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Abstract
Opinion spam has become a widespread problem in the
online review world, where paid or biased reviewers write
fake reviews to elevate or relegate a product (or business)
to mislead the consumers for profit or fame. In recent
years, opinion spam detection has attracted a lot of attention
from both the business and research communities. However,
the problem still remains challenging as human labeling is
expensive and hence labeled data is scarce, which is needed
for supervised learning and evaluation. There exist recent
works (e.g., FraudEagle [2], SpEagle [19]) which address
the spam detection problem as an unsupervised network
inference task on the review network. These methods are
also able to incorporate labels (if available), and have been
shown to achieve improved performance under the semi-
supervised inference setting, in which the labels of a random
sample of nodes are consumed.

In this work, we address the problem of active infer-
ence for opinion spam detection. Active inference is the
process of carefully selecting a subset of instances (nodes)
whose labels are obtained from an oracle to be used during
the (network) inference. Our goal is to employ a label acqui-
sition strategy that selects a given number of nodes (a.k.a.
the budget) wisely, as opposed to randomly, so as to improve
detection performance significantly over the random selec-
tion. Our key insight is to select nodes that (i) exhibit high
uncertainty, (ii) reside in a dense region, and (iii) are close-
by to other uncertain nodes in the network. Based on this
insight, we design a utility measure, called Expected Un-
Certainty Reach (EUCR), and pick the node with the high-
est EUCR score at every step iteratively. Experiments on
two large real-world datasets from Yelp.com show that our
method significantly outperforms random sampling as well
as other state-of-the-art active inference approaches.

Keywords: opinion spam, active inference, expected
uncertainty reach

1 Introduction
In the modern era of e-commerce, online reviews are gaining
increasing importance in the decision making of consumers
for buying products or services. Unlike advertisements, on-
line reviews are endorsements of real consumers about prod-

ucts. A study by Luca [11] shows that +1 star rating increase
of a product or business increases the revenue by 5–9%. Due
to the financial gain associated with online reviews, paid or
biased reviewers write fake reviews to promote or demote a
product (or business) to mislead the consumers. This very act
of false endorsement about products by fraudulent reviewers
is known as opinion spam [7].

Opinion spam has become a widespread problem in
recent years. However, it remains challenging, as unla-
beled data is abundant, but labels are difficult or expen-
sive to obtain where human judges are only slightly better
than random [17]. Scarcity of labeled data makes the su-
pervised learning and evaluation hard [7, 16, 17]. As such,
most existing works on opinion spam detection are unsuper-
vised [2, 5, 6, 15, 22, 23, 24]. A useful trade-off is semi-
supervised learning, which uses only a small set of labeled
data to improve detection performance over the unsupervised
setting. Most recently, Rayana et al. proposed a flexible ap-
proach called SPEAGLE [19] which addresses the spam de-
tection problem as a network inference task on the review
network, with the potential of seamless label incorporation.
Importantly, they showed that a small fraction of labeled data
improves the detection performance significantly.

In SPEAGLE, the labels of a random sample of nodes are
consumed to improve the network inference performance.
Our intuition suggests that it is possible to do better by
a wise selection of only the “valuable” nodes with lower
labeling cost. The very field of selecting valuable instances
for acquiring labels from an oracle (e.g., human) within a
small budget for learning improved models with lower cost
is widely known as active learning [1, 20]. Like active
learning, active inference is a well known approach [3, 18]
that targets to achieve higher accuracy with fewer labeled
examples given a small budget, where the existing inference
model can pose queries to choose most valuable instances
which are labeled by an oracle. The difference between
active learning and inference is that the former re-trains the
model whenever new instances are obtained from the oracle,
whereas the latter assumes that a model already exists and
the new labeled instances by the oracle are used during the
inference. The most challenging task of active inference is
the selection of valuable instances for label acquisition.



A number of successful label acquisition approaches
have been proposed in active learning as well as active in-
ference literature [1, 3, 18, 20]. Selecting valuable instances
for these label acquisition techniques can be divided into two
main types based on the nature of the data, (i) using flat data
(no network) [10, 12], and (ii) using relational information
of the data (network structure) [3, 4, 18]. In this work, we
address the problem of active inference for the opinion spam
detection problem. Our goal is to achieve improved perfor-
mance over random selection within a small budget. Our
main contributions are as follows.
• We adapt several existing label acquisition approaches

of active inference into our collective opinion spam
detection framework called SPEAGLE [19], in order to
wisely select valuable nodes to label.

• We present three important characteristics of a valuable
node in a label acquisition strategy: (i) uncertainty of
a node, (ii) density of the region it belongs to, and
(iii) proximity of the node to other uncertain nodes.
Intuitively, a node is more valuable if its uncertainty
is high and it is close-by to other uncertain nodes in
a dense region, hence, acquiring the label of this node
helps other uncertain nodes, through diffusion of its
label information within the neighborhood of this node.

