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Abstract—Ensemble methods for classification have been effec-
tively used for decades, while for outlier detection it has only
been studied recently. In this work, we design a new ensemble
approach for outlier detection in multi-dimensional point data,
which provides improved accuracy by reducing error through
both bias and variance by considering outlier detection as a
binary classification task with unobserved labels.

In this paper, we propose a sequential ensemble approach
called CARE that employs a two-phase aggregation of the in-
termediate results in each iteration to reach the final outcome.
Unlike existing outlier ensembles, our ensemble incorporates
both the parallel and sequential building blocks to reduce bias
as well as variance by (i) successively eliminating outliers from
the original dataset to build a better data model on which
outlierness is estimated (sequentially), and (ii) combining the
results from individual base detectors and across iterations
(parallelly). Through extensive experiments on 16 real-world
datasets mainly from the UCI machine learning repository [1],
we show that CARE performs significantly better than or at
least similar to the individual baselines as well as the existing
state-of-the-art outlier ensembles.

1. Introduction
As outlier detection is a widely researched area, there

exist various approaches such as density based [2], [3]
and distance based [4], [5] methods, which find unusual
points by the distance to their k nearest neighbors (kNNs).
However, there exists no known algorithm that could detect
all types of outliers that appear in various domains. Hence,
ensemble learning for outlier detection has become a popular
research area more recently [6], [7], [8], which aims to
combine multiple detectors to gain the “strength of many”.

In contrast to outlier detection ensembles, classification
ensembles have been studied for decades. One can catego-
rize ensembles into two kinds. The first one is the parallel
ensemble, where base learners are created independent of
each other and their results are combined to get the final
outcome; while the second one is the sequential ensemble,
where base learners are created over iterations and have
dependency among them. Specifically, several outlier en-
sembles are proposed based on two seminal works of clas-
sification ensembles: (i) the parallel ensemble Bagging [9],
which creates base components from different subsamples of
training datasets parallelly, and (ii) the sequential ensemble

AdaBoost [10], which creates base components iteratively.
Among those, some try to induce diversity among the base
detectors [6], [8], [11], [12], [13], and others selectively
combine outcomes from the candidate detectors [7], [14].

Existing outlier ensembles have several limitations, most
importantly they avoid discussing the theoretical aspects of
outlier detection. Recently, Aggarwal and Sathe [8] argue
that although they appear to be very different problems,
classification and outlier detection share quite similar the-
oretical underpinnings in terms of the bias-variance per-
spective. Specifically, one can consider the outlier detection
problem as a binary classification task where the labels are
unobserved, the inliers being the majority class and the
outliers the minority class, and the error of a detector can
be decomposed into bias and variance terms in a similar
way. In existing outlier ensembles, various parallel frame-
works combining multiple detector outcomes are designed
to reduce variance only. Moreover, it remains challenging
to reduce bias in a controlled way for outlier detection or
remove inaccurate detectors due to the lack of ground truth.
There exist a successful heuristic approach which remove
outliers in successive iterations [15] to build more robust
outlier models iteratively by reducing bias.

In this paper, we study the feasibility of bias-variance
reduction under the unsupervised setting, and propose a
sequential ensemble model called Cumulative Agreement
Rates Ensemble (CARE), to reduce both bias and variance
for outlier detection. Specifically, each iteration in the se-
quential ensemble consists of two aggregation phases: (1)
in the first phase, we combine the results of feature-bagged
base detectors using weighted aggregation, where weights
are estimated in an unsupervised way through the Agree-
ment Rates (AR) method by [16], and (2) in the second
phase, the result of the current iteration is aggregated with
the combined result from the previous iterations cumula-
tively. These two phase aggregations in each iteration aim
to reduce the variance. Furthermore, we use the combined
result from the previous iterations to improve the next
iteration by removing the top (i.e., most obvious) outliers
and perform a variable probability sampling to create the
data model to be used for the next iteration. The removal of
top outliers in successive iterations aims to reduce the bias.

