value of the edges that connect nodes with
longer distance and subsequently decrease the value of those
edges that connect nodes with less distance. That is,

(3.1) M = W � D

Figure 1: Example network with two node types (colors).
Edges annotated by weight/distance.

where � is the Hadamard or element-wise product.

3.2 (In-)Neighbor Authority To compute the authority
of each node, we take the weighted sum of the authorities
of its (in-)neighbors in (directed) G. The (in-)edges are
weighted by relation strength (i.e., edge weight) and distance
as described above.

(3.2) r
i

=

X

j2V
M(j, i) r

j

where r
i

denotes the authority score of node i. Thus far,
our model is similar to PageRank. The key difference is
in modifying the adjacency matrix by accounting for the
distance between the connected pairs.

3.3 Authority Transfer Rates In this work we consider
a typed, i.e. heterogeneous network. As motivated in the
previous section, the neighbors of different types of a node
should count differently and have different impact on the
authority of the node. As such, we incorporate what is called
“authority transfer rates [1]” (ATR) �(a, b) � 0 between
type T (a) and type T (b), 8a, b = {1, . . . ,m}. These rates
represent the impact or importance of links between nodes
of various types.

The authority score of a node i then becomes

(3.3) r
i

=

X

j2V
�(t

j

, t
i

) M(j, i) r
j

.

The m⇥m ATR matrix � contains vital parameters for
our ranking model since a meaningful ranking can only be
achieved by using the appropriate transfer rates.

3.4 Competition Finally we consider what we call the
concept of “competition in the vicinity of the source”. Con-
sider the edge e(j, i) from a type t

j

node to a type t
i

node.
Intuitively, when j links to i, it “prefers” i over other nodes
of type t

i

that are in close proximity to j (see Figure 1). Re-
calling our earlier examples, if a dietician j refers a patient to
a cardiologist i while there exist other cardiologists close-by
to j, then i has supposedly higher authority than those oth-
ers. Similarly, if an energy company j trades goods with a
transportation company i while there exist other transport in-

distance traveled (in this case by i’s patients to visit j)
speaks to the quality of (physician) j.

3. (In-)Neighbor Authority: The more authority the
source (physician) i has, the more authority the target
(physician) j obtains through a link (referral) from i to
j. Similar to Pagerank [2], authority of a node is a func-
tion of the authority of its (in-)neighbors.

4. Authority Transfer Rates: The authority the target
(physician) j obtains through a link (referral) from i
also depends on i’s type along with j’s type itself. In the
example case, while an optometrist referring a patient
to an ophthalmologist may be ordinary in case the
patient needs a surgery, an ophthalmologist referring
their patient to another ophthalmologist may imply a
significant (rate of) authority transfer.

5. Competition: The number and the authorities of the
entities (physicians) of type t

j

that are in close physical
distance to i is another important factor. The more
and the higher-rated entities of type t

j

around i exist,
the larger the authority score of j would get by a link
(referral) from i—as such a link implies i’s preference
of j over other entities of type t

j

in its vicinity.

Figure 1 gives an illustrative example. The network
contains 6 nodes of 2 types (gray and white circles), from
two different geo-regions (boxes). The transfer rates are set
to 0.7 for within same-type edges and 0.3 for across the
types. HINSIDE ranks node 3 highest, as it has many in-
links, particularly (1, 3) and (2, 3) from distant and same-
type nodes. In comparison, Pagerank ranks node 1 with
the largest total relation strength the highest. Node 2 is
ranked second by Pagerank, whereas HINSIDE ranks node
1 at second position, above 2. This is mainly due to link
(4, 1) that ‘prefers’ node 1 over the competing node 2 of the
same type. Among type-white nodes, node 6 has highest
Pagerank. HINSIDE in contrast ranks node 5 above 6, due
to the link from the highest ranked node 3 that makes node 5
more competent than 6. Both models rank node 4 the lowest.

3 Proposed HINSIDE Model
We describe our ranking model by incrementally incorporat-
ing the five main elements as listed in the previous section.

3.1 Relation Strength and Distance Let W denote the
n⇥n log-weighted adjacency matrix of G, where W (i, j) =
log(w(i, j) + 1). Similarly, we define the n ⇥ n distance
matrix D such that D(i, j) = log(d(l

i

, l
j

) + 1).
To account for the relation distance, we combine the

adjacency matrix W with the distance matrix D, in order
to increase the value of the edges that connect nodes with
longer distance and subsequently decrease the value of those
edges that connect nodes with less distance. That is,

(3.1) M = W � D

Figure 1: Example network with two node types (colors).
Edges annotated by weight/distance.

where � is the Hadamard or element-wise product.

3.2 (In-)Neighbor Authority To compute the authority
of each node, we take the weighted sum of the authorities
of its (in-)neighbors in (directed) G. The (in-)edges are
weighted by relation strength (i.e., edge weight) and distance
as described above.

(3.2) r
i

=

X

j2V
M(j, i) r

j

where r
i

denotes the authority score of node i. Thus far,
our model is similar to PageRank. The key difference is
in modifying the adjacency matrix by accounting for the
distance between the connected pairs.

3.3 Authority Transfer Rates In this work we consider
a typed, i.e. heterogeneous network. As motivated in the
previous section, the neighbors of different types of a node
should count differently and have different impact on the
authority of the node. As such, we incorporate what is called
“authority transfer rates [1]” (ATR) �(a, b) � 0 between
type T (a) and type T (b), 8a, b = {1, . . . ,m}. These rates
represent the impact or importance of links between nodes
of various types.

The authority score of a node i then becomes

(3.3) r
i

=

X

j2V
�(t

j

, t
i

) M(j, i) r
j

.

The m⇥m ATR matrix � contains vital parameters for
our ranking model since a meaningful ranking can only be
achieved by using the appropriate transfer rates.

3.4 Competition Finally we consider what we call the
concept of “competition in the vicinity of the source”. Con-
sider the edge e(j, i) from a type t

j

node to a type t
i

node.
Intuitively, when j links to i, it “prefers” i over other nodes
of type t

i

that are in close proximity to j (see Figure 1). Re-
calling our earlier examples, if a dietician j refers a patient to
a cardiologist i while there exist other cardiologists close-by
to j, then i has supposedly higher authority than those oth-
ers. Similarly, if an energy company j trades goods with a
transportation company i while there exist other transport in-

i

i

ti : type of node i

ri : authority score of node i

12

HINside model
§  Competition

j i

other nodes of type ti
in the vicinity of node j

dustries in j’s vicinity, we assume i’s authority to be higher
than those.2

To capture this intuition, for each edge e(j, i) we think
of “ghost” edges from nodes of type t

i

in j’s vicinity to i.
Instead of a fixed vicinity, we define a smooth neighborhood
function that is a decreasing function of distance:

N(u, v) =

⇢
g(d(l

u

, l
v

)) u, v 2 V, u 6= v
0 u = v

where g(.) is monotonically decreasing, e.g. g(z) = e�z .
Then, we transfer a weighted sum of the authority scores

of type t
i

nodes in j’s neighborhood along with j’s authority
itself to compute i’s score. Building on (3.3) we get:

(3.4) r
i

=

X

j

�(t
j

, t
i

)M(j, i) (r
j

+

X

v:t

v

=t

i

N(v, j) r
v

) .

3.5 Solving the HINSIDE Model. Our proposed model
given in Eq. (3.4) can be written and solved in a compact
form. Let T denote the n ⇥ m boolean type matrix with
T (i, c) = 1 if t

i

= T (c) and 0 otherwise, 8i 2 V and
c = {1, . . . ,m}. Based on this, we define L = M�(T � T 0

)

where 0 denotes transpose operation. We also introduce the
type equality matrix E where

E(u, v) =

⇢
1 if t

u

= t
v

0 otherwise

In matrix form, E = TT 0. We then rewrite (3.4) as

r
i

=

X

j

L(j, i) r
j

+

X

j

X

v

L(j, i)N(v, j) r
v

E(i, v)

r
i

=

X

j

L(j, i) r
j

+

X

v

r
v

E(i, v)
⇥X

j

N(v, j)L(j, i)
⇤

r = L0
r + (E � (NL)0)r

As such, we obtain

r =

⇥
L0

+ (L0N 0 � E)

⇤
r = H r(3.5)

where r 2 Rn is a column vector of length n containing the
authority scores of all nodes. Note that N is computed from
data (Sec. 3.4), E = TT 0 and L = M � (T � T 0

) in which
T and M are also known. As such, the ATR matrix � is the
only unknown of our model.

We can solve for r using the power method [16]. As �,
T , N and M are all non-negative, so is H . Starting with
an arbitrary initial vector r

(0) 2 Rn, we form the vector
sequence {r(p)}1

p=0

. If ||H|| 6= 1, the power method would
underflow or overflow for large p, and not converge to a fixed
r. As such, we introduce a normalization at every step:

r

(p+1) H r

(p)

||H r

(p)||
, p = 0, 1, 2, . . .(3.6)

2The referrals are directed, while trade relations are undirected.
In the latter we also assume the vice versa, i.e., j’s authority to be
higher than other energy companies in i’s vicinity.

It can be shown that the power method converges to the
left singular vector of H under some mild conditions [12]:

THEOREM 3.1. Let the singular values of H 2 Rn⇥n be
arranged such that |�

1

| > |�
2

| � . . . � |�
n

|. Let u
1

and v

1

be the left and right singular vectors of H corresponding to
�
1

respectively. Then, the vector sequence generated by (3.6)
converges to u

1

, where ||r(p)|| converges to |�
1

| for large p,
provided that v0

1

r

0

6= 0 and |�
1

| 6= |�
2

|.
For a HIN with m types, � contains m2 parameters.

Even for moderate m, it would be challenging to set these
ATR values manually. Next we propose two new algorithms
for parameter estimation provided training data.

4 Parameter Estimation
The authority transfer rates, in other words the values in �,
depend on the problem domain and may be hard to assign by
humans. To estimate �, we consider learning from partially
ranked lists, given by humans, as providing partial lists is
more practical than assigning absolute rates. We propose
two approaches for estimating �; (1) a RankSVM approach,
and (2) a gradient based approach.

Let us first represent r
i

in the form of a linear function
of a feature vector x

i

and a weight vector w, such that
r
i

= f(x
i

) =< w,x
i

>. This is a convenient and common
representation to be used in many learning algorithms.

We start by rewriting Eq. (3.4) as

r
i

=

X

t

�(t, t
i

)

X

j:t

j

=t

⇥
M(j, i)(r

j

+

X

v:t

v

=t

i

N(v, j) r
v

)

⇤

Let us define a m⇥ n matrix X where

(4.7) X(t, i) =
X

j:t

j

=t

M(j, i) (r
j

+

X

v:t

v

=t

i

N(v, j) r
v

)

using which we can write

(4.8) r
i

=

X

t

�(t, t
i

)X(t, i) = �

0
(t

i

, :) ·X(:, i) = �

0
t

i

·x
i

where x
i

is the ith column of X and �

t

i

is the tth
i

column of
�. As such, we can compute r

i

by the vector-vector product

(4.9) r
i

= f(x
i

) =< �

t

i

,x
i

> .

In this formulation, �
t

i

is a length m vector of unknown
parameters and x

i

is considered as the “feature vector” of
node i. Now in order to estimate � we need access to x

i

’s,
and to construct the x

i

’s we need to know the authority
scores r (Eq. 4.7), which in turn requires � (Eq. 3.4).
That is, �

Eq.(3.4)�����! r

Eq.(4.7)�����! X
estimate����! �. In this

section we describe algorithms for exactly the last step. The
dependences suggest that an alternating optimization scheme
is an appropriate approach to estimating �. The sketch

dustries in j’s vicinity, we assume i’s authority to be higher
than those.2

To capture this intuition, for each edge e(j, i) we think
of “ghost” edges from nodes of type t

i

in j’s vicinity to i.
Instead of a fixed vicinity, we define a smooth neighborhood
function that is a decreasing function of distance:

N(u, v) =

⇢
g(d(l

u

, l
v

)) u, v 2 V, u 6= v
0 u = v

where g(.) is monotonically decreasing, e.g. g(z) = e�z .
Then, we transfer a weighted sum of the authority scores

of type t
i

nodes in j’s neighborhood along with j’s authority
itself to compute i’s score. Building on (3.3) we get:

(3.4) r
i

=

X

j

�(t
j

, t
i

)M(j, i) (r
j

+

X

v:t

v

=t

i

N(v, j) r
v

) .

3.5 Solving the HINSIDE Model. Our proposed model
given in Eq. (3.4) can be written and solved in a compact
form. Let T denote the n ⇥ m boolean type matrix with
T (i, c) = 1 if t

i

= T (c) and 0 otherwise, 8i 2 V and
c = {1, . . . ,m}. Based on this, we define L = M�(T � T 0

)

where 0 denotes transpose operation. We also introduce the
type equality matrix E where

E(u, v) =

⇢
1 if t

u

= t
v

0 otherwise

In matrix form, E = TT 0. We then rewrite (3.4) as

r
i

=

X

j

L(j, i) r
j

+

X

j

X

v

L(j, i)N(v, j) r
v

E(i, v)

r
i

=

X

j

L(j, i) r
j

+

X

v

r
v

E(i, v)
⇥X

j

N(v, j)L(j, i)
⇤

r = L0
r + (E � (NL)0)r

As such, we obtain

r =

⇥
L0

+ (L0N 0 � E)

⇤
r = H r(3.5)

where r 2 Rn is a column vector of length n containing the
authority scores of all nodes. Note that N is computed from
data (Sec. 3.4), E = TT 0 and L = M � (T � T 0

) in which
T and M are also known. As such, the ATR matrix � is the
only unknown of our model.

We can solve for r using the power method [16]. As �,
T , N and M are all non-negative, so is H . Starting with
an arbitrary initial vector r

(0) 2 Rn, we form the vector
sequence {r(p)}1

p=0

. If ||H|| 6= 1, the power method would
underflow or overflow for large p, and not converge to a fixed
r. As such, we introduce a normalization at every step:

r

(p+1) H r

(p)

||H r

(p)||
, p = 0, 1, 2, . . .(3.6)

2The referrals are directed, while trade relations are undirected.
In the latter we also assume the vice versa, i.e., j’s authority to be
higher than other energy companies in i’s vicinity.

It can be shown that the power method converges to the
left singular vector of H under some mild conditions [12]:

THEOREM 3.1. Let the singular values of H 2 Rn⇥n be
arranged such that |�

1

| > |�
2

| � . . . � |�
n

|. Let u
1

and v

1

be the left and right singular vectors of H corresponding to
�
1

respectively. Then, the vector sequence generated by (3.6)
converges to u

1

, where ||r(p)|| converges to |�
1

| for large p,
provided that v0

1

r

0

6= 0 and |�
1

| 6= |�
2

|.
For a HIN with m types, � contains m2 parameters.

Even for moderate m, it would be challenging to set these
ATR values manually. Next we propose two new algorithms
for parameter estimation provided training data.

4 Parameter Estimation
The authority transfer rates, in other words the values in �,
depend on the problem domain and may be hard to assign by
humans. To estimate �, we consider learning from partially
ranked lists, given by humans, as providing partial lists is
more practical than assigning absolute rates. We propose
two approaches for estimating �; (1) a RankSVM approach,
and (2) a gradient based approach.

Let us first represent r
i

in the form of a linear function
of a feature vector x

i

and a weight vector w, such that
r
i

= f(x
i

) =< w,x
i

>. This is a convenient and common
representation to be used in many learning algorithms.

We start by rewriting Eq. (3.4) as

r
i

=

X

t

�(t, t
i

)

X

j:t

j

=t

⇥
M(j, i)(r

j

+

X

v:t

v

=t

i

N(v, j) r
v

)

⇤

Let us define a m⇥ n matrix X where

(4.7) X(t, i) =
X

j:t

j

=t

M(j, i) (r
j

+

X

v:t

v

=t

i

N(v, j) r
v

)

using which we can write

(4.8) r
i

=

X

t

�(t, t
i

)X(t, i) = �

0
(t

i

, :) ·X(:, i) = �

0
t

i

·x
i

where x
i

is the ith column of X and �

t

i

is the tth
i

column of
�. As such, we can compute r

i

by the vector-vector product

(4.9) r
i

= f(x
i

) =< �

t

i

,x
i

> .

In this formulation, �
t

i

is a length m vector of unknown
parameters and x

i

is considered as the “feature vector” of
node i. Now in order to estimate � we need access to x

i

’s,
and to construct the x

i

’s we need to know the authority
scores r (Eq. 4.7), which in turn requires � (Eq. 3.4).
That is, �

Eq.(3.4)�����! r

Eq.(4.7)�����! X
estimate����! �. In this

section we describe algorithms for exactly the last step. The
dependences suggest that an alternating optimization scheme
is an appropriate approach to estimating �. The sketch

dustries in j’s vicinity, we assume i’s authority to be higher
than those.2

To capture this intuition, for each edge e(j, i) we think
of “ghost” edges from nodes of type t

i

in j’s vicinity to i.
Instead of a fixed vicinity, we define a smooth neighborhood
function that is a decreasing function of distance:

N(u, v) =

⇢
g(d(l

u

, l
v

)) u, v 2 V, u 6= v
0 u = v

where g(.) is monotonically decreasing, e.g. g(z) = e�z .
Then, we transfer a weighted sum of the authority scores

of type t
i

nodes in j’s neighborhood along with j’s authority
itself to compute i’s score. Building on (3.3) we get:

(3.4) r
i

=

X

j

�(t
j

, t
i

)M(j, i) (r
j

+

X

v:t

v

=t

i

N(v, j) r
v

) .

3.5 Solving the HINSIDE Model. Our proposed model
given in Eq. (3.4) can be written and solved in a compact
form. Let T denote the n ⇥ m boolean type matrix with
T (i, c) = 1 if t

i

= T (c) and 0 otherwise, 8i 2 V and
c = {1, . . . ,m}. Based on this, we define L = M�(T � T 0

)

where 0 denotes transpose operation. We also introduce the
type equality matrix E where

E(u, v) =

⇢
1 if t

u

= t
v

0 otherwise

In matrix form, E = TT 0. We then rewrite (3.4) as

r
i

=

X

j

L(j, i) r
j

+

X

j

X

v

L(j, i)N(v, j) r
v

E(i, v)

r
i

=

X

j

L(j, i) r
j

+

X

v

r
v

E(i, v)
⇥X

j

N(v, j)L(j, i)
⇤

r = L0
r + (E � (NL)0)r

As such, we obtain

r =

⇥
L0

+ (L0N 0 � E)

⇤
r = H r(3.5)

where r 2 Rn is a column vector of length n containing the
authority scores of all nodes. Note that N is computed from
data (Sec. 3.4), E = TT 0 and L = M � (T � T 0

) in which
T and M are also known. As such, the ATR matrix � is the
only unknown of our model.

We can solve for r using the power method [16]. As �,
T , N and M are all non-negative, so is H . Starting with
an arbitrary initial vector r

(0) 2 Rn, we form the vector
sequence {r(p)}1

p=0

. If ||H|| 6= 1, the power method would
underflow or overflow for large p, and not converge to a fixed
r. As such, we introduce a normalization at every step:

r

(p+1) H r

(p)

||H r

(p)||
, p = 0, 1, 2, . . .(3.6)

2The referrals are directed, while trade relations are undirected.
In the latter we also assume the vice versa, i.e., j’s authority to be
higher than other energy companies in i’s vicinity.

It can be shown that the power method converges to the
left singular vector of H under some mild conditions [12]:

THEOREM 3.1. Let the singular values of H 2 Rn⇥n be
arranged such that |�

1

| > |�
2

| � . . . � |�
n

|. Let u
1

and v

1

be the left and right singular vectors of H corresponding to
�
1

respectively. Then, the vector sequence generated by (3.6)
converges to u

1

, where ||r(p)|| converges to |�
1

| for large p,
provided that v0

1

r

0

6= 0 and |�
1

| 6= |�
2

|.
For a HIN with m types, � contains m2 parameters.

Even for moderate m, it would be challenging to set these
ATR values manually. Next we propose two new algorithms
for parameter estimation provided training data.

4 Parameter Estimation
The authority transfer rates, in other words the values in �,
depend on the problem domain and may be hard to assign by
humans. To estimate �, we consider learning from partially
ranked lists, given by humans, as providing partial lists is
more practical than assigning absolute rates. We propose
two approaches for estimating �; (1) a RankSVM approach,
and (2) a gradient based approach.

Let us first represent r
i

in the form of a linear function
of a feature vector x

i

and a weight vector w, such that
r
i

= f(x
i

) =< w,x
i

>. This is a convenient and common
representation to be used in many learning algorithms.

We start by rewriting Eq. (3.4) as

r
i

=

X

t

�(t, t
i

)

X

j:t

j

=t

⇥
M(j, i)(r

j

+

X

v:t

v

=t

i

N(v, j) r
v

)

⇤

Let us define a m⇥ n matrix X where

(4.7) X(t, i) =
X

j:t

j

=t

M(j, i) (r
j

+

X

v:t

v

=t

i

N(v, j) r
v

)

using which we can write

(4.8) r
i

=

X

t

�(t, t
i

)X(t, i) = �

0
(t

i

, :) ·X(:, i) = �

0
t

i

·x
i

where x
i

is the ith column of X and �

t

i

is the tth
i

column of
�. As such, we can compute r

i

by the vector-vector product

(4.9) r
i

= f(x
i

) =< �

t

i

,x
i

> .

In this formulation, �
t

i

is a length m vector of unknown
parameters and x

i

is considered as the “feature vector” of
node i. Now in order to estimate � we need access to x

i

’s,
and to construct the x

i

’s we need to know the authority
scores r (Eq. 4.7), which in turn requires � (Eq. 3.4).
That is, �

Eq.(3.4)�����! r

Eq.(4.7)�����! X
estimate����! �. In this

section we describe algorithms for exactly the last step. The
dependences suggest that an alternating optimization scheme
is an appropriate approach to estimating �. The sketch

for monotonically decreasing

13

Closed-form solution
§  Authority scores vector r written in closed

form as (& computed by power iterations)

q 
§  (n x m) where
§  (m x m) authority transfer rates (ATR)

q  where

n: #nodes m: #types

dustries in j’s vicinity, we assume i’s authority to be higher
than those.2

To capture this intuition, for each edge e(j, i) we think
of “ghost” edges from nodes of type t

i

in j’s vicinity to i.
Instead of a fixed vicinity, we define a smooth neighborhood
function that is a decreasing function of distance:

N(u, v) =

⇢
g(d(l

u

, l
v

)) u, v 2 V, u 6= v
0 u = v

where g(.) is monotonically decreasing, e.g. g(z) = e�z .
Then, we transfer a weighted sum of the authority scores

of type t
i

nodes in j’s neighborhood along with j’s authority
itself to compute i’s score. Building on (3.3) we get:

(3.4) r
i

=

X

j

�(t
j

, t
i

)M(j, i) (r
j

+

X

v:t

v

=t

i

N(v, j) r
v

) .

3.5 Solving the HINSIDE Model. Our proposed model
given in Eq. (3.4) can be written and solved in a compact
form. Let T denote the n ⇥ m boolean type matrix with
T (i, c) = 1 if t

i

= T (c) and 0 otherwise, 8i 2 V and
c = {1, . . . ,m}. Based on this, we define L = M�(T � T 0

)

where 0 denotes transpose operation. We also introduce the
type equality matrix E where

E(u, v) =

⇢
1 if t

u

= t
v

0 otherwise

In matrix form, E = TT 0. We then rewrite (3.4) as

r
i

=

X

j

L(j, i) r
j

+

X

j

X

v

L(j, i)N(v, j) r
v

E(i, v)

r
i

=

X

j

L(j, i) r
j

+

X

v

r
v

E(i, v)
⇥X

j

N(v, j)L(j, i)
⇤

r = L0
r + (E � (NL)0)r

As such, we obtain

r =

⇥
L0

+ (L0N 0 � E)

⇤
r = H r(3.5)

where r 2 Rn is a column vector of length n containing the
authority scores of all nodes. Note that N is computed from
data (Sec. 3.4), E = TT 0 and L = M � (T � T 0

) in which
T and M are also known. As such, the ATR matrix � is the
only unknown of our model.

We can solve for r using the power method [16]. As �,
T , N and M are all non-negative, so is H . Starting with
an arbitrary initial vector r

(0) 2 Rn, we form the vector
sequence {r(p)}1

p=0

. If ||H|| 6= 1, the power method would
underflow or overflow for large p, and not converge to a fixed
r. As such, we introduce a normalization at every step:

r

(p+1) H r

(p)

||H r

(p)||
, p = 0, 1, 2, . . .(3.6)

2The referrals are directed, while trade relations are undirected.
In the latter we also assume the vice versa, i.e., j’s authority to be
higher than other energy companies in i’s vicinity.

It can be shown that the power method converges to the
left singular vector of H under some mild conditions [12]:

THEOREM 3.1. Let the singular values of H 2 Rn⇥n be
arranged such that |�

1

| > |�
2

| � . . . � |�
n

|. Let u
1

and v

1

be the left and right singular vectors of H corresponding to
�
1

respectively. Then, the vector sequence generated by (3.6)
converges to u

1

, where ||r(p)|| converges to |�
1

| for large p,
provided that v0

1

r

0

6= 0 and |�
1

| 6= |�
2

|.
For a HIN with m types, � contains m2 parameters.

Even for moderate m, it would be challenging to set these
ATR values manually. Next we propose two new algorithms
for parameter estimation provided training data.

4 Parameter Estimation
The authority transfer rates, in other words the values in �,
depend on the problem domain and may be hard to assign by
humans. To estimate �, we consider learning from partially
ranked lists, given by humans, as providing partial lists is
more practical than assigning absolute rates. We propose
two approaches for estimating �; (1) a RankSVM approach,
and (2) a gradient based approach.

Let us first represent r
i

in the form of a linear function
of a feature vector x

i

and a weight vector w, such that
r
i

= f(x
i

) =< w,x
i

>. This is a convenient and common
representation to be used in many learning algorithms.

We start by rewriting Eq. (3.4) as

r
i

=

X

t

�(t, t
i

)

X

j:t

j

=t

⇥
M(j, i)(r

j

+

X

v:t

v

=t

i

N(v, j) r
v

)

⇤

Let us define a m⇥ n matrix X where

(4.7) X(t, i) =
X

j:t

j

=t

M(j, i) (r
j

+

X

v:t

v

=t

i

N(v, j) r
v

)

using which we can write

(4.8) r
i

=

X

t

�(t, t
i

)X(t, i) = �

0
(t

i

, :) ·X(:, i) = �

0
t

i

·x
i

where x
i

is the ith column of X and �

t

i

is the tth
i

column of
�. As such, we can compute r

i

by the vector-vector product

(4.9) r
i

= f(x
i

) =< �

t

i

,x
i

> .

In this formulation, �
t

i

is a length m vector of unknown
parameters and x

i

is considered as the “feature vector” of
node i. Now in order to estimate � we need access to x

i

’s,
and to construct the x

i

’s we need to know the authority
scores r (Eq. 4.7), which in turn requires � (Eq. 3.4).
That is, �

Eq.(3.4)�����! r

Eq.(4.7)�����! X
estimate����! �. In this

section we describe algorithms for exactly the last step. The
dependences suggest that an alternating optimization scheme
is an appropriate approach to estimating �. The sketch

dustries in j’s vicinity, we assume i’s authority to be higher
than those.2

To capture this intuition, for each edge e(j, i) we think
of “ghost” edges from nodes of type t

i

in j’s vicinity to i.
Instead of a fixed vicinity, we define a smooth neighborhood
function that is a decreasing function of distance:

N(u, v) =

⇢
g(d(l

u

, l
v

)) u, v 2 V, u 6= v
0 u = v

where g(.) is monotonically decreasing, e.g. g(z) = e�z .
Then, we transfer a weighted sum of the authority scores

of type t
i

nodes in j’s neighborhood along with j’s authority
itself to compute i’s score. Building on (3.3) we get:

(3.4) r
i

=

X

j

�(t
j

, t
i

)M(j, i) (r
j

+

X

v:t

v

=t

i

N(v, j) r
v

) .

3.5 Solving the HINSIDE Model. Our proposed model
given in Eq. (3.4) can be written and solved in a compact
form. Let T denote the n ⇥ m boolean type matrix with
T (i, c) = 1 if t

i

= T (c) and 0 otherwise, 8i 2 V and
c = {1, . . . ,m}. Based on this, we define L = M�(T � T 0

)

where 0 denotes transpose operation. We also introduce the
type equality matrix E where

E(u, v) =

⇢
1 if t

u

= t
v

0 otherwise

In matrix form, E = TT 0. We then rewrite (3.4) as

r
i

=

X

j

L(j, i) r
j

+

X

j

X

v

L(j, i)N(v, j) r
v

E(i, v)

r
i

=

X

j

L(j, i) r
j

+

X

v

r
v

E(i, v)
⇥X

j

N(v, j)L(j, i)
⇤

r = L0
r + (E � (NL)0)r

As such, we obtain

r =

⇥
L0

+ (L0N 0 � E)

⇤
r = H r(3.5)

where r 2 Rn is a column vector of length n containing the
authority scores of all nodes. Note that N is computed from
data (Sec. 3.4), E = TT 0 and L = M � (T � T 0

) in which
T and M are also known. As such, the ATR matrix � is the
only unknown of our model.

We can solve for r using the power method [16]. As �,
T , N and M are all non-negative, so is H . Starting with
an arbitrary initial vector r

(0) 2 Rn, we form the vector
sequence {r(p)}1

p=0

. If ||H|| 6= 1, the power method would
underflow or overflow for large p, and not converge to a fixed
r. As such, we introduce a normalization at every step:

r

(p+1) H r

(p)

||H r

(p)||
, p = 0, 1, 2, . . .(3.6)

2The referrals are directed, while trade relations are undirected.
In the latter we also assume the vice versa, i.e., j’s authority to be
higher than other energy companies in i’s vicinity.

It can be shown that the power method converges to the
left singular vector of H under some mild conditions [12]:

THEOREM 3.1. Let the singular values of H 2 Rn⇥n be
arranged such that |�

1

| > |�
2

| � . . . � |�
n

|. Let u
1

and v

1

be the left and right singular vectors of H corresponding to
�
1

respectively. Then, the vector sequence generated by (3.6)
converges to u

1

, where ||r(p)|| converges to |�
1

| for large p,
provided that v0

1

r

0

6= 0 and |�
1

| 6= |�
2

|.
For a HIN with m types, � contains m2 parameters.

Even for moderate m, it would be challenging to set these
ATR values manually. Next we propose two new algorithms
for parameter estimation provided training data.

4 Parameter Estimation
The authority transfer rates, in other words the values in �,
depend on the problem domain and may be hard to assign by
humans. To estimate �, we consider learning from partially
ranked lists, given by humans, as providing partial lists is
more practical than assigning absolute rates. We propose
two approaches for estimating �; (1) a RankSVM approach,
and (2) a gradient based approach.

Let us first represent r
i

in the form of a linear function
of a feature vector x

i

and a weight vector w, such that
r
i

= f(x
i

) =< w,x
i

>. This is a convenient and common
representation to be used in many learning algorithms.

We start by rewriting Eq. (3.4) as

r
i

=

X

t

�(t, t
i

)

X

j:t

j

=t

⇥
M(j, i)(r

j

+

X

v:t

v

=t

i

N(v, j) r
v

)

⇤

Let us define a m⇥ n matrix X where

(4.7) X(t, i) =
X

j:t

j

=t

M(j, i) (r
j

+

X

v:t

v

=t

i

N(v, j) r
v

)

using which we can write

(4.8) r
i

=

X

t

�(t, t
i

)X(t, i) = �

0
(t

i

, :) ·X(:, i) = �

0
t

i

·x
i

where x
i

is the ith column of X and �

t

i

is the tth
i

column of
�. As such, we can compute r

i

by the vector-vector product

(4.9) r
i

= f(x
i

) =< �

t

i

,x
i

> .

In this formulation, �
t

i

is a length m vector of unknown
parameters and x

i

is considered as the “feature vector” of
node i. Now in order to estimate � we need access to x

i

’s,
and to construct the x

i

’s we need to know the authority
scores r (Eq. 4.7), which in turn requires � (Eq. 3.4).
That is, �

Eq.(3.4)�����! r

Eq.(4.7)�����! X
estimate����! �. In this

section we describe algorithms for exactly the last step. The
dependences suggest that an alternating optimization scheme
is an appropriate approach to estimating �. The sketch

dustries in j’s vicinity, we assume i’s authority to be higher
than those.2

To capture this intuition, for each edge e(j, i) we think
of “ghost” edges from nodes of type t

i

in j’s vicinity to i.
Instead of a fixed vicinity, we define a smooth neighborhood
function that is a decreasing function of distance:

N(u, v) =

⇢
g(d(l

u

, l
v

)) u, v 2 V, u 6= v
0 u = v

where g(.) is monotonically decreasing, e.g. g(z) = e�z .
Then, we transfer a weighted sum of the authority scores

of type t
i

nodes in j’s neighborhood along with j’s authority
itself to compute i’s score. Building on (3.3) we get:

(3.4) r
i

=

X

j

�(t
j

, t
i

)M(j, i) (r
j

+

X

v:t

v

=t

i

N(v, j) r
v

) .

3.5 Solving the HINSIDE Model. Our proposed model
given in Eq. (3.4) can be written and solved in a compact
form. Let T denote the n ⇥ m boolean type matrix with
T (i, c) = 1 if t

i

= T (c) and 0 otherwise, 8i 2 V and
c = {1, . . . ,m}. Based on this, we define L = M�(T � T 0

)

where 0 denotes transpose operation. We also introduce the
type equality matrix E where

E(u, v) =

⇢
1 if t

u

= t
v

0 otherwise

In matrix form, E = TT 0. We then rewrite (3.4) as

r
i

=

X

j

L(j, i) r
j

+

X

j

X

v

L(j, i)N(v, j) r
v

E(i, v)

r
i

=

X

j

L(j, i) r
j

+

X

v

r
v

E(i, v)
⇥X

j

N(v, j)L(j, i)
⇤

r = L0
r + (E � (NL)0)r

As such, we obtain

r =

⇥
L0

+ (L0N 0 � E)

⇤
r = H r(3.5)

where r 2 Rn is a column vector of length n containing the
authority scores of all nodes. Note that N is computed from
data (Sec. 3.4), E = TT 0 and L = M � (T � T 0

) in which
T and M are also known. As such, the ATR matrix � is the
only unknown of our model.

We can solve for r using the power method [16]. As �,
T , N and M are all non-negative, so is H . Starting with
an arbitrary initial vector r

(0) 2 Rn, we form the vector
sequence {r(p)}1

p=0

. If ||H|| 6= 1, the power method would
underflow or overflow for large p, and not converge to a fixed
r. As such, we introduce a normalization at every step:

r

(p+1) H r

(p)

||H r

(p)||
, p = 0, 1, 2, . . .(3.6)

2The referrals are directed, while trade relations are undirected.
In the latter we also assume the vice versa, i.e., j’s authority to be
higher than other energy companies in i’s vicinity.

It can be shown that the power method converges to the
left singular vector of H under some mild conditions [12]:

THEOREM 3.1. Let the singular values of H 2 Rn⇥n be
arranged such that |�

1

| > |�
2

| � . . . � |�
n

|. Let u
1

and v

1

be the left and right singular vectors of H corresponding to
�
1

respectively. Then, the vector sequence generated by (3.6)
converges to u

1

, where ||r(p)|| converges to |�
1

| for large p,
provided that v0

1

r

0

6= 0 and |�
1

| 6= |�
2

|.
For a HIN with m types, � contains m2 parameters.

Even for moderate m, it would be challenging to set these
ATR values manually. Next we propose two new algorithms
for parameter estimation provided training data.

4 Parameter Estimation
The authority transfer rates, in other words the values in �,
depend on the problem domain and may be hard to assign by
humans. To estimate �, we consider learning from partially
ranked lists, given by humans, as providing partial lists is
more practical than assigning absolute rates. We propose
two approaches for estimating �; (1) a RankSVM approach,
and (2) a gradient based approach.

Let us first represent r
i

in the form of a linear function
of a feature vector x

i

and a weight vector w, such that
r
i

= f(x
i

) =< w,x
i

>. This is a convenient and common
representation to be used in many learning algorithms.

We start by rewriting Eq. (3.4) as

r
i

=

X

t

�(t, t
i

)

X

j:t

j

=t

⇥
M(j, i)(r

j

+

X

v:t

v

=t

i

N(v, j) r
v

)

⇤

Let us define a m⇥ n matrix X where

(4.7) X(t, i) =
X

j:t

j

=t

M(j, i) (r
j

+

X

v:t

v

=t

i

N(v, j) r
v

)

using which we can write

(4.8) r
i

=

X

t

�(t, t
i

)X(t, i) = �

0
(t

i

, :) ·X(:, i) = �

0
t

i

·x
i

where x
i

is the ith column of X and �

t

i

is the tth
i

column of
�. As such, we can compute r

i

by the vector-vector product

(4.9) r
i

= f(x
i

) =< �

t

i

,x
i

> .

In this formulation, �
t

i

is a length m vector of unknown
parameters and x

i

is considered as the “feature vector” of
node i. Now in order to estimate � we need access to x

i

’s,
and to construct the x

i

’s we need to know the authority
scores r (Eq. 4.7), which in turn requires � (Eq. 3.4).
That is, �

Eq.(3.4)�����! r

Eq.(4.7)�����! X
estimate����! �. In this

section we describe algorithms for exactly the last step. The
dependences suggest that an alternating optimization scheme
is an appropriate approach to estimating �. The sketch

dustries in j’s vicinity, we assume i’s authority to be higher
than those.2

To capture this intuition, for each edge e(j, i) we think
of “ghost” edges from nodes of type t

i

in j’s vicinity to i.
Instead of a fixed vicinity, we define a smooth neighborhood
function that is a decreasing function of distance:

N(u, v) =

⇢
g(d(l

u

, l
v

)) u, v 2 V, u 6= v
0 u = v

where g(.) is monotonically decreasing, e.g. g(z) = e�z .
Then, we transfer a weighted sum of the authority scores

of type t
i

nodes in j’s neighborhood along with j’s authority
itself to compute i’s score. Building on (3.3) we get:

(3.4) r
i

=

X

j

�(t
j

, t
i

)M(j, i) (r
j

+

X

v:t

v

=t

i

N(v, j) r
v

) .