• Based on the above characteristics, we devise a label
acquisition strategy called Expected UnCertainty Reach
(EUCR) that wisely selects valuable nodes within a
small budget to improve performance.

We evaluate our method on two real-world datasets col-
lected from Yelp.com, containing filtered (spam) and rec-
ommended (non-spam) reviews. To the best of our knowl-
edge, this is the first work using active inference for opinion
spam detection with a large-scale evaluation on real-world
datasets. Our experiments shows that Expected Uncertainty
Reach (EUCR) outperforms random sampling and several
state-of-the-art active inference approaches.

2 Network Inference for Collective Classification
We consider a user–review–product tripartite network rep-
resentation G = (V,E), which contains N user nodes
U = {u1, . . . , uN}, M product nodes P = {p1, . . . , pM},
and Q review nodes R = {r1, . . . , rQ}, V = U ∪ P ∪ R,
connected through two types of edges; the user–review edges
(ui, rk, t = ‘write’) ∈ E and the review-product edges
(rk, pj , t = ‘belong’) ∈ E.

We then formulate the opinion spam detection problem
as a network inference task on G, in which users are to be
classified as LU ∈ {benign, spammer}, products as LP ∈
{non-targeted, targeted}, and reviews as LR ∈ {genuine,
fake}. In addition, meta information (ratings, timestamps,
and text) from review websites is utilized to extract indicative
features of spam, which is incorporated into the network
inference task as prior knowledge.

We address the network inference problem by consider-
ing the user–review–product network as a pairwise Markov
Random Field (pMRF) [8]. A pMRF model consists of an
undirected graph where the label (from a specific domain of
class labels) of each node is dependent upon its neighbors
only and independent of all other nodes in the graph. The
joint probability of node labels is written as a product of in-
dividual and pairwise factors, parameterized over the nodes
and the edges, respectively:

(2.1) P (y) =
1

Z

∏
Yi∈V

φi(yi)
∏

(Yi,Yj ,t)∈E

ψtij(yi, yj)

where Z is the normalization constant. The individual
factors φi are the initial class probabilities for each node
i called the priors. The pairwise factors ψtij capture the
likelihood of a node with label yi to be connected to a
node with label yj through an edge with type t, are called
the compatibility (or edge) potentials. Finding the best
label assignments y to all the nodes, such that the joint
probability P (y) of the pMRF is maximized, is the inference
problem which is computationally intractable and known
to be NP-hard for general MRFs. To solve the inference,
we use a computationally tractable (linear in the number of
edges) approximate inference algorithm called Loopy Belief
Propagation (LBP) [25].

LBP is based on iterative message passing between
the connected nodes in the network. At every iteration, a
message mi→j is sent from each node i to each neighboring
node j. The message captures the probability distribution
over the class labels of j, and is computed as in Eqn. (2.2),
(2.2)
mi→j(yj) = α

∑
yi∈LTi

φi(yi) ψ
t
ij(yi, yj)

∏
Yk∈YNi\Yj

mk→i(yi)

where Ni denotes the set of i’s neighbors, Ti ∈ {U,R, P}
denotes type of node i and α is a normalization constant.
These messages are exchanged iteratively over the edges un-
til convergence, at which marginal probabilities are com-
puted. The marginal probability is called the belief bi(yi),
of assigning each Yi associated with a node of type Ti ∈
{U,R, P} with the label yi in label domain LTi (e.g. LU ∈
{benign, spammer}) as follows,

(2.3) bi(yi) = β φi(yi)
∏

Yj∈YNi

mj→i(yi)

where β is the normalization constant. For ranking, the
probability values bi(yi) are sorted, where yi = spammer
and yi = fake respectively for users and for reviews.

2.1 Unsupervised Network Inference
The parameters of the aforementioned network inference

framework include the compatibility potentials ψt(yi, yj)’s



and the priors φi(yi)’s. Since spam detection is a problem
area in which labeled data is scarce, most often than not these
parameters cannot be estimated from training data, but rather
instantiated in an unsupervised fashion. Specifically, the
SPEAGLE framework by Rayana et al. [19] leverages meta
information and domain intuition to set these parameters,
which we describe next.

Compatibility potentials. In SPEAGLE, the compati-
bility (or edge) potentials ψtij are initialized to enforce ho-
mophily [14]. In particular, it is assumed that all the reviews
written by spammers (benign users) are fake (genuine), and
that with high probability fake (genuine) reviews belong to
targeted (non-targeted) products; although with some proba-
bility fake reviews may also belong to non-targeted products
as part of camouflage and vice versa. Overall, the parameters
are set as follows.

