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ABSTRACT
Time-limited promotions that exploit consumers’ sense of urgency
to boost sales account for billions of dollars in consumer spending
each year. However, it is challenging to discover the right tim-
ing and duration of a promotion to increase its chances of being
redeemed. In this work, we consider the problem of delivering
time-limited discount coupons, where we partner with a large na-
tional bank functioning as a commission-based third-party coupon
provider. Speci�cally, we use large-scale anonymized transaction
records to model consumer spending and forecast future purchases,
based on which we generate data-driven, personalized coupons.
Our proposed model RUSH! (1) predicts both the time and category
of the next event; (2) captures correlations between purchases in
di�erent categories (such as shopping triggering dining purchases);
(3) incorporates temporal dynamics of purchase behavior (such
as increased spending on weekends); (4) is composed of additive
factors that are easily interpretable; and �nally (5) scales linearly
to millions of transactions. We design a cost-bene�t framework
that facilitates systematic evaluation in terms of our application,
and show that RUSH! provides higher expected value than various
baselines that do not jointly model time and category information.
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1 INTRODUCTION
321 billion coupons were delivered to consumers in 2015 [17], and
draw in billions of dollars in spending every year [5]. Digital
coupons transmi�ed via email or smartphones remain nascent,
comprising only 0.6% of the total volume delivered, despite the fact
that coupons delivered digitally were found to be over 30 times more
likely to be redeemed than traditional paper alternatives [5]. As
such, opportunities to further improve redemption rates via data-
driven personalization and targeting appear plentiful, but remain
untapped. �is is primarily due to the barriers in information-
sharing between competing businesses that limit the construction
of complete consumer pro�les.

In this work, we tap into the power of comprehensive and large-
scale transaction data in order to promote data-driven, personalized
discount coupons to users by forecasting their future purchases based
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on their spending history.1 To do so, we partner with a national bank
that provides us with a large, anonymized database that comprises
transactions from∼200,000 customers over a period from September
2013 to January 2016. Transactions include timestamps, merchant
category codes, and dollar amounts. Building on the transaction
history, we design a predictive model called RUSH!2 to estimate both
the next transaction time as well as its purchase category for a given
customer. More speci�cally, we estimate the time-of-next-purchase
and generate a digital coupon (to be delivered on a smartphone)
with 1-3 merchants from the most probable purchase categories as
estimated by our model (see, for example, Fig. 3). Informally, the
problem we address is as follows.

Informal Problem 1. Given a sequence of millions of transaction
triplets (customer, purchase category, time stamp), e.g., (Alice, Grocery,
2/18/17 14:10); for a given customer like Alice,

• Predict a time interval that contains her next purchase.
• Identify relevant discount coupons to deliver.

Figure 1: RUSH! (red) provides higher expected pro�t than several
baselines, when delivering coupons 1 hour long containing 2 pur-
chase categories, as the p% most con�dent predicted purchases are
selected for coupon delivery. See §4.5 for details.

(a) Training time by data size (b) Precomputation time
Figure 2: RUSH! scales linearly to large datasets containing mil-
lions of transactions, for both the time to (a) train and the (b)
precomputation before training.

With our proposed approach, we aim to empower both our part-
nering bank as well as its customers—we expect timely personalized
1Transaction, purchase and spending are used interchangeably in this paper.
2Code available at h�p://github.com/emaadmanzoor/rush/

http://github.com/emaadmanzoor/rush/
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(bo�om) an example realization. Our model RUSH! constructs an interval (highlighted in yellow) around the predicted next purchase time
(t̂un+1, black cross), as well as a predictive distribution over merchant categories, based on which it delivers a personalized, time-limited
digital coupon to user u.
coupons to help customers save on their purchases, while the bank
to earn commission-based revenue from the redemption of each
delivered coupon at participating merchants. Our key objective
hence is to maximize the redemption rate of delivered coupons
via data-driven personalization and targeting. We focus specif-
ically on time-limited coupons characterized by a delivery time,
duration, and a merchant category. Time constraints are widely
believed to accelerate coupon redemption by invoking feelings of
urgency and scarcity [1, 16]. A challenge with limiting usage time
is the sensitivity of redemption rates to the exact delivery time and
coupon duration. A coupon delivered too early with respect to the
intended purchase time will be forgo�en, one delivered too late
will be unused, and one valid for too long triggers no urgency. Intu-
itively, a useful time-limited coupon would (i) be delivered close to
the intended purchase time, (ii) provide a coupon for the intended
purchase category, and (iii) last just long enough to capture the
uncertainty in the intended purchase time.

Accurately targeting time-limited coupons is a challenging pre-
diction problem, one of estimating both the (continuous) time and
the (discrete) category of purchases. Consumer behavior is highly
non-stationary in time and susceptible to various exogenous factors
such as time-of-day, receipt of pay checks, occurrence of holidays
and other personal occasions. Non-stationarity in purchase cate-
gories further exacerbates this problem: if no causal pa�ern exists
(for example, between insurance payments and having co�ee), con-
sumers may arbitrarily swap the order of purchase categories over
time, thus confusing ill-equipped models. Moreover, individual con-
sumers typically make only a few purchases a week, leading to very
sparse consumption timelines that pose di�culties in estimating
complex models. In short, our goal is to design a method that can
predict both event time and category, adapt to temporal dynamics,
handle event sparsity, that is also scalable and interpretable.