3.5 Solving the HINSIDE Model. Our proposed model
given in Eq. (3.4) can be written and solved in a compact
form. Let T denote the n ⇥ m boolean type matrix with
T (i, c) = 1 if t

i

= T (c) and 0 otherwise, 8i 2 V and
c = {1, . . . ,m}. Based on this, we define L = M�(T � T 0

)

where 0 denotes transpose operation. We also introduce the
type equality matrix E where

E(u, v) =

⇢
1 if t

u

= t
v

0 otherwise

In matrix form, E = TT 0. We then rewrite (3.4) as

r
i

=

X

j

L(j, i) r
j

+

X

j

X

v

L(j, i)N(v, j) r
v

E(i, v)

r
i

=

X

j

L(j, i) r
j

+

X

v

r
v

E(i, v)
⇥X

j

N(v, j)L(j, i)
⇤

r = L0
r + (E � (NL)0)r

As such, we obtain

r =

⇥
L0

+ (L0N 0 � E)

⇤
r = H r(3.5)

where r 2 Rn is a column vector of length n containing the
authority scores of all nodes. Note that N is computed from
data (Sec. 3.4), E = TT 0 and L = M � (T � T 0

) in which
T and M are also known. As such, the ATR matrix � is the
only unknown of our model.

We can solve for r using the power method [16]. As �,
T , N and M are all non-negative, so is H . Starting with
an arbitrary initial vector r

(0) 2 Rn, we form the vector
sequence {r(p)}1

p=0

. If ||H|| 6= 1, the power method would
underflow or overflow for large p, and not converge to a fixed
r. As such, we introduce a normalization at every step:

r

(p+1) H r

(p)

||H r

(p)||
, p = 0, 1, 2, . . .(3.6)

2The referrals are directed, while trade relations are undirected.
In the latter we also assume the vice versa, i.e., j’s authority to be
higher than other energy companies in i’s vicinity.

It can be shown that the power method converges to the
left singular vector of H under some mild conditions [12]:

THEOREM 3.1. Let the singular values of H 2 Rn⇥n be
arranged such that |�

1

| > |�
2

| � . . . � |�
n

|. Let u
1

and v

1

be the left and right singular vectors of H corresponding to
�
1

respectively. Then, the vector sequence generated by (3.6)
converges to u

1

, where ||r(p)|| converges to |�
1

| for large p,
provided that v0

1

r

0

6= 0 and |�
1

| 6= |�
2

|.
For a HIN with m types, � contains m2 parameters.

Even for moderate m, it would be challenging to set these
ATR values manually. Next we propose two new algorithms
for parameter estimation provided training data.

4 Parameter Estimation
The authority transfer rates, in other words the values in �,
depend on the problem domain and may be hard to assign by
humans. To estimate �, we consider learning from partially
ranked lists, given by humans, as providing partial lists is
more practical than assigning absolute rates. We propose
two approaches for estimating �; (1) a RankSVM approach,
and (2) a gradient based approach.

Let us first represent r
i

in the form of a linear function
of a feature vector x

i

and a weight vector w, such that
r
i

= f(x
i

) =< w,x
i

>. This is a convenient and common
representation to be used in many learning algorithms.

We start by rewriting Eq. (3.4) as

r
i

=

X

t

�(t, t
i

)

X

j:t

j

=t

⇥
M(j, i)(r

j

+

X

v:t

v

=t

i

N(v, j) r
v

)

⇤

Let us define a m⇥ n matrix X where

(4.7) X(t, i) =
X

j:t

j

=t

M(j, i) (r
j

+

X

v:t

v

=t

i

N(v, j) r
v

)

using which we can write

(4.8) r
i

=

X

t

�(t, t
i

)X(t, i) = �

0
(t

i

, :) ·X(:, i) = �

0
t

i

·x
i

where x
i

is the ith column of X and �

t

i

is the tth
i

column of
�. As such, we can compute r

i

by the vector-vector product

(4.9) r
i

= f(x
i

) =< �

t

i

,x
i

> .

In this formulation, �
t

i

is a length m vector of unknown
parameters and x

i

is considered as the “feature vector” of
node i. Now in order to estimate � we need access to x

i

’s,
and to construct the x

i

’s we need to know the authority
scores r (Eq. 4.7), which in turn requires � (Eq. 3.4).
That is, �

Eq.(3.4)�����! r

Eq.(4.7)�����! X
estimate����! �. In this

section we describe algorithms for exactly the last step. The
dependences suggest that an alternating optimization scheme
is an appropriate approach to estimating �. The sketch

dustries in j’s vicinity, we assume i’s authority to be higher
than those.2

To capture this intuition, for each edge e(j, i) we think
of “ghost” edges from nodes of type t

i

in j’s vicinity to i.
Instead of a fixed vicinity, we define a smooth neighborhood
function that is a decreasing function of distance:

N(u, v) =

⇢
g(d(l

u

, l
v

)) u, v 2 V, u 6= v
0 u = v

where g(.) is monotonically decreasing, e.g. g(z) = e�z .
Then, we transfer a weighted sum of the authority scores

of type t
i

nodes in j’s neighborhood along with j’s authority
itself to compute i’s score. Building on (3.3) we get:

(3.4) r
i

=

X

j

�(t
j

, t
i

)M(j, i) (r
j

+

X

v:t

v

=t

i

N(v, j) r
v

) .

3.5 Solving the HINSIDE Model. Our proposed model
given in Eq. (3.4) can be written and solved in a compact
form. Let T denote the n ⇥ m boolean type matrix with
T (i, c) = 1 if t

i

= T (c) and 0 otherwise, 8i 2 V and
c = {1, . . . ,m}. Based on this, we define L = M�(T � T 0

)

where 0 denotes transpose operation. We also introduce the
type equality matrix E where

E(u, v) =

⇢
1 if t

u

= t
v

0 otherwise

In matrix form, E = TT 0. We then rewrite (3.4) as

r
i

=

X

j

L(j, i) r
j

+

X

j

X

v

L(j, i)N(v, j) r
v

E(i, v)

r
i

=

X

j

L(j, i) r
j

+

X

v

r
v

E(i, v)
⇥X

j

N(v, j)L(j, i)
⇤

r = L0
r + (E � (NL)0)r

As such, we obtain

r =

⇥
L0

+ (L0N 0 � E)

⇤
r = H r(3.5)

where r 2 Rn is a column vector of length n containing the
authority scores of all nodes. Note that N is computed from
data (Sec. 3.4), E = TT 0 and L = M � (T � T 0

) in which
T and M are also known. As such, the ATR matrix � is the
only unknown of our model.

We can solve for r using the power method [16]. As �,
T , N and M are all non-negative, so is H . Starting with
an arbitrary initial vector r

(0) 2 Rn, we form the vector
sequence {r(p)}1

p=0

. If ||H|| 6= 1, the power method would
underflow or overflow for large p, and not converge to a fixed
r. As such, we introduce a normalization at every step:

r

(p+1) H r

(p)

||H r

(p)||
, p = 0, 1, 2, . . .(3.6)

2The referrals are directed, while trade relations are undirected.
In the latter we also assume the vice versa, i.e., j’s authority to be
higher than other energy companies in i’s vicinity.

It can be shown that the power method converges to the
left singular vector of H under some mild conditions [12]:

THEOREM 3.1. Let the singular values of H 2 Rn⇥n be
arranged such that |�

1

| > |�
2

| � . . . � |�
n

|. Let u
1

and v

1

be the left and right singular vectors of H corresponding to
�
1

respectively. Then, the vector sequence generated by (3.6)
converges to u

1

, where ||r(p)|| converges to |�
1

| for large p,
provided that v0

1

r

0

6= 0 and |�
1

| 6= |�
2

|.
For a HIN with m types, � contains m2 parameters.

Even for moderate m, it would be challenging to set these
ATR values manually. Next we propose two new algorithms
for parameter estimation provided training data.

4 Parameter Estimation
The authority transfer rates, in other words the values in �,
depend on the problem domain and may be hard to assign by
humans. To estimate �, we consider learning from partially
ranked lists, given by humans, as providing partial lists is
more practical than assigning absolute rates. We propose
two approaches for estimating �; (1) a RankSVM approach,
and (2) a gradient based approach.

Let us first represent r
i

in the form of a linear function
of a feature vector x

i

and a weight vector w, such that
r
i

= f(x
i

) =< w,x
i

>. This is a convenient and common
representation to be used in many learning algorithms.

We start by rewriting Eq. (3.4) as

r
i

=

X

t

�(t, t
i

)

X

j:t

j

=t

⇥
M(j, i)(r

j

+

X

v:t

v

=t

i

N(v, j) r
v

)

⇤

Let us define a m⇥ n matrix X where

(4.7) X(t, i) =
X

j:t

j

=t

M(j, i) (r
j

+

X

v:t

v

=t

i

N(v, j) r
v

)

using which we can write

(4.8) r
i

=

X

t

�(t, t
i

)X(t, i) = �

0
(t

i

, :) ·X(:, i) = �

0
t

i

·x
i

where x
i

is the ith column of X and �

t

i

is the tth
i

column of
�. As such, we can compute r

i

by the vector-vector product

(4.9) r
i

= f(x
i

) =< �

t

i

,x
i

> .

In this formulation, �
t

i

is a length m vector of unknown
parameters and x

i

is considered as the “feature vector” of
node i. Now in order to estimate � we need access to x

i

’s,
and to construct the x

i

’s we need to know the authority
scores r (Eq. 4.7), which in turn requires � (Eq. 3.4).
That is, �

Eq.(3.4)�����! r

Eq.(4.7)�����! X
estimate����! �. In this

section we describe algorithms for exactly the last step. The
dependences suggest that an alternating optimization scheme
is an appropriate approach to estimating �. The sketch

dustries in j’s vicinity, we assume i’s authority to be higher
than those.2

To capture this intuition, for each edge e(j, i) we think
of “ghost” edges from nodes of type t

i

in j’s vicinity to i.
Instead of a fixed vicinity, we define a smooth neighborhood
function that is a decreasing function of distance:

N(u, v) =

⇢
g(d(l

u

, l
v

)) u, v 2 V, u 6= v
0 u = v

where g(.) is monotonically decreasing, e.g. g(z) = e�z .
Then, we transfer a weighted sum of the authority scores

of type t
i

nodes in j’s neighborhood along with j’s authority
itself to compute i’s score. Building on (3.3) we get:

(3.4) r
i

=

X

j

�(t
j

, t
i

)M(j, i) (r
j

+

X

v:t

v

=t

i

N(v, j) r
v

) .

3.5 Solving the HINSIDE Model. Our proposed model
given in Eq. (3.4) can be written and solved in a compact
form. Let T denote the n ⇥ m boolean type matrix with
T (i, c) = 1 if t

i

= T (c) and 0 otherwise, 8i 2 V and
c = {1, . . . ,m}. Based on this, we define L = M�(T � T 0

)

where 0 denotes transpose operation. We also introduce the
type equality matrix E where

E(u, v) =

⇢
1 if t

u

= t
v

0 otherwise

In matrix form, E = TT 0. We then rewrite (3.4) as

r
i

=

X

j

L(j, i) r
j

+

X

j

X

v

L(j, i)N(v, j) r
v

E(i, v)

r
i

=

X

j

L(j, i) r
j

+

X

v

r
v

E(i, v)
⇥X

j

N(v, j)L(j, i)
⇤

r = L0
r + (E � (NL)0)r

As such, we obtain

r =

⇥
L0

+ (L0N 0 � E)

⇤
r = H r(3.5)

where r 2 Rn is a column vector of length n containing the
authority scores of all nodes. Note that N is computed from
data (Sec. 3.4), E = TT 0 and L = M � (T � T 0

) in which
T and M are also known. As such, the ATR matrix � is the
only unknown of our model.

We can solve for r using the power method [16]. As �,
T , N and M are all non-negative, so is H . Starting with
an arbitrary initial vector r

(0) 2 Rn, we form the vector
sequence {r(p)}1

p=0

. If ||H|| 6= 1, the power method would
underflow or overflow for large p, and not converge to a fixed
r. As such, we introduce a normalization at every step:

r

(p+1) H r

(p)

||H r

(p)||
, p = 0, 1, 2, . . .(3.6)

2The referrals are directed, while trade relations are undirected.
In the latter we also assume the vice versa, i.e., j’s authority to be
higher than other energy companies in i’s vicinity.

It can be shown that the power method converges to the
left singular vector of H under some mild conditions [12]:

THEOREM 3.1. Let the singular values of H 2 Rn⇥n be
arranged such that |�

1

| > |�
2

| � . . . � |�
n

|. Let u
1

and v

1

be the left and right singular vectors of H corresponding to
�
1

respectively. Then, the vector sequence generated by (3.6)
converges to u

1

, where ||r(p)|| converges to |�
1

| for large p,
provided that v0

1

r

0

6= 0 and |�
1

| 6= |�
2

|.
For a HIN with m types, � contains m2 parameters.

Even for moderate m, it would be challenging to set these
ATR values manually. Next we propose two new algorithms
for parameter estimation provided training data.

4 Parameter Estimation
The authority transfer rates, in other words the values in �,
depend on the problem domain and may be hard to assign by
humans. To estimate �, we consider learning from partially
ranked lists, given by humans, as providing partial lists is
more practical than assigning absolute rates. We propose
two approaches for estimating �; (1) a RankSVM approach,
and (2) a gradient based approach.

Let us first represent r
i

in the form of a linear function
of a feature vector x

i

and a weight vector w, such that
r
i

= f(x
i

) =< w,x
i

>. This is a convenient and common
representation to be used in many learning algorithms.

We start by rewriting Eq. (3.4) as

r
i

=

X

t

�(t, t
i

)

X

j:t

j

=t

⇥
M(j, i)(r

j

+

X

v:t

v

=t

i

N(v, j) r
v

)

⇤

Let us define a m⇥ n matrix X where

(4.7) X(t, i) =
X

j:t

j

=t

M(j, i) (r
j

+

X

v:t

v

=t

i

N(v, j) r
v

)

using which we can write

(4.8) r
i

=

X

t

�(t, t
i

)X(t, i) = �

0
(t

i

, :) ·X(:, i) = �

0
t

i

·x
i

where x
i

is the ith column of X and �

t

i

is the tth
i

column of
�. As such, we can compute r

i

by the vector-vector product

(4.9) r
i

= f(x
i

) =< �

t

i

,x
i

> .

In this formulation, �
t

i

is a length m vector of unknown
parameters and x

i

is considered as the “feature vector” of
node i. Now in order to estimate � we need access to x

i

’s,
and to construct the x

i

’s we need to know the authority
scores r (Eq. 4.7), which in turn requires � (Eq. 3.4).
That is, �

Eq.(3.4)�����! r

Eq.(4.7)�����! X
estimate����! �. In this

section we describe algorithms for exactly the last step. The
dependences suggest that an alternating optimization scheme
is an appropriate approach to estimating �. The sketch

dustries in j’s vicinity, we assume i’s authority to be higher
than those.2

To capture this intuition, for each edge e(j, i) we think
of “ghost” edges from nodes of type t

i

in j’s vicinity to i.
Instead of a fixed vicinity, we define a smooth neighborhood
function that is a decreasing function of distance:

N(u, v) =

⇢
g(d(l

u

, l
v

)) u, v 2 V, u 6= v
0 u = v

where g(.) is monotonically decreasing, e.g. g(z) = e�z .
Then, we transfer a weighted sum of the authority scores

of type t
i

nodes in j’s neighborhood along with j’s authority
itself to compute i’s score. Building on (3.3) we get:

(3.4) r
i

=

X

j

�(t
j

, t
i

)M(j, i) (r
j

+

X

v:t

v

=t

i

N(v, j) r
v

) .

3.5 Solving the HINSIDE Model. Our proposed model
given in Eq. (3.4) can be written and solved in a compact
form. Let T denote the n ⇥ m boolean type matrix with
T (i, c) = 1 if t

i

= T (c) and 0 otherwise, 8i 2 V and
c = {1, . . . ,m}. Based on this, we define L = M�(T � T 0

)

where 0 denotes transpose operation. We also introduce the
type equality matrix E where

E(u, v) =

⇢
1 if t

u

= t
v

0 otherwise

In matrix form, E = TT 0. We then rewrite (3.4) as

r
i

=

X

j

L(j, i) r
j

+

X

j

X

v

L(j, i)N(v, j) r
v

E(i, v)

r
i

=

X

j

L(j, i) r
j

+

X

v

r
v

E(i, v)
⇥X

j

N(v, j)L(j, i)
⇤

r = L0
r + (E � (NL)0)r

As such, we obtain

r =

⇥
L0

+ (L0N 0 � E)

⇤
r = H r(3.5)

where r 2 Rn is a column vector of length n containing the
authority scores of all nodes. Note that N is computed from
data (Sec. 3.4), E = TT 0 and L = M � (T � T 0

) in which
T and M are also known. As such, the ATR matrix � is the
only unknown of our model.

We can solve for r using the power method [16]. As �,
T , N and M are all non-negative, so is H . Starting with
an arbitrary initial vector r

(0) 2 Rn, we form the vector
sequence {r(p)}1

p=0

. If ||H|| 6= 1, the power method would
underflow or overflow for large p, and not converge to a fixed
r. As such, we introduce a normalization at every step:

r

(p+1) H r

(p)

||H r

(p)||
, p = 0, 1, 2, . . .(3.6)

2The referrals are directed, while trade relations are undirected.
In the latter we also assume the vice versa, i.e., j’s authority to be
higher than other energy companies in i’s vicinity.

It can be shown that the power method converges to the
left singular vector of H under some mild conditions [12]:

THEOREM 3.1. Let the singular values of H 2 Rn⇥n be
arranged such that |�

1

| > |�
2

| � . . . � |�
n

|. Let u
1

and v

1

be the left and right singular vectors of H corresponding to
�
1

respectively. Then, the vector sequence generated by (3.6)
converges to u

1

, where ||r(p)|| converges to |�
1

| for large p,
provided that v0

1

r

0

6= 0 and |�
1

| 6= |�
2

|.
For a HIN with m types, � contains m2 parameters.

Even for moderate m, it would be challenging to set these
ATR values manually. Next we propose two new algorithms
for parameter estimation provided training data.

4 Parameter Estimation
The authority transfer rates, in other words the values in �,
depend on the problem domain and may be hard to assign by
humans. To estimate �, we consider learning from partially
ranked lists, given by humans, as providing partial lists is
more practical than assigning absolute rates. We propose
two approaches for estimating �; (1) a RankSVM approach,
and (2) a gradient based approach.

Let us first represent r
i

in the form of a linear function
of a feature vector x

i

and a weight vector w, such that
r
i

= f(x
i

) =< w,x
i

>. This is a convenient and common
representation to be used in many learning algorithms.

We start by rewriting Eq. (3.4) as

r
i

=

X

t

�(t, t
i

)

X

j:t

j

=t

⇥
M(j, i)(r

j

+

X

v:t

v

=t

i

N(v, j) r
v

)

⇤

Let us define a m⇥ n matrix X where

(4.7) X(t, i) =
X

j:t

j

=t

M(j, i) (r
j

+

X

v:t

v

=t

i

N(v, j) r
v

)

using which we can write

(4.8) r
i

=

X

t

�(t, t
i

)X(t, i) = �

0
(t

i

, :) ·X(:, i) = �

0
t

i

·x
i

where x
i

is the ith column of X and �

t

i

is the tth
i

column of
�. As such, we can compute r

i

by the vector-vector product

(4.9) r
i

= f(x
i

) =< �

t

i

,x
i

> .

In this formulation, �
t

i

is a length m vector of unknown
parameters and x

i

is considered as the “feature vector” of
node i. Now in order to estimate � we need access to x

i

’s,
and to construct the x

i

’s we need to know the authority
scores r (Eq. 4.7), which in turn requires � (Eq. 3.4).
That is, �

Eq.(3.4)�����! r

Eq.(4.7)�����! X
estimate����! �. In this

section we describe algorithms for exactly the last step. The
dependences suggest that an alternating optimization scheme
is an appropriate approach to estimating �. The sketch

14

Outline
Goal: ranking in directed heterogeneous
information networks (HIN) with geo-location

§  HINside model
§  Parameter estimation

q  via learning-to-rank objectives
§  Experiments

15

Parameter estimation
§  HINside’s parameters consist of the m2

authority transfer rates (ATR)

q  ri as a vector-vector product

dustries in j’s vicinity, we assume i’s authority to be higher
than those.2

To capture this intuition, for each edge e(j, i) we think
of “ghost” edges from nodes of type t

i

in j’s vicinity to i.
Instead of a fixed vicinity, we define a smooth neighborhood
function that is a decreasing function of distance:

N(u, v) =

⇢
g(d(l

u

, l
v

)) u, v 2 V, u 6= v
0 u = v

where g(.) is monotonically decreasing, e.g. g(z) = e�z .
Then, we transfer a weighted sum of the authority scores

of type t
i

nodes in j’s neighborhood along with j’s authority
itself to compute i’s score. Building on (3.3) we get:

(3.4) r
i

=

X

j

�(t
j

, t
i

)M(j, i) (r
j

+

X

v:t

v

=t

i

N(v, j) r
v

) .

3.5 Solving the HINSIDE Model. Our proposed model
given in Eq. (3.4) can be written and solved in a compact
form. Let T denote the n ⇥ m boolean type matrix with
T (i, c) = 1 if t

i

= T (c) and 0 otherwise, 8i 2 V and
c = {1, . . . ,m}. Based on this, we define L = M�(T � T 0

)

where 0 denotes transpose operation. We also introduce the
type equality matrix E where

E(u, v) =

⇢
1 if t

u

= t
v

0 otherwise

In matrix form, E = TT 0. We then rewrite (3.4) as

r
i

=

X

j

L(j, i) r
j

+

X

j

X

v

L(j, i)N(v, j) r
v

E(i, v)

r
i

=

X

j

L(j, i) r
j

+

X

v

r
v

E(i, v)
⇥X

j

N(v, j)L(j, i)
⇤

r = L0
r + (E � (NL)0)r

As such, we obtain

r =

⇥
L0

+ (L0N 0 � E)

⇤
r = H r(3.5)

where r 2 Rn is a column vector of length n containing the
authority scores of all nodes. Note that N is computed from
data (Sec. 3.4), E = TT 0 and L = M � (T � T 0

) in which
T and M are also known. As such, the ATR matrix � is the
only unknown of our model.

We can solve for r using the power method [16]. As �,
T , N and M are all non-negative, so is H . Starting with
an arbitrary initial vector r

(0) 2 Rn, we form the vector
sequence {r(p)}1

p=0

. If ||H|| 6= 1, the power method would
underflow or overflow for large p, and not converge to a fixed
r. As such, we introduce a normalization at every step:

r

(p+1) H r

(p)

||H r

(p)||
, p = 0, 1, 2, . . .(3.6)

2The referrals are directed, while trade relations are undirected.
In the latter we also assume the vice versa, i.e., j’s authority to be
higher than other energy companies in i’s vicinity.

It can be shown that the power method converges to the
left singular vector of H under some mild conditions [12]:

THEOREM 3.1. Let the singular values of H 2 Rn⇥n be
arranged such that |�

1

| > |�
2

| � . . . � |�
n

|. Let u
1

and v

1

be the left and right singular vectors of H corresponding to
�
1

respectively. Then, the vector sequence generated by (3.6)
converges to u

1

, where ||r(p)|| converges to |�
1

| for large p,
provided that v0

1

r

0

6= 0 and |�
1

| 6= |�
2

|.
For a HIN with m types, � contains m2 parameters.

Even for moderate m, it would be challenging to set these
ATR values manually. Next we propose two new algorithms
for parameter estimation provided training data.

4 Parameter Estimation
The authority transfer rates, in other words the values in �,
depend on the problem domain and may be hard to assign by
humans. To estimate �, we consider learning from partially
ranked lists, given by humans, as providing partial lists is
more practical than assigning absolute rates. We propose
two approaches for estimating �; (1) a RankSVM approach,
and (2) a gradient based approach.

Let us first represent r
i

in the form of a linear function
of a feature vector x

i

and a weight vector w, such that
r
i

= f(x
i

) =< w,x
i

>. This is a convenient and common
representation to be used in many learning algorithms.

We start by rewriting Eq. (3.4) as

r
i

=

X

t

�(t, t
i

)

X

j:t

j

=t

⇥
M(j, i)(r

j

+

X

v:t

v

=t

i

N(v, j) r
v

)

⇤

Let us define a m⇥ n matrix X where

(4.7) X(t, i) =
X

j:t

j

=t

M(j, i) (r
j

+

X

v:t

v

=t

i

N(v, j) r
v

)

using which we can write

(4.8) r
i

=

X

t

�(t, t
i

)X(t, i) = �

0
(t

i

, :) ·X(:, i) = �

0
t

i

·x
i

where x
i

is the ith column of X and �

t

i

is the tth
i

column of
�. As such, we can compute r

i

by the vector-vector product

(4.9) r
i

= f(x
i

) =< �

t

i

,x
i

> .

In this formulation, �
t

i

is a length m vector of unknown
parameters and x

i

is considered as the “feature vector” of
node i. Now in order to estimate � we need access to x

i

’s,
and to construct the x

i

’s we need to know the authority
scores r (Eq. 4.7), which in turn requires � (Eq. 3.4).
That is, �

Eq.(3.4)�����! r

Eq.(4.7)�����! X
estimate����! �. In this

section we describe algorithms for exactly the last step. The
dependences suggest that an alternating optimization scheme
is an appropriate approach to estimating �. The sketch

dustries in j’s vicinity, we assume i’s authority to be higher
than those.2

To capture this intuition, for each edge e(j, i) we think
of “ghost” edges from nodes of type t

i

in j’s vicinity to i.
Instead of a fixed vicinity, we define a smooth neighborhood
function that is a decreasing function of distance:

N(u, v) =

⇢
g(d(l

u

, l
v

)) u, v 2 V, u 6= v
0 u = v

where g(.) is monotonically decreasing, e.g. g(z) = e�z .
Then, we transfer a weighted sum of the authority scores

of type t
i

nodes in j’s neighborhood along with j’s authority
itself to compute i’s score. Building on (3.3) we get:

(3.4) r
i

=

X

j

�(t
j

, t
i

)M(j, i) (r
j

+

X

v:t

v

=t

i

N(v, j) r
v

) .

3.5 Solving the HINSIDE Model. Our proposed model
given in Eq. (3.4) can be written and solved in a compact
form. Let T denote the n ⇥ m boolean type matrix with
T (i, c) = 1 if t

i

= T (c) and 0 otherwise, 8i 2 V and
c = {1, . . . ,m}. Based on this, we define L = M�(T � T 0

)

where 0 denotes transpose operation. We also introduce the
type equality matrix E where

E(u, v) =

⇢
1 if t

u

= t
v

0 otherwise

In matrix form, E = TT 0. We then rewrite (3.4) as

r
i

=

X

j

L(j, i) r
j

+

X

j

X

v

L(j, i)N(v, j) r
v

E(i, v)

r
i

=

X

j

L(j, i) r
j

+

X

v

r
v

E(i, v)
⇥X

j

N(v, j)L(j, i)
⇤

r = L0
r + (E � (NL)0)r

As such, we obtain

r =

⇥
L0

+ (L0N 0 � E)

⇤
r = H r(3.5)

where r 2 Rn is a column vector of length n containing the
authority scores of all nodes. Note that N is computed from
data (Sec. 3.4), E = TT 0 and L = M � (T � T 0

) in which
T and M are also known. As such, the ATR matrix � is the
only unknown of our model.

We can solve for r using the power method [16]. As �,
T , N and M are all non-negative, so is H . Starting with
an arbitrary initial vector r

(0) 2 Rn, we form the vector
sequence {r(p)}1

p=0

. If ||H|| 6= 1, the power method would
underflow or overflow for large p, and not converge to a fixed
r. As such, we introduce a normalization at every step:

r

(p+1) H r

(p)

||H r

(p)||
, p = 0, 1, 2, . . .(3.6)

2The referrals are directed, while trade relations are undirected.
In the latter we also assume the vice versa, i.e., j’s authority to be
higher than other energy companies in i’s vicinity.

It can be shown that the power method converges to the
left singular vector of H under some mild conditions [12]:

THEOREM 3.1. Let the singular values of H 2 Rn⇥n be
arranged such that |�

1

| > |�
2

| � . . . � |�
n

|. Let u
1

and v

1

be the left and right singular vectors of H corresponding to
�
1

respectively. Then, the vector sequence generated by (3.6)
converges to u

1

, where ||r(p)|| converges to |�
1

| for large p,
provided that v0

1

r

0

6= 0 and |�
1

| 6= |�
2

|.
For a HIN with m types, � contains m2 parameters.

Even for moderate m, it would be challenging to set these
ATR values manually. Next we propose two new algorithms
for parameter estimation provided training data.

4 Parameter Estimation
The authority transfer rates, in other words the values in �,
depend on the problem domain and may be hard to assign by
humans. To estimate �, we consider learning from partially
ranked lists, given by humans, as providing partial lists is
more practical than assigning absolute rates. We propose
two approaches for estimating �; (1) a RankSVM approach,
and (2) a gradient based approach.

Let us first represent r
i

in the form of a linear function
of a feature vector x

i

and a weight vector w, such that
r
i

= f(x
i

) =< w,x
i

>. This is a convenient and common
representation to be used in many learning algorithms.

We start by rewriting Eq. (3.4) as

r
i

=

X

t

�(t, t
i

)

X

j:t

j

=t

⇥
M(j, i)(r

j

+

X

v:t

v

=t

i

N(v, j) r
v

)

⇤

Let us define a m⇥ n matrix X where

(4.7) X(t, i) =
X

j:t

j

=t

M(j, i) (r
j

+

X

v:t

v

=t

i

N(v, j) r
v

)

using which we can write

(4.8) r
i

=

X

t

�(t, t
i

)X(t, i) = �

0
(t

i

, :) ·X(:, i) = �

0
t

i

·x
i

where x
i

is the ith column of X and �

t

i

is the tth
i

column of
�. As such, we can compute r

i

by the vector-vector product

(4.9) r
i

= f(x
i

) =< �

t

i

,x
i

> .

In this formulation, �
t

i

is a length m vector of unknown
parameters and x

i

is considered as the “feature vector” of
node i. Now in order to estimate � we need access to x

i

’s,
and to construct the x

i

’s we need to know the authority
scores r (Eq. 4.7), which in turn requires � (Eq. 3.4).
That is, �

Eq.(3.4)�����! r

Eq.(4.7)�����! X
estimate����! �. In this

section we describe algorithms for exactly the last step. The
dependences suggest that an alternating optimization scheme
is an appropriate approach to estimating �. The sketch

dustries in j’s vicinity, we assume i’s authority to be higher
than those.2

To capture this intuition, for each edge e(j, i) we think
of “ghost” edges from nodes of type t

i

in j’s vicinity to i.
Instead of a fixed vicinity, we define a smooth neighborhood
function that is a decreasing function of distance:

N(u, v) =

⇢
g(d(l

u

, l
v

)) u, v 2 V, u 6= v
0 u = v

where g(.) is monotonically decreasing, e.g. g(z) = e�z .
Then, we transfer a weighted sum of the authority scores

of type t
i

nodes in j’s neighborhood along with j’s authority
itself to compute i’s score. Building on (3.3) we get:

(3.4) r
i

=

X

j

�(t
j

, t
i

)M(j, i) (r
j

+

X

v:t

v

=t

i

N(v, j) r
v

) .

3.5 Solving the HINSIDE Model. Our proposed model
given in Eq. (3.4) can be written and solved in a compact
form. Let T denote the n ⇥ m boolean type matrix with
T (i, c) = 1 if t

i

= T (c) and 0 otherwise, 8i 2 V and
c = {1, . . . ,m}. Based on this, we define L = M�(T � T 0

)

where 0 denotes transpose operation. We also introduce the
type equality matrix E where

E(u, v) =

⇢
1 if t

u

= t
v

0 otherwise

In matrix form, E = TT 0. We then rewrite (3.4) as

r
i

=

X

j

L(j, i) r
j

+

X

j

X

v

L(j, i)N(v, j) r
v

E(i, v)

r
i

=

X

j

L(j, i) r
j

+

X

v

r
v

E(i, v)
⇥X

j

N(v, j)L(j, i)
⇤

r = L0
r + (E � (NL)0)r

As such, we obtain

r =

⇥
L0

+ (L0N 0 � E)

⇤
r = H r(3.5)

where r 2 Rn is a column vector of length n containing the
authority scores of all nodes. Note that N is computed from
data (Sec. 3.4), E = TT 0 and L = M � (T � T 0

) in which
T and M are also known. As such, the ATR matrix � is the
only unknown of our model.

We can solve for r using the power method [16]. As �,
T , N and M are all non-negative, so is H . Starting with
an arbitrary initial vector r

(0) 2 Rn, we form the vector
sequence {r(p)}1

p=0

. If ||H|| 6= 1, the power method would
underflow or overflow for large p, and not converge to a fixed
r. As such, we introduce a normalization at every step:

r

(p+1) H r

(p)

||H r

(p)||
, p = 0, 1, 2, . . .(3.6)

2The referrals are directed, while trade relations are undirected.
In the latter we also assume the vice versa, i.e., j’s authority to be
higher than other energy companies in i’s vicinity.

It can be shown that the power method converges to the
left singular vector of H under some mild conditions [12]:

THEOREM 3.1. Let the singular values of H 2 Rn⇥n be
arranged such that |�

1

| > |�
2

| � . . . � |�
n

|. Let u
1

and v

1

be the left and right singular vectors of H corresponding to
�
1

respectively. Then, the vector sequence generated by (3.6)
converges to u

1

, where ||r(p)|| converges to |�
1

| for large p,
provided that v0

1

r

0

6= 0 and |�
1

| 6= |�
2

|.
For a HIN with m types, � contains m2 parameters.

Even for moderate m, it would be challenging to set these
ATR values manually. Next we propose two new algorithms
for parameter estimation provided training data.

4 Parameter Estimation
The authority transfer rates, in other words the values in �,
depend on the problem domain and may be hard to assign by
humans. To estimate �, we consider learning from partially
ranked lists, given by humans, as providing partial lists is
more practical than assigning absolute rates. We propose
two approaches for estimating �; (1) a RankSVM approach,
and (2) a gradient based approach.

Let us first represent r
i

in the form of a linear function
of a feature vector x

i

and a weight vector w, such that
r
i

= f(x
i

) =< w,x
i

>. This is a convenient and common
representation to be used in many learning algorithms.

We start by rewriting Eq. (3.4) as

r
i

=

X

t

�(t, t
i

)

X

j:t

j

=t

⇥
M(j, i)(r

j

+

X

v:t

v

=t

i

N(v, j) r
v

)

⇤

Let us define a m⇥ n matrix X where

(4.7) X(t, i) =
X

j:t

j

=t

M(j, i) (r
j

+

X

v:t

v

=t

i

N(v, j) r
v

)

using which we can write

(4.8) r
i

=

X

t

�(t, t
i

)X(t, i) = �

0
(t

i

, :) ·X(:, i) = �

0
t

i

·x
i

where x
i

is the ith column of X and �

t

i

is the tth
i

column of
�. As such, we can compute r

i

by the vector-vector product

(4.9) r
i

= f(x
i

) =< �

t

i

,x
i

> .

In this formulation, �
t

i

is a length m vector of unknown
parameters and x

i

is considered as the “feature vector” of
node i. Now in order to estimate � we need access to x

i

’s,
and to construct the x

i

’s we need to know the authority
scores r (Eq. 4.7), which in turn requires � (Eq. 3.4).
That is, �

Eq.(3.4)�����! r

Eq.(4.7)�����! X
estimate����! �. In this

section we describe algorithms for exactly the last step. The
dependences suggest that an alternating optimization scheme
is an appropriate approach to estimating �. The sketch

dustries in j’s vicinity, we assume i’s authority to be higher
than those.2

To capture this intuition, for each edge e(j, i) we think
of “ghost” edges from nodes of type t

i

in j’s vicinity to i.
Instead of a fixed vicinity, we define a smooth neighborhood
function that is a decreasing function of distance:

N(u, v) =

⇢
g(d(l

u

, l
v

)) u, v 2 V, u 6= v
0 u = v

where g(.) is monotonically decreasing, e.g. g(z) = e�z .
Then, we transfer a weighted sum of the authority scores

of type t
i

nodes in j’s neighborhood along with j’s authority
itself to compute i’s score. Building on (3.3) we get:

(3.4) r
i

=

X

j

�(t
j

, t
i

)M(j, i) (r
j

+

X

v:t

v

=t

i

N(v, j) r
v

) .

3.5 Solving the HINSIDE Model. Our proposed model
given in Eq. (3.4) can be written and solved in a compact
form. Let T denote the n ⇥ m boolean type matrix with
T (i, c) = 1 if t

i

= T (c) and 0 otherwise, 8i 2 V and
c = {1, . . . ,m}. Based on this, we define L = M�(T � T 0

)

where 0 denotes transpose operation. We also introduce the
type equality matrix E where

E(u, v) =

⇢
1 if t

u

= t
v

0 otherwise

In matrix form, E = TT 0. We then rewrite (3.4) as

r
i

=

X

j

L(j, i) r
j

+

X

j

X

v

L(j, i)N(v, j) r
v

E(i, v)

r
i

=

X

j

L(j, i) r
j

+

X

v

r
v

E(i, v)
⇥X

j

N(v, j)L(j, i)
⇤

r = L0
r + (E � (NL)0)r

As such, we obtain

r =

⇥
L0

+ (L0N 0 � E)

⇤
r = H r(3.5)

where r 2 Rn is a column vector of length n containing the
authority scores of all nodes. Note that N is computed from
data (Sec. 3.4), E = TT 0 and L = M � (T � T 0

) in which
T and M are also known. As such, the ATR matrix � is the
only unknown of our model.