User (ψt=‘write’)
Review benign spammer
genuine 1 0
fake 0 1

(ψt=‘belong’) Product
non-target target

1− ε ε
ε 1− ε

Priors. To estimate the prior potentials φi, the in-
dicative features of spam are extracted from available meta-
data (ratings, time-stamps, review text) for all three types of
nodes. These features can be divided into two main cate-
gories, (i) text based (review text), and (ii) behavioral (rat-
ing, time-stamp). Their framework utilize a total of 11 user,
11 product, and 16 review features, both text based and
behavioral. To unify the features (having different scales)
into a comparable range, SPEAGLE leverages the cumula-
tive distribution function (CDF); in particular, the CDF val-
ues of all the features for each node i are combined into a
spam score Si ∈ [0, 1], that quantifies the suspiciousness
of the node, such that its class priors can be initialized as
φi = {1− Si, Si}.

2.2 Semi-supervised Network Inference
One of the key advantages of the SPEAGLE framework is

the seamless integration of node labels when available. This
semi-supervised version, called SPEAGLE+ [19], achieves
improved performance, in which the labels of a random
sample of nodes are consumed. Specifically, given the labels
for any set of nodes (reviews, users, and/or products), the
priors of the corresponding nodes are initiated as {ε, 1 − ε}
for those that are associated with spam (i.e., fake, spammer,
or target), and {1 − ε, ε} otherwise. The priors of unlabeled
nodes are estimated based on the features extracted from
metadata, that is as {1 − Si, Si}. The inference procedure
remains exactly the same. Since this integration of available
labels does not require any model (re)training, it is extremely
efficient and seamless. This is suitable even when the size of
the labeled data is too small or imbalanced to learn from.

In this work, we extend the semi-supervised SPEA-

GLE framework with active inference. Our goal is to im-
prove the detection performance significantly over the ran-
dom selection. We describe our approach to active network
inference in the following section.

3 Active Network Inference
Active inference addresses the problem of minimizing the la-
beling cost while maximizing the classification performance.
The key idea is to achieve higher accuracy with fewer la-
beled examples given a budget, where the existing model of
inference can pose queries to choose most “valuable” data in-
stances which are labeled by an oracle (e.g., human). These
labels are then used at inference time. The goal is to devise
an effective strategy to identify such “valuable” nodes and
a metric to quantify the “value” of instances (i.e., nodes).
There exist a variety of active inference settings [1, 20]. In
this work, we utilize the pool-based setting, in which the col-
lective classifier is initially provided with a pool P of unla-
beled nodes. At each iteration it selects the most informative
node, adds it to the labeled set L and removes from P until
the budget B (given) is exhausted.

Given a set of unlabeled nodes U , we address the prob-
lem of finding the most valuable node to be labeled at each
step iteratively, so as to improve the performance within a
budget B. We update the beliefs of all nodes each time a new
label is acquired. In this work, we utilize some state-of-the-
art label acquisition strategies, such as, random sampling,
uncertainty sampling and query-by-committee approaches.
We also adapt ALFNET [4] by modifying it to work with
our network inference setting, using the metadata as well as
relational information of the review network for label acqui-
sition. Finally, we propose an efficient label acquisition strat-
egy which we call Expected UnCertainty Reach (EUCR). We
mainly build on uncertainty sampling, where our key insight
is to select nodes that (i) exhibit high uncertainty, (ii) reside
in a dense region, and (iii) are close-by to other uncertain
nodes in the network (hence “reach”). We first describe how
we adapt existing approaches to our setting in Sections 3.1
through 3.4, and later introduce our proposed approach in
Section 3.5. We denote the most valuable node with x∗A,
where A is the label acquisition strategy. Here, we incorpo-
rate the label acquisition in our network inference framework
for review nodes only. We consider Yelp.com to be our ora-
cle, as they provide recommended and filtered reviews.

3.1 Random Sampling (RS)
In random sampling strategy, we randomly pick a review

node for labeling and simply set its prior as {ε, 1 − ε} if
it belongs to the spam class (i.e., fake), and {1 − ε, ε}
otherwise. This random selection is done iteratively until the
budget B is exhausted. This is the strategy used in [19]. Our
goal is to improve over this baseline with careful selection of
“valuable” nodes to query the oracle.