�e proposed work makes the following notable contributions:

(1) Problem Formulation: Promoting Digital Coupons.
As an example for “turning data into business value via
predictive analytics”, we formalize the problem of promot-
ing personalized time-limited coupons to bank customers,
which puts to use a large collection of transactions data
from a national bank. Done e�ectively, such an application
is expected to bene�t all parties; by helping the customers
save, the bank to raise pro�t from commissions, and the
participating merchants to receive foot tra�c.

(2) ModelingTransactionData for Purchase Forecasting.
We model the purchase time and category inference prob-
lem using continuous-time point processes, which are a
natural �t to the continuous temporal nature of our data.
Analyzing the purchases in our data reveals (i) time-varying
aspects of consumer spending behavior (such as increased
purchase rates on Fridays, see Fig. 6) and (ii) triggering
e�ects or excitation among purchases (such as shopping
purchases triggering dining purchases in the near future,
see Fig. 7). We capture both phenomena via additive lin-
ear augmentations of the conditional intensity function.
�anks to this additive nature, RUSH! is interpretable and
provides insights that are valuable for consumer pro�ling.
Moreover, RUSH! scales (linearly) to datasets with millions
of transactions (see Fig. 2).

(3) Real-Data Experiments and Cost-Bene�t Analysis.
For our speci�c application, we cannot use traditional per-
formance evaluation measures such as the mean absolute
or root mean squared errors o�en used with real-valued
prediction tasks. First, there are di�erent cost-bene�t trade-
o�s for under and over-predicting the purchase time (anal-
ogous to false positives and negatives in discrete predic-
tions). Moreover, we do not simply make point predictions;
our coupons come with a duration in which they can be
redeemed. Second, we predict both purchase time (con-
tinuous, real-valued) and category (discrete), which com-
plicates the ma�er further (a coupon at the right time but
for merchants in the wrong category is useless). �erefore,
we design a cost-bene�t framework for quantifying model
performance for our intended application, where we try
to come as close as we can to simulating our model in pro-
duction3. We show that RUSH! provides be�er trade-o�s
over baseline methods that ignore time-varying factors or
purchase history (see Fig. 1).

2 PROBLEM OVERVIEW
We now formalize the problem of targeting time-limited coupons.
We also introduce the notation that is used through the rest of
this paper. Let [T0,T ) be the window of observation wherein we
observe all the transactions of every consumer. We may assume
T0 = 0 without loss of generality. Each consumer u is represented

3Claudia Perlich on evaluation in the real world: h�p://www.kdnuggets.com/2016/12/
interviews-data-scientists-claudia-perlich.html
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by a continuous-time sequence of transaction timestamps (inter-
changeably called events) Tu = {t1, . . . , tn } and their associated
categories (interchangeably called dimensions) Du = {d1, . . . ,dn }
(for example, grocery, dining, etc.). Transaction categories are
derived from the Merchant Category Codes associated with trans-
actions and form a �nite set D. We also associate with time t a set
of binary temporal features fj ∈ F where fj (t ) ∈ {0, 1}, ∀t . �ese
features are functions of the wall-clock time at t ; for example, if
t lies on a weekend, or if t lies on a federal holiday. We now de-
�ne the Coupon problem as that of one-step-ahead, next purchase
prediction.

Problem 1 (Coupon). Given a collection of purchase timestamps
T and categories D for U consumers observed in a window [0,T ),
let tn be the last observed purchase for any consumer and tn+1 be
the unobserved future purchase. At tn , for each consumer, forecast
a coupon C = {t̂ startn+1 , t̂

end
n+1,Dn+1} that is valid from t̂ startn+1 to t̂endn+1 and

contains k o�ers from merchants chosen from categories Dn+1 =
{d1, . . . ,dk } ⊂ D; such that its redemption probability is maximized.

Given a coupon forecasted by any method solving Coupon, for
the probability of the coupon being redeemed to be high, each of
the following intermediate results must be accurate:

(1) �e probability densities of the predicted purchase times
t̂n+1 must be high at the actual purchase times tn+1.

(2) Point predictions of the predicted purchase time must min-
imize the absolute prediction error |t̂n+1 − tn+1 |.

(3) �e predicted coupon interval (t̂ start
n+1 , t̂

end
n+1) must trap the

actual purchase time, i.e., tn+1 ∈ (t̂ start
n+1 , t̂

end
n+1).

(4) �e probability density of the predicted purchase category
d̂n+1 must be high at the actual purchase category dn+1.