We can solve for r using the power method [16]. As �,
T , N and M are all non-negative, so is H . Starting with
an arbitrary initial vector r

(0) 2 Rn, we form the vector
sequence {r(p)}1

p=0

. If ||H|| 6= 1, the power method would
underflow or overflow for large p, and not converge to a fixed
r. As such, we introduce a normalization at every step:

r

(p+1) H r

(p)

||H r

(p)||
, p = 0, 1, 2, . . .(3.6)

2The referrals are directed, while trade relations are undirected.
In the latter we also assume the vice versa, i.e., j’s authority to be
higher than other energy companies in i’s vicinity.

It can be shown that the power method converges to the
left singular vector of H under some mild conditions [12]:

THEOREM 3.1. Let the singular values of H 2 Rn⇥n be
arranged such that |�

1

| > |�
2

| � . . . � |�
n

|. Let u
1

and v

1

be the left and right singular vectors of H corresponding to
�
1

respectively. Then, the vector sequence generated by (3.6)
converges to u

1

, where ||r(p)|| converges to |�
1

| for large p,
provided that v0

1

r

0

6= 0 and |�
1

| 6= |�
2

|.
For a HIN with m types, � contains m2 parameters.

Even for moderate m, it would be challenging to set these
ATR values manually. Next we propose two new algorithms
for parameter estimation provided training data.

4 Parameter Estimation
The authority transfer rates, in other words the values in �,
depend on the problem domain and may be hard to assign by
humans. To estimate �, we consider learning from partially
ranked lists, given by humans, as providing partial lists is
more practical than assigning absolute rates. We propose
two approaches for estimating �; (1) a RankSVM approach,
and (2) a gradient based approach.

Let us first represent r
i

in the form of a linear function
of a feature vector x

i

and a weight vector w, such that
r
i

= f(x
i

) =< w,x
i

>. This is a convenient and common
representation to be used in many learning algorithms.

We start by rewriting Eq. (3.4) as

r
i

=

X

t

�(t, t
i

)

X

j:t

j

=t

⇥
M(j, i)(r

j

+

X

v:t

v

=t

i

N(v, j) r
v

)

⇤

Let us define a m⇥ n matrix X where

(4.7) X(t, i) =
X

j:t

j

=t

M(j, i) (r
j

+

X

v:t

v

=t

i

N(v, j) r
v

)

using which we can write

(4.8) r
i

=

X

t

�(t, t
i

)X(t, i) = �

0
(t

i

, :) ·X(:, i) = �

0
t

i

·x
i

where x
i

is the ith column of X and �

t

i

is the tth
i

column of
�. As such, we can compute r

i

by the vector-vector product

(4.9) r
i

= f(x
i

) =< �

t

i

,x
i

> .

In this formulation, �
t

i

is a length m vector of unknown
parameters and x

i

is considered as the “feature vector” of
node i. Now in order to estimate � we need access to x

i

’s,
and to construct the x

i

’s we need to know the authority
scores r (Eq. 4.7), which in turn requires � (Eq. 3.4).
That is, �

Eq.(3.4)�����! r

Eq.(4.7)�����! X
estimate����! �. In this

section we describe algorithms for exactly the last step. The
dependences suggest that an alternating optimization scheme
is an appropriate approach to estimating �. The sketch

dustries in j’s vicinity, we assume i’s authority to be higher
than those.2

To capture this intuition, for each edge e(j, i) we think
of “ghost” edges from nodes of type t

i

in j’s vicinity to i.
Instead of a fixed vicinity, we define a smooth neighborhood
function that is a decreasing function of distance:

N(u, v) =

⇢
g(d(l

u

, l
v

)) u, v 2 V, u 6= v
0 u = v

where g(.) is monotonically decreasing, e.g. g(z) = e�z .
Then, we transfer a weighted sum of the authority scores

of type t
i

nodes in j’s neighborhood along with j’s authority
itself to compute i’s score. Building on (3.3) we get:

(3.4) r
i

=

X

j

�(t
j

, t
i

)M(j, i) (r
j

+

X

v:t

v

=t

i

N(v, j) r
v

) .

3.5 Solving the HINSIDE Model. Our proposed model
given in Eq. (3.4) can be written and solved in a compact
form. Let T denote the n ⇥ m boolean type matrix with
T (i, c) = 1 if t

i

= T (c) and 0 otherwise, 8i 2 V and
c = {1, . . . ,m}. Based on this, we define L = M�(T � T 0

)

where 0 denotes transpose operation. We also introduce the
type equality matrix E where

E(u, v) =

⇢
1 if t

u

= t
v

0 otherwise

In matrix form, E = TT 0. We then rewrite (3.4) as

r
i

=

X

j

L(j, i) r
j

+

X

j

X

v

L(j, i)N(v, j) r
v

E(i, v)

r
i

=

X

j

L(j, i) r
j

+

X

v

r
v

E(i, v)
⇥X

j

N(v, j)L(j, i)
⇤

r = L0
r + (E � (NL)0)r

As such, we obtain

r =

⇥
L0

+ (L0N 0 � E)

⇤
r = H r(3.5)

where r 2 Rn is a column vector of length n containing the
authority scores of all nodes. Note that N is computed from
data (Sec. 3.4), E = TT 0 and L = M � (T � T 0

) in which
T and M are also known. As such, the ATR matrix � is the
only unknown of our model.

We can solve for r using the power method [16]. As �,
T , N and M are all non-negative, so is H . Starting with
an arbitrary initial vector r

(0) 2 Rn, we form the vector
sequence {r(p)}1

p=0

. If ||H|| 6= 1, the power method would
underflow or overflow for large p, and not converge to a fixed
r. As such, we introduce a normalization at every step:

r

(p+1) H r

(p)

||H r

(p)||
, p = 0, 1, 2, . . .(3.6)

2The referrals are directed, while trade relations are undirected.
In the latter we also assume the vice versa, i.e., j’s authority to be
higher than other energy companies in i’s vicinity.

It can be shown that the power method converges to the
left singular vector of H under some mild conditions [12]:

THEOREM 3.1. Let the singular values of H 2 Rn⇥n be
arranged such that |�

1

| > |�
2

| � . . . � |�
n

|. Let u
1

and v

1

be the left and right singular vectors of H corresponding to
�
1

respectively. Then, the vector sequence generated by (3.6)
converges to u

1

, where ||r(p)|| converges to |�
1

| for large p,
provided that v0

1

r

0

6= 0 and |�
1

| 6= |�
2

|.
For a HIN with m types, � contains m2 parameters.

Even for moderate m, it would be challenging to set these
ATR values manually. Next we propose two new algorithms
for parameter estimation provided training data.

4 Parameter Estimation
The authority transfer rates, in other words the values in �,
depend on the problem domain and may be hard to assign by
humans. To estimate �, we consider learning from partially
ranked lists, given by humans, as providing partial lists is
more practical than assigning absolute rates. We propose
two approaches for estimating �; (1) a RankSVM approach,
and (2) a gradient based approach.

Let us first represent r
i

in the form of a linear function
of a feature vector x

i

and a weight vector w, such that
r
i

= f(x
i

) =< w,x
i

>. This is a convenient and common
representation to be used in many learning algorithms.

We start by rewriting Eq. (3.4) as

r
i

=

X

t

�(t, t
i

)

X

j:t

j

=t

⇥
M(j, i)(r

j

+

X

v:t

v

=t

i

N(v, j) r
v

)

⇤

Let us define a m⇥ n matrix X where

(4.7) X(t, i) =
X

j:t

j

=t

M(j, i) (r
j

+

X

v:t

v

=t

i

N(v, j) r
v

)

using which we can write

(4.8) r
i

=

X

t

�(t, t
i

)X(t, i) = �

0
(t

i

, :) ·X(:, i) = �

0
t

i

·x
i

where x
i

is the ith column of X and �

t

i

is the tth
i

column of
�. As such, we can compute r

i

by the vector-vector product

(4.9) r
i

= f(x
i

) =< �

t

i

,x
i

> .

In this formulation, �
t

i

is a length m vector of unknown
parameters and x

i

is considered as the “feature vector” of
node i. Now in order to estimate � we need access to x

i

’s,
and to construct the x

i

’s we need to know the authority
scores r (Eq. 4.7), which in turn requires � (Eq. 3.4).
That is, �

Eq.(3.4)�����! r

Eq.(4.7)�����! X
estimate����! �. In this

section we describe algorithms for exactly the last step. The
dependences suggest that an alternating optimization scheme
is an appropriate approach to estimating �. The sketch

16

An alternating optimization scheme:
§  r
Given: graph G, (partial) lists ranking a subset of
nodes of a certain type

q  Randomly initialize ,
q  Compute authority scores r using
q  Repeat

§  ß compute feature vectors using r
§  ß learn new parameters by learning-to-rank
§  compute authority scores r using

q  Until convergence

dustries in j’s vicinity, we assume i’s authority to be higher
than those.2

To capture this intuition, for each edge e(j, i) we think
of “ghost” edges from nodes of type t

i

in j’s vicinity to i.
Instead of a fixed vicinity, we define a smooth neighborhood
function that is a decreasing function of distance:

N(u, v) =

⇢
g(d(l

u

, l
v

)) u, v 2 V, u 6= v
0 u = v

where g(.) is monotonically decreasing, e.g. g(z) = e�z .
Then, we transfer a weighted sum of the authority scores

of type t
i

nodes in j’s neighborhood along with j’s authority
itself to compute i’s score. Building on (3.3) we get:

(3.4) r
i

=

X

j

�(t
j

, t
i

)M(j, i) (r
j

+

X

v:t

v

=t

i

N(v, j) r
v

) .

3.5 Solving the HINSIDE Model. Our proposed model
given in Eq. (3.4) can be written and solved in a compact
form. Let T denote the n ⇥ m boolean type matrix with
T (i, c) = 1 if t

i

= T (c) and 0 otherwise, 8i 2 V and
c = {1, . . . ,m}. Based on this, we define L = M�(T � T 0

)

where 0 denotes transpose operation. We also introduce the
type equality matrix E where

E(u, v) =

⇢
1 if t

u

= t
v

0 otherwise

In matrix form, E = TT 0. We then rewrite (3.4) as

r
i

=

X

j

L(j, i) r
j

+

X

j

X

v

L(j, i)N(v, j) r
v

E(i, v)

r
i

=

X

j

L(j, i) r
j

+

X

v

r
v

E(i, v)
⇥X

j

N(v, j)L(j, i)
⇤

r = L0
r + (E � (NL)0)r

As such, we obtain

r =

⇥
L0

+ (L0N 0 � E)

⇤
r = H r(3.5)

where r 2 Rn is a column vector of length n containing the
authority scores of all nodes. Note that N is computed from
data (Sec. 3.4), E = TT 0 and L = M � (T � T 0

) in which
T and M are also known. As such, the ATR matrix � is the
only unknown of our model.

We can solve for r using the power method [16]. As �,
T , N and M are all non-negative, so is H . Starting with
an arbitrary initial vector r

(0) 2 Rn, we form the vector
sequence {r(p)}1

p=0

. If ||H|| 6= 1, the power method would
underflow or overflow for large p, and not converge to a fixed
r. As such, we introduce a normalization at every step:

r

(p+1) H r

(p)

||H r

(p)||
, p = 0, 1, 2, . . .(3.6)

2The referrals are directed, while trade relations are undirected.
In the latter we also assume the vice versa, i.e., j’s authority to be
higher than other energy companies in i’s vicinity.

It can be shown that the power method converges to the
left singular vector of H under some mild conditions [12]:

THEOREM 3.1. Let the singular values of H 2 Rn⇥n be
arranged such that |�

1

| > |�
2

| � . . . � |�
n

|. Let u
1

and v

1

be the left and right singular vectors of H corresponding to
�
1

respectively. Then, the vector sequence generated by (3.6)
converges to u

1

, where ||r(p)|| converges to |�
1

| for large p,
provided that v0

1

r

0

6= 0 and |�
1

| 6= |�
2

|.
For a HIN with m types, � contains m2 parameters.

Even for moderate m, it would be challenging to set these
ATR values manually. Next we propose two new algorithms
for parameter estimation provided training data.

4 Parameter Estimation
The authority transfer rates, in other words the values in �,
depend on the problem domain and may be hard to assign by
humans. To estimate �, we consider learning from partially
ranked lists, given by humans, as providing partial lists is
more practical than assigning absolute rates. We propose
two approaches for estimating �; (1) a RankSVM approach,
and (2) a gradient based approach.

Let us first represent r
i

in the form of a linear function
of a feature vector x

i

and a weight vector w, such that
r
i

= f(x
i

) =< w,x
i

>. This is a convenient and common
representation to be used in many learning algorithms.

We start by rewriting Eq. (3.4) as

r
i

=

X

t

�(t, t
i

)

X

j:t

j

=t

⇥
M(j, i)(r

j

+

X

v:t

v

=t

i

N(v, j) r
v

)

⇤

Let us define a m⇥ n matrix X where

(4.7) X(t, i) =
X

j:t

j

=t

M(j, i) (r
j

+

X

v:t

v

=t

i

N(v, j) r
v

)

using which we can write

(4.8) r
i

=

X

t

�(t, t
i

)X(t, i) = �

0
(t

i

, :) ·X(:, i) = �

0
t

i

·x
i

where x
i

is the ith column of X and �

t

i

is the tth
i

column of
�. As such, we can compute r

i

by the vector-vector product

(4.9) r
i

= f(x
i

) =< �

t

i

,x
i

> .

In this formulation, �
t

i

is a length m vector of unknown
parameters and x

i

is considered as the “feature vector” of
node i. Now in order to estimate � we need access to x

i

’s,
and to construct the x

i

’s we need to know the authority
scores r (Eq. 4.7), which in turn requires � (Eq. 3.4).
That is, �

Eq.(3.4)�����! r

Eq.(4.7)�����! X
estimate����! �. In this

section we describe algorithms for exactly the last step. The
dependences suggest that an alternating optimization scheme
is an appropriate approach to estimating �. The sketch

dustries in j’s vicinity, we assume i’s authority to be higher
than those.2

To capture this intuition, for each edge e(j, i) we think
of “ghost” edges from nodes of type t

i

in j’s vicinity to i.
Instead of a fixed vicinity, we define a smooth neighborhood
function that is a decreasing function of distance:

N(u, v) =

⇢
g(d(l

u

, l
v

)) u, v 2 V, u 6= v
0 u = v

where g(.) is monotonically decreasing, e.g. g(z) = e�z .
Then, we transfer a weighted sum of the authority scores

of type t
i

nodes in j’s neighborhood along with j’s authority
itself to compute i’s score. Building on (3.3) we get:

(3.4) r
i

=

X

j

�(t
j

, t
i

)M(j, i) (r
j

+

X

v:t

v

=t

i

N(v, j) r
v

) .

3.5 Solving the HINSIDE Model. Our proposed model
given in Eq. (3.4) can be written and solved in a compact
form. Let T denote the n ⇥ m boolean type matrix with
T (i, c) = 1 if t

i

= T (c) and 0 otherwise, 8i 2 V and
c = {1, . . . ,m}. Based on this, we define L = M�(T � T 0

)

where 0 denotes transpose operation. We also introduce the
type equality matrix E where

E(u, v) =

⇢
1 if t

u

= t
v

0 otherwise

In matrix form, E = TT 0. We then rewrite (3.4) as

r
i

=

X

j

L(j, i) r
j

+

X

j

X

v

L(j, i)N(v, j) r
v

E(i, v)

r
i

=

X

j

L(j, i) r
j

+

X

v

r
v

E(i, v)
⇥X

j

N(v, j)L(j, i)
⇤

r = L0
r + (E � (NL)0)r

As such, we obtain

r =

⇥
L0

+ (L0N 0 � E)

⇤
r = H r(3.5)

where r 2 Rn is a column vector of length n containing the
authority scores of all nodes. Note that N is computed from
data (Sec. 3.4), E = TT 0 and L = M � (T � T 0

) in which
T and M are also known. As such, the ATR matrix � is the
only unknown of our model.

We can solve for r using the power method [16]. As �,
T , N and M are all non-negative, so is H . Starting with
an arbitrary initial vector r

(0) 2 Rn, we form the vector
sequence {r(p)}1

p=0

. If ||H|| 6= 1, the power method would
underflow or overflow for large p, and not converge to a fixed
r. As such, we introduce a normalization at every step:

r

(p+1) H r

(p)

||H r

(p)||
, p = 0, 1, 2, . . .(3.6)

2The referrals are directed, while trade relations are undirected.
In the latter we also assume the vice versa, i.e., j’s authority to be
higher than other energy companies in i’s vicinity.

It can be shown that the power method converges to the
left singular vector of H under some mild conditions [12]:

THEOREM 3.1. Let the singular values of H 2 Rn⇥n be
arranged such that |�

1

| > |�
2

| � . . . � |�
n

|. Let u
1

and v

1

be the left and right singular vectors of H corresponding to
�
1

respectively. Then, the vector sequence generated by (3.6)
converges to u

1

, where ||r(p)|| converges to |�
1

| for large p,
provided that v0

1

r

0

6= 0 and |�
1

| 6= |�
2

|.
For a HIN with m types, � contains m2 parameters.

Even for moderate m, it would be challenging to set these
ATR values manually. Next we propose two new algorithms
for parameter estimation provided training data.

4 Parameter Estimation
The authority transfer rates, in other words the values in �,
depend on the problem domain and may be hard to assign by
humans. To estimate �, we consider learning from partially
ranked lists, given by humans, as providing partial lists is
more practical than assigning absolute rates. We propose
two approaches for estimating �; (1) a RankSVM approach,
and (2) a gradient based approach.

Let us first represent r
i

in the form of a linear function
of a feature vector x

i

and a weight vector w, such that
r
i

= f(x
i

) =< w,x
i

>. This is a convenient and common
representation to be used in many learning algorithms.

We start by rewriting Eq. (3.4) as

r
i

=

X

t

�(t, t
i

)

X

j:t

j

=t

⇥
M(j, i)(r

j

+

X

v:t

v

=t

i

N(v, j) r
v

)

⇤

Let us define a m⇥ n matrix X where

(4.7) X(t, i) =
X

j:t

j

=t

M(j, i) (r
j

+

X

v:t

v

=t

i

N(v, j) r
v

)

using which we can write

(4.8) r
i

=

X

t

�(t, t
i

)X(t, i) = �

0
(t

i

, :) ·X(:, i) = �

0
t

i

·x
i

where x
i

is the ith column of X and �

t

i

is the tth
i

column of
�. As such, we can compute r

i

by the vector-vector product

(4.9) r
i

= f(x
i

) =< �

t

i

,x
i

> .

In this formulation, �
t

i

is a length m vector of unknown
parameters and x

i

is considered as the “feature vector” of
node i. Now in order to estimate � we need access to x

i

’s,
and to construct the x

i

’s we need to know the authority
scores r (Eq. 4.7), which in turn requires � (Eq. 3.4).
That is, �

Eq.(3.4)�����! r

Eq.(4.7)�����! X
estimate����! �. In this

section we describe algorithms for exactly the last step. The
dependences suggest that an alternating optimization scheme
is an appropriate approach to estimating �. The sketch

dustries in j’s vicinity, we assume i’s authority to be higher
than those.2

To capture this intuition, for each edge e(j, i) we think
of “ghost” edges from nodes of type t

i

in j’s vicinity to i.
Instead of a fixed vicinity, we define a smooth neighborhood
function that is a decreasing function of distance:

N(u, v) =

⇢
g(d(l

u

, l
v

)) u, v 2 V, u 6= v
0 u = v

where g(.) is monotonically decreasing, e.g. g(z) = e�z .
Then, we transfer a weighted sum of the authority scores

of type t
i

nodes in j’s neighborhood along with j’s authority
itself to compute i’s score. Building on (3.3) we get:

(3.4) r
i

=

X

j

�(t
j

, t
i

)M(j, i) (r
j

+

X

v:t

v

=t

i

N(v, j) r
v

) .

3.5 Solving the HINSIDE Model. Our proposed model
given in Eq. (3.4) can be written and solved in a compact
form. Let T denote the n ⇥ m boolean type matrix with
T (i, c) = 1 if t

i

= T (c) and 0 otherwise, 8i 2 V and
c = {1, . . . ,m}. Based on this, we define L = M�(T � T 0

)

where 0 denotes transpose operation. We also introduce the
type equality matrix E where

E(u, v) =

⇢
1 if t

u

= t
v

0 otherwise

In matrix form, E = TT 0. We then rewrite (3.4) as

r
i

=

X

j

L(j, i) r
j

+

X

j

X

v

L(j, i)N(v, j) r
v

E(i, v)

r
i

=

X

j

L(j, i) r
j

+

X

v

r
v

E(i, v)
⇥X

j

N(v, j)L(j, i)
⇤

r = L0
r + (E � (NL)0)r

As such, we obtain

r =

⇥
L0

+ (L0N 0 � E)

⇤
r = H r(3.5)

where r 2 Rn is a column vector of length n containing the
authority scores of all nodes. Note that N is computed from
data (Sec. 3.4), E = TT 0 and L = M � (T � T 0

) in which
T and M are also known. As such, the ATR matrix � is the
only unknown of our model.

We can solve for r using the power method [16]. As �,
T , N and M are all non-negative, so is H . Starting with
an arbitrary initial vector r

(0) 2 Rn, we form the vector
sequence {r(p)}1

p=0

. If ||H|| 6= 1, the power method would
underflow or overflow for large p, and not converge to a fixed
r. As such, we introduce a normalization at every step:

r

(p+1) H r

(p)

||H r

(p)||
, p = 0, 1, 2, . . .(3.6)

2The referrals are directed, while trade relations are undirected.
In the latter we also assume the vice versa, i.e., j’s authority to be
higher than other energy companies in i’s vicinity.

It can be shown that the power method converges to the
left singular vector of H under some mild conditions [12]:

THEOREM 3.1. Let the singular values of H 2 Rn⇥n be
arranged such that |�

1

| > |�
2

| � . . . � |�
n

|. Let u
1

and v

1

be the left and right singular vectors of H corresponding to
�
1

respectively. Then, the vector sequence generated by (3.6)
converges to u

1

, where ||r(p)|| converges to |�
1

| for large p,
provided that v0

1

r

0

6= 0 and |�
1

| 6= |�
2

|.
For a HIN with m types, � contains m2 parameters.

Even for moderate m, it would be challenging to set these
ATR values manually. Next we propose two new algorithms
for parameter estimation provided training data.

4 Parameter Estimation
The authority transfer rates, in other words the values in �,
depend on the problem domain and may be hard to assign by
humans. To estimate �, we consider learning from partially
ranked lists, given by humans, as providing partial lists is
more practical than assigning absolute rates. We propose
two approaches for estimating �; (1) a RankSVM approach,
and (2) a gradient based approach.

Let us first represent r
i

in the form of a linear function
of a feature vector x

i

and a weight vector w, such that
r
i

= f(x
i

) =< w,x
i

>. This is a convenient and common
representation to be used in many learning algorithms.

We start by rewriting Eq. (3.4) as

r
i

=

X

t

�(t, t
i

)

X

j:t

j

=t

⇥
M(j, i)(r

j

+

X

v:t

v

=t

i

N(v, j) r
v

)

⇤

Let us define a m⇥ n matrix X where

(4.7) X(t, i) =
X

j:t

j

=t

M(j, i) (r
j

+

X

v:t

v

=t

i

N(v, j) r
v

)

using which we can write

(4.8) r
i

=

X

t

�(t, t
i

)X(t, i) = �

0
(t

i

, :) ·X(:, i) = �

0
t

i

·x
i

where x
i

is the ith column of X and �

t

i

is the tth
i

column of
�. As such, we can compute r

i

by the vector-vector product

(4.9) r
i

= f(x
i

) =< �

t

i

,x
i

> .

In this formulation, �
t

i

is a length m vector of unknown
parameters and x

i

is considered as the “feature vector” of
node i. Now in order to estimate � we need access to x

i

’s,
and to construct the x

i

’s we need to know the authority
scores r (Eq. 4.7), which in turn requires � (Eq. 3.4).
That is, �

Eq.(3.4)�����! r

Eq.(4.7)�����! X
estimate����! �. In this

section we describe algorithms for exactly the last step. The
dependences suggest that an alternating optimization scheme
is an appropriate approach to estimating �. The sketch

estimate Algorithm 1 Alternating Estimation of �
Input: graph G, partial ranked lists L, T

max

, ✏
Output: �

1: �

0

(a, b) = rand(0, 1), 8a, b 2 {1, . . . ,m}, k = 0

2: r compute authority scores by (3.6) using �

0

3: repeat
4: Xk compute feature vectors by Eq. (4.7) using r

5: �

k+1 learn new param.s by RANKSVM(L, Xk)
or GRADIENT(L, Xk,�k)

6: r compute authority scores by (3.6) using �

k+1

7: diff trAccuracy(L, r)� trAccuracy(L, r
best

)

8: if diff > 0 then r

best

 r, �

best

 �

k+1 end if
9: k = k + 1

10: until ||�k � �

k�1|| ✏ or k > T
max

11: return �

best

of our iterative meta-approach is given in Algorithm 1.
Over iterations the best � with the largest trAccuracy is
maintained. Here any IR metric can be used for accuracy,
such as discounted cumulative gain (See Sec. 5).

Given a HIN G, a partial ranked list L
t

consists of an
ordering of a subset of nodes V

t

⇢ V of the same type, i.e.,
t
v

= t, 8v 2 V
t

. Let �
v

denote the order or position of node
v in L

t

, where lower positions correspond to higher ranks or
authority scores, that is r

u

� r
v

if and only if �
u

< �
v

.
Our estimation algorithms take as input one or more

partial ranked lists L for each type t 2 T . It first randomly
guesses �, and then iteratively and alternatingly computes r
and X , followed by estimating � for which we propose two
main aproaches; RANKSVM and GRADIENT.

4.1 RankSVM formulation Given a partial ranked list,
there are several ways of constructing training data from
it. A common way is the pair-wise approach, where for
each pair of entities (i.e., nodes) (u, v) in the ranked list,
we construct a training instance ((x

u

,x
v

), 1) if u is ranked
ahead of v (that is, if �

u

< �
v

), and ((x

v

,x
u

),�1)
otherwise. As a result, training data D is available in the
form of {((x1

d

,x2

d

), y
d

)}|D|
d=1

, where each instance consists
of two feature vectors that belong to two nodes of the same
type, and a label y

d

2 {�1, 1}.
Having constructed such a training data D, we can use

the hinge-loss function as shown in (4.10) to estimate the
model parameters by RankSVM [5].

L((x1

d

,x2

d

), y
d

) = max(0, 1� (�

0
t

· (x1

d

� x

2

d

))y
d

),

such that t
x

1
d

, t
x

2
d

= t

(4.10)

Note that each column of � that belongs to each type
t is estimated independent of others, provided the feature
vectors x

v

’s where t
v

= t. Since � is a non-negative
matrix, we also introduce non-negativity constraints to the
SVM formulation, given in (4.11).

Algorithm 2 Estimate � by RANKSVM
Input: feature vectors X , partial ranked lists L
Output: �

1: for each type t 2 T do
2: �

t

 compute column t of � by (4.11) using X , L
3: end for
4: return �

min

�

t

||�
t

||2
2

+ �
X

d2D
✏
d

s.t. �

0
t

(x

1

d

� x

2

d

)y
d

� 1� ✏
d

, 8d 2 D and t
x

1
d

, t
x

2
d

= t

✏
d

� 0, 8d 2 D
�

t

(c) � 0, 8c = 1, . . . ,m

(4.11)

where � is a regularization hyperparameter estimated
through cross validation. With the additional constraints,
the optimization remains a convex problem. We solve the
program in (4.11) m times independently for each type t to
estimate all the columns of �, as shown in Algorithm 2.

4.2 Gradient-based estimation In addition to adapting
RankSVM formulation, we can also construct other learning-
to-rank objective functions and leverage a gradient-based
method to solve our learning problem. In this section, we in-
troduce two different objectives with different requirements.

4.2.1 Learning-to-Rank Objective-I Consider the case
where besides the partial ranked lists, for each pair of entities
(u, v) in a training instance, the probability that one is ranked
ahead of the other is also given: i.e., the training instances
are in the form of ((x

u

,x
v

), p̄
uv

) where p̄
uv

= P (r
u

> r
v

).
For example, one can use the sigmoid function �(r

u

�r
v

) =

p̄
uv

to compute this probability, if the original/ground-truth
authority scores (r

u

, r
v

) of the training entities are provided
(note that this is a strict requirement), where �(x) = e

x

1+e

x

is
the sigmoid function.

Recalling function f : Rm ! R given in Eq. (4.9), let

o
u

= f(x
u

) =< �

t

u

,x
u

>, and

o
uv

= f(x
u

� x

v

) = f(x
uv

) =< �

t

u

=t

v

,x
uv

> .

We then utilize the cross entropy as our cost function for each
training instance (u, v) as proposed in [11]:

(4.12) c
uv

= �p̄
uv

log(p
uv

)� (1� p̄
uv

) log(1� p
uv

)

where, mapping from the output of our model to probabilities
is acquired using the logistic function

(4.13) p
uv

=

eouv

1 + eouv

.

Substituting Eq. (4.13) into Eq. (4.12), c
uv

can equivalently
be written as

(4.14) c
uv

= �p̄
uv

o
uv

+ log(1 + eouv

)

Algorithm 1 Alternating Estimation of �
Input: graph G, partial ranked lists L, T

max

, ✏
Output: �

1: �

0

(a, b) = rand(0, 1), 8a, b 2 {1, . . . ,m}, k = 0

2: r compute authority scores by (3.6) using �

0

3: repeat
4: Xk compute feature vectors by Eq. (4.7) using r

5: �

k+1 learn new param.s by RANKSVM(L, Xk)
or GRADIENT(L, Xk,�k)

6: r compute authority scores by (3.6) using �

k+1

7: diff trAccuracy(L, r)� trAccuracy(L, r
best

)

8: if diff > 0 then r

best

 r, �

best

 �

k+1 end if
9: k = k + 1

10: until ||�k � �

k�1|| ✏ or k > T
max

11: return �

best

of our iterative meta-approach is given in Algorithm 1.
Over iterations the best � with the largest trAccuracy is
maintained. Here any IR metric can be used for accuracy,
such as discounted cumulative gain (See Sec. 5).

Given a HIN G, a partial ranked list L
t

consists of an
ordering of a subset of nodes V

t

⇢ V of the same type, i.e.,
t
v

= t, 8v 2 V
t

. Let �
v

denote the order or position of node
v in L

t

, where lower positions correspond to higher ranks or
authority scores, that is r

u

� r
v

if and only if �
u

< �
v

.
Our estimation algorithms take as input one or more

partial ranked lists L for each type t 2 T . It first randomly
guesses �, and then iteratively and alternatingly computes r
and X , followed by estimating � for which we propose two
main aproaches; RANKSVM and GRADIENT.

4.1 RankSVM formulation Given a partial ranked list,
there are several ways of constructing training data from
it. A common way is the pair-wise approach, where for
each pair of entities (i.e., nodes) (u, v) in the ranked list,
we construct a training instance ((x

u

,x
v

), 1) if u is ranked
ahead of v (that is, if �

u

< �
v

), and ((x

v

,x
u

),�1)
otherwise. As a result, training data D is available in the
form of {((x1

d

,x2

d

), y
d

)}|D|
d=1

, where each instance consists
of two feature vectors that belong to two nodes of the same
type, and a label y

d

2 {�1, 1}.
Having constructed such a training data D, we can use

the hinge-loss function as shown in (4.10) to estimate the
model parameters by RankSVM [5].

L((x1

d

,x2

d

), y
d

) = max(0, 1� (�

0
t

· (x1

d

� x

2

d

))y
d

),

such that t
x

1
d

, t
x

2
d

= t

(4.10)

Note that each column of � that belongs to each type
t is estimated independent of others, provided the feature
vectors x

v

’s where t
v

= t. Since � is a non-negative
matrix, we also introduce non-negativity constraints to the
SVM formulation, given in (4.11).

Algorithm 2 Estimate � by RANKSVM
Input: feature vectors X , partial ranked lists L
Output: �

1: for each type t 2 T do
2: �

t

 compute column t of � by (4.11) using X , L
3: end for
4: return �

min

�

t

||�
t

||2
2

+ �
X

d2D
✏
d

s.t. �

0
t

(x

1

d

� x

2

d

)y
d

� 1� ✏
d

, 8d 2 D and t
x

1
d

, t
x

2
d

= t

✏
d

� 0, 8d 2 D
�

t

(c) � 0, 8c = 1, . . . ,m

(4.11)

where � is a regularization hyperparameter estimated
through cross validation. With the additional constraints,
the optimization remains a convex problem. We solve the
program in (4.11) m times independently for each type t to
estimate all the columns of �, as shown in Algorithm 2.

4.2 Gradient-based estimation In addition to adapting
RankSVM formulation, we can also construct other learning-
to-rank objective functions and leverage a gradient-based
method to solve our learning problem. In this section, we in-
troduce two different objectives with different requirements.

4.2.1 Learning-to-Rank Objective-I Consider the case
where besides the partial ranked lists, for each pair of entities
(u, v) in a training instance, the probability that one is ranked
ahead of the other is also given: i.e., the training instances
are in the form of ((x

u

,x
v

), p̄
uv

) where p̄
uv

= P (r
u

> r
v

).
For example, one can use the sigmoid function �(r

u

�r
v

) =

p̄
uv

to compute this probability, if the original/ground-truth
authority scores (r

u

, r
v

) of the training entities are provided
(note that this is a strict requirement), where �(x) = e

x

1+e

x

is
the sigmoid function.

Recalling function f : Rm ! R given in Eq. (4.9), let

o
u

= f(x
u

) =< �

t

u

,x
u

>, and

o
uv

= f(x
u

� x

v

) = f(x
uv

) =< �

t

u

=t

v

,x
uv

> .

We then utilize the cross entropy as our cost function for each
training instance (u, v) as proposed in [11]:

(4.12) c
uv

= �p̄
uv

log(p
uv

)� (1� p̄
uv

) log(1� p
uv

)

where, mapping from the output of our model to probabilities
is acquired using the logistic function

(4.13) p
uv

=

eouv

1 + eouv

.

Substituting Eq. (4.13) into Eq. (4.12), c
uv

can equivalently
be written as

(4.14) c
uv

= �p̄
uv

o
uv

+ log(1 + eouv

)

Algorithm 1 Alternating Estimation of �
Input: graph G, partial ranked lists L, T

max

, ✏
Output: �

1: �

0

(a, b) = rand(0, 1), 8a, b 2 {1, . . . ,m}, k = 0

2: r compute authority scores by (3.6) using �

0

3: repeat
4: Xk compute feature vectors by Eq. (4.7) using r

5: �

k+1 learn new param.s by RANKSVM(L, Xk)
or GRADIENT(L, Xk,�k)

6: r compute authority scores by (3.6) using �

k+1

7: diff trAccuracy(L, r)� trAccuracy(L, r
best

)

8: if diff > 0 then r

best

 r, �

best

 �

k+1 end if
9: k = k + 1

10: until ||�k � �

k�1|| ✏ or k > T
max

11: return �

best

of our iterative meta-approach is given in Algorithm 1.
Over iterations the best � with the largest trAccuracy is
maintained. Here any IR metric can be used for accuracy,
such as discounted cumulative gain (See Sec. 5).

Given a HIN G, a partial ranked list L
t

consists of an
ordering of a subset of nodes V

t

⇢ V of the same type, i.e.,
t
v

= t, 8v 2 V
t

. Let �
v

denote the order or position of node
v in L

t

, where lower positions correspond to higher ranks or
authority scores, that is r

u

� r
v

if and only if �
u

< �
v

.
Our estimation algorithms take as input one or more

partial ranked lists L for each type t 2 T . It first randomly
guesses �, and then iteratively and alternatingly computes r
and X , followed by estimating � for which we propose two
main aproaches; RANKSVM and GRADIENT.

4.1 RankSVM formulation Given a partial ranked list,
there are several ways of constructing training data from
it. A common way is the pair-wise approach, where for
each pair of entities (i.e., nodes) (u, v) in the ranked list,
we construct a training instance ((x

u

,x
v

), 1) if u is ranked
ahead of v (that is, if �

u

< �
v

), and ((x

v

,x
u

),�1)
otherwise. As a result, training data D is available in the
form of {((x1

d

,x2

d

), y
d

)}|D|
d=1

, where each instance consists
of two feature vectors that belong to two nodes of the same
type, and a label y

d

2 {�1, 1}.
Having constructed such a training data D, we can use

the hinge-loss function as shown in (4.10) to estimate the
model parameters by RankSVM [5].

L((x1

d

,x2

d

), y
d

) = max(0, 1� (�

0
t

· (x1

d

� x

2

d

))y
d

),

such that t
x

1
d

, t
x

2
d

= t

(4.10)

Note that each column of � that belongs to each type
t is estimated independent of others, provided the feature
vectors x

v

’s where t
v

= t. Since � is a non-negative
matrix, we also introduce non-negativity constraints to the
SVM formulation, given in (4.11).

Algorithm 2 Estimate � by RANKSVM
Input: feature vectors X , partial ranked lists L
Output: �

1: for each type t 2 T do
2: �

t

 compute column t of � by (4.11) using X , L
3: end for
4: return �

min

�

t

||�
t

||2
2

+ �
X

d2D
✏
d

s.t. �

0
t

(x

1

d

� x

2

d

)y
d

� 1� ✏
d

, 8d 2 D and t
x

1
d

, t
x

2
d

= t

✏
d

� 0, 8d 2 D
�

t

(c) � 0, 8c = 1, . . . ,m

(4.11)

where � is a regularization hyperparameter estimated
through cross validation. With the additional constraints,
the optimization remains a convex problem. We solve the
program in (4.11) m times independently for each type t to
estimate all the columns of �, as shown in Algorithm 2.