To the best of our knowledge, this is the first work fo-
cusing on reducing both bias and variance for unsupervised
outlier detection. In general, our contributions are following:



• We design CARE, a new approach which incorpo-
rates weighted aggregation of feature-bagged base
detectors, where weights are estimated in an unsu-
pervised fashion (Section 2.3.1 and 2.3.2).

• We devise a sequential ensemble over the weighted
combination, which cumulatively aggregates the re-
sults from multiple iterations until a stopping con-
dition is met (Section 2.3.3 and 2.3.4).

• We provide a new sampling approach called Filtered
Variable Probability Sampling (FVPS) which utilizes
the result from the previous iteration to create the
data model for the next iteration (Section 2.3.3).

• CARE is designed to reduce both bias and variance
and improves the overall result. Experiments in Sec-
tion 3 with synthetic datasets support the claim.

We evaluate our method on 16 real-world datasets mostly
from the UCI machine learning repository [1]. Our results
show that CARE outperforms the baseline detectors in most
cases and remains close to them in cases where it falls
shorter. We also compare CARE with the existing state-of-
the-art outlier ensembles [6], [8], [12]. Similarly, it provides
significant improvement when it is the winner, and performs
close otherwise (Section 4).

2. Proposed Approach
2.1. Overview

CARE takes the d-dimensional data, a value for k (near-
est neighbor count), and a value for MAXITER as input
and outputs an outlierness score list fs and a rank list r
(ranked based on most to least outlierness) of n data points.
In the experiments we use k = 5, which is compatible with
the state-of-the-art methods [6], [8]. As for MAXITER,
we set it to 15, a relatively small value. We assume that our
approach improves the base detectors over iterations, and
the results are stabilized after only a few iterations.

The main steps of CARE are given in Algorithm 1.
Step 3 creates the feature-bagged outlier detectors as base
detectors of the ensemble. For the first iteration the sample
set S contains the whole data D as shown in step 1. For
each base detector, we randomly select q ∈ [d/2, d − 1]
features to create b (= 100) different feature-bagged base
detectors. Motivated by Platanios et al. [16], step 4 cal-
culates the pairwise agreements aA for all possible pairs
of base detectors and step 5 estimates the errors of the
individual base detectors in an unsupervised way using aA.
Step 6 calculates weights for the base detectors using their
corresponding errors. Step 7 combines the outlierness scores
from the different base detectors with weighted aggregation
to get final outlierness scores ws which are stored in E at
step 8. Step 9 calculates the final outlierness scores fs by
averaging the results of all previous iterations as well as
the current iteration. Based on fs, step 10 generates the new
data sample S (where, |S| < |D|) using the FVPS approach
(see Section 2.3.3). We repeat steps 3-15 until the stopping
condition at step 11 is met or upto the given maximum
iteration MAXITER. Finally, step 16 generates the ranked
list r of data points from most to least outlierness.

Unlike existing ensemble techniques, CARE incorporates
a two-phase aggregation approach in each iteration; first,
it combines the results from the individual base detectors
(parallel) and second, it cumulatively aggregates the results
from multiple iterations (sequential). The complexity of
CARE depends on steps 3, 10, and 16, where step 3 has
the highest complexity. As such, the complexity of CARE is
O(bn2logn).

Algorithm 1: CARE Outlier Detection Ensemble
Input: d-dimensional Data D, NN count k = 5,

MAXITER = 15
Output: Score list (fs) and rank list (r) of points

1: S = D (initially); E = ∅; iter = 0
2: while iter ≤MAXITER do
3: Obtain results from (b) feature-bagged base

detectors (D,S, k) [Section 2.2]
4: Calculate pairwise agreement rates aA for all base

detector pairs in set A
5: Estimate detector errors e (b× 1) based on aA

[Section 2.3.1]
6: Compute detector weights using estimated errors

[Section 2.3.2]
7: Compute pruned weighted outlierness scores of data

points to get combined scores (ws) [Section 2.3.2]
8: E = E ∪ ws
9: fs = average(E)

10: Generate new data sample S from D using
FVPS (w/o replacement) on fs [Section 2.3.3]

11: if stopping condition is TRUE then
12: break [Section 2.3.4]
13: end if
14: iter = iter + 1
15: end while
16: r = sort(fs) (descending order)

Next we describe the main components of our proposed
CARE in detail. In particular, we describe the base detectors
in Section 2.2 and consensus approaches in Section 2.3.