3 DATA
Description. Our partner bank provides a variety of �nancial
services to customers across the United States, such as checking,
savings, loan, credit and debit accounts. In this work, we focus on
customers who hold prepaid card accounts. Prepaid cards expand
the reach of banking services to the “underbanked”, including 26.9%
of all U.S. households (over 60 million adults) as of 2015 [14]. �e
underbanked are restricted from holding traditional checking and
savings accounts due to poor liquidity and credit history. Such
customers tend to rely on a single prepaid card for all of their trans-
actions, including deposits of income. Since these individuals are
less likely to have other accounts (unlike others who could poten-
tially have a number of credit cards across di�erent banks), data
collected from prepaid card customers represent a near-complete
picture of their �nancial activities and is thus very suitable for mod-
eling spending behaviors. �is near-complete history of transaction
logs from prepaid card users was earlier leveraged for studying the
existence of a “payday e�ect” on spending behavior [29].

Our data contains 199,109 prepaid card accounts with a total
of 24,858,748 transactions (excluding non-purchases such as cash
withdrawals and service charges), spanning a time period from
September 2013 to January 2016. �e length of the transaction
history of a customer varies between an hour to 2.3 years, and
the total number of transactions per customer varies between 1
and 4,047. Each transaction is associated with a dollar amount, a

(a) MCCs with 4 digits (b) MCCs grouped by �rst 2 digits

Category Example Purchases MCCs Avg. Amt.

DINING fast-food, restaurants 5811-5814 $12.60
SERVICES laundry, postal 7, 60, 72 $60.22

73, 80, 82
83, 86, 93, 94

RETAIL non-grocery shopping 5815-5818 $31.70
5832, 50, 52
56, 57, 59

GROCERIES produce, bakeries 53, 54 $34.23
AUTO gas-station 55, 75 $20.96
UTILITIES electricity, rent, internet 48, 49, 63 $97.60
ENTERTNMT theatre, bowling, lo�ery 78, 79 $20.32
TRAVEL air and rail travel 30-34,40 $131.00

44-47
HOTEL hotels, B&Bs 35-38, 65 $170.10
COMMUTE public buses 41 $21.04

(c) Purchase categories and MCCs; also given are the average dollar
amount spent on each category per purchase.

Figure 4: Cumulative fraction of transactions associated with each
category derived from (a) all 4 and (b) the �rst 2 MCC digits. Cate-
gories are indexed from 0 in order of their frequency of occurrence
in the data. (c) Our category-MCC mapping: 2-digit codes in the
table represent all MCCs having the same �rst 2 digits.

timestamp (at the granularity of seconds) and a Merchant Category
Code (MCC). MCCs are 4-digit numbers assigned to businesses
by credit card companies to classify their primary industry. A
comprehensive listing of MCCs and their descriptions are available
at h�ps://github.com/greggles/mcc-codes.

Preprocessing. MCCs can be used to derive purchase cate-
gories, however with several challenges. Purchases in our data
encompass 557 unique MCCs with a highly skewed distribution:
the top 50 most frequent MCCs in the data account for over 90%
of all purchases (Fig. 4 (a)). We also observe that MCCs follow
a hierarchical structure: for example, MCCs 3000 and 3001 corre-
spond to United Airlines and American Airlines respectively, and
all MCCs beginning with 30, 31 and 32 (close to 300 of them) can be
grouped under a broad “airlines” category. Deriving categories by
grouping MCCs using their �rst 2 digits would result in 56 unique
categories (distributed as in Fig. 4 (b)). However, this grouping fails
to separate certain important and frequently occurring categories
(such as dining and retail shopping), and fails to combine certain
categories that exhibit similar spending behavior (such as theatre
and orchestras, broadly “entertainment”). �erefore, we start with
the 2-digit grouping and manually split or combine categories as

https://github.com/greggles/mcc-codes


(a) Total no. N of purchases/month (b) Total amount A spent/month

Figure 5: Discontinuity in overall spending behavior between
di�erent years, with notable increases in February and March each
year, possibly caused by promotions at work or tax-refunds.

appropriate to construct an MCC-category mapping that comprises
10 broad purchase categories (listed in Fig. 4 (c)).

�ere is also a signi�cant change in overall spending behavior
across years. Fig. 5 visualizes the total number of purchases and to-
tal amount spent by all customers over the entire time-frame of our
data. �e general increasing trend in both plots is due to new cus-
tomers being acquired. However, there is a discontinuity in March
(for total number of transactions) and in February (for total amount
spent) each year that splits overall purchase behavior into di�erent
regimes. To avoid issues with data spanning di�erent regimes, we
select purchases taking place in regime A from February 2014 to
February 2015. During this period, new customers are acquired and
some become inactive. To avoid issues stemming from anomalous
purchase behavior when customers �rst open their accounts or
stop using them, we select customers with at least one transaction
before February 1, 2014 and at least one transaction a�er February
1, 2015. �e �nal subset of the data contains 2,808,360 transactions
from 7,719 unique customers.