4.2 Gradient-based estimation In addition to adapting
RankSVM formulation, we can also construct other learning-
to-rank objective functions and leverage a gradient-based
method to solve our learning problem. In this section, we in-
troduce two different objectives with different requirements.

4.2.1 Learning-to-Rank Objective-I Consider the case
where besides the partial ranked lists, for each pair of entities
(u, v) in a training instance, the probability that one is ranked
ahead of the other is also given: i.e., the training instances
are in the form of ((x

u

,x
v

), p̄
uv

) where p̄
uv

= P (r
u

> r
v

).
For example, one can use the sigmoid function �(r

u

�r
v

) =

p̄
uv

to compute this probability, if the original/ground-truth
authority scores (r

u

, r
v

) of the training entities are provided
(note that this is a strict requirement), where �(x) = e

x

1+e

x

is
the sigmoid function.

Recalling function f : Rm ! R given in Eq. (4.9), let

o
u

= f(x
u

) =< �

t

u

,x
u

>, and

o
uv

= f(x
u

� x

v

) = f(x
uv

) =< �

t

u

=t

v

,x
uv

> .

We then utilize the cross entropy as our cost function for each
training instance (u, v) as proposed in [11]:

(4.12) c
uv

= �p̄
uv

log(p
uv

)� (1� p̄
uv

) log(1� p
uv

)

where, mapping from the output of our model to probabilities
is acquired using the logistic function

(4.13) p
uv

=

eouv

1 + eouv

.

Substituting Eq. (4.13) into Eq. (4.12), c
uv

can equivalently
be written as

(4.14) c
uv

= �p̄
uv

o
uv

+ log(1 + eouv

)

Algorithm 1 Alternating Estimation of �
Input: graph G, partial ranked lists L, T

max

, ✏
Output: �

1: �

0

(a, b) = rand(0, 1), 8a, b 2 {1, . . . ,m}, k = 0

2: r compute authority scores by (3.6) using �

0

3: repeat
4: Xk compute feature vectors by Eq. (4.7) using r

5: �

k+1 learn new param.s by RANKSVM(L, Xk)
or GRADIENT(L, Xk,�k)

6: r compute authority scores by (3.6) using �

k+1

7: diff trAccuracy(L, r)� trAccuracy(L, r
best

)

8: if diff > 0 then r

best

 r, �

best

 �

k+1 end if
9: k = k + 1

10: until ||�k � �

k�1|| ✏ or k > T
max

11: return �

best

of our iterative meta-approach is given in Algorithm 1.
Over iterations the best � with the largest trAccuracy is
maintained. Here any IR metric can be used for accuracy,
such as discounted cumulative gain (See Sec. 5).

Given a HIN G, a partial ranked list L
t

consists of an
ordering of a subset of nodes V

t

⇢ V of the same type, i.e.,
t
v

= t, 8v 2 V
t

. Let �
v

denote the order or position of node
v in L

t

, where lower positions correspond to higher ranks or
authority scores, that is r

u

� r
v

if and only if �
u

< �
v

.
Our estimation algorithms take as input one or more

partial ranked lists L for each type t 2 T . It first randomly
guesses �, and then iteratively and alternatingly computes r
and X , followed by estimating � for which we propose two
main aproaches; RANKSVM and GRADIENT.

4.1 RankSVM formulation Given a partial ranked list,
there are several ways of constructing training data from
it. A common way is the pair-wise approach, where for
each pair of entities (i.e., nodes) (u, v) in the ranked list,
we construct a training instance ((x

u

,x
v

), 1) if u is ranked
ahead of v (that is, if �

u

< �
v

), and ((x

v

,x
u

),�1)
otherwise. As a result, training data D is available in the
form of {((x1

d

,x2

d

), y
d

)}|D|
d=1

, where each instance consists
of two feature vectors that belong to two nodes of the same
type, and a label y

d

2 {�1, 1}.
Having constructed such a training data D, we can use

the hinge-loss function as shown in (4.10) to estimate the
model parameters by RankSVM [5].

L((x1

d

,x2

d

), y
d

) = max(0, 1� (�

0
t

· (x1

d

� x

2

d

))y
d

),

such that t
x

1
d

, t
x

2
d

= t

(4.10)

Note that each column of � that belongs to each type
t is estimated independent of others, provided the feature
vectors x

v

’s where t
v

= t. Since � is a non-negative
matrix, we also introduce non-negativity constraints to the
SVM formulation, given in (4.11).

Algorithm 2 Estimate � by RANKSVM
Input: feature vectors X , partial ranked lists L
Output: �

1: for each type t 2 T do
2: �

t

 compute column t of � by (4.11) using X , L
3: end for
4: return �

min

�

t

||�
t

||2
2

+ �
X

d2D
✏
d

s.t. �

0
t

(x

1

d

� x

2

d

)y
d

� 1� ✏
d

, 8d 2 D and t
x

1
d

, t
x

2
d

= t

✏
d

� 0, 8d 2 D
�

t

(c) � 0, 8c = 1, . . . ,m

(4.11)

where � is a regularization hyperparameter estimated
through cross validation. With the additional constraints,
the optimization remains a convex problem. We solve the
program in (4.11) m times independently for each type t to
estimate all the columns of �, as shown in Algorithm 2.

4.2 Gradient-based estimation In addition to adapting
RankSVM formulation, we can also construct other learning-
to-rank objective functions and leverage a gradient-based
method to solve our learning problem. In this section, we in-
troduce two different objectives with different requirements.

4.2.1 Learning-to-Rank Objective-I Consider the case
where besides the partial ranked lists, for each pair of entities
(u, v) in a training instance, the probability that one is ranked
ahead of the other is also given: i.e., the training instances
are in the form of ((x

u

,x
v

), p̄
uv

) where p̄
uv

= P (r
u

> r
v

).
For example, one can use the sigmoid function �(r

u

�r
v

) =

p̄
uv

to compute this probability, if the original/ground-truth
authority scores (r

u

, r
v

) of the training entities are provided
(note that this is a strict requirement), where �(x) = e

x

1+e

x

is
the sigmoid function.

Recalling function f : Rm ! R given in Eq. (4.9), let

o
u

= f(x
u

) =< �

t

u

,x
u

>, and

o
uv

= f(x
u

� x

v

) = f(x
uv

) =< �

t

u

=t

v

,x
uv

> .

We then utilize the cross entropy as our cost function for each
training instance (u, v) as proposed in [11]:

(4.12) c
uv

= �p̄
uv

log(p
uv

)� (1� p̄
uv

) log(1� p
uv

)

where, mapping from the output of our model to probabilities
is acquired using the logistic function

(4.13) p
uv

=

eouv

1 + eouv

.

Substituting Eq. (4.13) into Eq. (4.12), c
uv

can equivalently
be written as

(4.14) c
uv

= �p̄
uv

o
uv

+ log(1 + eouv

)

Algorithm 1 Alternating Estimation of �
Input: graph G, partial ranked lists L, T

max

, ✏
Output: �

1: �

0

(a, b) = rand(0, 1), 8a, b 2 {1, . . . ,m}, k = 0

2: r compute authority scores by (3.6) using �

0

3: repeat
4: Xk compute feature vectors by Eq. (4.7) using r

5: �

k+1 learn new param.s by RANKSVM(L, Xk)
or GRADIENT(L, Xk,�k)

6: r compute authority scores by (3.6) using �

k+1

7: diff trAccuracy(L, r)� trAccuracy(L, r
best

)

8: if diff > 0 then r

best

 r, �

best

 �

k+1 end if
9: k = k + 1

10: until ||�k � �

k�1|| ✏ or k > T
max

11: return �

best

of our iterative meta-approach is given in Algorithm 1.
Over iterations the best � with the largest trAccuracy is
maintained. Here any IR metric can be used for accuracy,
such as discounted cumulative gain (See Sec. 5).

Given a HIN G, a partial ranked list L
t

consists of an
ordering of a subset of nodes V

t

⇢ V of the same type, i.e.,
t
v

= t, 8v 2 V
t

. Let �
v

denote the order or position of node
v in L

t

, where lower positions correspond to higher ranks or
authority scores, that is r

u

� r
v

if and only if �
u

< �
v

.
Our estimation algorithms take as input one or more

partial ranked lists L for each type t 2 T . It first randomly
guesses �, and then iteratively and alternatingly computes r
and X , followed by estimating � for which we propose two
main aproaches; RANKSVM and GRADIENT.

4.1 RankSVM formulation Given a partial ranked list,
there are several ways of constructing training data from
it. A common way is the pair-wise approach, where for
each pair of entities (i.e., nodes) (u, v) in the ranked list,
we construct a training instance ((x

u

,x
v

), 1) if u is ranked
ahead of v (that is, if �

u

< �
v

), and ((x

v

,x
u

),�1)
otherwise. As a result, training data D is available in the
form of {((x1

d

,x2

d

), y
d

)}|D|
d=1

, where each instance consists
of two feature vectors that belong to two nodes of the same
type, and a label y

d

2 {�1, 1}.
Having constructed such a training data D, we can use

the hinge-loss function as shown in (4.10) to estimate the
model parameters by RankSVM [5].

L((x1

d

,x2

d

), y
d

) = max(0, 1� (�

0
t

· (x1

d

� x

2

d

))y
d

),

such that t
x

1
d

, t
x

2
d

= t

(4.10)

Note that each column of � that belongs to each type
t is estimated independent of others, provided the feature
vectors x

v

’s where t
v

= t. Since � is a non-negative
matrix, we also introduce non-negativity constraints to the
SVM formulation, given in (4.11).

Algorithm 2 Estimate � by RANKSVM
Input: feature vectors X , partial ranked lists L
Output: �

1: for each type t 2 T do
2: �

t

 compute column t of � by (4.11) using X , L
3: end for
4: return �

min

�

t

||�
t

||2
2

+ �
X

d2D
✏
d

s.t. �

0
t

(x

1

d

� x

2

d

)y
d

� 1� ✏
d

, 8d 2 D and t
x

1
d

, t
x

2
d

= t

✏
d

� 0, 8d 2 D
�

t

(c) � 0, 8c = 1, . . . ,m

(4.11)

where � is a regularization hyperparameter estimated
through cross validation. With the additional constraints,
the optimization remains a convex problem. We solve the
program in (4.11) m times independently for each type t to
estimate all the columns of �, as shown in Algorithm 2.

4.2 Gradient-based estimation In addition to adapting
RankSVM formulation, we can also construct other learning-
to-rank objective functions and leverage a gradient-based
method to solve our learning problem. In this section, we in-
troduce two different objectives with different requirements.

4.2.1 Learning-to-Rank Objective-I Consider the case
where besides the partial ranked lists, for each pair of entities
(u, v) in a training instance, the probability that one is ranked
ahead of the other is also given: i.e., the training instances
are in the form of ((x

u

,x
v

), p̄
uv

) where p̄
uv

= P (r
u

> r
v

).
For example, one can use the sigmoid function �(r

u

�r
v

) =

p̄
uv

to compute this probability, if the original/ground-truth
authority scores (r

u

, r
v

) of the training entities are provided
(note that this is a strict requirement), where �(x) = e

x

1+e

x

is
the sigmoid function.

Recalling function f : Rm ! R given in Eq. (4.9), let

o
u

= f(x
u

) =< �

t

u

,x
u

>, and

o
uv

= f(x
u

� x

v

) = f(x
uv

) =< �

t

u

=t

v

,x
uv

> .

We then utilize the cross entropy as our cost function for each
training instance (u, v) as proposed in [11]:

(4.12) c
uv

= �p̄
uv

log(p
uv

)� (1� p̄
uv

) log(1� p
uv

)

where, mapping from the output of our model to probabilities
is acquired using the logistic function

(4.13) p
uv

=

eouv

1 + eouv

.

Substituting Eq. (4.13) into Eq. (4.12), c
uv

can equivalently
be written as

(4.14) c
uv

= �p̄
uv

o
uv

+ log(1 + eouv

)

Algorithm 1 Alternating Estimation of �
Input: graph G, partial ranked lists L, T

max

, ✏
Output: �

1: �

0

(a, b) = rand(0, 1), 8a, b 2 {1, . . . ,m}, k = 0

2: r compute authority scores by (3.6) using �

0

3: repeat
4: Xk compute feature vectors by Eq. (4.7) using r

5: �

k+1 learn new param.s by RANKSVM(L, Xk)
or GRADIENT(L, Xk,�k)

6: r compute authority scores by (3.6) using �

k+1

7: diff trAccuracy(L, r)� trAccuracy(L, r
best

)

8: if diff > 0 then r

best

 r, �

best

 �

k+1 end if
9: k = k + 1

10: until ||�k � �

k�1|| ✏ or k > T
max

11: return �

best

of our iterative meta-approach is given in Algorithm 1.
Over iterations the best � with the largest trAccuracy is
maintained. Here any IR metric can be used for accuracy,
such as discounted cumulative gain (See Sec. 5).

Given a HIN G, a partial ranked list L
t

consists of an
ordering of a subset of nodes V

t

⇢ V of the same type, i.e.,
t
v

= t, 8v 2 V
t

. Let �
v

denote the order or position of node
v in L

t

, where lower positions correspond to higher ranks or
authority scores, that is r

u

� r
v

if and only if �
u

< �
v

.
Our estimation algorithms take as input one or more

partial ranked lists L for each type t 2 T . It first randomly
guesses �, and then iteratively and alternatingly computes r
and X , followed by estimating � for which we propose two
main aproaches; RANKSVM and GRADIENT.

4.1 RankSVM formulation Given a partial ranked list,
there are several ways of constructing training data from
it. A common way is the pair-wise approach, where for
each pair of entities (i.e., nodes) (u, v) in the ranked list,
we construct a training instance ((x

u

,x
v

), 1) if u is ranked
ahead of v (that is, if �

u

< �
v

), and ((x

v

,x
u

),�1)
otherwise. As a result, training data D is available in the
form of {((x1

d

,x2

d

), y
d

)}|D|
d=1

, where each instance consists
of two feature vectors that belong to two nodes of the same
type, and a label y

d

2 {�1, 1}.
Having constructed such a training data D, we can use

the hinge-loss function as shown in (4.10) to estimate the
model parameters by RankSVM [5].

L((x1

d

,x2

d

), y
d

) = max(0, 1� (�

0
t

· (x1

d

� x

2

d

))y
d

),

such that t
x

1
d

, t
x

2
d

= t

(4.10)

Note that each column of � that belongs to each type
t is estimated independent of others, provided the feature
vectors x

v

’s where t
v

= t. Since � is a non-negative
matrix, we also introduce non-negativity constraints to the
SVM formulation, given in (4.11).

Algorithm 2 Estimate � by RANKSVM
Input: feature vectors X , partial ranked lists L
Output: �

1: for each type t 2 T do
2: �

t

 compute column t of � by (4.11) using X , L
3: end for
4: return �

min

�

t

||�
t

||2
2

+ �
X

d2D
✏
d

s.t. �

0
t

(x

1

d

� x

2

d

)y
d

� 1� ✏
d

, 8d 2 D and t
x

1
d

, t
x

2
d

= t

✏
d

� 0, 8d 2 D
�

t

(c) � 0, 8c = 1, . . . ,m

(4.11)

where � is a regularization hyperparameter estimated
through cross validation. With the additional constraints,
the optimization remains a convex problem. We solve the
program in (4.11) m times independently for each type t to
estimate all the columns of �, as shown in Algorithm 2.

4.2 Gradient-based estimation In addition to adapting
RankSVM formulation, we can also construct other learning-
to-rank objective functions and leverage a gradient-based
method to solve our learning problem. In this section, we in-
troduce two different objectives with different requirements.

4.2.1 Learning-to-Rank Objective-I Consider the case
where besides the partial ranked lists, for each pair of entities
(u, v) in a training instance, the probability that one is ranked
ahead of the other is also given: i.e., the training instances
are in the form of ((x

u

,x
v

), p̄
uv

) where p̄
uv

= P (r
u

> r
v

).
For example, one can use the sigmoid function �(r

u

�r
v

) =

p̄
uv

to compute this probability, if the original/ground-truth
authority scores (r

u

, r
v

) of the training entities are provided
(note that this is a strict requirement), where �(x) = e

x

1+e

x

is
the sigmoid function.

Recalling function f : Rm ! R given in Eq. (4.9), let

o
u

= f(x
u

) =< �

t

u

,x
u

>, and

o
uv

= f(x
u

� x

v

) = f(x
uv

) =< �

t

u

=t

v

,x
uv

> .

We then utilize the cross entropy as our cost function for each
training instance (u, v) as proposed in [11]:

(4.12) c
uv

= �p̄
uv

log(p
uv

)� (1� p̄
uv

) log(1� p
uv

)

where, mapping from the output of our model to probabilities
is acquired using the logistic function

(4.13) p
uv

=

eouv

1 + eouv

.

Substituting Eq. (4.13) into Eq. (4.12), c
uv

can equivalently
be written as

(4.14) c
uv

= �p̄
uv

o
uv

+ log(1 + eouv

)

17

An alternating optimization scheme:
§  r
Given: graph G, (partial) lists ranking a subset of
nodes of a certain type

q  Randomly initialize ,
q  Compute authority scores r using
q  Repeat

§  ß compute feature vectors using r
§  ß learn new parameters by learning-to-rank
§  compute authority scores r using

q  Until convergence

dustries in j’s vicinity, we assume i’s authority to be higher
than those.2

To capture this intuition, for each edge e(j, i) we think
of “ghost” edges from nodes of type t

i

in j’s vicinity to i.
Instead of a fixed vicinity, we define a smooth neighborhood
function that is a decreasing function of distance:

N(u, v) =

⇢
g(d(l

u

, l
v

)) u, v 2 V, u 6= v
0 u = v

where g(.) is monotonically decreasing, e.g. g(z) = e�z .
Then, we transfer a weighted sum of the authority scores

of type t
i

nodes in j’s neighborhood along with j’s authority
itself to compute i’s score. Building on (3.3) we get:

(3.4) r
i

=

X

j

�(t
j

, t
i

)M(j, i) (r
j

+

X

v:t

v

=t

i

N(v, j) r
v

) .

3.5 Solving the HINSIDE Model. Our proposed model
given in Eq. (3.4) can be written and solved in a compact
form. Let T denote the n ⇥ m boolean type matrix with
T (i, c) = 1 if t

i

= T (c) and 0 otherwise, 8i 2 V and
c = {1, . . . ,m}. Based on this, we define L = M�(T � T 0

)

where 0 denotes transpose operation. We also introduce the
type equality matrix E where

E(u, v) =

⇢
1 if t

u

= t
v

0 otherwise

In matrix form, E = TT 0. We then rewrite (3.4) as

r
i

=

X

j

L(j, i) r
j

+

X

j

X

v

L(j, i)N(v, j) r
v

E(i, v)

r
i

=

X

j

L(j, i) r
j

+

X

v

r
v

E(i, v)
⇥X

j

N(v, j)L(j, i)
⇤

r = L0
r + (E � (NL)0)r

As such, we obtain

r =

⇥
L0

+ (L0N 0 � E)

⇤
r = H r(3.5)

where r 2 Rn is a column vector of length n containing the
authority scores of all nodes. Note that N is computed from
data (Sec. 3.4), E = TT 0 and L = M � (T � T 0

) in which
T and M are also known. As such, the ATR matrix � is the
only unknown of our model.

We can solve for r using the power method [16]. As �,
T , N and M are all non-negative, so is H . Starting with
an arbitrary initial vector r

(0) 2 Rn, we form the vector
sequence {r(p)}1

p=0

. If ||H|| 6= 1, the power method would
underflow or overflow for large p, and not converge to a fixed
r. As such, we introduce a normalization at every step:

r

(p+1) H r

(p)

||H r

(p)||
, p = 0, 1, 2, . . .(3.6)

2The referrals are directed, while trade relations are undirected.
In the latter we also assume the vice versa, i.e., j’s authority to be
higher than other energy companies in i’s vicinity.

It can be shown that the power method converges to the
left singular vector of H under some mild conditions [12]:

THEOREM 3.1. Let the singular values of H 2 Rn⇥n be
arranged such that |�

1

| > |�
2

| � . . . � |�
n

|. Let u
1

and v

1

be the left and right singular vectors of H corresponding to
�
1

respectively. Then, the vector sequence generated by (3.6)
converges to u

1

, where ||r(p)|| converges to |�
1

| for large p,
provided that v0

1

r

0

6= 0 and |�
1

| 6= |�
2

|.
For a HIN with m types, � contains m2 parameters.

Even for moderate m, it would be challenging to set these
ATR values manually. Next we propose two new algorithms
for parameter estimation provided training data.

4 Parameter Estimation
The authority transfer rates, in other words the values in �,
depend on the problem domain and may be hard to assign by
humans. To estimate �, we consider learning from partially
ranked lists, given by humans, as providing partial lists is
more practical than assigning absolute rates. We propose
two approaches for estimating �; (1) a RankSVM approach,
and (2) a gradient based approach.

Let us first represent r
i

in the form of a linear function
of a feature vector x

i

and a weight vector w, such that
r
i

= f(x
i

) =< w,x
i

>. This is a convenient and common
representation to be used in many learning algorithms.

We start by rewriting Eq. (3.4) as

r
i

=

X

t

�(t, t
i

)

X

j:t

j

=t

⇥
M(j, i)(r

j

+

X

v:t

v

=t

i

N(v, j) r
v

)

⇤

Let us define a m⇥ n matrix X where

(4.7) X(t, i) =
X

j:t

j

=t

M(j, i) (r
j

+

X

v:t

v

=t

i

N(v, j) r
v

)

using which we can write

(4.8) r
i

=

X

t

�(t, t
i

)X(t, i) = �

0
(t

i

, :) ·X(:, i) = �

0
t

i

·x
i

where x
i

is the ith column of X and �

t

i

is the tth
i

column of
�. As such, we can compute r

i

by the vector-vector product

(4.9) r
i

= f(x
i

) =< �

t

i

,x
i

> .

In this formulation, �
t

i

is a length m vector of unknown
parameters and x

i

is considered as the “feature vector” of
node i. Now in order to estimate � we need access to x

i

’s,
and to construct the x

i

’s we need to know the authority
scores r (Eq. 4.7), which in turn requires � (Eq. 3.4).
That is, �

Eq.(3.4)�����! r

Eq.(4.7)�����! X
estimate����! �. In this

section we describe algorithms for exactly the last step. The
dependences suggest that an alternating optimization scheme
is an appropriate approach to estimating �. The sketch

dustries in j’s vicinity, we assume i’s authority to be higher
than those.2

To capture this intuition, for each edge e(j, i) we think
of “ghost” edges from nodes of type t

i

in j’s vicinity to i.
Instead of a fixed vicinity, we define a smooth neighborhood
function that is a decreasing function of distance:

N(u, v) =

⇢
g(d(l

u

, l
v

)) u, v 2 V, u 6= v
0 u = v

where g(.) is monotonically decreasing, e.g. g(z) = e�z .
Then, we transfer a weighted sum of the authority scores

of type t
i

nodes in j’s neighborhood along with j’s authority
itself to compute i’s score. Building on (3.3) we get:

(3.4) r
i

=

X

j

�(t
j

, t
i

)M(j, i) (r
j

+

X

v:t

v

=t

i

N(v, j) r
v

) .

3.5 Solving the HINSIDE Model. Our proposed model
given in Eq. (3.4) can be written and solved in a compact
form. Let T denote the n ⇥ m boolean type matrix with
T (i, c) = 1 if t

i

= T (c) and 0 otherwise, 8i 2 V and
c = {1, . . . ,m}. Based on this, we define L = M�(T � T 0

)

where 0 denotes transpose operation. We also introduce the
type equality matrix E where

E(u, v) =

⇢
1 if t

u

= t
v

0 otherwise

In matrix form, E = TT 0. We then rewrite (3.4) as

r
i

=

X

j

L(j, i) r
j

+

X

j

X

v

L(j, i)N(v, j) r
v

E(i, v)

r
i

=

X

j

L(j, i) r
j

+

X

v

r
v

E(i, v)
⇥X

j

N(v, j)L(j, i)
⇤

r = L0
r + (E � (NL)0)r

As such, we obtain

r =

⇥
L0

+ (L0N 0 � E)

⇤
r = H r(3.5)

where r 2 Rn is a column vector of length n containing the
authority scores of all nodes. Note that N is computed from
data (Sec. 3.4), E = TT 0 and L = M � (T � T 0

) in which
T and M are also known. As such, the ATR matrix � is the
only unknown of our model.

We can solve for r using the power method [16]. As �,
T , N and M are all non-negative, so is H . Starting with
an arbitrary initial vector r

(0) 2 Rn, we form the vector
sequence {r(p)}1

p=0

. If ||H|| 6= 1, the power method would
underflow or overflow for large p, and not converge to a fixed
r. As such, we introduce a normalization at every step:

r

(p+1) H r

(p)

||H r

(p)||
, p = 0, 1, 2, . . .(3.6)

2The referrals are directed, while trade relations are undirected.
In the latter we also assume the vice versa, i.e., j’s authority to be
higher than other energy companies in i’s vicinity.

It can be shown that the power method converges to the
left singular vector of H under some mild conditions [12]:

THEOREM 3.1. Let the singular values of H 2 Rn⇥n be
arranged such that |�

1

| > |�
2

| � . . . � |�
n

|. Let u
1

and v

1

be the left and right singular vectors of H corresponding to
�
1

respectively. Then, the vector sequence generated by (3.6)
converges to u

1

, where ||r(p)|| converges to |�
1

| for large p,
provided that v0

1

r

0

6= 0 and |�
1

| 6= |�
2

|.
For a HIN with m types, � contains m2 parameters.

Even for moderate m, it would be challenging to set these
ATR values manually. Next we propose two new algorithms
for parameter estimation provided training data.

4 Parameter Estimation
The authority transfer rates, in other words the values in �,
depend on the problem domain and may be hard to assign by
humans. To estimate �, we consider learning from partially
ranked lists, given by humans, as providing partial lists is
more practical than assigning absolute rates. We propose
two approaches for estimating �; (1) a RankSVM approach,
and (2) a gradient based approach.

Let us first represent r
i

in the form of a linear function
of a feature vector x

i

and a weight vector w, such that
r
i

= f(x
i

) =< w,x
i

>. This is a convenient and common
representation to be used in many learning algorithms.

We start by rewriting Eq. (3.4) as

r
i

=

X

t

�(t, t
i

)

X

j:t

j

=t

⇥
M(j, i)(r

j

+

X

v:t

v

=t

i

N(v, j) r
v

)

⇤

Let us define a m⇥ n matrix X where

(4.7) X(t, i) =
X

j:t

j

=t

M(j, i) (r
j

+

X

v:t

v

=t

i

N(v, j) r
v

)

using which we can write

(4.8) r
i

=

X

t

�(t, t
i

)X(t, i) = �

0
(t

i

, :) ·X(:, i) = �

0
t

i

·x
i

where x
i

is the ith column of X and �

t

i

is the tth
i

column of
�. As such, we can compute r

i

by the vector-vector product

(4.9) r
i

= f(x
i

) =< �

t

i

,x
i

> .

In this formulation, �
t

i

is a length m vector of unknown
parameters and x

i

is considered as the “feature vector” of
node i. Now in order to estimate � we need access to x

i

’s,
and to construct the x

i

’s we need to know the authority
scores r (Eq. 4.7), which in turn requires � (Eq. 3.4).
That is, �

Eq.(3.4)�����! r

Eq.(4.7)�����! X
estimate����! �. In this

section we describe algorithms for exactly the last step. The
dependences suggest that an alternating optimization scheme
is an appropriate approach to estimating �. The sketch

dustries in j’s vicinity, we assume i’s authority to be higher
than those.2

To capture this intuition, for each edge e(j, i) we think
of “ghost” edges from nodes of type t

i

in j’s vicinity to i.
Instead of a fixed vicinity, we define a smooth neighborhood
function that is a decreasing function of distance:

N(u, v) =

⇢
g(d(l

u

, l
v

)) u, v 2 V, u 6= v
0 u = v

where g(.) is monotonically decreasing, e.g. g(z) = e�z .
Then, we transfer a weighted sum of the authority scores

of type t
i

nodes in j’s neighborhood along with j’s authority
itself to compute i’s score. Building on (3.3) we get:

(3.4) r
i

=

X

j

�(t
j

, t
i

)M(j, i) (r
j

+

X

v:t

v

=t

i

N(v, j) r
v

) .

3.5 Solving the HINSIDE Model. Our proposed model
given in Eq. (3.4) can be written and solved in a compact
form. Let T denote the n ⇥ m boolean type matrix with
T (i, c) = 1 if t

i

= T (c) and 0 otherwise, 8i 2 V and
c = {1, . . . ,m}. Based on this, we define L = M�(T � T 0

)

where 0 denotes transpose operation. We also introduce the
type equality matrix E where

E(u, v) =

⇢
1 if t

u

= t
v

0 otherwise

In matrix form, E = TT 0. We then rewrite (3.4) as

r
i

=

X

j

L(j, i) r
j

+

X

j

X

v

L(j, i)N(v, j) r
v

E(i, v)

r
i

=

X

j

L(j, i) r
j

+

X

v

r
v

E(i, v)
⇥X

j

N(v, j)L(j, i)
⇤

r = L0
r + (E � (NL)0)r

As such, we obtain

r =

⇥
L0

+ (L0N 0 � E)

⇤
r = H r(3.5)

where r 2 Rn is a column vector of length n containing the
authority scores of all nodes. Note that N is computed from
data (Sec. 3.4), E = TT 0 and L = M � (T � T 0

) in which
T and M are also known. As such, the ATR matrix � is the
only unknown of our model.

We can solve for r using the power method [16]. As �,
T , N and M are all non-negative, so is H . Starting with
an arbitrary initial vector r

(0) 2 Rn, we form the vector
sequence {r(p)}1

p=0

. If ||H|| 6= 1, the power method would
underflow or overflow for large p, and not converge to a fixed
r. As such, we introduce a normalization at every step:

r

(p+1) H r

(p)

||H r

(p)||
, p = 0, 1, 2, . . .(3.6)

2The referrals are directed, while trade relations are undirected.
In the latter we also assume the vice versa, i.e., j’s authority to be
higher than other energy companies in i’s vicinity.

It can be shown that the power method converges to the
left singular vector of H under some mild conditions [12]:

THEOREM 3.1. Let the singular values of H 2 Rn⇥n be
arranged such that |�

1

| > |�
2

| � . . . � |�
n

|. Let u
1

and v

1

be the left and right singular vectors of H corresponding to
�
1

respectively. Then, the vector sequence generated by (3.6)
converges to u

1

, where ||r(p)|| converges to |�
1

| for large p,
provided that v0

1

r

0

6= 0 and |�
1

| 6= |�
2

|.
For a HIN with m types, � contains m2 parameters.

Even for moderate m, it would be challenging to set these
ATR values manually. Next we propose two new algorithms
for parameter estimation provided training data.

4 Parameter Estimation
The authority transfer rates, in other words the values in �,
depend on the problem domain and may be hard to assign by
humans. To estimate �, we consider learning from partially
ranked lists, given by humans, as providing partial lists is
more practical than assigning absolute rates. We propose
two approaches for estimating �; (1) a RankSVM approach,
and (2) a gradient based approach.

Let us first represent r
i

in the form of a linear function
of a feature vector x

i

and a weight vector w, such that
r
i

= f(x
i

) =< w,x
i

>. This is a convenient and common
representation to be used in many learning algorithms.

We start by rewriting Eq. (3.4) as

r
i

=

X

t

�(t, t
i

)

X

j:t

j

=t

⇥
M(j, i)(r

j

+

X

v:t

v

=t

i

N(v, j) r
v

)

⇤

Let us define a m⇥ n matrix X where

(4.7) X(t, i) =
X

j:t

j

=t

M(j, i) (r
j

+

X

v:t

v

=t

i

N(v, j) r
v

)

using which we can write

(4.8) r
i

=

X

t

�(t, t
i

)X(t, i) = �

0
(t

i

, :) ·X(:, i) = �

0
t

i

·x
i

where x
i

is the ith column of X and �

t

i

is the tth
i

column of
�. As such, we can compute r

i

by the vector-vector product

(4.9) r
i

= f(x
i

) =< �

t

i

,x
i

> .

In this formulation, �
t

i

is a length m vector of unknown
parameters and x

i

is considered as the “feature vector” of
node i. Now in order to estimate � we need access to x

i

’s,
and to construct the x

i

’s we need to know the authority
scores r (Eq. 4.7), which in turn requires � (Eq. 3.4).
That is, �

Eq.(3.4)�����! r

Eq.(4.7)�����! X
estimate����! �. In this

section we describe algorithms for exactly the last step. The
dependences suggest that an alternating optimization scheme
is an appropriate approach to estimating �. The sketch

estimate Algorithm 1 Alternating Estimation of �
Input: graph G, partial ranked lists L, T

max

, ✏
Output: �

1: �

0

(a, b) = rand(0, 1), 8a, b 2 {1, . . . ,m}, k = 0

2: r compute authority scores by (3.6) using �

0

3: repeat
4: Xk compute feature vectors by Eq. (4.7) using r

5: �

k+1 learn new param.s by RANKSVM(L, Xk)
or GRADIENT(L, Xk,�k)

6: r compute authority scores by (3.6) using �

k+1

7: diff trAccuracy(L, r)� trAccuracy(L, r
best

)

8: if diff > 0 then r

best

 r, �

best

 �

k+1 end if
9: k = k + 1

10: until ||�k � �

k�1|| ✏ or k > T
max

11: return �

best

of our iterative meta-approach is given in Algorithm 1.
Over iterations the best � with the largest trAccuracy is
maintained. Here any IR metric can be used for accuracy,
such as discounted cumulative gain (See Sec. 5).

Given a HIN G, a partial ranked list L
t

consists of an
ordering of a subset of nodes V

t

⇢ V of the same type, i.e.,
t
v

= t, 8v 2 V
t

. Let �
v

denote the order or position of node
v in L

t

, where lower positions correspond to higher ranks or
authority scores, that is r

u

� r
v

if and only if �
u

< �
v

.
Our estimation algorithms take as input one or more

partial ranked lists L for each type t 2 T . It first randomly
guesses �, and then iteratively and alternatingly computes r
and X , followed by estimating � for which we propose two
main aproaches; RANKSVM and GRADIENT.

4.1 RankSVM formulation Given a partial ranked list,
there are several ways of constructing training data from
it. A common way is the pair-wise approach, where for
each pair of entities (i.e., nodes) (u, v) in the ranked list,
we construct a training instance ((x

u

,x
v

), 1) if u is ranked
ahead of v (that is, if �

u

< �
v

), and ((x

v

,x
u

),�1)
otherwise. As a result, training data D is available in the
form of {((x1

d

,x2

d

), y
d

)}|D|
d=1

, where each instance consists
of two feature vectors that belong to two nodes of the same
type, and a label y

d

2 {�1, 1}.
Having constructed such a training data D, we can use

the hinge-loss function as shown in (4.10) to estimate the
model parameters by RankSVM [5].

L((x1

d

,x2

d

), y
d

) = max(0, 1� (�

0
t

· (x1

d

� x

2

d

))y
d

),

such that t
x

1
d

, t
x

2
d

= t

(4.10)

Note that each column of � that belongs to each type
t is estimated independent of others, provided the feature
vectors x

v

’s where t
v

= t. Since � is a non-negative
matrix, we also introduce non-negativity constraints to the
SVM formulation, given in (4.11).

Algorithm 2 Estimate � by RANKSVM
Input: feature vectors X , partial ranked lists L
Output: �

1: for each type t 2 T do
2: �

t

 compute column t of � by (4.11) using X , L
3: end for
4: return �

min

�

t

||�
t

||2
2

+ �
X

d2D
✏
d

s.t. �

0
t

(x

1

d

� x

2

d

)y
d

� 1� ✏
d

, 8d 2 D and t
x

1
d

, t
x

2
d

= t

✏
d

� 0, 8d 2 D
�

t

(c) � 0, 8c = 1, . . . ,m

(4.11)

where � is a regularization hyperparameter estimated
through cross validation. With the additional constraints,
the optimization remains a convex problem. We solve the
program in (4.11) m times independently for each type t to
estimate all the columns of �, as shown in Algorithm 2.

4.2 Gradient-based estimation In addition to adapting
RankSVM formulation, we can also construct other learning-
to-rank objective functions and leverage a gradient-based
method to solve our learning problem. In this section, we in-
troduce two different objectives with different requirements.

4.2.1 Learning-to-Rank Objective-I Consider the case
where besides the partial ranked lists, for each pair of entities
(u, v) in a training instance, the probability that one is ranked
ahead of the other is also given: i.e., the training instances
are in the form of ((x

u

,x
v

), p̄
uv

) where p̄
uv

= P (r
u

> r
v

).
For example, one can use the sigmoid function �(r

u

�r
v

) =

p̄
uv

to compute this probability, if the original/ground-truth
authority scores (r

u

, r
v

) of the training entities are provided
(note that this is a strict requirement), where �(x) = e

x

1+e

x

is
the sigmoid function.

Recalling function f : Rm ! R given in Eq. (4.9), let

o
u

= f(x
u

) =< �

t

u

,x
u

>, and

o
uv

= f(x
u

� x

v

) = f(x
uv

) =< �

t

u

=t

v

,x
uv

> .

We then utilize the cross entropy as our cost function for each
training instance (u, v) as proposed in [11]:

(4.12) c
uv

= �p̄
uv

log(p
uv

)� (1� p̄
uv

) log(1� p
uv

)

where, mapping from the output of our model to probabilities
is acquired using the logistic function

(4.13) p
uv

=

eouv

1 + eouv

.