2.2. Base Detectors
In this work, we are interested in unsupervised outlier

detection approaches that assign outlierness scores to the
individual points in the data.
2.2.1. kNN based Outlier Detectors. In our work, we
create two versions of CARE: (1) using the distance based
approach AvgKNN (average k nearest neighbor distance of
individual data point is used as outlierness score), and (2)
using the popular density-based approach LOF [2]. We note
that CARE is flexible to accommodate any other kNN based
outlier detectors.
2.2.2. Feature Bagging. Like classification ensembles, fea-
ture bagging can be incorporated in outlier ensembles in
order to explore multiple subspaces of the data to induce
diverse base detectors and reduce variance. As such, in
this work we use feature bagging to create multiple base
detectors and combine their results with a goal to improve
the outlier detection performance by reducing variance.



2.3. Consensus Approaches

Most of the existing outlier ensembles either combine
outcomes of all the base detectors [11], [17], or selec-
tively incorporate accurate base detectors in an unsupervised
fashion discarding the poor ones [7], [13]. However, the
definition of a poor detector varies across different applica-
tion domains. Therefore, in this work we go beyond binary
selection and estimate weights for individual base detectors
to aggregate their results with a weighted combination. In
the following two sections, we describe the error as well as
weight estimation of the base detectors.

2.3.1. Error Estimation. Motivated by the unsupervised
Agreement Rates (AR) method of error estimation for mul-
tiple classifiers by Platanios et al. [16], we estimate the
errors (unsupervised) of the base detectors in our work. This
estimation is based on the agreement rates for all possible
pairs of base detectors in A : |A| = 2. Outlier detection
can be considered as a binary classification problem with
a majority class (inliers = 0) and a minority class (outliers
= 1). However, most existing outlier detection algorithms
provide outlierness scores for the data points. In order to
adapt the AR approach, {0, 1} labels are needed for the
data points. We use Cantelli’s inequality [18] to estimate a
threshold thi (i = 1 . . . b) with confidence level at 20% to
find a cutoff point between inliers and outliers for each base
detector to get binary class labels.

After estimating the class labels, we calculate the agree-
ment rates. As inliers are the majority class and it is likely
that most detectors would often agree on a large number
of inliers, our main goal is to find agreement based on the
outliers detected by the base detectors. Therefore, we take
the union of all outliers (= 1) across different base detectors
to obtain U , which we use to calculate the agreement rates
for the detector pairs in A.

In the following sections we denote the base detectors
as fi ∈ F (i = 1 . . . b, |F | = b), input data as D, and class
labels as Y . The error event EA of a set of detectors in A
is defined as an event when all the detectors make an error:

EA =
⋂
i∈A

[fi(D) 6= Y ] , (1)

where
⋂

denotes set intersection. The error rate of a set
of detectors in A is then defined as the probability that all
detectors in A make an error together and is denoted as

eA = P(EA) . (2)
The agreement rate of two detectors is the probability that
both make an error or neither makes an error. As such, the
pairwise agreement rate equation in terms of error rates for
the sets in A : |A| = 2 can be written as

a{i,j} = P(E{i} ∩ E{j}) + P(Ē{i} ∩ Ē{j})
= 1− e{i} − e{j} + 2e{i,j},∀{i, j} ∈ A : i 6= j,

(3)

where ·̄ denotes the set complement. On the other hand, the
agreement rates for the set of detectors in A : |A| = 2 can
be directly calculated from the detector output and set U

(defined earlier) as follows:

aA =
1

|U |

|U |∑
u=1

I{fi(Du) = fj(Du)},∀{i, j} ∈ A : i 6= j .