4 MODELING PURCHASE BEHAVIOR
To model purchases taking place in continuous-time, we adopt
the framework of temporal point processes [8]. Unlike various
discrete sequence models, point processes naturally accommodate
events in continuous time, and can be augmented to capture (i)
time-variation in event-occurrence rates and (ii) sequential correla-
tion among events of di�erent types. Formally, a temporal point
process is a stochastic process, the realization of which is an ordered
sequence of event timestamps {ti } ⊂ [0,∞). When extended to D
dimensions, each timestamp ti lies on dimension di ∈ {1, . . . ,D}.
In our scenario, events are purchases and dimensions are purchase
categories. Temporal point processes are characterized by their
conditional intensity function λ∗ (t ) which, informally, denotes the
probability that an event occurs in a small interval dt conditioned
on the history of events before t ,Ht = {(t

′,d ′) |t ′ < t },

λ∗ (t )dt = P{event in (t , t + dt ) |Ht }. (1)

�e simplest point process is the homogeneous Poisson process
parameterized by a constant positive base-rate λ0, independent of
the purchase history. It has a conditional intensity function,

λ∗ (t ) = λ0, λ0 > 0. (2)

Table 1: Temporal features

Feature index j Binary Feature fj (t )

1-24 Hour of the day at t = 00-23
25 Day of the week at t ∈ {Mo,Tu,We,�}
26 Day of the week at t = Fri
27 Day of the week at t ∈ {Sa, Su}
28 Day of the month at t = 1 (o�en pay-day)

While the homogenous Poisson process (P) is particularly well-
suited to model recurring purchases such as rent and insurance
payments, it does not account for two key factors that a�ect the
probability of a purchase at a given time: (i) the wall-clock date/time
(time-variation), and (ii) the purchase history up to that time (mem-
ory). In the rest of this section, we pave the way towards our
proposed model by gradually increasing the modeling complexity
by incorporating time-variation, memory, and the ability to predict
categories.

4.1 Incorporating Time-Variation
�e probability of a purchase varies widely with the absolute time,
as shown in Fig. 6. Consumers make 5 times as many purchases in
their most active hours (11AM-12PM, 5PM-6PM, 2AM-3AM) than
they do in their least active hours (4AM-9AM). �e day of the week
has a similar e�ect, with 1.5 times as many purchases made on
Friday, Saturday and Sunday compared to other days of the week.

Figure 6: Spending behavior varies by time. Total number of
purchases in the dataset (le�) at each hour of the day and (right)
on each day of the week.

To incorporate time-variation, we augment the conditional in-
tensity with a feature-based time-varying component. �us, a
time-varying Poisson process (TVP) has conditional intensity,

λ∗ (t ) = λ0 +
∑
fj ∈F

µ j fj (t ) λ0 > 0, µ j ≥ 0, fj (t ) ∈ {0, 1}. (3)

Each feature fj (t ) ∈ F is a binary function of the wall-clock
time/date at t ; for example, if t lies on a weekend, or on the 1st of the
month (which is o�en the pay-day, when spending on utilities, for
example, tends to increase [29]). Each µ j is a non-negative weight
that is added to the total conditional intensity at t if fj (t ) = 1. We
de�ne 28 such temporal features, listed in Table 1.

4.2 Incorporating Memory
Purchases in time may be triggered due to “self-excitation”, a phe-
nomenon wherein the occurrence of a purchase (in any category)
increases the probability of another in the near future. A related
phenomenon is “mutual-excitation”, wherein a purchase in one cat-
egory increases the probability of a purchase in another category in
the near future. We see evidence of such phenomena in our dataset.



Fig. 7(a) shows, given a purchase at time tn , the distribution of
the inter-purchase time (tn+1 − tn ) conditioned on the number of
purchases in the 24 hours prior to tn . We observe that having more
purchases in the previous 24 hours shi�s the distribution towards
smaller inter-purchase times.

We also investigate the sequential correlation between purchase
categories using the cross-correlation coe�cient (CCF), which mea-
sures the similarity of two time series at di�erent lags. Fig. 7 (b)
and (c) show example CCF plots at various lags (-4 to 4 hours in 30
minute increments). We see from (b) that people o�en Commute
30 mins before and up to 2 hrs a�er Dining, and (c) suggests the
correlation is symmetric between Retail vs. Grocery. From these
case studies, we conclude that a strong sequential correlation exists
between purchases in di�erent categories.

(a) Having more purchases in the previous 24 hours indicates a smaller
inter-arrival time until the next purchase.

(b) Commute vs. Dining as reference (c) Retail vs. Grocery as reference

Figure 7: Evidence of self/mutual-excitation in purchase behavior.

To incorporate this sequential correlation information, or in
other words the excitation e�ect of past purchases (memory) into
our models, we adopt Hawkes processes (HP) [19]. HPs explicitly
parameterize excitation, and have been used to model phenom-
ena ranging from earthquakes [21] to �nancial contagion [2] and
information di�usion in social networks [13]. �e conditional inten-
sity contains a self-exciting component dependent on the process
history,

λ∗ (t ) = λ0 + β
∑

t ′∈Ht

e−α (t−t
′) λ0, β ,α > 0. (4)

β is the magnitude of excitation caused by events in the purchase
history, and α is the rate of decay of the excitation e�ect. Note that
augmenting (4) with the time-varying component in (3) results in a
time-varying Hawkes process (TVHP).