Substituting Eq. (4.13) into Eq. (4.12), c
uv

can equivalently
be written as

(4.14) c
uv

= �p̄
uv

o
uv

+ log(1 + eouv

)

Algorithm 1 Alternating Estimation of �
Input: graph G, partial ranked lists L, T

max

, ✏
Output: �

1: �

0

(a, b) = rand(0, 1), 8a, b 2 {1, . . . ,m}, k = 0

2: r compute authority scores by (3.6) using �

0

3: repeat
4: Xk compute feature vectors by Eq. (4.7) using r

5: �

k+1 learn new param.s by RANKSVM(L, Xk)
or GRADIENT(L, Xk,�k)

6: r compute authority scores by (3.6) using �

k+1

7: diff trAccuracy(L, r)� trAccuracy(L, r
best

)

8: if diff > 0 then r

best

 r, �

best

 �

k+1 end if
9: k = k + 1

10: until ||�k � �

k�1|| ✏ or k > T
max

11: return �

best

of our iterative meta-approach is given in Algorithm 1.
Over iterations the best � with the largest trAccuracy is
maintained. Here any IR metric can be used for accuracy,
such as discounted cumulative gain (See Sec. 5).

Given a HIN G, a partial ranked list L
t

consists of an
ordering of a subset of nodes V

t

⇢ V of the same type, i.e.,
t
v

= t, 8v 2 V
t

. Let �
v

denote the order or position of node
v in L

t

, where lower positions correspond to higher ranks or
authority scores, that is r

u

� r
v

if and only if �
u

< �
v

.
Our estimation algorithms take as input one or more

partial ranked lists L for each type t 2 T . It first randomly
guesses �, and then iteratively and alternatingly computes r
and X , followed by estimating � for which we propose two
main aproaches; RANKSVM and GRADIENT.

4.1 RankSVM formulation Given a partial ranked list,
there are several ways of constructing training data from
it. A common way is the pair-wise approach, where for
each pair of entities (i.e., nodes) (u, v) in the ranked list,
we construct a training instance ((x

u

,x
v

), 1) if u is ranked
ahead of v (that is, if �

u

< �
v

), and ((x

v

,x
u

),�1)
otherwise. As a result, training data D is available in the
form of {((x1

d

,x2

d

), y
d

)}|D|
d=1

, where each instance consists
of two feature vectors that belong to two nodes of the same
type, and a label y

d

2 {�1, 1}.
Having constructed such a training data D, we can use

the hinge-loss function as shown in (4.10) to estimate the
model parameters by RankSVM [5].

L((x1

d

,x2

d

), y
d

) = max(0, 1� (�

0
t

· (x1

d

� x

2

d

))y
d

),

such that t
x

1
d

, t
x

2
d

= t

(4.10)

Note that each column of � that belongs to each type
t is estimated independent of others, provided the feature
vectors x

v

’s where t
v

= t. Since � is a non-negative
matrix, we also introduce non-negativity constraints to the
SVM formulation, given in (4.11).

Algorithm 2 Estimate � by RANKSVM
Input: feature vectors X , partial ranked lists L
Output: �

1: for each type t 2 T do
2: �

t

 compute column t of � by (4.11) using X , L
3: end for
4: return �

min

�

t

||�
t

||2
2

+ �
X

d2D
✏
d

s.t. �

0
t

(x

1

d

� x

2

d

)y
d

� 1� ✏
d

, 8d 2 D and t
x

1
d

, t
x

2
d

= t

✏
d

� 0, 8d 2 D
�

t

(c) � 0, 8c = 1, . . . ,m

(4.11)

where � is a regularization hyperparameter estimated
through cross validation. With the additional constraints,
the optimization remains a convex problem. We solve the
program in (4.11) m times independently for each type t to
estimate all the columns of �, as shown in Algorithm 2.

4.2 Gradient-based estimation In addition to adapting
RankSVM formulation, we can also construct other learning-
to-rank objective functions and leverage a gradient-based
method to solve our learning problem. In this section, we in-
troduce two different objectives with different requirements.

4.2.1 Learning-to-Rank Objective-I Consider the case
where besides the partial ranked lists, for each pair of entities
(u, v) in a training instance, the probability that one is ranked
ahead of the other is also given: i.e., the training instances
are in the form of ((x

u

,x
v

), p̄
uv

) where p̄
uv

= P (r
u

> r
v

).
For example, one can use the sigmoid function �(r

u

�r
v

) =

p̄
uv

to compute this probability, if the original/ground-truth
authority scores (r

u

, r
v

) of the training entities are provided
(note that this is a strict requirement), where �(x) = e

x

1+e

x

is
the sigmoid function.

Recalling function f : Rm ! R given in Eq. (4.9), let

o
u

= f(x
u

) =< �

t

u

,x
u

>, and

o
uv

= f(x
u

� x

v

) = f(x
uv

) =< �

t

u

=t

v

,x
uv

> .

We then utilize the cross entropy as our cost function for each
training instance (u, v) as proposed in [11]:

(4.12) c
uv

= �p̄
uv

log(p
uv

)� (1� p̄
uv

) log(1� p
uv

)

where, mapping from the output of our model to probabilities
is acquired using the logistic function

(4.13) p
uv

=

eouv

1 + eouv

.

Substituting Eq. (4.13) into Eq. (4.12), c
uv

can equivalently
be written as

(4.14) c
uv

= �p̄
uv

o
uv

+ log(1 + eouv

)

Algorithm 1 Alternating Estimation of �
Input: graph G, partial ranked lists L, T

max

, ✏
Output: �

1: �

0

(a, b) = rand(0, 1), 8a, b 2 {1, . . . ,m}, k = 0

2: r compute authority scores by (3.6) using �

0

3: repeat
4: Xk compute feature vectors by Eq. (4.7) using r

5: �

k+1 learn new param.s by RANKSVM(L, Xk)
or GRADIENT(L, Xk,�k)

6: r compute authority scores by (3.6) using �

k+1

7: diff trAccuracy(L, r)� trAccuracy(L, r
best

)

8: if diff > 0 then r

best

 r, �

best

 �

k+1 end if
9: k = k + 1

10: until ||�k � �

k�1|| ✏ or k > T
max

11: return �

best

of our iterative meta-approach is given in Algorithm 1.
Over iterations the best � with the largest trAccuracy is
maintained. Here any IR metric can be used for accuracy,
such as discounted cumulative gain (See Sec. 5).

Given a HIN G, a partial ranked list L
t

consists of an
ordering of a subset of nodes V

t

⇢ V of the same type, i.e.,
t
v

= t, 8v 2 V
t

. Let �
v

denote the order or position of node
v in L

t

, where lower positions correspond to higher ranks or
authority scores, that is r

u

� r
v

if and only if �
u

< �
v

.
Our estimation algorithms take as input one or more

partial ranked lists L for each type t 2 T . It first randomly
guesses �, and then iteratively and alternatingly computes r
and X , followed by estimating � for which we propose two
main aproaches; RANKSVM and GRADIENT.

4.1 RankSVM formulation Given a partial ranked list,
there are several ways of constructing training data from
it. A common way is the pair-wise approach, where for
each pair of entities (i.e., nodes) (u, v) in the ranked list,
we construct a training instance ((x

u

,x
v

), 1) if u is ranked
ahead of v (that is, if �

u

< �
v

), and ((x

v

,x
u

),�1)
otherwise. As a result, training data D is available in the
form of {((x1

d

,x2

d

), y
d

)}|D|
d=1

, where each instance consists
of two feature vectors that belong to two nodes of the same
type, and a label y

d

2 {�1, 1}.
Having constructed such a training data D, we can use

the hinge-loss function as shown in (4.10) to estimate the
model parameters by RankSVM [5].

L((x1

d

,x2

d

), y
d

) = max(0, 1� (�

0
t

· (x1

d

� x

2

d

))y
d

),

such that t
x

1
d

, t
x

2
d

= t

(4.10)

Note that each column of � that belongs to each type
t is estimated independent of others, provided the feature
vectors x

v

’s where t
v

= t. Since � is a non-negative
matrix, we also introduce non-negativity constraints to the
SVM formulation, given in (4.11).

Algorithm 2 Estimate � by RANKSVM
Input: feature vectors X , partial ranked lists L
Output: �

1: for each type t 2 T do
2: �

t

 compute column t of � by (4.11) using X , L
3: end for
4: return �

min

�

t

||�
t

||2
2

+ �
X

d2D
✏
d

s.t. �

0
t

(x

1

d

� x

2

d

)y
d

� 1� ✏
d

, 8d 2 D and t
x

1
d

, t
x

2
d

= t

✏
d

� 0, 8d 2 D
�

t

(c) � 0, 8c = 1, . . . ,m

(4.11)

where � is a regularization hyperparameter estimated
through cross validation. With the additional constraints,
the optimization remains a convex problem. We solve the
program in (4.11) m times independently for each type t to
estimate all the columns of �, as shown in Algorithm 2.

4.2 Gradient-based estimation In addition to adapting
RankSVM formulation, we can also construct other learning-
to-rank objective functions and leverage a gradient-based
method to solve our learning problem. In this section, we in-
troduce two different objectives with different requirements.

4.2.1 Learning-to-Rank Objective-I Consider the case
where besides the partial ranked lists, for each pair of entities
(u, v) in a training instance, the probability that one is ranked
ahead of the other is also given: i.e., the training instances
are in the form of ((x

u

,x
v

), p̄
uv

) where p̄
uv

= P (r
u

> r
v

).
For example, one can use the sigmoid function �(r

u

�r
v

) =

p̄
uv

to compute this probability, if the original/ground-truth
authority scores (r

u

, r
v

) of the training entities are provided
(note that this is a strict requirement), where �(x) = e

x

1+e

x

is
the sigmoid function.

Recalling function f : Rm ! R given in Eq. (4.9), let

o
u

= f(x
u

) =< �

t

u

,x
u

>, and

o
uv

= f(x
u

� x

v

) = f(x
uv

) =< �

t

u

=t

v

,x
uv

> .

We then utilize the cross entropy as our cost function for each
training instance (u, v) as proposed in [11]:

(4.12) c
uv

= �p̄
uv

log(p
uv

)� (1� p̄
uv

) log(1� p
uv

)

where, mapping from the output of our model to probabilities
is acquired using the logistic function

(4.13) p
uv

=

eouv

1 + eouv

.

Substituting Eq. (4.13) into Eq. (4.12), c
uv

can equivalently
be written as

(4.14) c
uv

= �p̄
uv

o
uv

+ log(1 + eouv

)

Algorithm 1 Alternating Estimation of �
Input: graph G, partial ranked lists L, T

max

, ✏
Output: �

1: �

0

(a, b) = rand(0, 1), 8a, b 2 {1, . . . ,m}, k = 0

2: r compute authority scores by (3.6) using �

0

3: repeat
4: Xk compute feature vectors by Eq. (4.7) using r

5: �

k+1 learn new param.s by RANKSVM(L, Xk)
or GRADIENT(L, Xk,�k)

6: r compute authority scores by (3.6) using �

k+1

7: diff trAccuracy(L, r)� trAccuracy(L, r
best

)

8: if diff > 0 then r

best

 r, �

best

 �

k+1 end if
9: k = k + 1

10: until ||�k � �

k�1|| ✏ or k > T
max

11: return �

best

of our iterative meta-approach is given in Algorithm 1.
Over iterations the best � with the largest trAccuracy is
maintained. Here any IR metric can be used for accuracy,
such as discounted cumulative gain (See Sec. 5).

Given a HIN G, a partial ranked list L
t

consists of an
ordering of a subset of nodes V

t

⇢ V of the same type, i.e.,
t
v

= t, 8v 2 V
t

. Let �
v

denote the order or position of node
v in L

t

, where lower positions correspond to higher ranks or
authority scores, that is r

u

� r
v

if and only if �
u

< �
v

.
Our estimation algorithms take as input one or more

partial ranked lists L for each type t 2 T . It first randomly
guesses �, and then iteratively and alternatingly computes r
and X , followed by estimating � for which we propose two
main aproaches; RANKSVM and GRADIENT.

4.1 RankSVM formulation Given a partial ranked list,
there are several ways of constructing training data from
it. A common way is the pair-wise approach, where for
each pair of entities (i.e., nodes) (u, v) in the ranked list,
we construct a training instance ((x

u

,x
v

), 1) if u is ranked
ahead of v (that is, if �

u

< �
v

), and ((x

v

,x
u

),�1)
otherwise. As a result, training data D is available in the
form of {((x1

d

,x2

d

), y
d

)}|D|
d=1

, where each instance consists
of two feature vectors that belong to two nodes of the same
type, and a label y

d

2 {�1, 1}.
Having constructed such a training data D, we can use

the hinge-loss function as shown in (4.10) to estimate the
model parameters by RankSVM [5].

L((x1

d

,x2

d

), y
d

) = max(0, 1� (�

0
t

· (x1

d

� x

2

d

))y
d

),

such that t
x

1
d

, t
x

2
d

= t

(4.10)

Note that each column of � that belongs to each type
t is estimated independent of others, provided the feature
vectors x

v

’s where t
v

= t. Since � is a non-negative
matrix, we also introduce non-negativity constraints to the
SVM formulation, given in (4.11).

Algorithm 2 Estimate � by RANKSVM
Input: feature vectors X , partial ranked lists L
Output: �

1: for each type t 2 T do
2: �

t

 compute column t of � by (4.11) using X , L
3: end for
4: return �

min

�

t

||�
t

||2
2

+ �
X

d2D
✏
d

s.t. �

0
t

(x

1

d

� x

2

d

)y
d

� 1� ✏
d

, 8d 2 D and t
x

1
d

, t
x

2
d

= t

✏
d

� 0, 8d 2 D
�

t

(c) � 0, 8c = 1, . . . ,m

(4.11)

where � is a regularization hyperparameter estimated
through cross validation. With the additional constraints,
the optimization remains a convex problem. We solve the
program in (4.11) m times independently for each type t to
estimate all the columns of �, as shown in Algorithm 2.

4.2 Gradient-based estimation In addition to adapting
RankSVM formulation, we can also construct other learning-
to-rank objective functions and leverage a gradient-based
method to solve our learning problem. In this section, we in-
troduce two different objectives with different requirements.

4.2.1 Learning-to-Rank Objective-I Consider the case
where besides the partial ranked lists, for each pair of entities
(u, v) in a training instance, the probability that one is ranked
ahead of the other is also given: i.e., the training instances
are in the form of ((x

u

,x
v

), p̄
uv

) where p̄
uv

= P (r
u

> r
v

).
For example, one can use the sigmoid function �(r

u

�r
v

) =

p̄
uv

to compute this probability, if the original/ground-truth
authority scores (r

u

, r
v

) of the training entities are provided
(note that this is a strict requirement), where �(x) = e

x

1+e

x

is
the sigmoid function.

Recalling function f : Rm ! R given in Eq. (4.9), let

o
u

= f(x
u

) =< �

t

u

,x
u

>, and

o
uv

= f(x
u

� x

v

) = f(x
uv

) =< �

t

u

=t

v

,x
uv

> .

We then utilize the cross entropy as our cost function for each
training instance (u, v) as proposed in [11]:

(4.12) c
uv

= �p̄
uv

log(p
uv

)� (1� p̄
uv

) log(1� p
uv

)

where, mapping from the output of our model to probabilities
is acquired using the logistic function

(4.13) p
uv

=

eouv

1 + eouv

.

Substituting Eq. (4.13) into Eq. (4.12), c
uv

can equivalently
be written as

(4.14) c
uv

= �p̄
uv

o
uv

+ log(1 + eouv

)

Algorithm 1 Alternating Estimation of �
Input: graph G, partial ranked lists L, T

max

, ✏
Output: �

1: �

0

(a, b) = rand(0, 1), 8a, b 2 {1, . . . ,m}, k = 0

2: r compute authority scores by (3.6) using �

0

3: repeat
4: Xk compute feature vectors by Eq. (4.7) using r

5: �

k+1 learn new param.s by RANKSVM(L, Xk)
or GRADIENT(L, Xk,�k)

6: r compute authority scores by (3.6) using �

k+1

7: diff trAccuracy(L, r)� trAccuracy(L, r
best

)

8: if diff > 0 then r

best

 r, �

best

 �

k+1 end if
9: k = k + 1

10: until ||�k � �

k�1|| ✏ or k > T
max

11: return �

best

of our iterative meta-approach is given in Algorithm 1.
Over iterations the best � with the largest trAccuracy is
maintained. Here any IR metric can be used for accuracy,
such as discounted cumulative gain (See Sec. 5).

Given a HIN G, a partial ranked list L
t

consists of an
ordering of a subset of nodes V

t

⇢ V of the same type, i.e.,
t
v

= t, 8v 2 V
t

. Let �
v

denote the order or position of node
v in L

t

, where lower positions correspond to higher ranks or
authority scores, that is r

u

� r
v

if and only if �
u

< �
v

.
Our estimation algorithms take as input one or more

partial ranked lists L for each type t 2 T . It first randomly
guesses �, and then iteratively and alternatingly computes r
and X , followed by estimating � for which we propose two
main aproaches; RANKSVM and GRADIENT.

4.1 RankSVM formulation Given a partial ranked list,
there are several ways of constructing training data from
it. A common way is the pair-wise approach, where for
each pair of entities (i.e., nodes) (u, v) in the ranked list,
we construct a training instance ((x

u

,x
v

), 1) if u is ranked
ahead of v (that is, if �

u

< �
v

), and ((x

v

,x
u

),�1)
otherwise. As a result, training data D is available in the
form of {((x1

d

,x2

d

), y
d

)}|D|
d=1

, where each instance consists
of two feature vectors that belong to two nodes of the same
type, and a label y

d

2 {�1, 1}.
Having constructed such a training data D, we can use

the hinge-loss function as shown in (4.10) to estimate the
model parameters by RankSVM [5].

L((x1

d

,x2

d

), y
d

) = max(0, 1� (�

0
t

· (x1

d

� x

2

d

))y
d

),

such that t
x

1
d

, t
x

2
d

= t

(4.10)

Note that each column of � that belongs to each type
t is estimated independent of others, provided the feature
vectors x

v

’s where t
v

= t. Since � is a non-negative
matrix, we also introduce non-negativity constraints to the
SVM formulation, given in (4.11).

Algorithm 2 Estimate � by RANKSVM
Input: feature vectors X , partial ranked lists L
Output: �

1: for each type t 2 T do
2: �

t

 compute column t of � by (4.11) using X , L
3: end for
4: return �

min

�

t

||�
t

||2
2

+ �
X

d2D
✏
d

s.t. �

0
t

(x

1

d

� x

2

d

)y
d

� 1� ✏
d

, 8d 2 D and t
x

1
d

, t
x

2
d

= t

✏
d

� 0, 8d 2 D
�

t

(c) � 0, 8c = 1, . . . ,m

(4.11)

where � is a regularization hyperparameter estimated
through cross validation. With the additional constraints,
the optimization remains a convex problem. We solve the
program in (4.11) m times independently for each type t to
estimate all the columns of �, as shown in Algorithm 2.

4.2 Gradient-based estimation In addition to adapting
RankSVM formulation, we can also construct other learning-
to-rank objective functions and leverage a gradient-based
method to solve our learning problem. In this section, we in-
troduce two different objectives with different requirements.

4.2.1 Learning-to-Rank Objective-I Consider the case
where besides the partial ranked lists, for each pair of entities
(u, v) in a training instance, the probability that one is ranked
ahead of the other is also given: i.e., the training instances
are in the form of ((x

u

,x
v

), p̄
uv

) where p̄
uv

= P (r
u

> r
v

).
For example, one can use the sigmoid function �(r

u

�r
v

) =

p̄
uv

to compute this probability, if the original/ground-truth
authority scores (r

u

, r
v

) of the training entities are provided
(note that this is a strict requirement), where �(x) = e

x

1+e

x

is
the sigmoid function.

Recalling function f : Rm ! R given in Eq. (4.9), let

o
u

= f(x
u

) =< �

t

u

,x
u

>, and

o
uv

= f(x
u

� x

v

) = f(x
uv

) =< �

t

u

=t

v

,x
uv

> .

We then utilize the cross entropy as our cost function for each
training instance (u, v) as proposed in [11]:

(4.12) c
uv

= �p̄
uv

log(p
uv

)� (1� p̄
uv

) log(1� p
uv

)

where, mapping from the output of our model to probabilities
is acquired using the logistic function

(4.13) p
uv

=

eouv

1 + eouv

.

Substituting Eq. (4.13) into Eq. (4.12), c
uv

can equivalently
be written as

(4.14) c
uv

= �p̄
uv

o
uv

+ log(1 + eouv

)

Algorithm 1 Alternating Estimation of �
Input: graph G, partial ranked lists L, T

max

, ✏
Output: �

1: �

0

(a, b) = rand(0, 1), 8a, b 2 {1, . . . ,m}, k = 0

2: r compute authority scores by (3.6) using �

0

3: repeat
4: Xk compute feature vectors by Eq. (4.7) using r

5: �

k+1 learn new param.s by RANKSVM(L, Xk)
or GRADIENT(L, Xk,�k)

6: r compute authority scores by (3.6) using �

k+1

7: diff trAccuracy(L, r)� trAccuracy(L, r
best

)

8: if diff > 0 then r

best

 r, �

best

 �

k+1 end if
9: k = k + 1

10: until ||�k � �

k�1|| ✏ or k > T
max

11: return �

best

of our iterative meta-approach is given in Algorithm 1.
Over iterations the best � with the largest trAccuracy is
maintained. Here any IR metric can be used for accuracy,
such as discounted cumulative gain (See Sec. 5).

Given a HIN G, a partial ranked list L
t

consists of an
ordering of a subset of nodes V

t

⇢ V of the same type, i.e.,
t
v

= t, 8v 2 V
t

. Let �
v

denote the order or position of node
v in L

t

, where lower positions correspond to higher ranks or
authority scores, that is r

u

� r
v

if and only if �
u

< �
v

.
Our estimation algorithms take as input one or more

partial ranked lists L for each type t 2 T . It first randomly
guesses �, and then iteratively and alternatingly computes r
and X , followed by estimating � for which we propose two
main aproaches; RANKSVM and GRADIENT.

4.1 RankSVM formulation Given a partial ranked list,
there are several ways of constructing training data from
it. A common way is the pair-wise approach, where for
each pair of entities (i.e., nodes) (u, v) in the ranked list,
we construct a training instance ((x

u

,x
v

), 1) if u is ranked
ahead of v (that is, if �

u

< �
v

), and ((x

v

,x
u

),�1)
otherwise. As a result, training data D is available in the
form of {((x1

d

,x2

d

), y
d

)}|D|
d=1

, where each instance consists
of two feature vectors that belong to two nodes of the same
type, and a label y

d

2 {�1, 1}.
Having constructed such a training data D, we can use

the hinge-loss function as shown in (4.10) to estimate the
model parameters by RankSVM [5].

L((x1

d

,x2

d

), y
d

) = max(0, 1� (�

0
t

· (x1

d

� x

2

d

))y
d

),

such that t
x

1
d

, t
x

2
d

= t

(4.10)

Note that each column of � that belongs to each type
t is estimated independent of others, provided the feature
vectors x

v

’s where t
v

= t. Since � is a non-negative
matrix, we also introduce non-negativity constraints to the
SVM formulation, given in (4.11).

Algorithm 2 Estimate � by RANKSVM
Input: feature vectors X , partial ranked lists L
Output: �

1: for each type t 2 T do
2: �

t

 compute column t of � by (4.11) using X , L
3: end for
4: return �

min

�

t

||�
t

||2
2

+ �
X

d2D
✏
d

s.t. �

0
t

(x

1

d

� x

2

d

)y
d

� 1� ✏
d

, 8d 2 D and t
x

1
d

, t
x

2
d

= t

✏
d

� 0, 8d 2 D
�

t

(c) � 0, 8c = 1, . . . ,m

(4.11)

where � is a regularization hyperparameter estimated
through cross validation. With the additional constraints,
the optimization remains a convex problem. We solve the
program in (4.11) m times independently for each type t to
estimate all the columns of �, as shown in Algorithm 2.

4.2 Gradient-based estimation In addition to adapting
RankSVM formulation, we can also construct other learning-
to-rank objective functions and leverage a gradient-based
method to solve our learning problem. In this section, we in-
troduce two different objectives with different requirements.

4.2.1 Learning-to-Rank Objective-I Consider the case
where besides the partial ranked lists, for each pair of entities
(u, v) in a training instance, the probability that one is ranked
ahead of the other is also given: i.e., the training instances
are in the form of ((x

u

,x
v

), p̄
uv

) where p̄
uv

= P (r
u

> r
v

).
For example, one can use the sigmoid function �(r

u

�r
v

) =

p̄
uv

to compute this probability, if the original/ground-truth
authority scores (r

u

, r
v

) of the training entities are provided
(note that this is a strict requirement), where �(x) = e

x

1+e

x

is
the sigmoid function.

Recalling function f : Rm ! R given in Eq. (4.9), let

o
u

= f(x
u

) =< �

t

u

,x
u

>, and

o
uv

= f(x
u

� x

v

) = f(x
uv

) =< �

t

u

=t

v

,x
uv

> .

We then utilize the cross entropy as our cost function for each
training instance (u, v) as proposed in [11]:

(4.12) c
uv

= �p̄
uv

log(p
uv

)� (1� p̄
uv

) log(1� p
uv

)

where, mapping from the output of our model to probabilities
is acquired using the logistic function

(4.13) p
uv

=

eouv

1 + eouv

.

Substituting Eq. (4.13) into Eq. (4.12), c
uv

can equivalently
be written as

(4.14) c
uv

= �p̄
uv

o
uv

+ log(1 + eouv

)

18

RankSVM formulation
§  Given partial ranked lists;

q  create all pairs
q  add training data

if u ranked ahead of v
 otherwise

q  for each type t, solve:

Algorithm 1 Alternating Estimation of �
Input: graph G, partial ranked lists L, T

max

, ✏
Output: �

1: �

0

(a, b) = rand(0, 1), 8a, b 2 {1, . . . ,m}, k = 0

2: r compute authority scores by (3.6) using �

0

3: repeat
4: Xk compute feature vectors by Eq. (4.7) using r

5: �

k+1 learn new param.s by RANKSVM(L, Xk)
or GRADIENT(L, Xk,�k)

6: r compute authority scores by (3.6) using �

k+1

7: diff trAccuracy(L, r)� trAccuracy(L, r
best

)

8: if diff > 0 then r

best

 r, �

best

 �

k+1 end if
9: k = k + 1

10: until ||�k � �

k�1|| ✏ or k > T
max

11: return �

best

of our iterative meta-approach is given in Algorithm 1.
Over iterations the best � with the largest trAccuracy is
maintained. Here any IR metric can be used for accuracy,
such as discounted cumulative gain (See Sec. 5).

Given a HIN G, a partial ranked list L
t

consists of an
ordering of a subset of nodes V

t

⇢ V of the same type, i.e.,
t
v

= t, 8v 2 V
t

. Let �
v

denote the order or position of node
v in L

t

, where lower positions correspond to higher ranks or
authority scores, that is r

u

� r
v

if and only if �
u

< �
v

.
Our estimation algorithms take as input one or more

partial ranked lists L for each type t 2 T . It first randomly
guesses �, and then iteratively and alternatingly computes r
and X , followed by estimating � for which we propose two
main aproaches; RANKSVM and GRADIENT.

4.1 RankSVM formulation Given a partial ranked list,
there are several ways of constructing training data from
it. A common way is the pair-wise approach, where for
each pair of entities (i.e., nodes) (u, v) in the ranked list,
we construct a training instance ((x

u

,x
v

), 1) if u is ranked
ahead of v (that is, if �

u

< �
v

), and ((x

v

,x
u

),�1)
otherwise. As a result, training data D is available in the
form of {((x1

d

,x2

d

), y
d

)}|D|
d=1

, where each instance consists
of two feature vectors that belong to two nodes of the same
type, and a label y

d

2 {�1, 1}.
Having constructed such a training data D, we can use

the hinge-loss function as shown in (4.10) to estimate the
model parameters by RankSVM [5].

L((x1

d

,x2

d

), y
d

) = max(0, 1� (�

0
t

· (x1

d

� x

2

d

))y
d

),

such that t
x

1
d

, t
x

2
d

= t

(4.10)

Note that each column of � that belongs to each type
t is estimated independent of others, provided the feature
vectors x

v

’s where t
v

= t. Since � is a non-negative
matrix, we also introduce non-negativity constraints to the
SVM formulation, given in (4.11).

Algorithm 2 Estimate � by RANKSVM
Input: feature vectors X , partial ranked lists L
Output: �

1: for each type t 2 T do
2: �

t

 compute column t of � by (4.11) using X , L
3: end for
4: return �

min

�

t

||�
t

||2
2

+ �
X

d2D
✏
d

s.t. �

0
t

(x

1

d

� x

2

d

)y
d

� 1� ✏
d

, 8d 2 D and t
x

1
d

, t
x

2
d

= t

✏
d

� 0, 8d 2 D
�

t

(c) � 0, 8c = 1, . . . ,m

(4.11)

where � is a regularization hyperparameter estimated
through cross validation. With the additional constraints,
the optimization remains a convex problem. We solve the
program in (4.11) m times independently for each type t to
estimate all the columns of �, as shown in Algorithm 2.

4.2 Gradient-based estimation In addition to adapting
RankSVM formulation, we can also construct other learning-
to-rank objective functions and leverage a gradient-based
method to solve our learning problem. In this section, we in-
troduce two different objectives with different requirements.

4.2.1 Learning-to-Rank Objective-I Consider the case
where besides the partial ranked lists, for each pair of entities
(u, v) in a training instance, the probability that one is ranked
ahead of the other is also given: i.e., the training instances
are in the form of ((x

u

,x
v

), p̄
uv

) where p̄
uv

= P (r
u

> r
v

).
For example, one can use the sigmoid function �(r

u

�r
v

) =

p̄
uv

to compute this probability, if the original/ground-truth
authority scores (r

u

, r
v

) of the training entities are provided
(note that this is a strict requirement), where �(x) = e

x

1+e

x

is
the sigmoid function.

Recalling function f : Rm ! R given in Eq. (4.9), let

o
u

= f(x
u

) =< �

t

u

,x
u

>, and

o
uv

= f(x
u

� x

v

) = f(x
uv

) =< �

t

u

=t

v

,x
uv

> .

We then utilize the cross entropy as our cost function for each
training instance (u, v) as proposed in [11]:

(4.12) c
uv

= �p̄
uv

log(p
uv

)� (1� p̄
uv

) log(1� p
uv

)

where, mapping from the output of our model to probabilities
is acquired using the logistic function

(4.13) p
uv

=

eouv

1 + eouv

.

Substituting Eq. (4.13) into Eq. (4.12), c
uv

can equivalently
be written as

(4.14) c
uv

= �p̄
uv

o
uv

+ log(1 + eouv

)

Algorithm 1 Alternating Estimation of �
Input: graph G, partial ranked lists L, T

max

, ✏
Output: �

1: �

0

(a, b) = rand(0, 1), 8a, b 2 {1, . . . ,m}, k = 0

2: r compute authority scores by (3.6) using �

0

3: repeat
4: Xk compute feature vectors by Eq. (4.7) using r

5: �

k+1 learn new param.s by RANKSVM(L, Xk)
or GRADIENT(L, Xk,�k)

6: r compute authority scores by (3.6) using �

k+1

7: diff trAccuracy(L, r)� trAccuracy(L, r
best

)

8: if diff > 0 then r

best

 r, �

best

 �

k+1 end if
9: k = k + 1

10: until ||�k � �

k�1|| ✏ or k > T
max

11: return �

best

of our iterative meta-approach is given in Algorithm 1.
Over iterations the best � with the largest trAccuracy is
maintained. Here any IR metric can be used for accuracy,
such as discounted cumulative gain (See Sec. 5).

Given a HIN G, a partial ranked list L
t

consists of an
ordering of a subset of nodes V

t

⇢ V of the same type, i.e.,
t
v

= t, 8v 2 V
t

. Let �
v

denote the order or position of node
v in L

t

, where lower positions correspond to higher ranks or
authority scores, that is r

u

� r
v

if and only if �
u

< �
v

.
Our estimation algorithms take as input one or more

partial ranked lists L for each type t 2 T . It first randomly
guesses �, and then iteratively and alternatingly computes r
and X , followed by estimating � for which we propose two
main aproaches; RANKSVM and GRADIENT.

4.1 RankSVM formulation Given a partial ranked list,
there are several ways of constructing training data from
it. A common way is the pair-wise approach, where for
each pair of entities (i.e., nodes) (u, v) in the ranked list,
we construct a training instance ((x

u

,x
v

), 1) if u is ranked
ahead of v (that is, if �

u

< �
v

), and ((x

v

,x
u

),�1)
otherwise. As a result, training data D is available in the
form of {((x1

d

,x2

d

), y
d

)}|D|
d=1

, where each instance consists
of two feature vectors that belong to two nodes of the same
type, and a label y

d

2 {�1, 1}.
Having constructed such a training data D, we can use

the hinge-loss function as shown in (4.10) to estimate the
model parameters by RankSVM [5].

L((x1

d

,x2

d

), y
d

) = max(0, 1� (�

0
t

· (x1

d

� x

2

d

))y
d

),

such that t
x

1
d

, t
x

2
d

= t

(4.10)

Note that each column of � that belongs to each type
t is estimated independent of others, provided the feature
vectors x

v

’s where t
v

= t. Since � is a non-negative
matrix, we also introduce non-negativity constraints to the
SVM formulation, given in (4.11).

Algorithm 2 Estimate � by RANKSVM
Input: feature vectors X , partial ranked lists L
Output: �

1: for each type t 2 T do
2: �

t

 compute column t of � by (4.11) using X , L
3: end for
4: return �

min

�

t

||�
t

||2
2

+ �
X

d2D
✏
d

s.t. �

0
t

(x

1

d

� x

2

d

)y
d

� 1� ✏
d

, 8d 2 D and t
x

1
d

, t
x

2
d

= t

✏
d

� 0, 8d 2 D
�

t

(c) � 0, 8c = 1, . . . ,m

(4.11)

where � is a regularization hyperparameter estimated
through cross validation. With the additional constraints,
the optimization remains a convex problem. We solve the
program in (4.11) m times independently for each type t to
estimate all the columns of �, as shown in Algorithm 2.

4.2 Gradient-based estimation In addition to adapting
RankSVM formulation, we can also construct other learning-
to-rank objective functions and leverage a gradient-based
method to solve our learning problem. In this section, we in-
troduce two different objectives with different requirements.

4.2.1 Learning-to-Rank Objective-I Consider the case
where besides the partial ranked lists, for each pair of entities
(u, v) in a training instance, the probability that one is ranked
ahead of the other is also given: i.e., the training instances
are in the form of ((x

u

,x
v

), p̄
uv

) where p̄
uv

= P (r
u

> r
v

).
For example, one can use the sigmoid function �(r

u

�r
v

) =

p̄
uv

to compute this probability, if the original/ground-truth
authority scores (r

u

, r
v

) of the training entities are provided
(note that this is a strict requirement), where �(x) = e

x

1+e

x

is
the sigmoid function.

Recalling function f : Rm ! R given in Eq. (4.9), let

o
u

= f(x
u

) =< �

t

u

,x
u

>, and

o
uv

= f(x
u

� x

v

) = f(x
uv

) =< �

t

u

=t

v

,x
uv

> .

We then utilize the cross entropy as our cost function for each
training instance (u, v) as proposed in [11]:

(4.12) c
uv

= �p̄
uv

log(p
uv

)� (1� p̄
uv

) log(1� p
uv

)

where, mapping from the output of our model to probabilities
is acquired using the logistic function

(4.13) p
uv

=

eouv

1 + eouv

.

Substituting Eq. (4.13) into Eq. (4.12), c
uv

can equivalently
be written as

(4.14) c
uv

= �p̄
uv

o
uv

+ log(1 + eouv

)

Algorithm 1 Alternating Estimation of �
Input: graph G, partial ranked lists L, T

max

, ✏
Output: �

1: �

0

(a, b) = rand(0, 1), 8a, b 2 {1, . . . ,m}, k = 0

2: r compute authority scores by (3.6) using �

0

3: repeat
4: Xk compute feature vectors by Eq. (4.7) using r

5: �

k+1 learn new param.s by RANKSVM(L, Xk)
or GRADIENT(L, Xk,�k)

6: r compute authority scores by (3.6) using �

k+1

7: diff trAccuracy(L, r)� trAccuracy(L, r
best

)

8: if diff > 0 then r

best

 r, �

best

 �

k+1 end if
9: k = k + 1

10: until ||�k � �

k�1|| ✏ or k > T
max

11: return �

best

of our iterative meta-approach is given in Algorithm 1.
Over iterations the best � with the largest trAccuracy is
maintained. Here any IR metric can be used for accuracy,
such as discounted cumulative gain (See Sec. 5).

Given a HIN G, a partial ranked list L
t

consists of an
ordering of a subset of nodes V

t

⇢ V of the same type, i.e.,
t
v

= t, 8v 2 V
t

. Let �
v

denote the order or position of node
v in L

t

, where lower positions correspond to higher ranks or
authority scores, that is r

u

� r
v

if and only if �
u

< �
v

.
Our estimation algorithms take as input one or more

partial ranked lists L for each type t 2 T . It first randomly
guesses �, and then iteratively and alternatingly computes r
and X , followed by estimating � for which we propose two
main aproaches; RANKSVM and GRADIENT.

4.1 RankSVM formulation Given a partial ranked list,
there are several ways of constructing training data from
it. A common way is the pair-wise approach, where for
each pair of entities (i.e., nodes) (u, v) in the ranked list,
we construct a training instance ((x

u

,x
v

), 1) if u is ranked
ahead of v (that is, if �

u

< �
v

), and ((x

v

,x
u

),�1)
otherwise. As a result, training data D is available in the
form of {((x1

d

,x2

d

), y
d

)}|D|
d=1

, where each instance consists
of two feature vectors that belong to two nodes of the same
type, and a label y

d

2 {�1, 1}.
Having constructed such a training data D, we can use

the hinge-loss function as shown in (4.10) to estimate the
model parameters by RankSVM [5].