3.2 Uncertainty Sampling (US)
Uncertainty sampling [9, 10] is perhaps the simplest and

most commonly applied approach in active inference. In
this framework, we select the node for which the model is
most uncertain and label it by the oracle (i.e., Yelp.com).
For example, while using SPEAGLE for binary classification
of the network entities (users, reviews, and/or products),
uncertainty sampling selects the node whose final belief
is near 0.5. Hence, we utilize a general entropy-based
uncertainty sampling approach [10], in which we compute
the entropy of the final beliefs as the uncertainty measure
given in Eq. (3.4):

(3.4) x∗US = argmax
x

−
∑
i

bx(yi) log bx(yi)

Here bx(yi) is the belief of node x to belong to class
yi, that is the marginal probability of assigning each node
of type {R} with the label yi from label domain LR =
{genuine,fake}. As such, at each iteration we select the
review node with the highest uncertainty score to be labeled
by the oracle. We incorporate the provided label by the
oracle by initiating the review’s priors as {ε, 1 − ε} if it is
labeled as fake, and {1− ε, ε} otherwise.

3.3 Query-by-Committee
Query-by-Committee (QBC) is an effective method of sam-

pling for active inference where disagreement among dif-
ferent committee members is exploited to select nodes for
labeling. QBC approach involves maintaining a committee
C = {θ(1), . . . , θ(|C|)} of models which represent compet-
ing hypotheses. Each committee member is then allowed to
vote on the labeling of candidate nodes (i.e., reviews). The
most informative candidates are those about which the com-
mittee members disagree the most. The key requirements of
the QBC approach are (i) constructing a committee of mod-
els that represent different regions of input space and (ii) a
measure of disagreement among the committee members.

(i) Committee Building: In this work, we build the
committee by selecting 4 features out of 16 review features
at random without replacement four times. This gives us a
committee of four members each utilizing 4 review features
to compute their priors (see Section 2.1).

(ii) Disagreement measure: We utilize the average
Kullback-Leibler (KL) Divergence proposed by MacCal-
lum et al. [12] as our disagreement measure which is an
information-theoretic approach to calculate the difference
between two probability distributions. This strategy is called
the soft voting (SV) and represented by Eq. (3.5):

(3.5) x∗QBC−SV = argmax
x

1

|C|

|C|∑
c=1

D(bθ
(c)

x ||bCx )

where, D(bθ
(c)

x ||bCx ) =
∑
i b
θ(c)

x (yi) log
bθ

(c)

x (yi)
bCx (yi)

.

Here θ(c) represents a particular member model in the com-
mittee and C represents the whole committee. bCx (yi) =
1
|C|

∑|C|
c=1 b

θ(c)

x (yi) is the average belief that yi is the correct
label for node x. This soft voting measure considers the node
as highest informative which has the largest average differ-
ence between the label distributions of any one committee
member and the whole committee.

For a budget B, at each iteration we select the review
node with the highest disagreement score to be labeled by the
oracle. We leverage the provided label during the inference
in the next step, by initiating priors as φx∗ = {ε, 1 − ε} if
selected review is labeled fake, and {1− ε, ε} otherwise.

In addition to the above, we build two strategies (i)
most-sure disagreement and (ii) least-sure disagreement,
above the soft voting based QBC approach motivated by
Sharma et al. [21]. Our approach is different from [21] in a
sense that they use uncertainty of different features, whereas,
we use disagreement of different committee members. Most-
sure disagreement occurs if the committee members have
strong and conflicting evidence about an instance and least-
sure disagreement occurs if the committee members have no
conclusive evidence about an instance. For example, when
half of the committee members vote fake and the other half
vote genuine for the same node, then in most-sure disagree-
ment the committee members are more certain about their
decision (e.g., beliefs [0.01 0.99] for fake and [0.99 0.01]
for genuine), whereas, in least-sure disagreement the com-
mittee members are less certain about their decision (e.g., be-
liefs [0.45 0.55] for fake and [0.55 0.45] for genuine). For
the review network, we classify a node x based on the ratio
bx(+)
bx(−) , where bx(+) (bx(−)) is the belief of node x belong-
ing to spam or positive class (non-spam or negative class):

(3.6) yx =

{
+ if bx(+) > bx(−),
− otherwise

From the above equation, it follows that for a node x the
committee member θ(c) provides evidence for positive class

if bθ
(c)

x (+)

bθ
(c)
x (−)

> 1, and it provides evidence for negative

class otherwise. Let Px and Nx denote two sets, such
that Px contains committee members that provide evidence
for positive class and Nx contains committee members that
provide evidence for negative class:

(3.7) Px = {θ(c)|b
θ(c)

x (+)

bθ(c)x (−)
> 1}

(3.8) Nx = {θ(c)|b
θ(c)

x (−)
bθ(c)x (+)

> 1}

Note that these two sets are defined around a particular
node x. The total evidence for node x of belonging to the
positive class and the negative class are calculated using the



following Eq. (3.9) and (3.10) respectively:

(3.9) E+(x) =
∏

θ(c)∈Px

bθ
(c)

x (+)

bθ(c)x (−)

(3.10) E−(x) =
∏

θ(c)∈Nx

bθ
(c)

x (−)
bθ(c)x (+)