(4)
Provided that one can easily compute the pairwise agree-

ment rates a{i,j}’s, which can be written in terms of the
(unknown) individual and pairwise error rates of the detec-
tors, we can cast the error rate estimation as a constrained
optimization problem where the agreement equations in (3)
form constraints that must be satisfied as follows:
min.

∑
Â:|Â|≤2

e2
Â

+ εÂ

s.t. aA = 1− e{i} − e{j} + 2e{i,j} , ∀{i, j} ∈ A
0 ≤ eÂ < 0.5 + εÂ ,

0 ≤ εÂ

(5)

where Â contains individual as well as pairs of detectors
(i.e., Â = F ∪A) and εÂ’s denote the slack variables.

In their AR approach, Platanios et al. assume that the
error rates should be strictly < 0.5. Different from theirs, we
allow the error rates to be above 0.5, for which we introduce
a slack variable εÂ ≥ 0 in constraints 0 ≤ eÂ ≤ 0.5+εÂ. In
real-world settings, it is possible to have poor base detectors
having large errors (i.e., worse than random).

Although the above constrained optimization approach
estimates error rates of individual as well as of all possible
pairs of base detectors, we only utilize the error rates of the
individual detectors to calculate their corresponding weights
for aggregation, which we describe next.

2.3.2. Weighted Aggregation. In CARE, we propose to
use weighted aggregation to improve the ensemble as the
most common aggregation functions average and maximum
have some limitations. We calculate the weights of the base
detectors from their estimated errors (as in Section 2.3.1),
such that the weights are positive and inversely proportional
to the corresponding errors. Inspired by AdaBoost [10], we
calculate weights using the following equation:

wi =
1

2
log
( 2

ei
− 1
)
, i = 1 . . . b (6)

where wi ≥ 0 is the weight of detector i with estimated
error ei ∈ [0, 1], for i = 1 . . . b. Moreover, as we assume that
in real-world settings the base detector pool will have poor
(i.e., worse than random) detectors, we discard the detectors
with error ei ≥ 0.5.

After discarding p detectors with error ei ≥ 0.5, we
combine the outlierness scores from the base detectors using
weighted aggregation. In order to do weighted aggrega-
tion, we need to unify the outlierness scores, as different
base detectors employ different feature sets, hence provide
scores with varying range and scale. To standardize, we
use Gaussian Scaling [19] to convert the outlierness scores
of AvgKNN or LOF into probability estimates Pri (i =
1 . . . b− p) ∈ [0, 1]. We calculate the final outlierness score
ws(x) of a data point x using the weighted average of the



probability estimates as follows:

ws(x) =

∑b−p
i=1 wi × Pri(x)∑b−p

i=1 wi

(7)

Above,
∑b−p

i=1 wi is used to normalize the outlierness scores.
Thus far, we described steps 3–7 of Algorithm 1. Next

we describe the iterative nature of our sequential ensemble.

2.3.3. Sequential Ensemble. With the weighted aggrega-
tion combining multiple feature-bagged base detectors we
aim to reduce variance, but our additional goal is to reduce
bias. One commonly used bias reduction approach is to
remove outliers in successive iterations [20] in order to
build more robust outlier models iteratively. This is a type
of sequential ensemble. The basic idea is that the outliers
interfere with the creation of a model of normal data, and
the removal of points with high outlier scores is beneficial
for the model in the following iteration.