L((x1

d

,x2

d

), y
d

) = max(0, 1� (�

0
t

· (x1

d

� x

2

d

))y
d

),

such that t
x

1
d

, t
x

2
d

= t

(4.10)

Note that each column of � that belongs to each type
t is estimated independent of others, provided the feature
vectors x

v

’s where t
v

= t. Since � is a non-negative
matrix, we also introduce non-negativity constraints to the
SVM formulation, given in (4.11).

Algorithm 2 Estimate � by RANKSVM
Input: feature vectors X , partial ranked lists L
Output: �

1: for each type t 2 T do
2: �

t

 compute column t of � by (4.11) using X , L
3: end for
4: return �

min

�

t

||�
t

||2
2

+ �
X

d2D
✏
d

s.t. �

0
t

(x

1

d

� x

2

d

)y
d

� 1� ✏
d

, 8d 2 D and t
x

1
d

, t
x

2
d

= t

✏
d

� 0, 8d 2 D
�

t

(c) � 0, 8c = 1, . . . ,m

(4.11)

where � is a regularization hyperparameter estimated
through cross validation. With the additional constraints,
the optimization remains a convex problem. We solve the
program in (4.11) m times independently for each type t to
estimate all the columns of �, as shown in Algorithm 2.

4.2 Gradient-based estimation In addition to adapting
RankSVM formulation, we can also construct other learning-
to-rank objective functions and leverage a gradient-based
method to solve our learning problem. In this section, we in-
troduce two different objectives with different requirements.

4.2.1 Learning-to-Rank Objective-I Consider the case
where besides the partial ranked lists, for each pair of entities
(u, v) in a training instance, the probability that one is ranked
ahead of the other is also given: i.e., the training instances
are in the form of ((x

u

,x
v

), p̄
uv

) where p̄
uv

= P (r
u

> r
v

).
For example, one can use the sigmoid function �(r

u

�r
v

) =

p̄
uv

to compute this probability, if the original/ground-truth
authority scores (r

u

, r
v

) of the training entities are provided
(note that this is a strict requirement), where �(x) = e

x

1+e

x

is
the sigmoid function.

Recalling function f : Rm ! R given in Eq. (4.9), let

o
u

= f(x
u

) =< �

t

u

,x
u

>, and

o
uv

= f(x
u

� x

v

) = f(x
uv

) =< �

t

u

=t

v

,x
uv

> .

We then utilize the cross entropy as our cost function for each
training instance (u, v) as proposed in [11]:

(4.12) c
uv

= �p̄
uv

log(p
uv

)� (1� p̄
uv

) log(1� p
uv

)

where, mapping from the output of our model to probabilities
is acquired using the logistic function

(4.13) p
uv

=

eouv

1 + eouv

.

Substituting Eq. (4.13) into Eq. (4.12), c
uv

can equivalently
be written as

(4.14) c
uv

= �p̄
uv

o
uv

+ log(1 + eouv

)

Algorithm 1 Alternating Estimation of �
Input: graph G, partial ranked lists L, T

max

, ✏
Output: �

1: �

0

(a, b) = rand(0, 1), 8a, b 2 {1, . . . ,m}, k = 0

2: r compute authority scores by (3.6) using �

0

3: repeat
4: Xk compute feature vectors by Eq. (4.7) using r

5: �

k+1 learn new param.s by RANKSVM(L, Xk)
or GRADIENT(L, Xk,�k)

6: r compute authority scores by (3.6) using �

k+1

7: diff trAccuracy(L, r)� trAccuracy(L, r
best

)

8: if diff > 0 then r

best

 r, �

best

 �

k+1 end if
9: k = k + 1

10: until ||�k � �

k�1|| ✏ or k > T
max

11: return �

best

of our iterative meta-approach is given in Algorithm 1.
Over iterations the best � with the largest trAccuracy is
maintained. Here any IR metric can be used for accuracy,
such as discounted cumulative gain (See Sec. 5).

Given a HIN G, a partial ranked list L
t

consists of an
ordering of a subset of nodes V

t

⇢ V of the same type, i.e.,
t
v

= t, 8v 2 V
t

. Let �
v

denote the order or position of node
v in L

t

, where lower positions correspond to higher ranks or
authority scores, that is r

u

� r
v

if and only if �
u

< �
v

.
Our estimation algorithms take as input one or more

partial ranked lists L for each type t 2 T . It first randomly
guesses �, and then iteratively and alternatingly computes r
and X , followed by estimating � for which we propose two
main aproaches; RANKSVM and GRADIENT.

4.1 RankSVM formulation Given a partial ranked list,
there are several ways of constructing training data from
it. A common way is the pair-wise approach, where for
each pair of entities (i.e., nodes) (u, v) in the ranked list,
we construct a training instance ((x

u

,x
v

), 1) if u is ranked
ahead of v (that is, if �

u

< �
v

), and ((x

v

,x
u

),�1)
otherwise. As a result, training data D is available in the
form of {((x1

d

,x2

d

), y
d

)}|D|
d=1

, where each instance consists
of two feature vectors that belong to two nodes of the same
type, and a label y

d

2 {�1, 1}.
Having constructed such a training data D, we can use

the hinge-loss function as shown in (4.10) to estimate the
model parameters by RankSVM [5].

L((x1

d

,x2

d

), y
d

) = max(0, 1� (�

0
t

· (x1

d

� x

2

d

))y
d

),

such that t
x

1
d

, t
x

2
d

= t

(4.10)

Note that each column of � that belongs to each type
t is estimated independent of others, provided the feature
vectors x

v

’s where t
v

= t. Since � is a non-negative
matrix, we also introduce non-negativity constraints to the
SVM formulation, given in (4.11).

Algorithm 2 Estimate � by RANKSVM
Input: feature vectors X , partial ranked lists L
Output: �

1: for each type t 2 T do
2: �

t

 compute column t of � by (4.11) using X , L
3: end for
4: return �

min

�

t

||�
t

||2
2

+ �
X

d2D
✏
d

s.t. �

0
t

(x

1

d

� x

2

d

)y
d

� 1� ✏
d

, 8d 2 D and t
x

1
d

, t
x

2
d

= t

✏
d

� 0, 8d 2 D
�

t

(c) � 0, 8c = 1, . . . ,m

(4.11)

where � is a regularization hyperparameter estimated
through cross validation. With the additional constraints,
the optimization remains a convex problem. We solve the
program in (4.11) m times independently for each type t to
estimate all the columns of �, as shown in Algorithm 2.

4.2 Gradient-based estimation In addition to adapting
RankSVM formulation, we can also construct other learning-
to-rank objective functions and leverage a gradient-based
method to solve our learning problem. In this section, we in-
troduce two different objectives with different requirements.

4.2.1 Learning-to-Rank Objective-I Consider the case
where besides the partial ranked lists, for each pair of entities
(u, v) in a training instance, the probability that one is ranked
ahead of the other is also given: i.e., the training instances
are in the form of ((x

u

,x
v

), p̄
uv

) where p̄
uv

= P (r
u

> r
v

).
For example, one can use the sigmoid function �(r

u

�r
v

) =

p̄
uv

to compute this probability, if the original/ground-truth
authority scores (r

u

, r
v

) of the training entities are provided
(note that this is a strict requirement), where �(x) = e

x

1+e

x

is
the sigmoid function.

Recalling function f : Rm ! R given in Eq. (4.9), let

o
u

= f(x
u

) =< �

t

u

,x
u

>, and

o
uv

= f(x
u

� x

v

) = f(x
uv

) =< �

t

u

=t

v

,x
uv

> .

We then utilize the cross entropy as our cost function for each
training instance (u, v) as proposed in [11]:

(4.12) c
uv

= �p̄
uv

log(p
uv

)� (1� p̄
uv

) log(1� p
uv

)

where, mapping from the output of our model to probabilities
is acquired using the logistic function

(4.13) p
uv

=

eouv

1 + eouv

.

Substituting Eq. (4.13) into Eq. (4.12), c
uv

can equivalently
be written as

(4.14) c
uv

= �p̄
uv

o
uv

+ log(1 + eouv

)

Algorithm 1 Alternating Estimation of �
Input: graph G, partial ranked lists L, T

max

, ✏
Output: �

1: �

0

(a, b) = rand(0, 1), 8a, b 2 {1, . . . ,m}, k = 0

2: r compute authority scores by (3.6) using �

0

3: repeat
4: Xk compute feature vectors by Eq. (4.7) using r

5: �

k+1 learn new param.s by RANKSVM(L, Xk)
or GRADIENT(L, Xk,�k)

6: r compute authority scores by (3.6) using �

k+1

7: diff trAccuracy(L, r)� trAccuracy(L, r
best

)

8: if diff > 0 then r

best

 r, �

best

 �

k+1 end if
9: k = k + 1

10: until ||�k � �

k�1|| ✏ or k > T
max

11: return �

best

of our iterative meta-approach is given in Algorithm 1.
Over iterations the best � with the largest trAccuracy is
maintained. Here any IR metric can be used for accuracy,
such as discounted cumulative gain (See Sec. 5).

Given a HIN G, a partial ranked list L
t

consists of an
ordering of a subset of nodes V

t

⇢ V of the same type, i.e.,
t
v

= t, 8v 2 V
t

. Let �
v

denote the order or position of node
v in L

t

, where lower positions correspond to higher ranks or
authority scores, that is r

u

� r
v

if and only if �
u

< �
v

.
Our estimation algorithms take as input one or more

partial ranked lists L for each type t 2 T . It first randomly
guesses �, and then iteratively and alternatingly computes r
and X , followed by estimating � for which we propose two
main aproaches; RANKSVM and GRADIENT.

4.1 RankSVM formulation Given a partial ranked list,
there are several ways of constructing training data from
it. A common way is the pair-wise approach, where for
each pair of entities (i.e., nodes) (u, v) in the ranked list,
we construct a training instance ((x

u

,x
v

), 1) if u is ranked
ahead of v (that is, if �

u

< �
v

), and ((x

v

,x
u

),�1)
otherwise. As a result, training data D is available in the
form of {((x1

d

,x2

d

), y
d

)}|D|
d=1

, where each instance consists
of two feature vectors that belong to two nodes of the same
type, and a label y

d

2 {�1, 1}.
Having constructed such a training data D, we can use

the hinge-loss function as shown in (4.10) to estimate the
model parameters by RankSVM [5].

L((x1

d

,x2

d

), y
d

) = max(0, 1� (�

0
t

· (x1

d

� x

2

d

))y
d

),

such that t
x

1
d

, t
x

2
d

= t

(4.10)

Note that each column of � that belongs to each type
t is estimated independent of others, provided the feature
vectors x

v

’s where t
v

= t. Since � is a non-negative
matrix, we also introduce non-negativity constraints to the
SVM formulation, given in (4.11).

Algorithm 2 Estimate � by RANKSVM
Input: feature vectors X , partial ranked lists L
Output: �

1: for each type t 2 T do
2: �

t

 compute column t of � by (4.11) using X , L
3: end for
4: return �

min

�

t

||�
t

||2
2

+ �
X

d2D
✏
d

s.t. �

0
t

(x

1

d

� x

2

d

)y
d

� 1� ✏
d

, 8d 2 D and t
x

1
d

, t
x

2
d

= t

✏
d

� 0, 8d 2 D
�

t

(c) � 0, 8c = 1, . . . ,m

(4.11)

where � is a regularization hyperparameter estimated
through cross validation. With the additional constraints,
the optimization remains a convex problem. We solve the
program in (4.11) m times independently for each type t to
estimate all the columns of �, as shown in Algorithm 2.

4.2 Gradient-based estimation In addition to adapting
RankSVM formulation, we can also construct other learning-
to-rank objective functions and leverage a gradient-based
method to solve our learning problem. In this section, we in-
troduce two different objectives with different requirements.

4.2.1 Learning-to-Rank Objective-I Consider the case
where besides the partial ranked lists, for each pair of entities
(u, v) in a training instance, the probability that one is ranked
ahead of the other is also given: i.e., the training instances
are in the form of ((x

u

,x
v

), p̄
uv

) where p̄
uv

= P (r
u

> r
v

).
For example, one can use the sigmoid function �(r

u

�r
v

) =

p̄
uv

to compute this probability, if the original/ground-truth
authority scores (r

u

, r
v

) of the training entities are provided
(note that this is a strict requirement), where �(x) = e

x

1+e

x

is
the sigmoid function.

Recalling function f : Rm ! R given in Eq. (4.9), let

o
u

= f(x
u

) =< �

t

u

,x
u

>, and

o
uv

= f(x
u

� x

v

) = f(x
uv

) =< �

t

u

=t

v

,x
uv

> .

We then utilize the cross entropy as our cost function for each
training instance (u, v) as proposed in [11]:

(4.12) c
uv

= �p̄
uv

log(p
uv

)� (1� p̄
uv

) log(1� p
uv

)

where, mapping from the output of our model to probabilities
is acquired using the logistic function

(4.13) p
uv

=

eouv

1 + eouv

.

Substituting Eq. (4.13) into Eq. (4.12), c
uv

can equivalently
be written as

(4.14) c
uv

= �p̄
uv

o
uv

+ log(1 + eouv

)

Algorithm 1 Alternating Estimation of �
Input: graph G, partial ranked lists L, T

max

, ✏
Output: �

1: �

0

(a, b) = rand(0, 1), 8a, b 2 {1, . . . ,m}, k = 0

2: r compute authority scores by (3.6) using �

0

3: repeat
4: Xk compute feature vectors by Eq. (4.7) using r

5: �

k+1 learn new param.s by RANKSVM(L, Xk)
or GRADIENT(L, Xk,�k)

6: r compute authority scores by (3.6) using �

k+1

7: diff trAccuracy(L, r)� trAccuracy(L, r
best

)

8: if diff > 0 then r

best

 r, �

best

 �

k+1 end if
9: k = k + 1

10: until ||�k � �

k�1|| ✏ or k > T
max

11: return �

best

of our iterative meta-approach is given in Algorithm 1.
Over iterations the best � with the largest trAccuracy is
maintained. Here any IR metric can be used for accuracy,
such as discounted cumulative gain (See Sec. 5).

Given a HIN G, a partial ranked list L
t

consists of an
ordering of a subset of nodes V

t

⇢ V of the same type, i.e.,
t
v

= t, 8v 2 V
t

. Let �
v

denote the order or position of node
v in L

t

, where lower positions correspond to higher ranks or
authority scores, that is r

u

� r
v

if and only if �
u

< �
v

.
Our estimation algorithms take as input one or more

partial ranked lists L for each type t 2 T . It first randomly
guesses �, and then iteratively and alternatingly computes r
and X , followed by estimating � for which we propose two
main aproaches; RANKSVM and GRADIENT.

4.1 RankSVM formulation Given a partial ranked list,
there are several ways of constructing training data from
it. A common way is the pair-wise approach, where for
each pair of entities (i.e., nodes) (u, v) in the ranked list,
we construct a training instance ((x

u

,x
v

), 1) if u is ranked
ahead of v (that is, if �

u

< �
v

), and ((x

v

,x
u

),�1)
otherwise. As a result, training data D is available in the
form of {((x1

d

,x2

d

), y
d

)}|D|
d=1

, where each instance consists
of two feature vectors that belong to two nodes of the same
type, and a label y

d

2 {�1, 1}.
Having constructed such a training data D, we can use

the hinge-loss function as shown in (4.10) to estimate the
model parameters by RankSVM [5].

L((x1

d

,x2

d

), y
d

) = max(0, 1� (�

0
t

· (x1

d

� x

2

d

))y
d

),

such that t
x

1
d

, t
x

2
d

= t

(4.10)

Note that each column of � that belongs to each type
t is estimated independent of others, provided the feature
vectors x

v

’s where t
v

= t. Since � is a non-negative
matrix, we also introduce non-negativity constraints to the
SVM formulation, given in (4.11).

Algorithm 2 Estimate � by RANKSVM
Input: feature vectors X , partial ranked lists L
Output: �

1: for each type t 2 T do
2: �

t

 compute column t of � by (4.11) using X , L
3: end for
4: return �

min

�

t

||�
t

||2
2

+ �
X

d2D
✏
d

s.t. �

0
t

(x

1

d

� x

2

d

)y
d

� 1� ✏
d

, 8d 2 D and t
x

1
d

, t
x

2
d

= t

✏
d

� 0, 8d 2 D
�

t

(c) � 0, 8c = 1, . . . ,m

(4.11)

where � is a regularization hyperparameter estimated
through cross validation. With the additional constraints,
the optimization remains a convex problem. We solve the
program in (4.11) m times independently for each type t to
estimate all the columns of �, as shown in Algorithm 2.

4.2 Gradient-based estimation In addition to adapting
RankSVM formulation, we can also construct other learning-
to-rank objective functions and leverage a gradient-based
method to solve our learning problem. In this section, we in-
troduce two different objectives with different requirements.

4.2.1 Learning-to-Rank Objective-I Consider the case
where besides the partial ranked lists, for each pair of entities
(u, v) in a training instance, the probability that one is ranked
ahead of the other is also given: i.e., the training instances
are in the form of ((x

u

,x
v

), p̄
uv

) where p̄
uv

= P (r
u

> r
v

).
For example, one can use the sigmoid function �(r

u

�r
v

) =

p̄
uv

to compute this probability, if the original/ground-truth
authority scores (r

u

, r
v

) of the training entities are provided
(note that this is a strict requirement), where �(x) = e

x

1+e

x

is
the sigmoid function.

Recalling function f : Rm ! R given in Eq. (4.9), let

o
u

= f(x
u

) =< �

t

u

,x
u

>, and

o
uv

= f(x
u

� x

v

) = f(x
uv

) =< �

t

u

=t

v

,x
uv

> .

We then utilize the cross entropy as our cost function for each
training instance (u, v) as proposed in [11]:

(4.12) c
uv

= �p̄
uv

log(p
uv

)� (1� p̄
uv

) log(1� p
uv

)

where, mapping from the output of our model to probabilities
is acquired using the logistic function

(4.13) p
uv

=

eouv

1 + eouv

.

Substituting Eq. (4.13) into Eq. (4.12), c
uv

can equivalently
be written as

(4.14) c
uv

= �p̄
uv

o
uv

+ log(1 + eouv

)

Cross-entropy based
objective

by gradient descent

19

Outline
Goal: ranking in directed heterogeneous
information networks (HIN) with geo-location

§  HINside model
§  Parameter estimation

q  via learning-to-rank objectives
§  Experiments

20

Experiments I
§  Q1: How well does ATR estimation work?
§  Datasets: physician referral data for years

2009–2015 publicly available at
https://questions.cms.gov/faq.php?faqId=7977

§  2 dataset samples
q  G1: n = 446 physicians of m=3 types, 8537 edges
q  G2: n = 3979 physicians of m=7 types, 93432 edges
q  15 experiments with randomly chosen ATR for G1
q  10 experiments with randomly chosen ATR for G2

§  Simulate results based on HINside
q  1/3 nodes of each type (training), rest as test

21

G1 Test Accuracy - AP@20

0

0.2

0.4

0.6

0.8

1

R
SV

M
-N

N

G
D

-I-
N

N

G
D

-II
-N

N

R
SV

M
-N

C

G
D

-I-
N

C

G
D

-II
-N

C

R
G

R

O

IN
W

PR

AN
KW

R
SV

M
-N

N

G
D

-I-
N

N

G
D

-II
-N

N

R
SV

M
-N

C

G
D

-I-
N

C

G
D

-II
-N

C

R
G

R

O

IN
W

PR

AN
KW

R
SV

M
-N

N

G
D

-I-
N

N

G
D

-II
-N

N

R
SV

M
-N

C

G
D

-I-
N

C

G
D

-II
-N

C

R
G

R

O

IN
W

PR

AN
KW

R
SV

M
-N

N

G
D

-I-
N

N

G
D

-II
-N

N

R
SV

M
-N

C

G
D

-I-
N

C

G
D

-II
-N

C

R
G

R

O

IN
W

PR

AN
KW

Average Type 1 Type 2 Type 3

Box Plots : Test Accuracy - AP@20

q1 min median max q3

Figure 2: AP@20 accuracy of compared methods on DocGI (m = 3).

Table 1: Mean AP@20 across (left) 15 experiments with different � on DocGI with m = 3 types, and (right) 10
experiments with different � on DocGII with m = 7 types.

Method Type 1 Type 2 Type 3 Average Type 1 Type 2 Type 3 Type 4 Type 5 Type 6 Type 7 Average
RSVM-NN 0.9435 0.9577 0.9361 0.9458 0.8367 0.9030 0.9401 0.9639 0.9753 0.9568 0.9362 0.9303
RSVM-NC 0.9207 0.9372 0.9140 0.9240 0.8605 0.9361 0.9701 0.9429 0.8829 0.9330 0.9590 0.9263
GD-I-NN 0.9011 0.8641 0.9192 0.8948 0.7193 0.8830 0.9074 0.9357 0.8482 0.8812 0.8906 0.8665
GD-I-NC 0.8852 0.9358 0.9182 0.9131 0.6999 0.8663 0.9030 0.9015 0.9143 0.8838 0.8710 0.8628
GD-II-NN 0.8975 0.9022 0.8851 0.8949 0.8161 0.8978 0.9574 0.9485 0.9441 0.9239 0.9074 0.9136
GD-II-NC 0.8659 0.8628 0.8602 0.8630 0.7617 0.8896 0.9465 0.9599 0.9557 0.9177 0.9024 0.9048
RG 0.6231 0.8278 0.6712 0.7074 0.5358 0.6483 0.6871 0.6653 0.6796 0.6602 0.6240 0.6429
RO 0.0643 0.1520 0.2342 0.1502 0.0029 0.0109 0.0240 0.0494 0.0357 0.0301 0.0326 0.0265
PRANKW 0.2977 0.3890 0.2169 0.3012 0.0180 0.0739 0.0464 0.0852 0.0745 0.0183 0.1818 0.0711
INW 0.2862 0.5942 0.4183 0.4329 0.2143 0.2808 0.3053 0.1326 0.2725 0.3946 0.2555 0.2651

ences are not significant. Analysis showed that those without
the constraints often estimated a non-negative �.

We give below three example (3 ⇥ 3) ground truth �

matrices with small differences inbetween (i.e., swaps in
bold). Corresponding �’s estimated by RSVM-NN are also
shown. Interestingly, the ratios of ATR values in this column
match almost identically to those estimated by RSVM-NN.

(a) example (3⇥ 3) ground truth � matrices
2

4
0.03 0.06 0.12
0.09 0.19 0.42
0.16 0.35 0.90

3

5

2

4
0.90 0.06 0.12
0.09 0.19 0.42
0.16 0.35 0.03

3

5

2

4
0.03 0.06 0.12
0.09 0.19 0.42
0.90 0.35 0.16

3

5

(b) estimated � by RSVM-NN
2

4
1.13 4.55 2.89
3.39 0.34 0.10
6.02 0.05 0.02

3

5

2

4
7.02 0.13 2.63
0.68 0.00 0.08
1.17 0.00 0.00

3

5

2

4
1.81 0.25 0.10
5.39 0.00 0.00
54.08 0.00 0.00

3

5

We repeat our experiments for DocGII with m = 7,
for which we create 10 different (7 ⇥ 7) � matrices. Table
1 (right) shows corresponding results, from which we can
deduce similar conclusions (also see Figure 5 in Appendix
C). Similarly, all proposed algorithms continue to do equally
well, despite the increased parameter size (49 vs. 9), where
RSVM-NN performs the best with mean accuracy around
0.93 (across types and experiments).

The performances of the baselines on DocGII decrease
even further. For RG, the lower accuracy on average (and
the even higher variance) can be attributed to the larger
parameter size for which “guessing” is no longer as easy. As

for PRANKW and INW, the decline in accuracy is likely due
to their homogeneous nature—both of them ignore neighbor
types, which is more of a concern for a network with 7

different types of nodes.
Similar results are observed when we use the NDCG

measure. Figure 3 shows the average NDCG per experi-
ment (across types) for each method. Again, the proposed
algorithms achieve competitive accuracy, where RSVM pro-
duces slightly better results. The baselines are unable to
capture the ranking by the HINSIDE model, where guessing
the parameters is unavailing for various settings (e.g., exper-
iments 1, 7, 10) (similar plot for DocGI omitted for brevity).

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10

Test Accuracy - NDCG (Average)

RSVM-NN GD-I-NN GD-2-NN RSVM-NC GD-I-NC GD-II-NC RG RO INW PRANKW

Figure 3: NDCG test accuracy per experiment on
DocGII (avg’ed across types).

5.2.1 Analysis on AuthGraph. We do not have ground
truth author ranking in AuthGraph, however, as four areas
(DB, DM, IR, and ML) are similar to each other, we consider
a � with equal ATR values to obtain a ranking by HINSIDE.

We first investigate the relation of the HINSIDE scores

0

0.2

0.4

0.6

0.8

1

R
SV

M
-N

N

G
D

-I-
N

N

G
D

-II
-N

N

R
SV

M
-N

C

G
D

-I-
N

C

G
D

-II
-N

C

R
G

R

O

IN
W

PR

AN
KW

R
SV

M
-N

N

G
D

-I-
N

N

G
D

-II
-N

N

R
SV

M
-N

C

G
D

-I-
N

C

G
D

-II
-N

C

R
G

R

O

IN
W

PR

AN
KW

R
SV

M
-N

N

G
D

-I-
N

N

G
D

-II
-N

N

R
SV

M
-N

C

G
D

-I-
N

C

G
D

-II
-N

C

R
G

R

O

IN
W

PR

AN
KW

R
SV

M
-N

N

G
D

-I-
N

N

G
D

-II
-N

N

R
SV

M
-N

C

G
D

-I-
N

C

G
D

-II
-N

C

R
G

R

O

IN
W

PR

AN
KW

Average Type 1 Type 2 Type 3

Box Plots : Test Accuracy - AP@20

q1 min median max q3

Figure 2: AP@20 accuracy of compared methods on DocGI (m = 3).

Table 1: Mean AP@20 across (left) 15 experiments with different � on DocGI with m = 3 types, and (right) 10
experiments with different � on DocGII with m = 7 types.

Method Type 1 Type 2 Type 3 Average Type 1 Type 2 Type 3 Type 4 Type 5 Type 6 Type 7 Average
RSVM-NN 0.9435 0.9577 0.9361 0.9458 0.8367 0.9030 0.9401 0.9639 0.9753 0.9568 0.9362 0.9303
RSVM-NC 0.9207 0.9372 0.9140 0.9240 0.8605 0.9361 0.9701 0.9429 0.8829 0.9330 0.9590 0.9263
GD-I-NN 0.9011 0.8641 0.9192 0.8948 0.7193 0.8830 0.9074 0.9357 0.8482 0.8812 0.8906 0.8665
GD-I-NC 0.8852 0.9358 0.9182 0.9131 0.6999 0.8663 0.9030 0.9015 0.9143 0.8838 0.8710 0.8628
GD-II-NN 0.8975 0.9022 0.8851 0.8949 0.8161 0.8978 0.9574 0.9485 0.9441 0.9239 0.9074 0.9136
GD-II-NC 0.8659 0.8628 0.8602 0.8630 0.7617 0.8896 0.9465 0.9599 0.9557 0.9177 0.9024 0.9048
RG 0.6231 0.8278 0.6712 0.7074 0.5358 0.6483 0.6871 0.6653 0.6796 0.6602 0.6240 0.6429
RO 0.0643 0.1520 0.2342 0.1502 0.0029 0.0109 0.0240 0.0494 0.0357 0.0301 0.0326 0.0265
PRANKW 0.2977 0.3890 0.2169 0.3012 0.0180 0.0739 0.0464 0.0852 0.0745 0.0183 0.1818 0.0711
INW 0.2862 0.5942 0.4183 0.4329 0.2143 0.2808 0.3053 0.1326 0.2725 0.3946 0.2555 0.2651

ences are not significant. Analysis showed that those without
the constraints often estimated a non-negative �.

We give below three example (3 ⇥ 3) ground truth �

matrices with small differences inbetween (i.e., swaps in
bold). Corresponding �’s estimated by RSVM-NN are also
shown. Interestingly, the ratios of ATR values in this column
match almost identically to those estimated by RSVM-NN.

(a) example (3⇥ 3) ground truth � matrices
2

4
0.03 0.06 0.12
0.09 0.19 0.42
0.16 0.35 0.90

3

5

2

4
0.90 0.06 0.12
0.09 0.19 0.42
0.16 0.35 0.03

3

5

2

4
0.03 0.06 0.12
0.09 0.19 0.42
0.90 0.35 0.16

3

5

(b) estimated � by RSVM-NN
2

4
1.13 4.55 2.89
3.39 0.34 0.10
6.02 0.05 0.02

3

5

2

4
7.02 0.13 2.63
0.68 0.00 0.08
1.17 0.00 0.00

3

5

2

4
1.81 0.25 0.10
5.39 0.00 0.00
54.08 0.00 0.00

3

5

We repeat our experiments for DocGII with m = 7,
for which we create 10 different (7 ⇥ 7) � matrices. Table
1 (right) shows corresponding results, from which we can
deduce similar conclusions (also see Figure 5 in Appendix
C). Similarly, all proposed algorithms continue to do equally
well, despite the increased parameter size (49 vs. 9), where
RSVM-NN performs the best with mean accuracy around
0.93 (across types and experiments).

The performances of the baselines on DocGII decrease
even further. For RG, the lower accuracy on average (and
the even higher variance) can be attributed to the larger
parameter size for which “guessing” is no longer as easy. As

for PRANKW and INW, the decline in accuracy is likely due
to their homogeneous nature—both of them ignore neighbor
types, which is more of a concern for a network with 7

different types of nodes.
Similar results are observed when we use the NDCG

measure. Figure 3 shows the average NDCG per experi-
ment (across types) for each method. Again, the proposed
algorithms achieve competitive accuracy, where RSVM pro-
duces slightly better results. The baselines are unable to
capture the ranking by the HINSIDE model, where guessing
the parameters is unavailing for various settings (e.g., exper-
iments 1, 7, 10) (similar plot for DocGI omitted for brevity).

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10

Test Accuracy - NDCG (Average)

RSVM-NN GD-I-NN GD-2-NN RSVM-NC GD-I-NC GD-II-NC RG RO INW PRANKW

Figure 3: NDCG test accuracy per experiment on
DocGII (avg’ed across types).

5.2.1 Analysis on AuthGraph. We do not have ground
truth author ranking in AuthGraph, however, as four areas
(DB, DM, IR, and ML) are similar to each other, we consider
a � with equal ATR values to obtain a ranking by HINSIDE.

We first investigate the relation of the HINSIDE scores

0

0.2

0.4

0.6

0.8

1

R
SV

M
-N

N

G
D

-I-
N

N

G
D

-II
-N

N

R
SV

M
-N

C

G
D

-I-
N

C

G
D

-II
-N

C

R
G

R

O

IN
W

PR

AN
KW

R
SV

M
-N

N

G
D

-I-
N

N

G
D

-II
-N

N

R
SV

M
-N

C

G
D

-I-
N

C

G
D

-II
-N

C

R
G

R

O

IN
W

PR

AN
KW

R
SV

M
-N

N

G
D

-I-
N

N

G
D

-II
-N

N

R
SV

M
-N

C

G
D

-I-
N

C

G
D

-II
-N

C

R
G

R

O

IN
W

PR

AN
KW

R
SV

M
-N

N

G
D

-I-
N

N

G
D

-II
-N

N

R
SV

M
-N

C

G
D

-I-
N

C

G
D

-II
-N

C

R
G

R

O

IN
W

PR

AN
KW

Average Type 1 Type 2 Type 3

Box Plots : Test Accuracy - AP@20

q1 min median max q3

Figure 2: AP@20 accuracy of compared methods on DocGI (m = 3).

Table 1: Mean AP@20 across (left) 15 experiments with different � on DocGI with m = 3 types, and (right) 10
experiments with different � on DocGII with m = 7 types.

Method Type 1 Type 2 Type 3 Average Type 1 Type 2 Type 3 Type 4 Type 5 Type 6 Type 7 Average
RSVM-NN 0.9435 0.9577 0.9361 0.9458 0.8367 0.9030 0.9401 0.9639 0.9753 0.9568 0.9362 0.9303
RSVM-NC 0.9207 0.9372 0.9140 0.9240 0.8605 0.9361 0.9701 0.9429 0.8829 0.9330 0.9590 0.9263
GD-I-NN 0.9011 0.8641 0.9192 0.8948 0.7193 0.8830 0.9074 0.9357 0.8482 0.8812 0.8906 0.8665
GD-I-NC 0.8852 0.9358 0.9182 0.9131 0.6999 0.8663 0.9030 0.9015 0.9143 0.8838 0.8710 0.8628
GD-II-NN 0.8975 0.9022 0.8851 0.8949 0.8161 0.8978 0.9574 0.9485 0.9441 0.9239 0.9074 0.9136
GD-II-NC 0.8659 0.8628 0.8602 0.8630 0.7617 0.8896 0.9465 0.9599 0.9557 0.9177 0.9024 0.9048
RG 0.6231 0.8278 0.6712 0.7074 0.5358 0.6483 0.6871 0.6653 0.6796 0.6602 0.6240 0.6429
RO 0.0643 0.1520 0.2342 0.1502 0.0029 0.0109 0.0240 0.0494 0.0357 0.0301 0.0326 0.0265
PRANKW 0.2977 0.3890 0.2169 0.3012 0.0180 0.0739 0.0464 0.0852 0.0745 0.0183 0.1818 0.0711
INW 0.2862 0.5942 0.4183 0.4329 0.2143 0.2808 0.3053 0.1326 0.2725 0.3946 0.2555 0.2651

ences are not significant. Analysis showed that those without
the constraints often estimated a non-negative �.

We give below three example (3 ⇥ 3) ground truth �

matrices with small differences inbetween (i.e., swaps in
bold). Corresponding �’s estimated by RSVM-NN are also
shown. Interestingly, the ratios of ATR values in this column
match almost identically to those estimated by RSVM-NN.

(a) example (3⇥ 3) ground truth � matrices
2

4
0.03 0.06 0.12
0.09 0.19 0.42
0.16 0.35 0.90

3

5

2

4
0.90 0.06 0.12
0.09 0.19 0.42
0.16 0.35 0.03

3

5

2

4
0.03 0.06 0.12
0.09 0.19 0.42
0.90 0.35 0.16

3

5

(b) estimated � by RSVM-NN
2

4
1.13 4.55 2.89
3.39 0.34 0.10
6.02 0.05 0.02

3

5

2

4
7.02 0.13 2.63
0.68 0.00 0.08
1.17 0.00 0.00

3

5

2

4
1.81 0.25 0.10
5.39 0.00 0.00
54.08 0.00 0.00

3

5

We repeat our experiments for DocGII with m = 7,
for which we create 10 different (7 ⇥ 7) � matrices. Table
1 (right) shows corresponding results, from which we can
deduce similar conclusions (also see Figure 5 in Appendix
C). Similarly, all proposed algorithms continue to do equally
well, despite the increased parameter size (49 vs. 9), where
RSVM-NN performs the best with mean accuracy around
0.93 (across types and experiments).

The performances of the baselines on DocGII decrease
even further. For RG, the lower accuracy on average (and
the even higher variance) can be attributed to the larger
parameter size for which “guessing” is no longer as easy. As

for PRANKW and INW, the decline in accuracy is likely due
to their homogeneous nature—both of them ignore neighbor
types, which is more of a concern for a network with 7

different types of nodes.
Similar results are observed when we use the NDCG

measure. Figure 3 shows the average NDCG per experi-
ment (across types) for each method. Again, the proposed
algorithms achieve competitive accuracy, where RSVM pro-
duces slightly better results. The baselines are unable to
capture the ranking by the HINSIDE model, where guessing
the parameters is unavailing for various settings (e.g., exper-
iments 1, 7, 10) (similar plot for DocGI omitted for brevity).

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10

Test Accuracy - NDCG (Average)

RSVM-NN GD-I-NN GD-2-NN RSVM-NC GD-I-NC GD-II-NC RG RO INW PRANKW

Figure 3: NDCG test accuracy per experiment on
DocGII (avg’ed across types).

5.2.1 Analysis on AuthGraph. We do not have ground
truth author ranking in AuthGraph, however, as four areas
(DB, DM, IR, and ML) are similar to each other, we consider
a � with equal ATR values to obtain a ranking by HINSIDE.

We first investigate the relation of the HINSIDE scores

0

0.2

0.4

0.6

0.8

1

R
SV

M
-N

N

G
D

-I-
N

N

G
D

-II
-N

N

R
SV

M
-N

C

G
D

-I-
N

C

G
D

-II
-N

C

R
G

R

O

IN
W

PR

AN
KW

R
SV

M
-N

N

G
D

-I-
N

N

G
D

-II
-N

N

R
SV

M
-N

C

G
D

-I-
N

C

G
D

-II
-N

C

R
G

R

O

IN
W

PR

AN
KW

R
SV

M
-N

N

G
D

-I-
N

N

G
D

-II
-N

N

R
SV

M
-N

C

G
D

-I-
N

C

G
D

-II
-N

C

R
G

R

O

IN
W

PR

AN
KW

R
SV

M
-N

N

G
D

-I-
N

N

G
D

-II
-N

N

R
SV

M
-N

C

G
D

-I-
N

C

G
D

-II
-N

C

R
G

R

O

IN
W

PR

AN
KW

Average Type 1 Type 2 Type 3

Box Plots : Test Accuracy - AP@20

q1 min median max q3

Figure 2: AP@20 accuracy of compared methods on DocGI (m = 3).

Table 1: Mean AP@20 across (left) 15 experiments with different � on DocGI with m = 3 types, and (right) 10
experiments with different � on DocGII with m = 7 types.