Our investigation shows that we have to optimize several
objectives at the same time to make this evidence framework
work on top of the QBC approach:
• Committee members should disagree on node x (i.e.,

high average KL divergence score).
• For most-sure disagreement, both E+(x) and E−(x)

need to be large.
• For least-sure disagreement, both E+(x) and E−(x)

need to be small.
We define the overall evidence of node x as:

(3.11) E(x) = E+(x) + E−(x)

This aggregation makes sense as the overall evidence E(x)
is large if both E+(x) and E−(x) are large and close to
each other. Similarly, E(x) is small when both E+(x)
and E−(x) are small. Furthermore, selecting an unlabeled
node x for which E(x) is largest (or smallest) will not
guarantee that the committee members have disagreement
on x. To guarantee the disagreement of committee members,
we first rank the nodes in decreasing order of their soft voting
score xQBC−SV (measured by equation (3.5)) and take the
top k nodes. Let S be the set of top k nodes on which
the committee members disagree the most. The most-sure
disagreement approach selects the node with the maximum
overall evidence:

(3.12) x∗QBC−MS = argmax
x∈S

E(x)

and, the least-sure disagreement approach selects the node
with the minimum overall evidence:

(3.13) x∗QBC−LS = argmin
x∈S

E(x)

Most of the existing works on active inference do not use
any relational information for query selection during label
acquisition. There exist some recent works which utilize the
relational information among the instances to improve the
selection strategy [3, 4]. However, requirement of an initial
labeled training graph or non-scalable greedy approach [3]
makes some existing techniques inapplicable in our spam
detection setting. We utilize both metadata and relational
information for label acquisition using two techniques, one
of them is a modified version of ALFNET [4] and the other
is Expected UnCertainty Reach (EUCR) that we propose
in this work. We describe the relational label acquisition
approaches in the following sections.

3.4 ALFNET
Proposed by Bilgic et al. [4], ALFNET is an active learning
algorithm for collective classification. This algorithm uses
two learners called CO (content-only) and CC (collective
classifier), and combines their decision in order to select
nodes for labeling. In particular, this algorithm considers
those nodes to be informative for which the decisions of
the two classifiers differ. It is assumed that the labels are
acquired iteratively in batch size of k. At first, this algorithm
clusters the nodes in the graph into C clusters using the
network structure of the data. Then, it selects the k clusters
which satisfy two important properties: (i) the decisions of
CO and CC differ the most, and (ii) the decisions of the
classifiers do not match with the already observed labels in
the cluster. Based on these two properties, an overall score
is computed for each cluster c ∈ C and for a batch of size
k, the top k clusters Ck ⊂ C are selected. From each of
these top k clusters a node x ∈ ci (i = 1, . . . , k) is randomly
selected for labeling. For further details on this algorithm,
we refer the readers to the original paper [4].

We modify this algorithm to work with our spam de-
tection framework. Specifically, instead of using Iterative
Classification Algorithm (ICA), we utilize SPEAGLE as the
collective classifier CC and logistic regression (as original
work) as the content-only classifier CO. The CO is trained
based on the features extracted from meta-data. Further-
more, we construct a review–review network on which to
perform the clustering, by connecting two reviews with an
edge if they share at least one reviewer. Initially, we have
no labels to train the CO classifier. Therefore, we first sort
the clusters by size and select one random review node to
query from each of the top k clusters with largest size. The
acquired labels constitute the initial training set for CO. We
also incorporate these labels to CC for inference. Following
the initial selection, in each iteration we compute a score for
each cluster based one the disagreement between CO and
CC as well as the estimated labels in the clusters. We then
select top k clusters based on these scores to draw a node x
for querying from each cluster randomly.

The main constraints of ALFNET are that (i) it needs
several iterations to acquire enough labels to be able to learn
an effective CO classifier, (ii) CO is susceptible to high
class-imbalance, as most of the acquired labels are non-
spam, and (iii) it needs to re-train CO at every iteration. As
a result, it requires more labels to improve performance over
random sampling in our opinion spam detection setting.

3.5 Expected UnCertainty Reach (EUCR)
Finally, we propose a label acquisition approach which con-
siders both the uncertainty of a node as well as the uncer-
tainty of other nodes close-by to it in the network structure.
Our main objective is to find “islands” of uncertainty, in
which we aim to obtain correct classification for all the nodes



by acquiring labels for only a few. Following our intuition,
we find three important characteristics of a valuable node for
label acquisition, those are (i) uncertainty of a node, (ii) den-
sity of the region the node belongs to, and (iii) its proximity
to other uncertain nodes. As such, a node is more valuable
to query it exhibits uncertain beliefs and resides close-by to
other uncertain nodes in a dense region, such that acquiring
its label could help the nodes in its proximate neighborhood.

