Discovering Opinion Spammer Groups by Network Footprints

Junting Ye



Leman Akoglu

Computer Science

Ye & Akoglu

Introduction

Product reviews are one major source of information.

Product reviews are important to businesses!

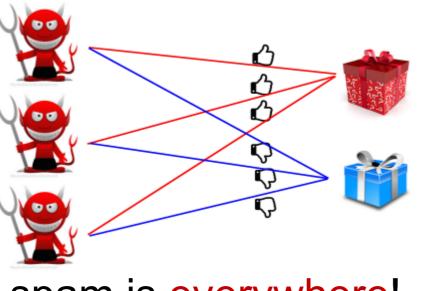
+1 star-rating increases revenue by 5-9%

Harvard Study by M. Luca Reviews, Reputation, and Revenue: The Case of Yelp.com

Opinion Spam

Opinion Spammers are hired to write fake reviews;

- Opinion spam is everywhere!
- 14~20% in Yelp; [Mukherjee et al., ICWSM 2013]
- 2~6% in Orbitz, Priceline, Expedia, Tripadvisor, etc. ullet[Ott et al., WWW 2012]
- Challenges in detecting spammers:
 - Spammers camouflage, linguistic or behavioral methods might fail;
 - Lack of ground truth, difficulty in manual labeling; [Ott et al. ACL 2011]