Method Type 1 Type 2 Type 3 Average Type 1 Type 2 Type 3 Type 4 Type 5 Type 6 Type 7 Average
RSVM-NN 0.9435 0.9577 0.9361 0.9458 0.8367 0.9030 0.9401 0.9639 0.9753 0.9568 0.9362 0.9303
RSVM-NC 0.9207 0.9372 0.9140 0.9240 0.8605 0.9361 0.9701 0.9429 0.8829 0.9330 0.9590 0.9263
GD-I-NN 0.9011 0.8641 0.9192 0.8948 0.7193 0.8830 0.9074 0.9357 0.8482 0.8812 0.8906 0.8665
GD-I-NC 0.8852 0.9358 0.9182 0.9131 0.6999 0.8663 0.9030 0.9015 0.9143 0.8838 0.8710 0.8628
GD-II-NN 0.8975 0.9022 0.8851 0.8949 0.8161 0.8978 0.9574 0.9485 0.9441 0.9239 0.9074 0.9136
GD-II-NC 0.8659 0.8628 0.8602 0.8630 0.7617 0.8896 0.9465 0.9599 0.9557 0.9177 0.9024 0.9048
RG 0.6231 0.8278 0.6712 0.7074 0.5358 0.6483 0.6871 0.6653 0.6796 0.6602 0.6240 0.6429
RO 0.0643 0.1520 0.2342 0.1502 0.0029 0.0109 0.0240 0.0494 0.0357 0.0301 0.0326 0.0265
PRANKW 0.2977 0.3890 0.2169 0.3012 0.0180 0.0739 0.0464 0.0852 0.0745 0.0183 0.1818 0.0711
INW 0.2862 0.5942 0.4183 0.4329 0.2143 0.2808 0.3053 0.1326 0.2725 0.3946 0.2555 0.2651

ences are not significant. Analysis showed that those without
the constraints often estimated a non-negative �.

We give below three example (3 ⇥ 3) ground truth �

matrices with small differences inbetween (i.e., swaps in
bold). Corresponding �’s estimated by RSVM-NN are also
shown. Interestingly, the ratios of ATR values in this column
match almost identically to those estimated by RSVM-NN.

(a) example (3⇥ 3) ground truth � matrices
2

4
0.03 0.06 0.12
0.09 0.19 0.42
0.16 0.35 0.90

3

5

2

4
0.90 0.06 0.12
0.09 0.19 0.42
0.16 0.35 0.03

3

5

2

4
0.03 0.06 0.12
0.09 0.19 0.42
0.90 0.35 0.16

3

5

(b) estimated � by RSVM-NN
2

4
1.13 4.55 2.89
3.39 0.34 0.10
6.02 0.05 0.02

3

5

2

4
7.02 0.13 2.63
0.68 0.00 0.08
1.17 0.00 0.00

3

5

2

4
1.81 0.25 0.10
5.39 0.00 0.00
54.08 0.00 0.00

3

5

We repeat our experiments for DocGII with m = 7,
for which we create 10 different (7 ⇥ 7) � matrices. Table
1 (right) shows corresponding results, from which we can
deduce similar conclusions (also see Figure 5 in Appendix
C). Similarly, all proposed algorithms continue to do equally
well, despite the increased parameter size (49 vs. 9), where
RSVM-NN performs the best with mean accuracy around
0.93 (across types and experiments).

The performances of the baselines on DocGII decrease
even further. For RG, the lower accuracy on average (and
the even higher variance) can be attributed to the larger
parameter size for which “guessing” is no longer as easy. As

for PRANKW and INW, the decline in accuracy is likely due
to their homogeneous nature—both of them ignore neighbor
types, which is more of a concern for a network with 7

different types of nodes.
Similar results are observed when we use the NDCG

measure. Figure 3 shows the average NDCG per experi-
ment (across types) for each method. Again, the proposed
algorithms achieve competitive accuracy, where RSVM pro-
duces slightly better results. The baselines are unable to
capture the ranking by the HINSIDE model, where guessing
the parameters is unavailing for various settings (e.g., exper-
iments 1, 7, 10) (similar plot for DocGI omitted for brevity).

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10

Test Accuracy - NDCG (Average)

RSVM-NN GD-I-NN GD-2-NN RSVM-NC GD-I-NC GD-II-NC RG RO INW PRANKW

Figure 3: NDCG test accuracy per experiment on
DocGII (avg’ed across types).

5.2.1 Analysis on AuthGraph. We do not have ground
truth author ranking in AuthGraph, however, as four areas
(DB, DM, IR, and ML) are similar to each other, we consider
a � with equal ATR values to obtain a ranking by HINSIDE.

We first investigate the relation of the HINSIDE scores

0

0.2

0.4

0.6

0.8 1

RSVM-NN
GD-I-NN
GD-II-NN

RSVM-NC
GD-I-NC
GD-II-NC

RG
RO

INW
PRANKW

RSVM-NN
GD-I-NN
GD-II-NN

RSVM-NC
GD-I-NC
GD-II-NC

RG
RO

INW
PRANKW

RSVM-NN
GD-I-NN
GD-II-NN

RSVM-NC
GD-I-NC
GD-II-NC

RG
RO

INW
PRANKW

RSVM-NN
GD-I-NN
GD-II-NN

RSVM-NC
GD-I-NC
GD-II-NC

RG
RO

INW
PRANKW

A
verage

Type 1
Type 2

Type 3

B
o

x P
lo

ts : Test A
ccu

racy - A
P

@
20

q
1

m
in

m

ed
ian

m

ax
q

3

Figure
2:

A
P
@
2
0

accuracy
ofcom

pared
m

ethods
on

D
o
c
G
I(m

=
3).

Table
1:

M
ean

A
P
@
2
0

across
(left)

15
experim

ents
w

ith
different

�
on

D
o
c
G
I

w
ith

m
=

3
types,

and
(right)

10
experim

ents
w

ith
different

�
on

D
o
c
G
I
I

w
ith

m
=

7
types.

M
ethod

Type
1

Type
2

Type
3

Average
Type

1
Type

2
Type

3
Type

4
Type

5
Type

6
Type

7
Average

R
SV

M
-N

N
0.9435

0.9577
0.9361

0.9458
0.8367

0.9030
0.9401

0.9639
0.9753

0.9568
0.9362

0.9303
R

SV
M

-N
C

0.9207
0.9372

0.9140
0.9240

0.8605
0.9361

0.9701
0.9429

0.8829
0.9330

0.9590
0.9263

G
D

-I-N
N

0.9011
0.8641

0.9192
0.8948

0.7193
0.8830

0.9074
0.9357

0.8482
0.8812

0.8906
0.8665

G
D

-I-N
C

0.8852
0.9358

0.9182
0.9131

0.6999
0.8663

0.9030
0.9015

0.9143
0.8838

0.8710
0.8628

G
D

-II-N
N

0.8975
0.9022

0.8851
0.8949

0.8161
0.8978

0.9574
0.9485

0.9441
0.9239

0.9074
0.9136

G
D

-II-N
C

0.8659
0.8628

0.8602
0.8630

0.7617
0.8896

0.9465
0.9599

0.9557
0.9177

0.9024
0.9048

R
G

0.6231
0.8278

0.6712
0.7074

0.5358
0.6483

0.6871
0.6653

0.6796
0.6602

0.6240
0.6429

R
O

0.0643
0.1520

0.2342
0.1502

0.0029
0.0109

0.0240
0.0494

0.0357
0.0301

0.0326
0.0265

PR
A

N
KW

0.2977
0.3890

0.2169
0.3012

0.0180
0.0739

0.0464
0.0852

0.0745
0.0183

0.1818
0.0711

INW
0.2862

0.5942
0.4183

0.4329
0.2143

0.2808
0.3053

0.1326
0.2725

0.3946
0.2555

0.2651

encesare
notsignificant.A

nalysisshow
ed

thatthose
w

ithout
the

constraints
often

estim
ated

a
non-negative

�.
W

e
give

below
three

exam
ple

(
3
⇥

3
)

ground
truth

�

m
atrices

w
ith

sm
all

differences
inbetw

een
(i.e.,

sw
aps

in
bold).

C
orresponding

�’s
estim

ated
by

R
SV

M
-N

N
are

also
show

n.Interestingly,the
ratiosofATR

valuesin
thiscolum

n
m

atch
alm

ostidentically
to

those
estim

ated
by

R
SV

M
-N

N.

(a
)

exam
ple

(3
⇥

3
)

ground
truth

�
m

atrices
24
0
.0
3

0
.0
6

0
.1
2

0
.0
9

0
.1
9

0
.4
2

0
.1
6

0
.3
5

0
.9
0 35

24
0.90

0
.0
6

0
.1
2

0
.0
9

0
.1
9

0
.4
2

0
.1
6

0
.3
5

0.03 35

24
0
.0
3

0
.0
6

0
.1
2

0
.0
9

0
.1
9

0
.4
2

0.90
0
.3
5

0.16 35

(b)
estim

ated
�

by
R

SV
M

-N
N

24
1
.1
3

4
.5
5

2
.8
9

3
.3
9

0
.3
4

0
.1
0

6
.0
2

0
.0
5

0
.0
2 35

24
7
.0
2

0
.1
3

2
.6
3

0
.6
8

0
.0
0

0
.0
8

1
.1
7

0
.0
0

0
.0
0 35

24
1
.8
1

0
.2
5

0
.1
0

5
.3
9

0
.0
0

0
.0
0

5
4
.0
8

0
.0
0

0
.0
0 35

W
e

repeat
our

experim
ents

for
D
o
c
G
I
I

w
ith

m
=

7,
for

w
hich

w
e

create
10

different
(
7
⇥

7
)
�

m
atrices.

Table
1

(right)
show

s
corresponding

results,
from

w
hich

w
e

can
deduce

sim
ilar

conclusions
(also

see
Figure

5
in

A
ppendix

C
).Sim

ilarly,allproposed
algorithm

scontinue
to

do
equally

w
ell,despite

the
increased

param
etersize

(49
vs.

9),w
here

R
SV

M
-N

N
perform

s
the

bestw
ith

m
ean

accuracy
around

0.93
(across

types
and

experim
ents).

The
perform

ancesofthe
baselineson

D
o
c
G
I
I

decrease
even

further.
For

R
G

,the
low

er
accuracy

on
average

(and
the

even
higher

variance)
can

be
attributed

to
the

larger
param

etersize
forw

hich
“guessing”

isno
longeraseasy.A

s

forPR
A

N
KW

and
INW

,the
decline

in
accuracy

islikely
due

to
theirhom

ogeneous
nature—

both
ofthem

ignore
neighbor

types,
w

hich
is

m
ore

of
a

concern
for

a
netw

ork
w

ith
7

differenttypes
ofnodes.

Sim
ilar

results
are

observed
w

hen
w

e
use

the
N

D
C

G
m

easure.
Figure

3
show

s
the

average
N

D
C

G
per

experi-
m

ent(across
types)

for
each

m
ethod.

A
gain,the

proposed
algorithm

sachieve
com

petitive
accuracy,w

here
R

SV
M

pro-
duces

slightly
better

results.
The

baselines
are

unable
to

capture
the

ranking
by

the
H

IN
SID

E
m

odel,w
here

guessing
the

param
eters

is
unavailing

forvarious
settings

(e.g.,exper-
im

ents1,7,10)(sim
ilarplotfor

D
o
c
G
Iom

itted
forbrevity).

0

0.2

0.4

0.6

0.8 1

1
2

3
4

5
6

7
8

9
10

Test A
ccuracy - N

D
C

G
 (A

verage)

R
S

V
M

-N
N

G

D
-I-N

N

G
D

-2-N
N

R

S
V

M
-N

C

G
D

-I-N
C

G

D
-II-N

C

R
G

R

O

IN
W

P

R
A

N
K

W

Figure
3:

N
D
C
G

test
accuracy

per
experim

ent
on

D
o
c
G
I
I(avg’ed

across
types).

5.2.1
A

nalysis
on

A
u
t
h
G
r
a
p
h.

W
e

do
nothave

ground
truth

author
ranking

in
A
u
t
h
G
r
a
p
h,how

ever,as
four

areas
(D

B
,D

M
,IR

,and
M

L)are
sim

ilarto
each

other,w
e

consider
a
�

w
ith

equalATR
values

to
obtain

a
ranking

by
H

IN
SID

E.
W

e
firstinvestigate

the
relation

ofthe
H

IN
SID

E
scores

0

0.2

0.4

0.6

0.8

1

R
SV

M
-N

N

G
D

-I-
N

N

G
D

-II
-N

N

R
SV

M
-N

C

G
D

-I-
N

C

G
D

-II
-N

C

R
G

R

O

IN
W

PR

AN
KW

R
SV

M
-N

N

G
D

-I-
N

N

G
D

-II
-N

N

R
SV

M
-N

C

G
D

-I-
N

C

G
D

-II
-N

C

R
G

R

O

IN
W

PR

AN
KW

R
SV

M
-N

N

G
D

-I-
N

N

G
D

-II
-N

N

R
SV

M
-N

C

G
D

-I-
N

C

G
D

-II
-N

C

R
G

R

O

IN
W

PR

AN
KW

R
SV

M
-N

N

G
D

-I-
N

N

G
D

-II
-N

N

R
SV

M
-N

C

G
D

-I-
N

C

G
D

-II
-N

C

R
G

R

O

IN
W

PR

AN
KW

Average Type 1 Type 2 Type 3

Box Plots : Test Accuracy - AP@20

q1 min median max q3

Figure 2: AP@20 accuracy of compared methods on DocGI (m = 3).

Table 1: Mean AP@20 across (left) 15 experiments with different � on DocGI with m = 3 types, and (right) 10
experiments with different � on DocGII with m = 7 types.

Method Type 1 Type 2 Type 3 Average Type 1 Type 2 Type 3 Type 4 Type 5 Type 6 Type 7 Average
RSVM-NN 0.9435 0.9577 0.9361 0.9458 0.8367 0.9030 0.9401 0.9639 0.9753 0.9568 0.9362 0.9303
RSVM-NC 0.9207 0.9372 0.9140 0.9240 0.8605 0.9361 0.9701 0.9429 0.8829 0.9330 0.9590 0.9263
GD-I-NN 0.9011 0.8641 0.9192 0.8948 0.7193 0.8830 0.9074 0.9357 0.8482 0.8812 0.8906 0.8665
GD-I-NC 0.8852 0.9358 0.9182 0.9131 0.6999 0.8663 0.9030 0.9015 0.9143 0.8838 0.8710 0.8628
GD-II-NN 0.8975 0.9022 0.8851 0.8949 0.8161 0.8978 0.9574 0.9485 0.9441 0.9239 0.9074 0.9136
GD-II-NC 0.8659 0.8628 0.8602 0.8630 0.7617 0.8896 0.9465 0.9599 0.9557 0.9177 0.9024 0.9048
RG 0.6231 0.8278 0.6712 0.7074 0.5358 0.6483 0.6871 0.6653 0.6796 0.6602 0.6240 0.6429
RO 0.0643 0.1520 0.2342 0.1502 0.0029 0.0109 0.0240 0.0494 0.0357 0.0301 0.0326 0.0265
PRANKW 0.2977 0.3890 0.2169 0.3012 0.0180 0.0739 0.0464 0.0852 0.0745 0.0183 0.1818 0.0711
INW 0.2862 0.5942 0.4183 0.4329 0.2143 0.2808 0.3053 0.1326 0.2725 0.3946 0.2555 0.2651

ences are not significant. Analysis showed that those without
the constraints often estimated a non-negative �.

We give below three example (3 ⇥ 3) ground truth �

matrices with small differences inbetween (i.e., swaps in
bold). Corresponding �’s estimated by RSVM-NN are also
shown. Interestingly, the ratios of ATR values in this column
match almost identically to those estimated by RSVM-NN.

(a) example (3⇥ 3) ground truth � matrices
2

4
0.03 0.06 0.12
0.09 0.19 0.42
0.16 0.35 0.90

3

5

2

4
0.90 0.06 0.12
0.09 0.19 0.42
0.16 0.35 0.03

3

5

2

4
0.03 0.06 0.12
0.09 0.19 0.42
0.90 0.35 0.16

3

5

(b) estimated � by RSVM-NN
2

4
1.13 4.55 2.89
3.39 0.34 0.10
6.02 0.05 0.02

3

5

2

4
7.02 0.13 2.63
0.68 0.00 0.08
1.17 0.00 0.00

3

5

2

4
1.81 0.25 0.10
5.39 0.00 0.00
54.08 0.00 0.00

3

5

We repeat our experiments for DocGII with m = 7,
for which we create 10 different (7 ⇥ 7) � matrices. Table
1 (right) shows corresponding results, from which we can
deduce similar conclusions (also see Figure 5 in Appendix
C). Similarly, all proposed algorithms continue to do equally
well, despite the increased parameter size (49 vs. 9), where
RSVM-NN performs the best with mean accuracy around
0.93 (across types and experiments).

The performances of the baselines on DocGII decrease
even further. For RG, the lower accuracy on average (and
the even higher variance) can be attributed to the larger
parameter size for which “guessing” is no longer as easy. As

for PRANKW and INW, the decline in accuracy is likely due
to their homogeneous nature—both of them ignore neighbor
types, which is more of a concern for a network with 7

different types of nodes.
Similar results are observed when we use the NDCG

measure. Figure 3 shows the average NDCG per experi-
ment (across types) for each method. Again, the proposed
algorithms achieve competitive accuracy, where RSVM pro-
duces slightly better results. The baselines are unable to
capture the ranking by the HINSIDE model, where guessing
the parameters is unavailing for various settings (e.g., exper-
iments 1, 7, 10) (similar plot for DocGI omitted for brevity).

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10

Test Accuracy - NDCG (Average)

RSVM-NN GD-I-NN GD-2-NN RSVM-NC GD-I-NC GD-II-NC RG RO INW PRANKW

Figure 3: NDCG test accuracy per experiment on
DocGII (avg’ed across types).

5.2.1 Analysis on AuthGraph. We do not have ground
truth author ranking in AuthGraph, however, as four areas
(DB, DM, IR, and ML) are similar to each other, we consider
a � with equal ATR values to obtain a ranking by HINSIDE.

We first investigate the relation of the HINSIDE scores

0

0.2

0.4

0.6

0.8

1

RS
VM

-N
N

G
D-

I-N
N

G
D-

II-
NN

RS

VM
-N

C
G

D-
I-N

C
G

D-
II-

NC

RG

RO

IN
W

PR

AN
KW

RS
VM

-N
N

G
D-

I-N
N

G
D-

II-
NN

RS

VM
-N

C
G

D-
I-N

C
G

D-
II-

NC

RG

RO

IN
W

PR

AN
KW

RS
VM

-N
N

G
D-

I-N
N

G
D-

II-
NN

RS

VM
-N

C
G

D-
I-N

C
G

D-
II-

NC

RG

RO

IN
W

PR

AN
KW

RS
VM

-N
N

G
D-

I-N
N

G
D-

II-
NN

RS

VM
-N

C
G

D-
I-N

C
G

D-
II-

NC

RG

RO

IN
W

PR

AN
KW

Average Type 1 Type 2 Type 3

Box Plots : Test Accuracy - AP@20

q1 min median max q3

Figure 2: AP@20 accuracy of compared methods on DocGI (m = 3).

Table 1: Mean AP@20 across (left) 15 experiments with different � on DocGI with m = 3 types, and (right) 10
experiments with different � on DocGII with m = 7 types.

Method Type 1 Type 2 Type 3 Average Type 1 Type 2 Type 3 Type 4 Type 5 Type 6 Type 7 Average
RSVM-NN 0.9435 0.9577 0.9361 0.9458 0.8367 0.9030 0.9401 0.9639 0.9753 0.9568 0.9362 0.9303
RSVM-NC 0.9207 0.9372 0.9140 0.9240 0.8605 0.9361 0.9701 0.9429 0.8829 0.9330 0.9590 0.9263
GD-I-NN 0.9011 0.8641 0.9192 0.8948 0.7193 0.8830 0.9074 0.9357 0.8482 0.8812 0.8906 0.8665
GD-I-NC 0.8852 0.9358 0.9182 0.9131 0.6999 0.8663 0.9030 0.9015 0.9143 0.8838 0.8710 0.8628
GD-II-NN 0.8975 0.9022 0.8851 0.8949 0.8161 0.8978 0.9574 0.9485 0.9441 0.9239 0.9074 0.9136
GD-II-NC 0.8659 0.8628 0.8602 0.8630 0.7617 0.8896 0.9465 0.9599 0.9557 0.9177 0.9024 0.9048
RG 0.6231 0.8278 0.6712 0.7074 0.5358 0.6483 0.6871 0.6653 0.6796 0.6602 0.6240 0.6429
RO 0.0643 0.1520 0.2342 0.1502 0.0029 0.0109 0.0240 0.0494 0.0357 0.0301 0.0326 0.0265
PRANKW 0.2977 0.3890 0.2169 0.3012 0.0180 0.0739 0.0464 0.0852 0.0745 0.0183 0.1818 0.0711
INW 0.2862 0.5942 0.4183 0.4329 0.2143 0.2808 0.3053 0.1326 0.2725 0.3946 0.2555 0.2651

ences are not significant. Analysis showed that those without
the constraints often estimated a non-negative �.

We give below three example (3 ⇥ 3) ground truth �

matrices with small differences inbetween (i.e., swaps in
bold). Corresponding �’s estimated by RSVM-NN are also
shown. Interestingly, the ratios of ATR values in this column
match almost identically to those estimated by RSVM-NN.

(a) example (3⇥ 3) ground truth � matrices
2

4
0.03 0.06 0.12
0.09 0.19 0.42
0.16 0.35 0.90

3

5

2

4
0.90 0.06 0.12
0.09 0.19 0.42
0.16 0.35 0.03

3

5

2

4
0.03 0.06 0.12
0.09 0.19 0.42
0.90 0.35 0.16

3

5

(b) estimated � by RSVM-NN
2

4
1.13 4.55 2.89
3.39 0.34 0.10
6.02 0.05 0.02

3

5

2

4
7.02 0.13 2.63
0.68 0.00 0.08
1.17 0.00 0.00

3

5

2

4
1.81 0.25 0.10
5.39 0.00 0.00
54.08 0.00 0.00

3

5

We repeat our experiments for DocGII with m = 7,
for which we create 10 different (7 ⇥ 7) � matrices. Table
1 (right) shows corresponding results, from which we can
deduce similar conclusions (also see Figure 5 in Appendix
C). Similarly, all proposed algorithms continue to do equally
well, despite the increased parameter size (49 vs. 9), where
RSVM-NN performs the best with mean accuracy around
0.93 (across types and experiments).

The performances of the baselines on DocGII decrease
even further. For RG, the lower accuracy on average (and
the even higher variance) can be attributed to the larger
parameter size for which “guessing” is no longer as easy. As

for PRANKW and INW, the decline in accuracy is likely due
to their homogeneous nature—both of them ignore neighbor
types, which is more of a concern for a network with 7

different types of nodes.
Similar results are observed when we use the NDCG

measure. Figure 3 shows the average NDCG per experi-
ment (across types) for each method. Again, the proposed
algorithms achieve competitive accuracy, where RSVM pro-
duces slightly better results. The baselines are unable to
capture the ranking by the HINSIDE model, where guessing
the parameters is unavailing for various settings (e.g., exper-
iments 1, 7, 10) (similar plot for DocGI omitted for brevity).

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10

Test Accuracy - NDCG (Average)

RSVM-NN GD-I-NN GD-2-NN RSVM-NC GD-I-NC GD-II-NC RG RO INW PRANKW

Figure 3: NDCG test accuracy per experiment on
DocGII (avg’ed across types).

5.2.1 Analysis on AuthGraph. We do not have ground
truth author ranking in AuthGraph, however, as four areas
(DB, DM, IR, and ML) are similar to each other, we consider
a � with equal ATR values to obtain a ranking by HINSIDE.

We first investigate the relation of the HINSIDE scores

0

0.2

0.4

0.6

0.8

1

R
SV

M
-N

N

G
D

-I-
N

N

G
D

-II
-N

N

R
SV

M
-N

C

G
D

-I-
N

C

G
D

-II
-N

C

R
G

R

O

IN
W

PR

AN
KW

R
SV

M
-N

N

G
D

-I-
N

N

G
D

-II
-N

N

R
SV

M
-N

C

G
D

-I-
N

C

G
D

-II
-N

C

R
G

R

O

IN
W

PR

AN
KW

R
SV

M
-N

N

G
D

-I-
N

N

G
D

-II
-N

N

R
SV

M
-N

C

G
D

-I-
N

C

G
D

-II
-N

C

R
G

R

O

IN
W

PR

AN
KW

R
SV

M
-N

N

G
D

-I-
N

N

G
D

-II
-N

N

R
SV

M
-N

C

G
D

-I-
N

C

G
D

-II
-N

C

R
G

R

O

IN
W

PR

AN
KW

Average Type 1 Type 2 Type 3

Box Plots : Test Accuracy - AP@20

q1 min median max q3

Figure 2: AP@20 accuracy of compared methods on DocGI (m = 3).

Table 1: Mean AP@20 across (left) 15 experiments with different � on DocGI with m = 3 types, and (right) 10
experiments with different � on DocGII with m = 7 types.

Method Type 1 Type 2 Type 3 Average Type 1 Type 2 Type 3 Type 4 Type 5 Type 6 Type 7 Average
RSVM-NN 0.9435 0.9577 0.9361 0.9458 0.8367 0.9030 0.9401 0.9639 0.9753 0.9568 0.9362 0.9303
RSVM-NC 0.9207 0.9372 0.9140 0.9240 0.8605 0.9361 0.9701 0.9429 0.8829 0.9330 0.9590 0.9263
GD-I-NN 0.9011 0.8641 0.9192 0.8948 0.7193 0.8830 0.9074 0.9357 0.8482 0.8812 0.8906 0.8665
GD-I-NC 0.8852 0.9358 0.9182 0.9131 0.6999 0.8663 0.9030 0.9015 0.9143 0.8838 0.8710 0.8628
GD-II-NN 0.8975 0.9022 0.8851 0.8949 0.8161 0.8978 0.9574 0.9485 0.9441 0.9239 0.9074 0.9136
GD-II-NC 0.8659 0.8628 0.8602 0.8630 0.7617 0.8896 0.9465 0.9599 0.9557 0.9177 0.9024 0.9048
RG 0.6231 0.8278 0.6712 0.7074 0.5358 0.6483 0.6871 0.6653 0.6796 0.6602 0.6240 0.6429
RO 0.0643 0.1520 0.2342 0.1502 0.0029 0.0109 0.0240 0.0494 0.0357 0.0301 0.0326 0.0265
PRANKW 0.2977 0.3890 0.2169 0.3012 0.0180 0.0739 0.0464 0.0852 0.0745 0.0183 0.1818 0.0711
INW 0.2862 0.5942 0.4183 0.4329 0.2143 0.2808 0.3053 0.1326 0.2725 0.3946 0.2555 0.2651

ences are not significant. Analysis showed that those without
the constraints often estimated a non-negative �.

We give below three example (3 ⇥ 3) ground truth �

matrices with small differences inbetween (i.e., swaps in
bold). Corresponding �’s estimated by RSVM-NN are also
shown. Interestingly, the ratios of ATR values in this column
match almost identically to those estimated by RSVM-NN.

(a) example (3⇥ 3) ground truth � matrices
2

4
0.03 0.06 0.12
0.09 0.19 0.42
0.16 0.35 0.90

3

5

2

4
0.90 0.06 0.12
0.09 0.19 0.42
0.16 0.35 0.03

3

5

2

4
0.03 0.06 0.12
0.09 0.19 0.42
0.90 0.35 0.16

3

5

(b) estimated � by RSVM-NN
2

4
1.13 4.55 2.89
3.39 0.34 0.10
6.02 0.05 0.02

3

5

2

4
7.02 0.13 2.63
0.68 0.00 0.08
1.17 0.00 0.00

3

5

2

4
1.81 0.25 0.10
5.39 0.00 0.00
54.08 0.00 0.00

3

5

We repeat our experiments for DocGII with m = 7,
for which we create 10 different (7 ⇥ 7) � matrices. Table
1 (right) shows corresponding results, from which we can
deduce similar conclusions (also see Figure 5 in Appendix
C). Similarly, all proposed algorithms continue to do equally
well, despite the increased parameter size (49 vs. 9), where
RSVM-NN performs the best with mean accuracy around
0.93 (across types and experiments).

The performances of the baselines on DocGII decrease
even further. For RG, the lower accuracy on average (and
the even higher variance) can be attributed to the larger
parameter size for which “guessing” is no longer as easy. As

for PRANKW and INW, the decline in accuracy is likely due
to their homogeneous nature—both of them ignore neighbor
types, which is more of a concern for a network with 7

different types of nodes.
Similar results are observed when we use the NDCG

measure. Figure 3 shows the average NDCG per experi-
ment (across types) for each method. Again, the proposed
algorithms achieve competitive accuracy, where RSVM pro-
duces slightly better results. The baselines are unable to
capture the ranking by the HINSIDE model, where guessing
the parameters is unavailing for various settings (e.g., exper-
iments 1, 7, 10) (similar plot for DocGI omitted for brevity).

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10

Test Accuracy - NDCG (Average)

RSVM-NN GD-I-NN GD-2-NN RSVM-NC GD-I-NC GD-II-NC RG RO INW PRANKW

Figure 3: NDCG test accuracy per experiment on
DocGII (avg’ed across types).

5.2.1 Analysis on AuthGraph. We do not have ground
truth author ranking in AuthGraph, however, as four areas
(DB, DM, IR, and ML) are similar to each other, we consider
a � with equal ATR values to obtain a ranking by HINSIDE.

We first investigate the relation of the HINSIDE scores

0

0.2

0.4

0.6

0.8

1

R
SV

M
-N

N

G
D

-I-
N

N

G
D

-II
-N

N

R
SV

M
-N

C

G
D

-I-
N

C

G
D

-II
-N

C

R
G

R

O

IN
W

PR

AN
KW

R
SV

M
-N

N

G
D

-I-
N

N

G
D

-II
-N

N

R
SV

M
-N

C

G
D

-I-
N

C

G
D

-II
-N

C

R
G

R

O

IN
W

PR

AN
KW

R
SV

M
-N

N

G
D

-I-
N

N

G
D

-II
-N

N

R
SV

M
-N

C

G
D

-I-
N

C

G
D

-II
-N

C

R
G

R

O

IN
W

PR

AN
KW

R
SV

M
-N

N

G
D

-I-
N

N

G
D

-II
-N

N

R
SV

M
-N

C

G
D

-I-
N

C

G
D

-II
-N

C

R
G

R

O

IN
W

PR

AN
KW

Average Type 1 Type 2 Type 3

Box Plots : Test Accuracy - AP@20

q1 min median max q3

Figure 2: AP@20 accuracy of compared methods on DocGI (m = 3).

Table 1: Mean AP@20 across (left) 15 experiments with different � on DocGI with m = 3 types, and (right) 10
experiments with different � on DocGII with m = 7 types.

Method Type 1 Type 2 Type 3 Average Type 1 Type 2 Type 3 Type 4 Type 5 Type 6 Type 7 Average
RSVM-NN 0.9435 0.9577 0.9361 0.9458 0.8367 0.9030 0.9401 0.9639 0.9753 0.9568 0.9362 0.9303
RSVM-NC 0.9207 0.9372 0.9140 0.9240 0.8605 0.9361 0.9701 0.9429 0.8829 0.9330 0.9590 0.9263
GD-I-NN 0.9011 0.8641 0.9192 0.8948 0.7193 0.8830 0.9074 0.9357 0.8482 0.8812 0.8906 0.8665
GD-I-NC 0.8852 0.9358 0.9182 0.9131 0.6999 0.8663 0.9030 0.9015 0.9143 0.8838 0.8710 0.8628
GD-II-NN 0.8975 0.9022 0.8851 0.8949 0.8161 0.8978 0.9574 0.9485 0.9441 0.9239 0.9074 0.9136
GD-II-NC 0.8659 0.8628 0.8602 0.8630 0.7617 0.8896 0.9465 0.9599 0.9557 0.9177 0.9024 0.9048
RG 0.6231 0.8278 0.6712 0.7074 0.5358 0.6483 0.6871 0.6653 0.6796 0.6602 0.6240 0.6429
RO 0.0643 0.1520 0.2342 0.1502 0.0029 0.0109 0.0240 0.0494 0.0357 0.0301 0.0326 0.0265
PRANKW 0.2977 0.3890 0.2169 0.3012 0.0180 0.0739 0.0464 0.0852 0.0745 0.0183 0.1818 0.0711
INW 0.2862 0.5942 0.4183 0.4329 0.2143 0.2808 0.3053 0.1326 0.2725 0.3946 0.2555 0.2651

ences are not significant. Analysis showed that those without
the constraints often estimated a non-negative �.

We give below three example (3 ⇥ 3) ground truth �

matrices with small differences inbetween (i.e., swaps in
bold). Corresponding �’s estimated by RSVM-NN are also
shown. Interestingly, the ratios of ATR values in this column
match almost identically to those estimated by RSVM-NN.

(a) example (3⇥ 3) ground truth � matrices
2

4
0.03 0.06 0.12
0.09 0.19 0.42
0.16 0.35 0.90

3

5

2

4
0.90 0.06 0.12
0.09 0.19 0.42
0.16 0.35 0.03

3

5

2

4
0.03 0.06 0.12
0.09 0.19 0.42
0.90 0.35 0.16

3

5

(b) estimated � by RSVM-NN
2

4
1.13 4.55 2.89
3.39 0.34 0.10
6.02 0.05 0.02

3

5

2

4
7.02 0.13 2.63
0.68 0.00 0.08
1.17 0.00 0.00

3

5

2

4
1.81 0.25 0.10
5.39 0.00 0.00
54.08 0.00 0.00

3

5

We repeat our experiments for DocGII with m = 7,
for which we create 10 different (7 ⇥ 7) � matrices. Table
1 (right) shows corresponding results, from which we can
deduce similar conclusions (also see Figure 5 in Appendix
C). Similarly, all proposed algorithms continue to do equally
well, despite the increased parameter size (49 vs. 9), where
RSVM-NN performs the best with mean accuracy around
0.93 (across types and experiments).

The performances of the baselines on DocGII decrease
even further. For RG, the lower accuracy on average (and
the even higher variance) can be attributed to the larger
parameter size for which “guessing” is no longer as easy. As

for PRANKW and INW, the decline in accuracy is likely due
to their homogeneous nature—both of them ignore neighbor
types, which is more of a concern for a network with 7

different types of nodes.
Similar results are observed when we use the NDCG

measure. Figure 3 shows the average NDCG per experi-
ment (across types) for each method. Again, the proposed
algorithms achieve competitive accuracy, where RSVM pro-
duces slightly better results. The baselines are unable to
capture the ranking by the HINSIDE model, where guessing
the parameters is unavailing for various settings (e.g., exper-
iments 1, 7, 10) (similar plot for DocGI omitted for brevity).

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10

Test Accuracy - NDCG (Average)

RSVM-NN GD-I-NN GD-2-NN RSVM-NC GD-I-NC GD-II-NC RG RO INW PRANKW

Figure 3: NDCG test accuracy per experiment on
DocGII (avg’ed across types).

5.2.1 Analysis on AuthGraph. We do not have ground
truth author ranking in AuthGraph, however, as four areas
(DB, DM, IR, and ML) are similar to each other, we consider
a � with equal ATR values to obtain a ranking by HINSIDE.

We first investigate the relation of the HINSIDE scores

Proposed

0

0.2

0.4

0.6

0.8

1

RS
VM

-N
N

G
D-

I-N
N

G
D-

II-
NN

RS

VM
-N

C
G

D-
I-N

C
G

D-
II-

NC

RG

RO

IN
W

PR

AN
KW

RS
VM

-N
N

G
D-

I-N
N

G
D-

II-
NN

RS

VM
-N

C
G

D-
I-N

C
G

D-
II-

NC

RG

RO

IN
W

PR

AN
KW

RS
VM

-N
N

G
D-

I-N
N

G
D-

II-
NN

RS

VM
-N

C
G

D-
I-N

C
G

D-
II-

NC

RG

RO

IN
W

PR

AN
KW

RS
VM

-N
N

G
D-

I-N
N

G
D-

II-
NN

RS

VM
-N

C
G

D-
I-N

C
G

D-
II-

NC

RG

RO

IN
W

PR

AN
KW

Average Type 1 Type 2 Type 3

Box Plots : Test Accuracy - AP@20

q1 min median max q3

Figure 2: AP@20 accuracy of compared methods on DocGI (m = 3).

Table 1: Mean AP@20 across (left) 15 experiments with different � on DocGI with m = 3 types, and (right) 10
experiments with different � on DocGII with m = 7 types.

Method Type 1 Type 2 Type 3 Average Type 1 Type 2 Type 3 Type 4 Type 5 Type 6 Type 7 Average
RSVM-NN 0.9435 0.9577 0.9361 0.9458 0.8367 0.9030 0.9401 0.9639 0.9753 0.9568 0.9362 0.9303
RSVM-NC 0.9207 0.9372 0.9140 0.9240 0.8605 0.9361 0.9701 0.9429 0.8829 0.9330 0.9590 0.9263
GD-I-NN 0.9011 0.8641 0.9192 0.8948 0.7193 0.8830 0.9074 0.9357 0.8482 0.8812 0.8906 0.8665
GD-I-NC 0.8852 0.9358 0.9182 0.9131 0.6999 0.8663 0.9030 0.9015 0.9143 0.8838 0.8710 0.8628
GD-II-NN 0.8975 0.9022 0.8851 0.8949 0.8161 0.8978 0.9574 0.9485 0.9441 0.9239 0.9074 0.9136
GD-II-NC 0.8659 0.8628 0.8602 0.8630 0.7617 0.8896 0.9465 0.9599 0.9557 0.9177 0.9024 0.9048
RG 0.6231 0.8278 0.6712 0.7074 0.5358 0.6483 0.6871 0.6653 0.6796 0.6602 0.6240 0.6429
RO 0.0643 0.1520 0.2342 0.1502 0.0029 0.0109 0.0240 0.0494 0.0357 0.0301 0.0326 0.0265
PRANKW 0.2977 0.3890 0.2169 0.3012 0.0180 0.0739 0.0464 0.0852 0.0745 0.0183 0.1818 0.0711
INW 0.2862 0.5942 0.4183 0.4329 0.2143 0.2808 0.3053 0.1326 0.2725 0.3946 0.2555 0.2651

ences are not significant. Analysis showed that those without
the constraints often estimated a non-negative �.