As such, we adopt a sequential ensemble approach in
CARE where we use the result from the previous iteration
to improve the next. In particular, we select a subsample S
from the original data D (where |S| < |D|) to use it as a
new data model based on which we calculate the outlierness
scores for all the data points in D. For example, when we
need the average kNN distance of a data point x ∈ D, we
calculate the distance to its k-nearest neighbors Ni ∈ S. The
goal is to construct S that includes as few of the true outliers
as possible, such that it serves as a more reliable data model.
To do so, we design a sampling approach which we call
Filtered Variable Probability Sampling (FVPS). Following
are the steps of the FVPS:

• Discard top T outliers detected in previous step from
D, where T is the number of outliers selected using
Cantelli’s inequality [18] on final outlierness scores
fs (threshold is selected at 20% confidence level to
find the cutoff point between outliers and inliers).

• Select l uniformly at random between min{1, 50n }
and max{1, 1000n }, where n is the size of D.

• Build sub-sample S (where |S| = l × (n − T )) by
sampling from D′ (outliers-discarded) based on the
probability of the points being normal (i.e., (1−fs)).

In step 1 of FVPS, we obtain D′ by filtering the outliers
detected in the previous step to reduce bias. Here, we choose
confidence level 20% to get a larger T in order to remove
as many outliers as possible. Inspired by Aggarwal and
Sathe [8], we use variable sampling in step 2. Varying the
subsample size at fixed k effectively varies the percentile
value of k in the subsample for different iterations, as k is
scaled by the inverse of various subsample sizes. For some
datasets smaller value of k is better, for others larger is
better. Therefore, in CARE we select a small value of k
(e.g., 5) and employ variable sampling to incorporate the
illusion of using different k in different iterations, which
introduces diverse detectors iteratively. After deciding the
sample size in step 2, we use probability sampling to create
the data model S in step 3. Here, we choose a point from
D′ to include in S based on its probability of being normal.

k
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Figure 1. bias (left) and variance (right) vs. k (avg’ed over 10 test datasets)
on two synthetic datasets. Notice that our approach (red) w/ probability
sampling after top outliers being filtered reduces both bias and variance.

FVPS introduces diverse detectors based on different S
in each iteration, hence, we aggregate (e.g. cumulative aver-
age) the outlierness scores ws over the iterations to compute
final scores fs to further reduce variance and improve the
sequential ensemble (step 9 in Alg. 1). Note that fs is also
what FVPS uses for discarding outliers and sampling set S.

2.3.4. Stopping Criterion. In CARE, we utilize the pair-
wise agreement rates aA between all possible pairs of base
detectors to find a stopping point for the sequential ensem-
ble. Experiments reveal a useful strategy: if the distribution
of aA’s is skewed towards higher agreement rates, then
the error estimates of the base detectors tend to be more
accurate. Intuition is, it is unlikely that most pairs would
have high agreement and yet agree on the wrong labels.
Therefore, we use the area under the curve (auc) of the
complementary cumulative distribution function (ccdf ) of
aA’s as the quantitative measure to decide the stopping
point. The auc of ccdf is large if the distribution of aA’s is
skewed towards higher agreement rates and vice versa. We
assume that as CARE sequentially progresses over iterations,
the base detectors improve, and hence the auc of ccdf for
pairwise agreement rates gets larger. However, if at any
iteration t + 1, t ∈ [0,MAXITER], the auc(t + 1) falls
below the average by more than the standard deviation
of auc(0, . . . , t + 1), the sequential ensemble stops and
returns the result at iteration t or otherwise iterates until
MAXITER and returns the final result.

3. Reducing Bias and Variance with CARE
According to [8], ensembles with feature-bagged base

detectors and with variable sampling tend to reduce vari-
ance. In this section, we provide quantitative results through
experiments on synthetic datasets to show that filtering top T
outliers and probability sampling in our sequential ensemble
reduce bias along with variance. For each synthetic dataset,
we use a data generation model M to create R training
datasets Di, i = 1 . . . R of size m = 210 (200 inliers and
10 outliers) and 10 test datasets DTest

j , j = 1 . . . 10 of



size n = 1000 by randomly drawing points from M. Bias
and variance of different procedures for different values of k
(i.e., # nearest neighbors) for a test data DTest

j are calculated
w.r.t. the training data D

′

i, i = 1 . . . R sampled from Di as
follows:

bias =

√∑n
x=1 (f∗(x)− f(x))2

n
(8)

var =

∑n
x=1

∑R
i=1 (f(x,D

′

i, k)− f(x))2

n×R
(9)