Based on our intuition about the characteristics of a
valuable node, we propose a scoring measure called Ex-
pected UnCertainty Reach (EUCR). In this method, to ad-
dress the first two characteristics of a valuable review node,
we first calculate the weighted uncertainty score WUCx for
all review nodes x ∈ R using Eq. (3.14).

(3.14) WUCx = −wx
∑
i

bx(yi) log bx(yi)

where wx is calculated from the user-degree of the corre-
sponding review node as

wx =
UDx −minUD
maxUD −minUD

.

In particular UDx denotes the degree (total number of
reviews) of the user who posted review x and minUD and
maxUD denote the minimum and maximum degree of a
user node in the network. The weighted uncertainty (WUC)
score gives higher values to those (review) nodes which are
more uncertain and also reside in a denser region (i.e., have
many other review nodes nearby).

We then rank the review nodes based on their WUC
score and take the top k nodes. Let S be the set of top
k nodes that we pick by the uncertainty of the nodes and
density of the region they belong to. We want a review
node x to be not only uncertain itself, but also close-by to
many other uncertain review nodes. Importantly, due to the
existence of homophily it is considered that the neighboring
nodes have similar labels, thus acquiring label of a node from
a dense region helps all nodes in that region. To quantify
proximity, we leverage the review–review network (denoted
by GR) where two reviews are connected if they share the
same reviewer, on which we compute the Random Walk
with Restart probability vector px for x. px(j) depicts the
probability of reaching node j through a (infinitely long)
random walk, with occasional restarts to x. As such, this
probability captures proximity of j to x. Then for each node
x ∈ S we calculate the probability of reaching a node j for
all j ∈ R under random walk with restart as Eq. (3.15).

(3.15) px = cWpx + (1− c)ex

where, 1 − c (c = 0.85) is the teleportation probability, ex
is a unit vector containing 1 for node x and 0’s for all other
nodes, and W is the column normalized adjacency matrix of
GR. Eq. (3.15) defines a linear system problem, where we
can write px as

(3.16) px = (1− c)(I − cW )−1ex

The most informative node is then the one with the maximum
total uncertainty reach as weighted by proximity, i.e.,

(3.17) x∗EUCR = argmax
x∈S

∑
j∈R

px(j)×WUCj

In summary, we assume that a node is more valuable not only
for its level of uncertainty and residence in a dense region but
also with respect to the existence of other uncertain nodes in
its proximity (or “reach”).

4 Evaluation
We evaluate our approach on two real world datasets from
Yelp.com. These datasets consist of recommended as well
as filtered reviews from Yelp. We describe the datasets and
evaluation metrics, followed by performance results.

Dataset Description In this work, we evaluated our
method on two datasets from Yelp.com, a summary of which
is given in Table 1. Our first dataset, called YelpChi has
been collected and used by [16] and contains a list of reviews
from the hotels and restaurants in Chicago. The second
dataset, called YelpNYC that we collected and used in [19],
contains reviews of restaurants in New York City.

Yelp has its own proprietary filtering algorithm, which
filters out reviews. Yelp has made all its recommended as
well as filtered reviews public. We consider them as genuine
and fake respectively. We also separate the users in two
classes, benign vs. spammer, where spammers are those
users with at least one filtered review.

Table 1: Review datasets used in this work.
Data #Reviews #Users #Prod.

(filtered %) (spammer %) (rstr.)
YelpChi 67,395 (13.23%) 38,063 (20.33%) 201
YelpNYC 359,052 (10.27%) 160,225 (17.79%) 923

Evaluation Metrics We use three evaluation metrics
to measure the performance of our approach and all other
compared approaches. We generate the precision vs. recall
(PR) curve for different thresholds and calculate the area
under the curve to get Average precision (AP). For spam
detection in an imbalanced dataset (fake class represents
minority), often the top positions in the ranking are more
important. Therefore, we also calculate (i) precision@k and
(ii) NDCG@k, for k = 100, 200, . . . , 1000 to provide the
performance on the top positions of the ranking.

Performance Results We compare the performance of
different label acquisition approaches described in Section 3.
Fig. 1 provides the AP curves with varying budget (e.g.,
budget = 0, 1, 2, . . . , 500) of compared approaches for both
user and review ranking. In review ranking, EUCR outper-
forms all the competing approaches for both the datasets, ex-
cept for ALFNET in YelpNYC. However, ALFNET starts
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Figure 1: AP of compared methods on YelpChi (top),
YelpNYC (bottom) for both user and review ranking.

performing well only after around 350 labels are acquired,
whereas, EUCR does better with fewer labels. Experiments
show that the sudden performance increase of ALFNET is
due to acquiring more fake labels only after 300 labels,
which improves the learning of CO and also helps the in-
ference of CC. Specifically, out of the first 300 acquired
labels only 26 are from fake class, whereas, for the next
200 acquired labels 123 are fake. Thus acquiring some
balance between the number of fake and genuine labels
improves ALFNET’s performance. However, balance is
not always guaranteed—even after 500 labels for YelpChi,
ALFNET performs worse than RS. Fig. 2 shows the NDCG
curves of the compared methods with varying budget (e.g.,
budget = 0, 1, 2, . . . , 500) and fixed k (e.g., k = 100, 1000)
to better depict the performance of review ranking. Again,
the NDCG curves for compared methods show similar trend
as the AP curves for review ranking.