4.3 Proposed Model
�e HP as such does not account for di�erent degrees of excitation
for events of di�erent types. To incorporate this variation in excita-
tion as well as the variation in purchase rates over time, we aug-
ment multidimensional Hawkes processes with the time-varying
component introduced in (3). Our proposed model RUSH! has a

Table 2: Summary of proposed and baseline models
Model Time Has Predicts

Varying Memory Categories

Poisson (P) 7 7 7
Time-Varying Poisson (TVP) X 7 7
Hawkes (HP) 7 X 7
Time-Varying Hawkes (TVHP) X X 7
RUSH! X X X

conditional intensity speci�ed for each categorym ∈ D as,

λ∗m (t ) = λm0 + µm (t ) +
D∑

m′=1

∑
t ′∈Ht ,d (t ′)=m′

βmm′e
−α (t−t ′) ,

µm (t ) =
∑
fj ∈F

µmj fj (t ) . (5)

where λm0 is the base rate for categorym, βmm′ is the magnitude
of mutual-excitation (or self-excitation, ifm =m′) of categorym′

on category m, and α is the rate of decay for excitation e�ects. �e
time-varying terms for each category are analogous to (3).

Extension to D dimensions allows each category to have its own
base rate and time-varying component. �is enables capturing,
for example, the fact that groceries are o�en purchased during the
day while entertainment purchases o�en occur at night. It also
allows varying degrees of mutual-excitation between purchases of
di�erent categories in our data as shown in Fig. 7; we will see later
(§6) that this e�ect is o�en asymmetric.

�e intermediate models speci�ed by (2)-(5) gradually increase in
complexity and expressiveness. Hence, it is instructive to consider
them as baselines in evaluation, to understand the contribution of
each additional phenomenon on predictive performance. We di�er-
entiate the salient features of each model in Table 2 and visualize
examples of their conditional intensities in Fig. 8.

4.4 Learning and Prediction
4.4.1 Parameter Estimation. Our model is parameterized byΘΘΘ =

{λ0λ0λ0,βββ , µµµ}; dimension-speci�c base ratesλ0λ0λ0, (D×D) excitation matrix
βββ and dimension-speci�c time-varying feature weights µµµ. Consider
a sequence of timestamps {t1, . . . , tn } in an observation window
[0,T ) where the dimension of each timestamp ti is denoted by
d (ti ) ∈ {1, . . . ,D}. �e loglikelihood of this sequence with respect
to any temporal point process can be wri�en directly in terms of
its conditional intensity,

L ({t1, . . . , tn }) =

n∑
i=1

log λ∗d (ti ) (ti ) −
D∑

m=1

∫ T

0
λ∗m (τ )dτ . (6)

Loglikelihood of a dataset of sequences is the sum of the loglikeli-
hoods for each sequence. Since it is concave in all parameters, we
maximize the loglikelihood regularized with −γ ‖ΘΘΘ‖22 directly using
the L-BFGS-B optimization method [6]. Regularization penalty γ
and decay rate α in (5) are considered as hyperparameters, selected
based on a validation set.

Speeding up Learning. �ough computing the loglikelihood (and
gradient) is linear in the number of transactions, �nding its maxi-
mum involves a large number of L-BFGS-B iterations (over 1,000
for the multivariate models), each of which traverses the entire
training data.To speed up model ��ing, we precompute terms in



(a) Poisson (P) (b) Time-Varying Poisson (TVP) (c) Hawkes Process (HP) (d) TVHP ≡ RUSH! w/ D = 1

Figure 8: Conditional intensities over time λ∗ (t ) of the point process models and six example events (black circles).

the loglikelihood and gradient that are independent of the parame-
ters (for example,

∫ T
0 fj (s )ds in the gradient). For each α , we also

precompute terms that depend only on α , since they do not change
while optimizing the parameters. Precomputation time also scales
linearly in the size of the data (see Fig. 2 (b)). We further exploit
the separability of the loglikelihood across di�erent sequences and
compute it in parallel for each sequence across 100 CPU cores.
�e optimizations have a drastic impact: speci�cally, time to �t
RUSH! reduces from over 52 days (estimated) to 60 minutes.

4.4.2 Prediction. Given a ��ed model and the purchase history
Ht with the last observed purchase at tn for a speci�c customer,
our goal is to predict the time and category of their next purchase
{tn+1,dn+1}. We �rst obtain the empirical posterior distributions of
the next timestamp ĥ∗ (tn+1) = ĥ(tn+1 |Ht ) and category д̂∗ (dn+1)
predictions via simulating Ogata’s modi�ed thinning algorithm
([8], algorithm 7.5.IV) 100 times. �e posterior distributions can
then be used to obtain point predictions. We use the median of
ĥ∗ to predict t̂n+1, which we �nd empirically minimizes the mean
absolute error |tn+1 − t̂n+1 |. We generate a coupon that can be
redeemed within period (t̂n+1 −∆, t̂n+1 +∆) where 2∆ = τ denotes
its duration, and that contains k o�ers with the largest probabilities
in д̂∗. We investigate the impact of ∆ and k on performance in §5,
within a cost-bene�t framework that we discuss next.