Here, f(x) =
∑R

i=1 f(x,D
′
i ,k)

R , f∗(x) is the actual label
of data point x ∈ DTest

j , and f(x,D
′

i, k) is the normalized
outlierness score of x w.r.t. sampled training set D

′

i for k
nearest neighbors. We design five procedures where each
procedure has a different approach for sampling D

′

i. These
five different procedures are: (i) noSampling: D

′

i = Di, (ii)
Bootstrapping: sampling m times (w/ replacement) from Di

to get D
′

i, (iii) SingleProbSampling: probability sampling
on f(Di, Di, k) for a single iteration to get D

′

i, (iv) Mul-
tiProbSampling: probability sampling on f(Di, D

′

i, k) for
multiple (i.e. 10) iterations where D

′

i = Di initially, and (v)
FilteredMultiProbSampling: filtered (top T outliers removed
from Di) probability sampling on f(Di, D

′

i, k) for multiple
iterations (i.e. 10) where D

′

i = Di initially.
In this section, we provide results on only two synthetic

datasets (20 dim.) for brevity, where the inliers are drawn
from a mixture of Gaussian distributions and outliers are
drawn from (1) power law, and (2) uniform distribution. Fig-
ure 1 shows bias (left) and variance (right) vs. k, where for
the top two plots AvgKNN is used to calculate f(x,D

′

i, k),
and for the bottom two plots LOF is used. We can see from
the figure that FilteredMultiProbSampling (red) reduces both
bias and variance more than any other procedures.

4. Experiments

4.1. Datasets
We evaluate CARE on 16 real-world outlier detection

datasets (Table 1, all available at http://odds.cs.stonybrook.
edu/#table1) mostly from the UCI ML repository [1].

4.2. Results

4.2.1. CARE vs state-of-the-art baselines. We first com-
pare CARE with simple LOF and AvgKNN based baseline
approaches; using k = {5, 10, 50}, as well as non-sequential
feature bagging (FB0) approaches with three types of ag-
gregation; average (A), maximum (M), and weighted (W).
Figure 2 shows the ∆ Average Precision (AP: area under
the precision-recall curve) values from CARE(LOF) to these
six baselines all using the LOF algorithm. That is, the bars
depict APCARE−APbaseline. Results show that CARE outper-
forms all the base detectors on 9/16 datasets, and more than
half of them on 14/16 datasets. Negative ∆ values are much
smaller as compared to positive ones, which indicates that
in cases where CARE is not better than the baselines, it

TABLE 1. REAL-WORLD DATASETS USED FOR EVALUATION, WHERE d
IS DATA DIMENSIONALITY, AND % INDICATES THE % OF OUTLIERS.

Dataset #Pts n Dim. d % Outlier Class
Lympho 148 18 classes 1,4 (4.1%)
WBC 278 30 21 malignant (5.6%)
Glass 214 9 class 6 (4.2%)
Vowels 1456 12 50 sampled class 1 (3.4%)
Cardio 1831 21 176 pathologic (9.6%)
Thyroid 3772 6 from [21] (2.5%)
Musk 3062 166 classes 213,211 (3.2%)
Optdigits 5216 64 150 sampled digit 0 (3%)
Satimage-2 5803 36 71 sampled class 2 (1.2%)
Letter 1600 32 from [22] (6.25%)
Pima 768 8 pos class (35%)
Satellite 6435 36 3 smallest classes (32%)
Breastw 683 9 malignant class (35%)
Arrhythmia 452 274 classes 3-5,7-9,14,15 (15%)
Ionosphere 351 33 bad class (36%)
Mnist 7603 100 700 digit 6 (9.2%)

Figure 2. ∆AP (Average Precision) from CARE(LOF) to LOF based
baseline approaches on all the datasets. Notice that CARE boosts detection
performance significantly for 14/16 datasets over most of the baseline
approaches. avg(∆) denotes average of ∆AP values across datasets.