We give below three example (3 ⇥ 3) ground truth �

matrices with small differences inbetween (i.e., swaps in
bold). Corresponding �’s estimated by RSVM-NN are also
shown. Interestingly, the ratios of ATR values in this column
match almost identically to those estimated by RSVM-NN.

(a) example (3⇥ 3) ground truth � matrices
2

4
0.03 0.06 0.12
0.09 0.19 0.42
0.16 0.35 0.90

3

5

2

4
0.90 0.06 0.12
0.09 0.19 0.42
0.16 0.35 0.03

3

5

2

4
0.03 0.06 0.12
0.09 0.19 0.42
0.90 0.35 0.16

3

5

(b) estimated � by RSVM-NN
2

4
1.13 4.55 2.89
3.39 0.34 0.10
6.02 0.05 0.02

3

5

2

4
7.02 0.13 2.63
0.68 0.00 0.08
1.17 0.00 0.00

3

5

2

4
1.81 0.25 0.10
5.39 0.00 0.00
54.08 0.00 0.00

3

5

We repeat our experiments for DocGII with m = 7,
for which we create 10 different (7 ⇥ 7) � matrices. Table
1 (right) shows corresponding results, from which we can
deduce similar conclusions (also see Figure 5 in Appendix
C). Similarly, all proposed algorithms continue to do equally
well, despite the increased parameter size (49 vs. 9), where
RSVM-NN performs the best with mean accuracy around
0.93 (across types and experiments).

The performances of the baselines on DocGII decrease
even further. For RG, the lower accuracy on average (and
the even higher variance) can be attributed to the larger
parameter size for which “guessing” is no longer as easy. As

for PRANKW and INW, the decline in accuracy is likely due
to their homogeneous nature—both of them ignore neighbor
types, which is more of a concern for a network with 7

different types of nodes.
Similar results are observed when we use the NDCG

measure. Figure 3 shows the average NDCG per experi-
ment (across types) for each method. Again, the proposed
algorithms achieve competitive accuracy, where RSVM pro-
duces slightly better results. The baselines are unable to
capture the ranking by the HINSIDE model, where guessing
the parameters is unavailing for various settings (e.g., exper-
iments 1, 7, 10) (similar plot for DocGI omitted for brevity).

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10

Test Accuracy - NDCG (Average)

RSVM-NN GD-I-NN GD-2-NN RSVM-NC GD-I-NC GD-II-NC RG RO INW PRANKW

Figure 3: NDCG test accuracy per experiment on
DocGII (avg’ed across types).

5.2.1 Analysis on AuthGraph. We do not have ground
truth author ranking in AuthGraph, however, as four areas
(DB, DM, IR, and ML) are similar to each other, we consider
a � with equal ATR values to obtain a ranking by HINSIDE.

We first investigate the relation of the HINSIDE scores

0

0.2

0.4

0.6

0.8

1

R
SV

M
-N

N

G
D

-I-
N

N

G
D

-II
-N

N

R
SV

M
-N

C

G
D

-I-
N

C

G
D

-II
-N

C

R
G

R

O

IN
W

PR

AN
KW

R
SV

M
-N

N

G
D

-I-
N

N

G
D

-II
-N

N

R
SV

M
-N

C

G
D

-I-
N

C

G
D

-II
-N

C

R
G

R

O

IN
W

PR

AN
KW

R
SV

M
-N

N

G
D

-I-
N

N

G
D

-II
-N

N

R
SV

M
-N

C

G
D

-I-
N

C

G
D

-II
-N

C

R
G

R

O

IN
W

PR

AN
KW

R
SV

M
-N

N

G
D

-I-
N

N

G
D

-II
-N

N

R
SV

M
-N

C

G
D

-I-
N

C

G
D

-II
-N

C

R
G

R

O

IN
W

PR

AN
KW

Average Type 1 Type 2 Type 3

Box Plots : Test Accuracy - AP@20

q1 min median max q3

Figure 2: AP@20 accuracy of compared methods on DocGI (m = 3).

Table 1: Mean AP@20 across (left) 15 experiments with different � on DocGI with m = 3 types, and (right) 10
experiments with different � on DocGII with m = 7 types.

Method Type 1 Type 2 Type 3 Average Type 1 Type 2 Type 3 Type 4 Type 5 Type 6 Type 7 Average
RSVM-NN 0.9435 0.9577 0.9361 0.9458 0.8367 0.9030 0.9401 0.9639 0.9753 0.9568 0.9362 0.9303
RSVM-NC 0.9207 0.9372 0.9140 0.9240 0.8605 0.9361 0.9701 0.9429 0.8829 0.9330 0.9590 0.9263
GD-I-NN 0.9011 0.8641 0.9192 0.8948 0.7193 0.8830 0.9074 0.9357 0.8482 0.8812 0.8906 0.8665
GD-I-NC 0.8852 0.9358 0.9182 0.9131 0.6999 0.8663 0.9030 0.9015 0.9143 0.8838 0.8710 0.8628
GD-II-NN 0.8975 0.9022 0.8851 0.8949 0.8161 0.8978 0.9574 0.9485 0.9441 0.9239 0.9074 0.9136
GD-II-NC 0.8659 0.8628 0.8602 0.8630 0.7617 0.8896 0.9465 0.9599 0.9557 0.9177 0.9024 0.9048
RG 0.6231 0.8278 0.6712 0.7074 0.5358 0.6483 0.6871 0.6653 0.6796 0.6602 0.6240 0.6429
RO 0.0643 0.1520 0.2342 0.1502 0.0029 0.0109 0.0240 0.0494 0.0357 0.0301 0.0326 0.0265
PRANKW 0.2977 0.3890 0.2169 0.3012 0.0180 0.0739 0.0464 0.0852 0.0745 0.0183 0.1818 0.0711
INW 0.2862 0.5942 0.4183 0.4329 0.2143 0.2808 0.3053 0.1326 0.2725 0.3946 0.2555 0.2651

ences are not significant. Analysis showed that those without
the constraints often estimated a non-negative �.

We give below three example (3 ⇥ 3) ground truth �

matrices with small differences inbetween (i.e., swaps in
bold). Corresponding �’s estimated by RSVM-NN are also
shown. Interestingly, the ratios of ATR values in this column
match almost identically to those estimated by RSVM-NN.

(a) example (3⇥ 3) ground truth � matrices
2

4
0.03 0.06 0.12
0.09 0.19 0.42
0.16 0.35 0.90

3

5

2

4
0.90 0.06 0.12
0.09 0.19 0.42
0.16 0.35 0.03

3

5

2

4
0.03 0.06 0.12
0.09 0.19 0.42
0.90 0.35 0.16

3

5

(b) estimated � by RSVM-NN
2

4
1.13 4.55 2.89
3.39 0.34 0.10
6.02 0.05 0.02

3

5

2

4
7.02 0.13 2.63
0.68 0.00 0.08
1.17 0.00 0.00

3

5

2

4
1.81 0.25 0.10
5.39 0.00 0.00
54.08 0.00 0.00

3

5

We repeat our experiments for DocGII with m = 7,
for which we create 10 different (7 ⇥ 7) � matrices. Table
1 (right) shows corresponding results, from which we can
deduce similar conclusions (also see Figure 5 in Appendix
C). Similarly, all proposed algorithms continue to do equally
well, despite the increased parameter size (49 vs. 9), where
RSVM-NN performs the best with mean accuracy around
0.93 (across types and experiments).

The performances of the baselines on DocGII decrease
even further. For RG, the lower accuracy on average (and
the even higher variance) can be attributed to the larger
parameter size for which “guessing” is no longer as easy. As

for PRANKW and INW, the decline in accuracy is likely due
to their homogeneous nature—both of them ignore neighbor
types, which is more of a concern for a network with 7

different types of nodes.
Similar results are observed when we use the NDCG

measure. Figure 3 shows the average NDCG per experi-
ment (across types) for each method. Again, the proposed
algorithms achieve competitive accuracy, where RSVM pro-
duces slightly better results. The baselines are unable to
capture the ranking by the HINSIDE model, where guessing
the parameters is unavailing for various settings (e.g., exper-
iments 1, 7, 10) (similar plot for DocGI omitted for brevity).

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10

Test Accuracy - NDCG (Average)

RSVM-NN GD-I-NN GD-2-NN RSVM-NC GD-I-NC GD-II-NC RG RO INW PRANKW

Figure 3: NDCG test accuracy per experiment on
DocGII (avg’ed across types).

5.2.1 Analysis on AuthGraph. We do not have ground
truth author ranking in AuthGraph, however, as four areas
(DB, DM, IR, and ML) are similar to each other, we consider
a � with equal ATR values to obtain a ranking by HINSIDE.

We first investigate the relation of the HINSIDE scores

22

G2 Test Accuracy - AP@20

0

0.2

0.4

0.6

0.8

1

R
S

V
M

-N
N

G

D
-I-

N
N

G

D
-II

-N
N

R

S
V

M
-N

C

G
D

-I-
N

C

G
D

-II
-N

C

R
G

R

O

IN
W

P

R
A

N
K

W

R
S

V
M

-N
N

G

D
-I-

N
N

G

D
-II

-N
N

R

S
V

M
-N

C

G
D

-I-
N

C

G
D

-II
-N

C

R
G

R

O

IN
W

P

R
A

N
K

W

R
S

V
M

-N
N

G

D
-I-

N
N

G

D
-II

-N
N

R

S
V

M
-N

C

G
D

-I-
N

C

G
D

-II
-N

C

R
G

R

O

IN
W

P

R
A

N
K

W

R
S

V
M

-N
N

G

D
-I-

N
N

G

D
-II

-N
N

R

S
V

M
-N

C

G
D

-I-
N

C

G
D

-II
-N

C

R
G

R

O

IN
W

P

R
A

N
K

W

Average Type 1 Type 2 Type 3

Box Plots : Test Accuracy - AP@20

q1 min median max q3

Figure 2: AP@20 accuracy of compared methods on DocGI (m = 3).

Table 1: Mean AP@20 across (left) 15 experiments with different � on DocGI with m = 3 types, and (right) 10
experiments with different � on DocGII with m = 7 types.

Method Type 1 Type 2 Type 3 Average Type 1 Type 2 Type 3 Type 4 Type 5 Type 6 Type 7 Average
RSVM-NN 0.9435 0.9577 0.9361 0.9458 0.8367 0.9030 0.9401 0.9639 0.9753 0.9568 0.9362 0.9303
RSVM-NC 0.9207 0.9372 0.9140 0.9240 0.8605 0.9361 0.9701 0.9429 0.8829 0.9330 0.9590 0.9263
GD-I-NN 0.9011 0.8641 0.9192 0.8948 0.7193 0.8830 0.9074 0.9357 0.8482 0.8812 0.8906 0.8665
GD-I-NC 0.8852 0.9358 0.9182 0.9131 0.6999 0.8663 0.9030 0.9015 0.9143 0.8838 0.8710 0.8628
GD-II-NN 0.8975 0.9022 0.8851 0.8949 0.8161 0.8978 0.9574 0.9485 0.9441 0.9239 0.9074 0.9136
GD-II-NC 0.8659 0.8628 0.8602 0.8630 0.7617 0.8896 0.9465 0.9599 0.9557 0.9177 0.9024 0.9048
RG 0.6231 0.8278 0.6712 0.7074 0.5358 0.6483 0.6871 0.6653 0.6796 0.6602 0.6240 0.6429
RO 0.0643 0.1520 0.2342 0.1502 0.0029 0.0109 0.0240 0.0494 0.0357 0.0301 0.0326 0.0265
PRANKW 0.2977 0.3890 0.2169 0.3012 0.0180 0.0739 0.0464 0.0852 0.0745 0.0183 0.1818 0.0711
INW 0.2862 0.5942 0.4183 0.4329 0.2143 0.2808 0.3053 0.1326 0.2725 0.3946 0.2555 0.2651

ences are not significant. Analysis showed that those without
the constraints often estimated a non-negative �.

We give below three example (3 ⇥ 3) ground truth �

matrices with small differences inbetween (i.e., swaps in
bold). Corresponding �’s estimated by RSVM-NN are also
shown. Interestingly, the ratios of ATR values in this column
match almost identically to those estimated by RSVM-NN.

(a) example (3⇥ 3) ground truth � matrices
2

4
0.03 0.06 0.12
0.09 0.19 0.42
0.16 0.35 0.90

3

5

2

4
0.90 0.06 0.12
0.09 0.19 0.42
0.16 0.35 0.03

3

5

2

4
0.03 0.06 0.12
0.09 0.19 0.42
0.90 0.35 0.16

3

5

(b) estimated � by RSVM-NN
2

4
1.13 4.55 2.89
3.39 0.34 0.10
6.02 0.05 0.02

3

5

2

4
7.02 0.13 2.63
0.68 0.00 0.08
1.17 0.00 0.00

3

5

2

4
1.81 0.25 0.10
5.39 0.00 0.00
54.08 0.00 0.00

3

5

We repeat our experiments for DocGII with m = 7,
for which we create 10 different (7 ⇥ 7) � matrices. Table
1 (right) shows corresponding results, from which we can
deduce similar conclusions (also see Figure 5 in Appendix
C). Similarly, all proposed algorithms continue to do equally
well, despite the increased parameter size (49 vs. 9), where
RSVM-NN performs the best with mean accuracy around
0.93 (across types and experiments).

The performances of the baselines on DocGII decrease
even further. For RG, the lower accuracy on average (and
the even higher variance) can be attributed to the larger
parameter size for which “guessing” is no longer as easy. As

for PRANKW and INW, the decline in accuracy is likely due
to their homogeneous nature—both of them ignore neighbor
types, which is more of a concern for a network with 7

different types of nodes.
Similar results are observed when we use the NDCG

measure. Figure 3 shows the average NDCG per experi-
ment (across types) for each method. Again, the proposed
algorithms achieve competitive accuracy, where RSVM pro-
duces slightly better results. The baselines are unable to
capture the ranking by the HINSIDE model, where guessing
the parameters is unavailing for various settings (e.g., exper-
iments 1, 7, 10) (similar plot for DocGI omitted for brevity).

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10

Test Accuracy - NDCG (Average)

RSVM-NN GD-I-NN GD-2-NN RSVM-NC GD-I-NC GD-II-NC RG RO INW PRANKW

Figure 3: NDCG test accuracy per experiment on
DocGII (avg’ed across types).

5.2.1 Analysis on AuthGraph. We do not have ground
truth author ranking in AuthGraph, however, as four areas
(DB, DM, IR, and ML) are similar to each other, we consider
a � with equal ATR values to obtain a ranking by HINSIDE.

We first investigate the relation of the HINSIDE scores

0

0.2

0.4

0.6

0.8

1

R
S

V
M

-N
N

G

D
-I-

N
N

G

D
-II

-N
N

R

S
V

M
-N

C

G
D

-I-
N

C

G
D

-II
-N

C

R
G

R

O

IN
W

P

R
A

N
K

W

R
S

V
M

-N
N

G

D
-I-

N
N

G

D
-II

-N
N

R

S
V

M
-N

C

G
D

-I-
N

C

G
D

-II
-N

C

R
G

R

O

IN
W

P

R
A

N
K

W

R
S

V
M

-N
N

G

D
-I-

N
N

G

D
-II

-N
N

R

S
V

M
-N

C

G
D

-I-
N

C

G
D

-II
-N

C

R
G

R

O

IN
W

P

R
A

N
K

W

R
S

V
M

-N
N

G

D
-I-

N
N

G

D
-II

-N
N

R

S
V

M
-N

C

G
D

-I-
N

C

G
D

-II
-N

C

R
G

R

O

IN
W

P

R
A

N
K

W

Average Type 1 Type 2 Type 3

Box Plots : Test Accuracy - AP@20

q1 min median max q3

Figure 2: AP@20 accuracy of compared methods on DocGI (m = 3).

Table 1: Mean AP@20 across (left) 15 experiments with different � on DocGI with m = 3 types, and (right) 10
experiments with different � on DocGII with m = 7 types.

Method Type 1 Type 2 Type 3 Average Type 1 Type 2 Type 3 Type 4 Type 5 Type 6 Type 7 Average
RSVM-NN 0.9435 0.9577 0.9361 0.9458 0.8367 0.9030 0.9401 0.9639 0.9753 0.9568 0.9362 0.9303
RSVM-NC 0.9207 0.9372 0.9140 0.9240 0.8605 0.9361 0.9701 0.9429 0.8829 0.9330 0.9590 0.9263
GD-I-NN 0.9011 0.8641 0.9192 0.8948 0.7193 0.8830 0.9074 0.9357 0.8482 0.8812 0.8906 0.8665
GD-I-NC 0.8852 0.9358 0.9182 0.9131 0.6999 0.8663 0.9030 0.9015 0.9143 0.8838 0.8710 0.8628
GD-II-NN 0.8975 0.9022 0.8851 0.8949 0.8161 0.8978 0.9574 0.9485 0.9441 0.9239 0.9074 0.9136
GD-II-NC 0.8659 0.8628 0.8602 0.8630 0.7617 0.8896 0.9465 0.9599 0.9557 0.9177 0.9024 0.9048
RG 0.6231 0.8278 0.6712 0.7074 0.5358 0.6483 0.6871 0.6653 0.6796 0.6602 0.6240 0.6429
RO 0.0643 0.1520 0.2342 0.1502 0.0029 0.0109 0.0240 0.0494 0.0357 0.0301 0.0326 0.0265
PRANKW 0.2977 0.3890 0.2169 0.3012 0.0180 0.0739 0.0464 0.0852 0.0745 0.0183 0.1818 0.0711
INW 0.2862 0.5942 0.4183 0.4329 0.2143 0.2808 0.3053 0.1326 0.2725 0.3946 0.2555 0.2651

ences are not significant. Analysis showed that those without
the constraints often estimated a non-negative �.

We give below three example (3 ⇥ 3) ground truth �

matrices with small differences inbetween (i.e., swaps in
bold). Corresponding �’s estimated by RSVM-NN are also
shown. Interestingly, the ratios of ATR values in this column
match almost identically to those estimated by RSVM-NN.

(a) example (3⇥ 3) ground truth � matrices
2

4
0.03 0.06 0.12
0.09 0.19 0.42
0.16 0.35 0.90

3

5

2

4
0.90 0.06 0.12
0.09 0.19 0.42
0.16 0.35 0.03

3

5

2

4
0.03 0.06 0.12
0.09 0.19 0.42
0.90 0.35 0.16

3

5

(b) estimated � by RSVM-NN
2

4
1.13 4.55 2.89
3.39 0.34 0.10
6.02 0.05 0.02

3

5

2

4
7.02 0.13 2.63
0.68 0.00 0.08
1.17 0.00 0.00

3

5

2

4
1.81 0.25 0.10
5.39 0.00 0.00
54.08 0.00 0.00

3

5

We repeat our experiments for DocGII with m = 7,
for which we create 10 different (7 ⇥ 7) � matrices. Table
1 (right) shows corresponding results, from which we can
deduce similar conclusions (also see Figure 5 in Appendix
C). Similarly, all proposed algorithms continue to do equally
well, despite the increased parameter size (49 vs. 9), where
RSVM-NN performs the best with mean accuracy around
0.93 (across types and experiments).

The performances of the baselines on DocGII decrease
even further. For RG, the lower accuracy on average (and
the even higher variance) can be attributed to the larger
parameter size for which “guessing” is no longer as easy. As

for PRANKW and INW, the decline in accuracy is likely due
to their homogeneous nature—both of them ignore neighbor
types, which is more of a concern for a network with 7

different types of nodes.
Similar results are observed when we use the NDCG

measure. Figure 3 shows the average NDCG per experi-
ment (across types) for each method. Again, the proposed
algorithms achieve competitive accuracy, where RSVM pro-
duces slightly better results. The baselines are unable to
capture the ranking by the HINSIDE model, where guessing
the parameters is unavailing for various settings (e.g., exper-
iments 1, 7, 10) (similar plot for DocGI omitted for brevity).

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10

Test Accuracy - NDCG (Average)

RSVM-NN GD-I-NN GD-2-NN RSVM-NC GD-I-NC GD-II-NC RG RO INW PRANKW

Figure 3: NDCG test accuracy per experiment on
DocGII (avg’ed across types).

5.2.1 Analysis on AuthGraph. We do not have ground
truth author ranking in AuthGraph, however, as four areas
(DB, DM, IR, and ML) are similar to each other, we consider
a � with equal ATR values to obtain a ranking by HINSIDE.

We first investigate the relation of the HINSIDE scores

§  A: RankSVM with non-negative (-NN) ATR
constraints works well

23

Experiments II
§  Q2: How well does HINside reflect real world?
§  Dataset: author graph of collaborations from

m=4 areas publicly available at
http://web.engr.illinois.edu/~mingji1/DBLP_four_area.zip

§  Crawled institution (location) for n= ~11K authors
q  Locations from 72 unique countries, 6 continents

§  No agreed-upon ranking of researchers
(even within the same area)

§  Compare/contrast HINside, Pagerank, h-index
q  Pagerank: no location, just co-authorship
q  h-index: not co-authorship but citations

24

HINside, Pagerank, h-index

Figure 4: HINSIDE score vs. (a) Pagerank score and (b)
h-index of 6619 researchers (dots) in AuthGraph.

with the Pagerank scores on the same graph as well as
with the h-index of the researchers, as shown in Figure
4. Roughly speaking, there exists a positive correlation
between the measures. Average correlation coefficient across
types between HINSIDE and h-index is 0.32, and between
HINSIDE and Pagerank it is 0.56. We expect the models
to differ; Pagerank solely uses relational information while
h-index is based on citation counts (and not collaborations).

We highlight a few example cases in the following table,
for which the models differ significantly. The last three
columns respectively give the h-index, and the rank order
of researchers within their area by Pagerank and HINSIDE.

Name Area Institution h P HIN
Moshe Vardi DB Rice U. 87 165 17
Michael R. Lyu IR CUHK 67 83 1
Andreas Krause ML ETH Zurich 45 291 4

M. Vardi is ranked high by HINSIDE not only because
he has high-rank neighbors such as J. Ullman and R. Fagin
from the same area, but also due to collaborators across
the world, especially several high-rank ones in Italy. The
same hold true for M. R. Lyu in Hong Kong. Interestingly,
A. Krause is ranked quite high by HINSIDE—One reason
is competition: he has high-rank co-authors from CMU,
UW, and UC Berkeley. The other reason is distance: all
his in-links cover over 4000 miles. These links are before
Krause moved from US to Switzerland. While this is a
data temporality issue, it is interesting to see HINSIDE’s
effectiveness in capturing this information.

6 Conclusion
We considered the ranking problem in heterogeneous graph-
sand proposed HINSIDE, a new model that not only accounts
for interactions between different node types, but also uses
geo-location information of nodes in a unique way to incor-
porate (i) the distance of the edges, as well as (ii) the com-
petition induced by location. This formulation is motivated
by and generalizes from its application to medical referral
networks. We derived the matrix form and a closed form so-
lution for the proposed model. HINSIDE is parameterized
by the authority transfer rates between node types. Capi-
talizing on its closed form, we proposed various estimation
algorithms that utilize different objective functions. Exper-
iments on samples of real-world networks demonstrated the

effectiveness of our proposed algorithms, and that our model
captures more than the network structure that existing mod-
els solely rely on.

We share all code and data at https://github.com/

abhimm/HINSIDE, for reproducibility and future research.

Acknowledgments: This research is supported in part by
NSF CAREER 1452425 and IIS 1408287, ARO YIP Con-
tract W911NF-14-1-0029, DARPA TCP Contract FA8650-
15-C-7561, and Facebook and PNC Bank Faculty Gifts.
Conclusions expressed in this material are of the authors and
do not necessarily reflect the views of the funding parties.

References[1] A. Balmin, V. Hristidis, and Y. Papakonstantinou. Objectrank:
Authority-based keyword search in databases. In VLDB, 2004.

[2] S. Brin and L. Page. The anatomy of a large-scale hypertextual
web search engine. In WWW, 1998.

[3] C. Burges, T. Shaked, E. Renshaw, A. Lazier, M. Deeds,
N. Hamilton, and G. Hullender. Learning to rank using
gradient descent. In ICML, pages 89–96, 2005.

[4] D. Cossock and T. Zhang. Subset ranking using regression. In
COLT, pages 605–619, 2006.

[5] R. Herbrich, T. Graepel, and K. Obermayer. Large margin
rank boundaries for ordinal regression. In Advances in Large
Margin Classifiers, pages 115–132. MIT Press, 2000.

[6] G. Jeh and J. Widom. Simrank: A measure of structural-
context similarity. In KDD, pages 538–543, 2002.

[7] G. Jeh and J. Widom. Scaling personalized web search. In
WWW, pages 271–279, 2003.

[8] J. M. Kleinberg. Authoritative sources in a hyperlinked envi-
ronment. Journal of the ACM, 46(5):604–632, 1999.

[9] Z. Nie, Y. Zhang, J.-R. Wen, and W.-Y. Ma. Object-level
ranking: bringing order to web objects. In WWW, 2005.

[10] S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt-
Thieme. BPR: Bayesian personalized ranking from implicit
feedback. In UAI, pages 452–461, 2009.

[11] R. Y. Rubinstein and D. P. Kroese. The Cross Entropy
Method: A Unified Approach To Combinatorial Optimization.
Springer-Verlag New York, Inc., 2004.

[12] Y. Saad. Numerical Methods for Large Eigenvalue Problems.
Manchester University Press, UK, 1992.

[13] Y. Sun, J. Han, X. Yan, P. S. Yu, and T. Wu. Pathsim: Meta
path-based top-k similarity search in heterogeneous informa-
tion networks. PVLDB, 4(11):992–1003, 2011.

[14] Y. Sun, J. Han, P. Zhao, Z. Yin, H. Cheng, and T. Wu.
Rankclus: integrating clustering with ranking for heteroge-
neous information network analysis. In EDBT, 2009.

[15] Y. Sun, Y. Yu, and J. Han. Ranking-based clustering of het-
erogeneous information networks with star network schema.
In KDD, pages 797–806. ACM, 2009.

[16] R. von Mises and H. Pollaczek-Geiringer. Praktische Ver-
fahren der Gleichungsauflösung. VDI-Verlag.

[17] S. Wasserman and K. Faust. Social network analysis: Meth-
ods and Applications. Cambridge Univ Pr, 1994.

[18] Y. Yue, T. Finley, F. Radlinski, and T. Joachims. A support
vector method for optimizing average precision. In SIGIR,
pages 271–278, 2007.

Figure 4: HINSIDE score vs. (a) Pagerank score and (b)
h-index of 6619 researchers (dots) in AuthGraph.

with the Pagerank scores on the same graph as well as
with the h-index of the researchers, as shown in Figure
4. Roughly speaking, there exists a positive correlation
between the measures. Average correlation coefficient across
types between HINSIDE and h-index is 0.32, and between
HINSIDE and Pagerank it is 0.56. We expect the models
to differ; Pagerank solely uses relational information while
h-index is based on citation counts (and not collaborations).

We highlight a few example cases in the following table,
for which the models differ significantly. The last three
columns respectively give the h-index, and the rank order
of researchers within their area by Pagerank and HINSIDE.

Name Area Institution h P HIN
Moshe Vardi DB Rice U. 87 165 17
Michael R. Lyu IR CUHK 67 83 1
Andreas Krause ML ETH Zurich 45 291 4

M. Vardi is ranked high by HINSIDE not only because
he has high-rank neighbors such as J. Ullman and R. Fagin
from the same area, but also due to collaborators across
the world, especially several high-rank ones in Italy. The
same hold true for M. R. Lyu in Hong Kong. Interestingly,
A. Krause is ranked quite high by HINSIDE—One reason
is competition: he has high-rank co-authors from CMU,
UW, and UC Berkeley. The other reason is distance: all
his in-links cover over 4000 miles. These links are before
Krause moved from US to Switzerland. While this is a
data temporality issue, it is interesting to see HINSIDE’s
effectiveness in capturing this information.

6 Conclusion
We considered the ranking problem in heterogeneous graph-
sand proposed HINSIDE, a new model that not only accounts
for interactions between different node types, but also uses
geo-location information of nodes in a unique way to incor-
porate (i) the distance of the edges, as well as (ii) the com-
petition induced by location. This formulation is motivated
by and generalizes from its application to medical referral
networks. We derived the matrix form and a closed form so-
lution for the proposed model. HINSIDE is parameterized
by the authority transfer rates between node types. Capi-
talizing on its closed form, we proposed various estimation
algorithms that utilize different objective functions. Exper-
iments on samples of real-world networks demonstrated the

effectiveness of our proposed algorithms, and that our model
captures more than the network structure that existing mod-
els solely rely on.

We share all code and data at https://github.com/

abhimm/HINSIDE, for reproducibility and future research.

Acknowledgments: This research is supported in part by
NSF CAREER 1452425 and IIS 1408287, ARO YIP Con-
tract W911NF-14-1-0029, DARPA TCP Contract FA8650-
15-C-7561, and Facebook and PNC Bank Faculty Gifts.
Conclusions expressed in this material are of the authors and
do not necessarily reflect the views of the funding parties.

References[1] A. Balmin, V. Hristidis, and Y. Papakonstantinou. Objectrank:
Authority-based keyword search in databases. In VLDB, 2004.

[2] S. Brin and L. Page. The anatomy of a large-scale hypertextual
web search engine. In WWW, 1998.

[3] C. Burges, T. Shaked, E. Renshaw, A. Lazier, M. Deeds,
N. Hamilton, and G. Hullender. Learning to rank using
gradient descent. In ICML, pages 89–96, 2005.

[4] D. Cossock and T. Zhang. Subset ranking using regression. In
COLT, pages 605–619, 2006.

[5] R. Herbrich, T. Graepel, and K. Obermayer. Large margin
rank boundaries for ordinal regression. In Advances in Large
Margin Classifiers, pages 115–132. MIT Press, 2000.

[6] G. Jeh and J. Widom. Simrank: A measure of structural-
context similarity. In KDD, pages 538–543, 2002.

[7] G. Jeh and J. Widom. Scaling personalized web search. In
WWW, pages 271–279, 2003.

[8] J. M. Kleinberg. Authoritative sources in a hyperlinked envi-
ronment. Journal of the ACM, 46(5):604–632, 1999.

[9] Z. Nie, Y. Zhang, J.-R. Wen, and W.-Y. Ma. Object-level
ranking: bringing order to web objects. In WWW, 2005.

[10] S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt-
Thieme. BPR: Bayesian personalized ranking from implicit
feedback. In UAI, pages 452–461, 2009.

[11] R. Y. Rubinstein and D. P. Kroese. The Cross Entropy
Method: A Unified Approach To Combinatorial Optimization.
Springer-Verlag New York, Inc., 2004.

[12] Y. Saad. Numerical Methods for Large Eigenvalue Problems.
Manchester University Press, UK, 1992.

[13] Y. Sun, J. Han, X. Yan, P. S. Yu, and T. Wu. Pathsim: Meta
path-based top-k similarity search in heterogeneous informa-
tion networks. PVLDB, 4(11):992–1003, 2011.

[14] Y. Sun, J. Han, P. Zhao, Z. Yin, H. Cheng, and T. Wu.
Rankclus: integrating clustering with ranking for heteroge-
neous information network analysis. In EDBT, 2009.

[15] Y. Sun, Y. Yu, and J. Han. Ranking-based clustering of het-
erogeneous information networks with star network schema.
In KDD, pages 797–806. ACM, 2009.

[16] R. von Mises and H. Pollaczek-Geiringer. Praktische Ver-
fahren der Gleichungsauflösung. VDI-Verlag.

[17] S. Wasserman and K. Faust. Social network analysis: Meth-
ods and Applications. Cambridge Univ Pr, 1994.

[18] Y. Yue, T. Finley, F. Radlinski, and T. Joachims. A support
vector method for optimizing average precision. In SIGIR,
pages 271–278, 2007.

Figure 4: HINSIDE score vs. (a) Pagerank score and (b)
h-index of 6619 researchers (dots) in AuthGraph.

with the Pagerank scores on the same graph as well as
with the h-index of the researchers, as shown in Figure
4. Roughly speaking, there exists a positive correlation
between the measures. Average correlation coefficient across
types between HINSIDE and h-index is 0.32, and between
HINSIDE and Pagerank it is 0.56. We expect the models
to differ; Pagerank solely uses relational information while
h-index is based on citation counts (and not collaborations).

We highlight a few example cases in the following table,
for which the models differ significantly. The last three
columns respectively give the h-index, and the rank order
of researchers within their area by Pagerank and HINSIDE.

Name Area Institution h P HIN
Moshe Vardi DB Rice U. 87 165 17
Michael R. Lyu IR CUHK 67 83 1
Andreas Krause ML ETH Zurich 45 291 4

M. Vardi is ranked high by HINSIDE not only because
he has high-rank neighbors such as J. Ullman and R. Fagin
from the same area, but also due to collaborators across
the world, especially several high-rank ones in Italy. The
same hold true for M. R. Lyu in Hong Kong. Interestingly,
A. Krause is ranked quite high by HINSIDE—One reason
is competition: he has high-rank co-authors from CMU,
UW, and UC Berkeley. The other reason is distance: all
his in-links cover over 4000 miles. These links are before
Krause moved from US to Switzerland. While this is a
data temporality issue, it is interesting to see HINSIDE’s
effectiveness in capturing this information.

6 Conclusion
We considered the ranking problem in heterogeneous graph-
sand proposed HINSIDE, a new model that not only accounts
for interactions between different node types, but also uses
geo-location information of nodes in a unique way to incor-
porate (i) the distance of the edges, as well as (ii) the com-
petition induced by location. This formulation is motivated
by and generalizes from its application to medical referral
networks. We derived the matrix form and a closed form so-
lution for the proposed model. HINSIDE is parameterized
by the authority transfer rates between node types. Capi-
talizing on its closed form, we proposed various estimation
algorithms that utilize different objective functions. Exper-
iments on samples of real-world networks demonstrated the

effectiveness of our proposed algorithms, and that our model
captures more than the network structure that existing mod-
els solely rely on.

We share all code and data at https://github.com/

abhimm/HINSIDE, for reproducibility and future research.

Acknowledgments: This research is supported in part by
NSF CAREER 1452425 and IIS 1408287, ARO YIP Con-
tract W911NF-14-1-0029, DARPA TCP Contract FA8650-
15-C-7561, and Facebook and PNC Bank Faculty Gifts.
Conclusions expressed in this material are of the authors and
do not necessarily reflect the views of the funding parties.

References[1] A. Balmin, V. Hristidis, and Y. Papakonstantinou. Objectrank:
Authority-based keyword search in databases. In VLDB, 2004.

[2] S. Brin and L. Page. The anatomy of a large-scale hypertextual
web search engine. In WWW, 1998.

[3] C. Burges, T. Shaked, E. Renshaw, A. Lazier, M. Deeds,
N. Hamilton, and G. Hullender. Learning to rank using
gradient descent. In ICML, pages 89–96, 2005.

[4] D. Cossock and T. Zhang. Subset ranking using regression. In
COLT, pages 605–619, 2006.

[5] R. Herbrich, T. Graepel, and K. Obermayer. Large margin
rank boundaries for ordinal regression. In Advances in Large
Margin Classifiers, pages 115–132. MIT Press, 2000.

[6] G. Jeh and J. Widom. Simrank: A measure of structural-
context similarity. In KDD, pages 538–543, 2002.

[7] G. Jeh and J. Widom. Scaling personalized web search. In
WWW, pages 271–279, 2003.

[8] J. M. Kleinberg. Authoritative sources in a hyperlinked envi-
ronment. Journal of the ACM, 46(5):604–632, 1999.

[9] Z. Nie, Y. Zhang, J.-R. Wen, and W.-Y. Ma. Object-level
ranking: bringing order to web objects. In WWW, 2005.

[10] S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt-
Thieme. BPR: Bayesian personalized ranking from implicit
feedback. In UAI, pages 452–461, 2009.

[11] R. Y. Rubinstein and D. P. Kroese. The Cross Entropy
Method: A Unified Approach To Combinatorial Optimization.
Springer-Verlag New York, Inc., 2004.

[12] Y. Saad. Numerical Methods for Large Eigenvalue Problems.
Manchester University Press, UK, 1992.

[13] Y. Sun, J. Han, X. Yan, P. S. Yu, and T. Wu. Pathsim: Meta
path-based top-k similarity search in heterogeneous informa-
tion networks. PVLDB, 4(11):992–1003, 2011.

[14] Y. Sun, J. Han, P. Zhao, Z. Yin, H. Cheng, and T. Wu.
Rankclus: integrating clustering with ranking for heteroge-
neous information network analysis. In EDBT, 2009.

[15] Y. Sun, Y. Yu, and J. Han. Ranking-based clustering of het-
erogeneous information networks with star network schema.
In KDD, pages 797–806. ACM, 2009.

[16] R. von Mises and H. Pollaczek-Geiringer. Praktische Ver-
fahren der Gleichungsauflösung. VDI-Verlag.

[17] S. Wasserman and K. Faust. Social network analysis: Meth-
ods and Applications. Cambridge Univ Pr, 1994.

[18] Y. Yue, T. Finley, F. Radlinski, and T. Joachims. A support
vector method for optimizing average precision. In SIGIR,
pages 271–278, 2007.

Example cases for which model differ significantly:

25

Summary
Goal: ranking nodes in directed heterogeneous
information networks (HIN) with geo-location
§  Designed HINside model, incorporating

q  (1) relation strength, (2) pairwise distance, (3)
neighbors’ authority scores, (4) authority transfer
rates (ATR) between different types of nodes, and
(5) competition due to co-location

q  Location info dictates (2) and (5)
q  Closed form formula

§  Derived parameter (ATR) estimation algorithms
q  HINside lends itself to learning the ATR via learning-

to-rank objectives
q  Proposed and studied two: (i) RankSVM based, and

(2) pairwise rank-ordered log likelihood

26

Thanks !

Paper, Code, Data, Contact info:
www.cs.cmu.edu/~lakoglu

https://github.com/abhimm/HINSIDE