4.5 Cost-Bene�t Framework
In general, mean absolute error (MAE) or root mean squared error
(RMSE) are used to evaluate real-valued prediction models. In our
application, however, we cannot directly use these measures, due
to di�erent cost-bene�t trade-o�s for under and over-predicting
the purchase time. Moreover, we predict both the (real-valued) next
purchase time and its category (discrete) simultaneously, which
complicates the ma�er further (a coupon at the right time but with
o�ers in the wrong purchase categories is useless).

In practice, the right performance measure depends on the appli-
cation that determines a model’s intended use3. For most business
applications, including ours, what ultimately ma�ers is the busi-
ness value, o�en quanti�ed in terms of pro�t. For any new model,
a good performance metric is thus the excess revenue generated.
To this end, we develop a cost-bene�t framework [24] to quantify
model performance for our intended application, which is designed
to closely mimic simulating our model in production.

Let us consider a customer with last purchase time tn , for which
our model generates a coupon to be redeemed within (t start, tend),
with duration τ = tend−t start and containing o�ers from categories
D ⊂ D. We model the probability that a coupon will be redeemed
by a decaying function c (δ ), where δ denotes the time that has

elapsed since the coupon begins, in order to capture a “forge�ing-
rate”. One such function is c (δ ;γ ) = exp(−γδ ) for γ > 0. Note that
we truncate the function such that c (δ ) = 0 for δ < 0 and for δ > τ :
the probability of redemption is non-zero only while the coupon is
active. �e decay rate γ penalizes overly-long coupons; if τ is too
large, even perfectly predicted coupons where t̂n+1 = tn+1 would
not always be redeemed, due to being forgo�en.

Success scenario. If the true purchase time is trapped within
coupon’s duration (t start ≤ tn+1 ≤ tend) and the true purchase
category is among the predicted categories (dn+1 ∈ D), we incur
a bene�t B (dn+1). �e bene�t may be di�erent for each category
based on category-speci�c commission-rates. �e expected value
of the coupon is thus c (tn+1 − t start) ∗B (dn+1) −C whereC is some
constant cost of coupon generation.

Error scenarios. �ere are various cases when the prediction
is inaccurate.

Case 1: tn+1 < t start. If the true purchase occurs before the
coupon begins, we simply cancel the coupon release and re-estimate
the next purchase time. �is incurs no bene�t, but a cost of −C .

Case 2: t start ≤ tn+1 ≤ tend, dn+1 < D. If the coupon traps the
true purchase, but the true category is not among the ones predicted,
we incur a loss of customer trust (“spam”). Given a constant “spam-
cost” S , the overall cost is −(1 − c (tn+1 − t start)) ∗ S −C .

Case 3: tend < tn+1. If the true purchase occurs a�er a coupon’s
end time, the customer is again exposed to unusable “spam” o�ers.
We incur no bene�t, but a cost of −(1 − c (tn+1 − t start)) ∗ S − C ,
which is proportional to the magnitude of prediction error.

5 MODEL EVALUATION
We split the data into training (February - July, 2014), validation
(August - October, 2014) and test (November, 2014 - January, 2015)
subsets. �e train window contains 1,415,895 purchases, the val-
idation window contains 703,505 purchases and the test window
contains 688,960 purchases.

Data Likelihood. We �rst evaluate the accuracy of the poste-
rior distribution h∗ (tn+1). Fig. 9 shows the predictive loglikelihood
for each model, computed using Eq. (6) on the test data. Note that
we do not show RUSH! here since its loglikelihood includes cate-
gory information and is not comparable to univariate models. With
the Poisson model as a baseline, incorporating time-variation (P
to TVP) improves the predictive loglikelihood by 9.53 units, while
incorporating memory (P to HP) improves it by 16.28 units. Combin-
ing both factors (P to TVHP) improves it by 30.52 units: 4.71 units
greater than sum of the improvement by each factor separately.

�is reveals an important marketing insight. Consumer pur-
chases tend to be “clustered” in time, with rapid bursts of purchases
separated by longer periods of inactivity. Clustering could either
result from higher purchase rates at certain times (time-variation)



Figure 9: (le�) training and (right) test data loglikelihoods of mod-
els (note: numbers not comparable due to di�erent train/test sizes).

or from self-excitation. �e aforementioned results indicate that
self-excitation alone explains clustered purchases be�er than time-
variation alone; while combining the two results in be�er explana-
tion of the data than considering each of them separately.

Expected Value Analysis. �e cost-bene�t framework intro-
duced in §4.5 facilitates evaluating our model systematically for
the application, and helps us carefully account for the bene�ts
gained for correct predictions on di�erent categories as well as
costs incurred by di�erent types of errors. Our setup is as follows4.

• Bene�t Bd for category d is the average amount spent in
purchases of category d (see Fig. 4(c)), multiplied by a
commission rate of 1%.