Our analysis shows that the US and QBC approaches,
which do not consider the network structure in label acqui-
sition end up selecting nodes which may be most uncertain
(or most disagreed upon), however, not representative (i.e.,
close-by) of some or many other nodes. Although acquiring
the labels for such review nodes are useful for the classifi-
cation of corresponding users, they are not assisting other
review nodes. As a result, both US and QBC (SV, MS, LS)
have significant performance improvement for user ranking,
but same is not true for review ranking as depicted in Fig. 1
and Fig. 2. For user ranking these baseline approaches pro-
vide very close results. Our EUCR approach also shows a
comparable trend to those baselines.

Our analyses show that when a label acquisition method
selects reviews written by different users then it is likely
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Figure 2: NDCG@100 (left) and NDCG@1000 (right) of
compared methods on YelpChi (top), YelpNYC (bottom)
for review ranking with varying budget (0, 1, . . . , 500).

Table 2: Summary of 500 labeled reviews of compared
method for YelpChi and YelpNYC datasets.

YelpChi YelpNYC
Methods #unique #fake/#gen. #unique #fake/#gen.

users labeled users labeled
RS 494 62 / 438 500 53 / 447
US 500 231 / 269 500 205 / 295
QBC-SV 500 186 / 314 476 164 / 336
QBC-MS 500 183 / 317 494 154 / 346
QBC-LS 500 184 / 316 495 163 / 337
ALFNET 483 19 / 481 335 149 / 351
EUCR 498 139 / 361 500 131 / 369

that more users get correct labels (i.e., spammer or benign),
hence, performance improves for user ranking. Again,
label acquisition of more fake reviews which are also
representative of neighboring fake reviews improves the
performance of review ranking. In Table 2, we provide the
statistics of the labeled reviews and their corresponding users
for different compared label acquisition approaches on both
YelpChi and YelpNYC datasets with budget 500. This
summary shows that our proposed label acquisition approach
EUCR provides labels to the reviews of different users,
resulting approximately as many correct user classification
as the budget size. On the other hand, ALFNET acquires
labels for multiple reviews of the same user, allowing label
passing to fewer number of unique users, hence, reducing
user ranking performance. EUCR also has some balance
between number of fake and genuine reviews compared
to RS and ALFNET. As our datasets are imbalanced (fake
being minority), RS gets the most imbalanced number of
fake vs. genuine label passing. Although the summary



shows better statistics for US and QBC, these approaches
do not achieve the expected performance due to selfishly
selecting uncertain (or disagreed) nodes without considering
the neighborhood information of the corresponding nodes in
the network structure.
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Figure 3: NDCG@k on YelpChi (top), YelpNYC (bot-
tom) for both user and review ranking with budget 500.

We further provide the NDCG@k curves in Fig. 3 for
varying top k (e.g., k = 100, 200, . . . , 1000) nodes and bud-
get = 500, to better describe the ranking performance of
compared methods, for both user and review ranking. Our
EUCR approach outperforms all other compared approaches
significantly on YelpChi for review ranking. However,
ALFNET performs better than EUCR on YelpNYC with
budget 500. The same arguments for Fig. 1 hold here as well.
Having smaller budget (e.g., budget = 300), EUCR outper-
forms ALFNET (due to imbalanced labeled data) as well
as other approaches, as depicted in Fig. 4. Recall that be-
sides a larger budget (i.e., training data), ALFNET requires
a balanced labeled set to perform well and re-trains its local
feature-based classifier CO at every step.

In Table 3 we also show the precision@k values for re-
view ranking under fixed budget = 300, to provide further ev-
idence of the ranking performance of the compared methods.
Once again, our EUCR approach outperforms RS as well as
all other label acquisition approaches on both YelpChi and
YelpNYC datasets.

In conclusion, our analyses show that most state-of-the-
art approaches perform better than random sampling for only
one type of ranking, users or reviews. In contrast, our EUCR
approach achieves significant improvement over random se-
lection for both user and review ranking. Specifically, with
a small budget of 300 it improves NDCG@100 by 20–34%,
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Figure 4: NDCG@k on YelpChi (left), YelpNYC (right)
for review ranking with budget 300.

and precision@100 by 14–30% for review ranking, and for
user ranking it improves NDCG@100 by 9–23%, and preci-
sion@100 by 12–28%, over random sampling used in [19].