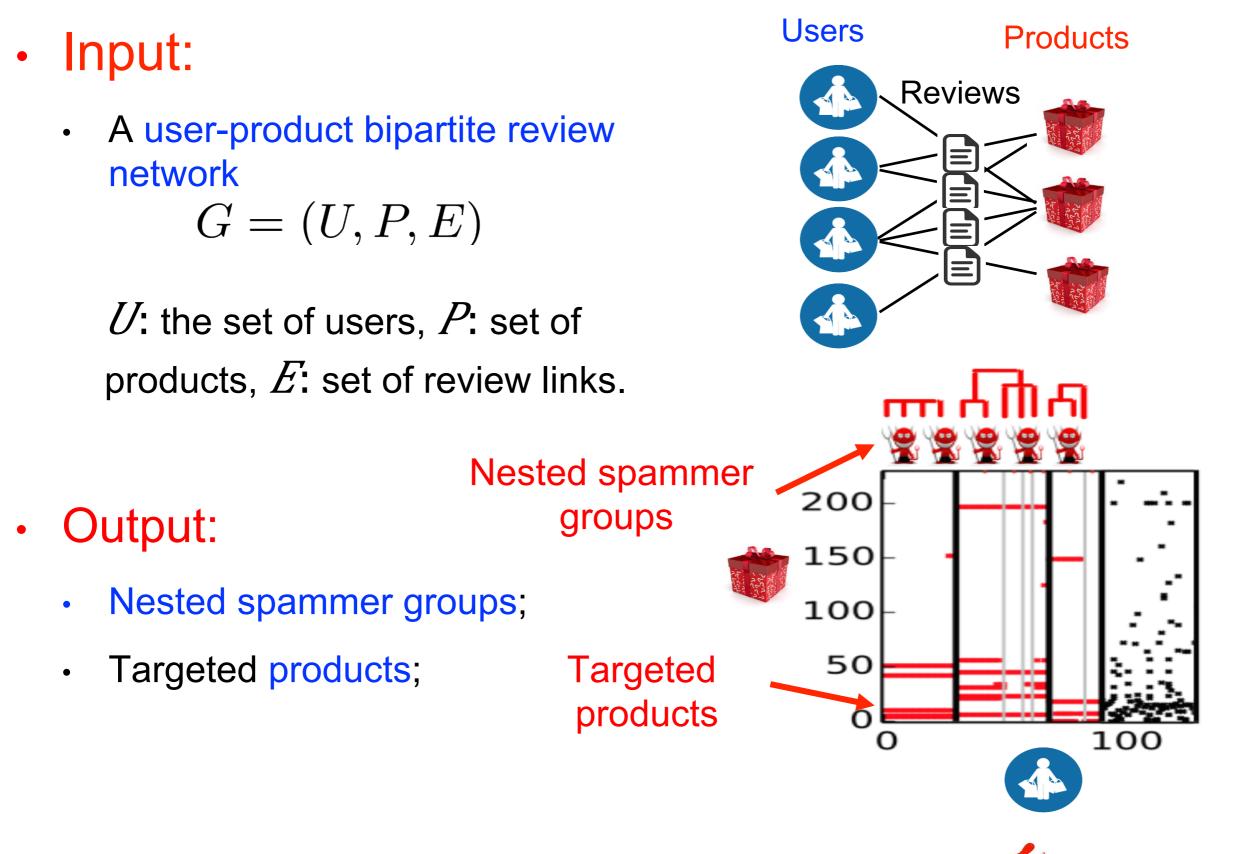
Motivation

Stony Brook University Computer Science

- Spamming in **groups** is common because:
 - Impact maximized: dominate the sentiments
 - Effort can be shared: workload split among members
 - Easier to hide: suspicious acts are balanced so no one stands out
- Advantage of detecting with network footprints:
 - More cost for spammers to mimic local network features
 - Spammers **unaware** of the **global** network features