• Spam cost S = $0.01
• Fixed cost C = $0.001
• Forget-rate γ = ln(2)/(2 ∗ 3600); intuitively, 2 hours from

the start of the coupon, its bene�t drops from B to B/2.
We make our predictions on the test data and compute cost

and bene�t based on the success and error scenarios in §4.5. For
baseline models that do not predict categories, we choose the top
k most frequently occurring categories in the training data. We
show the total bene�t vs. total cost for all the models in Fig. 10 for
coupon durations τ = {1 hour, 2 hours} and number of predicted
categories in a coupon k = {1, 2, 3}. We see that RUSH! provides
the highest bene�t, signi�cantly higher than P and TVP, at a cost
comparable to the HP and TVHP models. �e memory-less models
o�en over-predict, as they do not account for excitation from the
recent past, and end up with low cost but no bene�t (case 1 in §4.5).
RUSH! yields the highest overall gain.

Similar observations can be made by looking at the absolute
errors of the models. Fig. 11 shows the fraction predictions by
each model that obtained di�erent values of the absolute error ν
in hours, and also captured the true purchase category within the
top k = {1, 2, 3} predicted categories. We see that memory-less
models P and TVP make larger time prediction errors that cannot
be compensated with more o�ers per coupon. On the other hand,
memory-based models HP and TVHP catch up to RUSH! as the
number of o�ers is increased suggesting that their mispredictions
are mainly due to their inability to predict the correct category.

We also consider the impact of only delivering coupons for which
we are con�dent about redemption. Intuitively, delivering only
high-con�dence coupons conservatively avoids the costs of spam-
ming consumers, but trades o� against potentially larger gain from
serving more coupons. Fig. 12 shows this trade-o� for 1-hour
long coupon and k = 1, 2 when serving the top p% most con�dent
4We engaged with domain experts at the bank to determine appropriate ranges of
values for the commission rates, forge�ing-rate γ , spam cost S and �xed cost C . �e
presented results are are for a single con�guration of values, but are robust to values
within the determined ranges.

Figure 10: Total bene�t vs. cost on test data by di�erent models for
coupon duration (le�) τ = 1hr and (right) τ = 2hrs and for number
of o�ers per coupon (top to bo�om) k = {1, 2, 3}.

Figure 11: Fraction of correct predictions within absolute error of
x hrs (i.e., CDF curve) captured with (from le� to right) k = {1, 2, 3}
o�ers per coupon.

Figure 12: Total pro�t with the p% most con�dent predictions,
coupon duration = 1 hour, (le�) k = 1 category and (right) k = 3
categories. k = 2 is shown in Fig. 1.

coupons. �e con�dence of each prediction t̂ is the value of its
posterior density ĥ∗ (t ). Observe that the total pro�t peaks at 10%
for k = 1 and 80% for k = 2. For all values of p% RUSH! dominates
competitors in total pro�t.



Model λ−1
0 λ−1

0 ln(2) min( β+λ0
λ0

, β) α−1ln(2)

P 23.64 16.39 — —
TVP ∞ ∞ — —
HP 98.51 68.28 3.18 24.00
TVHP ∞ ∞ 0.005 24.00
RUSH! ∞ ∞ see (b) 24.00

(a) Model parameters interpreted as the mean inter-event time λ−1
0 , the

median inter-event time λ−1
0 ln(2) (λ0 =

∑
m λm0 for RUSH!), the relative

intensity increase from self-excitation (β+λ0)/λ0 (reported as β if λ0 = 0)
and the self-excitation half-life α−1ln(2). All times are in hours.

(b) RUSH! βββ × 103 excitation matrix

(c) Temporal feature weights. “Wday” implies Mon/Tue/Wed/�u and
“1st” implies the �rst of the month. For RUSH!, we show two markers for
each feature; the max. and min. weight across dimensions.

Figure 13: Exploratory analysis of our model parameters.

Scalability. Parameter inference of the proposed model is li-
neear in number of events, as shown empirically in Fig. 2. �e
runtime is around 60 minutes to �t RUSH! to ≈2.8 million transac-
tions. All experiments were performed on an Intel Xeon E7-8860
v3 at 2.2Ghz with 4 physical CPUS and 4 cores per CPU.

6 MODEL INTERPRETATION
An advantage of our modeling approach is the interpretability
of the parameters, which provides useful insights into consumer
purchase behavior. We now focus on each parameter of our ��ed
models. Fig 13(a) lists the base rates interpreted as the mean inter-
event times λ−1

0 and median inter-event times ln(2)λ−1
0 for each

model. For RUSH! we list the total base rate across dimensions.
We observe that incorporating memory (P to HP) reduces the base-
rate: this is intuitive, since part of what triggers purchases is now
a�ributed to self-excitation. We also observe that on incorporating
time-variance (P to TVP, RUSH!), the base-rate drops close to zero
leading to mean and median inter-event times of∞. �is indicates
that base purchase rates are entirely driven by the wall-clock time,

with no common rate across times. �e excitation decay half-life
remains the same across models, indicating its independence from
the other parameters.

We also consider the relative boost in purchase rates due to
self/mutual-excitation, min( β+λ0

β , β ). When λ0 ≈ 0, the boost
is simply β . We observe that incorporating time-variance into
memory-driven models reduces the excitation boost, since part of
what triggers purchases is now explained by time-variation. �is
observation also carries over to RUSH!, with its excitation matrix βββ
shown in Fig 13(b).