5 Related Work
Although both active learning and active inference are
widely explored in the literature (detailed survey in [1, 20]),
there are only a few recent works on active learning (or in-
ference) applied to network data. In network data, often the
label of a node is influenced by its neighborhood. Hence, the
common intuition is that knowing the label of a particular
node can help inferring labels of other nodes in its neigh-
borhood. In [18], Rattigan et al. proposed to select the most
central nodes for labeling in order to get more significant im-
pact. However, exploiting network structure sometimes be-
comes disadvantageous. In collective classification, wrong
labels can be propagated throughout the network, misclas-
sifying other unlabeled nodes. Bilgic et al. [3] proposed a
collective classification approach called Reflect and Correct
(RAC) to find islands of misclassification to correct the la-
bels of a few nodes to improve performance. However, RAC
requires an initial labeled training graph to find misclassifi-
cation. They also proposed in [3] a greedy approach called
AIGA which acquires the labels by minimizing the expected
error (e.g., log loss). In AIGA, the expected error is min-
imized by considering all possible labels for each network
instance, which is intractable to be applied on large-scale
graphs. A similar approach to AIGA called Expected Risk
Minimization (ERM) has been proposed by Macskassy [13]
which provides significant speed up over AIGA by leverag-
ing the graph structure (e.g., betweenness centrality) to ini-
tialize good candidates for labeling. Moreover, there are
some scenarios where both meta information and network
structure are available (like our spam detection problem).
The work in [4] proposed an algorithm ALFNET where
they utilize two classifiers (i) content-only, and (ii) collective
classifier to combine their prediction for label acquisition.
In particular, the nodes on which the two classifiers have
disagreement are considered to be good candidates. While
this approach has been tested on document classification, we



Table 3: Precision@k for review ranking on YelpChi and YelpNYC with budget 300.
YelpChi YelpNYC

k RS US Q’-SV Q’-MS Q’-LS A’NET EUCR RS US Q’-SV Q’-MS Q’-LS A’NET EUCR
100 0.78 0.64 0.77 0.75 0.70 0.81 0.98 0.51 0.41 0.57 0.60 0.49 0.60 0.85
200 0.62 0.59 0.58 0.60 0.57 0.64 0.81 0.49 0.36 0.54 0.52 0.50 0.52 0.65
300 0.55 0.52 0.55 0.53 0.53 0.56 0.68 0.47 0.35 0.48 0.51 0.45 0.52 0.60
400 0.51 0.48 0.53 0.53 0.53 0.53 0.61 0.46 0.36 0.48 0.49 0.44 0.49 0.54
500 0.51 0.46 0.52 0.52 0.50 0.51 0.57 0.43 0.36 0.45 0.45 0.42 0.45 0.52
600 0.50 0.46 0.48 0.48 0.48 0.51 0.56 0.42 0.36 0.42 0.44 0.41 0.44 0.48
700 0.47 0.45 0.47 0.48 0.47 0.48 0.54 0.41 0.36 0.42 0.42 0.40 0.42 0.46
800 0.47 0.43 0.47 0.47 0.46 0.47 0.52 0.40 0.35 0.41 0.42 0.40 0.42 0.45
900 0.46 0.44 0.46 0.46 0.45 0.47 0.50 0.39 0.35 0.41 0.41 0.39 0.40 0.44
1000 0.46 0.44 0.45 0.44 0.45 0.46 0.50 0.39 0.35 0.40 0.40 0.38 0.40 0.43

adapt it to our opinion spam detection setting and compare
to our proposed approach EUCR. To the best of our knowl-
edge, ours is the first work on active inference for collec-
tive opinion spam detection, where we utilize all of network,
meta-data, and active label acquisition simultaneously.

6 Conclusion
In this work we extend the semi-supervised opinion spam
detection framework SPEAGLE [19] with active inference,
by carefully selecting valuable nodes (for acquiring labels
from the oracle) within a small budget based on the network
structure. Our main contributions are:
• We show how to adapt existing general label acquisition

techniques of active inference for the semi-supervised
relational inference setting.

• We present three useful characteristics of a valuable
node for querying: (i) uncertainty, (ii) neighborhood
density, and (iii) proximity to other uncertain nodes.

• We propose a new label acquisition approach called
Expected UnCertainty Reach (EUCR) for relational
active inference, which selects uncertain nodes from
dense regions within reach to other uncertain nodes.

We evaluate our method on two large datasets from
Yelp.com, where EUCR outperforms random selection as
well as other state-of-the-art approaches.
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