Figure 3. ∆ AP values from CARE(AvgKNN) to AvgKNN based baselines.
CARE improves over more than half of the baselines on 14/16 datasets.

remains close. In the legend of the figure, we provide the
overall ∆AP values averaged across all the datasets and
positive values indicate that CARE performs better than
the individual baselines on average. Similarly, Figure 3
contains the ∆AP values from CARE(AvgKNN) to six base-

http://odds.cs.stonybrook.edu/#table1
http://odds.cs.stonybrook.edu/#table1


lines using AvgKNN based subroutines. Again, the average
∆ values (in the legend) across different datasets indicate
that CARE outperforms the individual baselines on average.
From these two figures we also conclude that CARE(LOF)
provides greater improvement over the baselines compared
to CARE(AvgKNN). Figure 2 and Figure 3 also contain the
absolute AP values (below the bars) of CARE(LOF) and
CARE(AvgKNN) respectively for all datasets.

Figure 4. ∆AP from CARE(LOF) to LOF based state-of-the-art ensembles
on all the datasets. Notice that CARE outperforms existing ensembles
significantly on several datasets and achieves comparable performance
otherwise. avg(∆)’s in the legend denote average of ∆AP across datasets.

4.2.2. CARE vs state-of-the-art ensembles. Next we com-
pare CARE with the existing state-of-the-art outlier en-
sembles, including Aggarwal and Sathe’s variable sam-
pling (VS), rotated bagging (RB), and variable rotated
bagging (VR) approaches [8], Zimek et al.’s subsampling
approach [6], as well as the Isolation Forest (iF) of Liu
et al. [12]. We employ b = 100 base detectors for each
of these existing ensembles such that they are compara-
ble with CARE. We present the ∆AP from CARE(LOF)
to these six state-of-the-art outlier ensembles using the
LOF algorithm (except for iF) in Figure 4. For Zimek’s
subsampling approach we only present the results for sample
sizes 10% and 50% (Z10, Z50). In Figure 4, we can see
that CARE mostly improves over Z50 and RB, and remains
close to VS. Although iF is little better than CARE(LOF)
with avg(∆) = −0.0050, for some datasets e.g., Vow-
els and Letter where iF performs poorly with AP values
0.1341 and 0.0929 respectively, CARE(LOF) provides 2.6×
improvement with AP value 0.4803 for Vowels, and 4.4×
improvement with AP value 0.4986 for Letter. Moreover, we
note that the magnitude of positive ∆ values are larger than
the negative ones on average. This indicates that CARE(LOF)
provides major improvement in cases when it is the winner
and performs similarly in other cases. CARE(AvgKNN) pro-
vides similar results, where the corresponding figure can be
found at [23] (as for page limit).

5. Conclusion
In this paper, we proposed CARE, a new sequential

ensemble approach for outlier mining with a goal to achieve

low detection error through reduced variance and bias. Two
main components of CARE are its parallel and sequential
building blocks. The former helps reduce variance by a
weighted combination of multiple base detectors an the
latter is designed to reduce both bias and variance through
FVPS and cumulative aggregation. We evaluate our method
on 16 real-world datasets. Extensive experiments validate
that CARE provides significant improvement over the base-
line methods as well as the state-of-the-art outlier ensembles
when it is the winner and performs close enough otherwise.

We refer to [23] for further analysis of CARE and ad-
ditional results. Future work includes speeding up CARE to
apply on massive datasets. All source codes of our
method and data are shared openly at http://shebuti.com/
sequential-ensemble-learning-for-outlier-detection/.
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