�e pa�erns of excitation revealed by βββ are of particular interest
to marketers. �e number in each cell denotes the magnitude of
excitation of the source category on the target category. We observe
the following based on the excitation matrix of RUSH! in Fig. 13(b),
where category names have been abbreviated to 3 characters (see
Fig. 4(c) for full names):

(1) RETAIL (shopping) is a strong trigger for DINING. In fact
all purchases trigger dining purchases to varying degrees.
�us, marketers looking to predict dining purchases can
rely on the occurrence of prior purchases with varying
levels of con�dence, depending on the prior purchase cate-
gory.

(2) RETAIL purchases are highly self-excited, but also excited
by COMMUTE (public transport), TRAVEL (airlines, train)
and UTILITIES (gas, electricity) purchases. In turn, RETAIL
purchases excite GROCERY purchases (but not vice-versa).
A common ordered pa�ern is indicated, of paying bills
and/or commuting, shopping at department stores and
then buying groceries.

(3) HOTEL (long-term stay) purchases are triggered by TRAVEL
(airlines, train), which is intuitive. However, TRAVEL is
only weakly triggered by all other purchase categories,
indicating its inherent unpredictability.

Finally, we consider the e�ect of time on purchase rates in Fig
13(c). We observe that for all models, 4-8AM is the least likely
purchase period, and 11-12PM, 5-6PM and 2-3AM are the most
likely purchase periods. �is agrees with our empirical �ndings in
Fig. 6. �e e�ect of the day of the week is similar. While the learned
parameters of all models follow similar trends, their magnitudes
reduce when incorporating self/cross-excitation, since the total
e�ect is now shared across time-variation and memory.

7 RELATEDWORK
Time-limited Promotions. �ere is much work in the market-
ing literature on understanding the factors that a�ect coupon re-
demption [3], with recent focus on mobile coupons in particular
[9] employing randomized experiments to study the in�uence of
coupon face value, timing and duration on redemption. A recent
economic model directly relates coupon redemption to various fac-
tors based on behavioral theory [15]. While the model is calibrated
on real-world data and provides managerial insights into the e�ect
of various factors on redemption rates, it is used primarily as an
exploratory technique and is not intended or evaluated to function
in a predictive manner.

Event Forecasting. Recommender systems are a typical ap-
plication domain of forecasting future events. Most such systems



focus on rating prediction that can help identify likely movies a
user will watch [10], or songs they will hear [7], etc. Several work
also leverage temporal dynamics for prediction and modeling, in-
cluding the award-winning work by Koren [18] that showed how
incorporating time e�ects helps improve predictive accuracy in
recommender systems, and Benson et al. [4] that showed the im-
pact of time in consumer reconsumption behavior. �is group of
work, however, does not focus on predicting the occurrence time
of future events, with the exception of recent work by Du et al.
[12] that leveraged point process models for making time-sensitive
recommendations.

A particular family of point process models, called Hawkes pro-
cesses, has also been used to forecast events such as earthquakes
[21], �nancial contagion [2] and information di�usion [13]. �eir
de�ning characteristic is ‘self-excitation’, where each event triggers
(i.e., increases the rate of) future events. Self-excitation has also
been used for modeling terrorist activity [23] and tweet popularity
[27]. Simple point process models are e�ective in capturing occur-
rence time of future events, however for events of the same type or
category. Most recently, Minor et al. also addressed the problem
of activity prediction [22]. Despite observing di�erent types of
activities, their goal is to predict the time until the next occurrence
of a given activity from sensor data.

To capture multiple types of events occurring over time, where
an event of a certain type can trigger events of other types, multi-
dimensional point process models have been used. Applications
include modeling topic di�usion [26], social network user interac-
tions [28], stock market transactions [25], TV program views [20],
and most recently spatial trajectory prediction [11] where the event
types respectively are topics, users, transaction types, TV program
types, and locations.
8 CONCLUSION
We proposed RUSH! to deliver time-limited coupons via purchase
forecasts, based on a continuous-time point-process model esti-
mated from millions of real-world customer transactions. We unify
both temporal dynamics and mutual/self-excitation behavior into
a single, interpretable model that scales linearly to datasets with
millions of transactions. �e interpretability of our model parame-
ters provide a number of valuable insights into consumer purchase
behavior that are valuable for marketers. In addition, we present a
cost-bene�t framework motivated by business insights that more
closely mirrors the expectations from the model when deployed
in the real-world. We demonstrate that our method outperforms
competing baselines within this framework.

Given the promise demonstrated by our cost-bene�t analysis,
our next step is to pursue A/B testing and randomized experiments
with predictions from our model driving the delivery of smartphone
coupons. Such experiments may reveal numerous further factors
a�ecting coupon redemption, such as the aesthetic design or text
content of a coupon, or its connection with a timely event (such
as a football game). Extending our model to incorporate new phe-
nomena revealed by such experiments is an important direction of
future work.
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