Discovering Opinion Spammer Groups by Network Footprints

Problem Definition



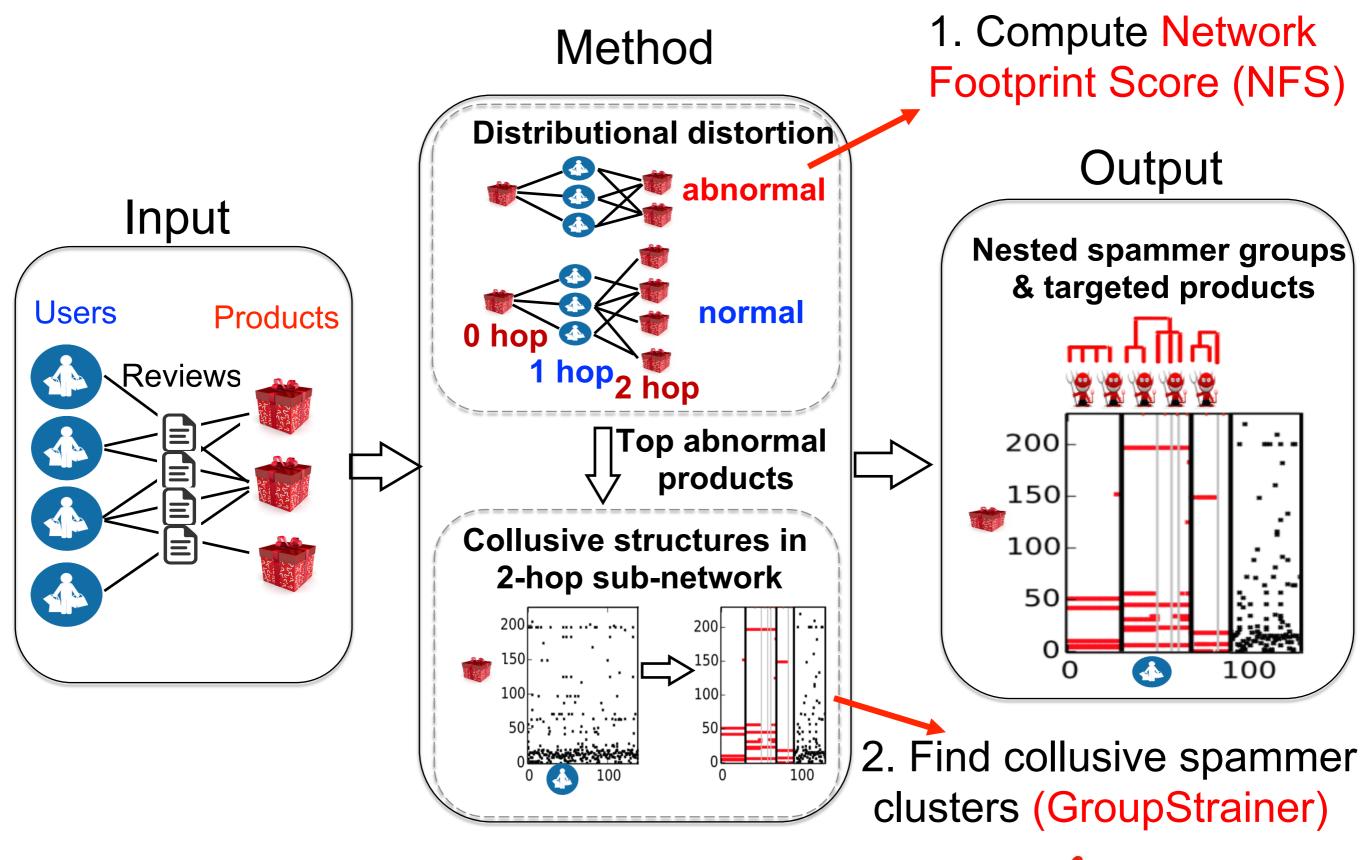
Ye & Akoglu

Discovering Opinion Spammer Groups by Network Footprints 🕺

Previous Work

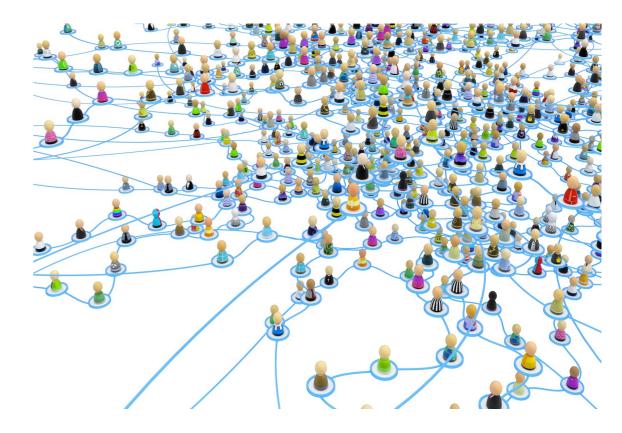
- Majority: Detecting individual spam(mer)s:
 - Supervised methods [Feng+ ACL 2012; Jindal&Liu WSDM 2008]
 - Semi-supervised methods [Li et al., IJCAI 2011]
 - Graph-based methods [Akoglu+ ICWSM 2013; Wang+ ICDM 2011]
 - Collective classification methods; [Li et al., ICDM 2014]
- Detecting **group** spam(mer)s:
 - Linguistic, rating and temporal data to compute user suspiciousness [Xu&Zhang SDM 2015; Xu+ CIKM 2013; Mukherjee+ WWW 2012]
 - Our work only utilizes the review network

Overview: 2 main steps

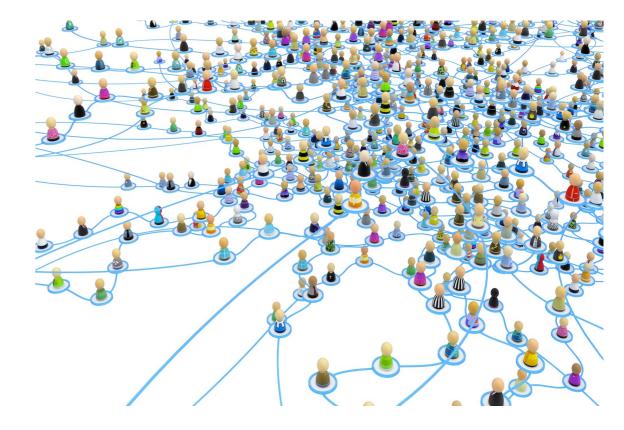


Discovering Opinion Spammer Groups by Network Footprints

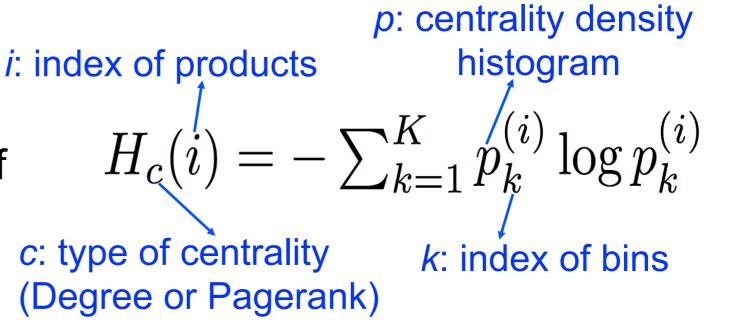
- Observation 1: Neighbor diversity
 - Varying levels of activities (i.e. centralities of nodes)
 - This measures the local network features



- Observation 1: Neighbor diversity
 - Varying levels of activities (i.e. centralities of nodes)
 - This measures the local network features

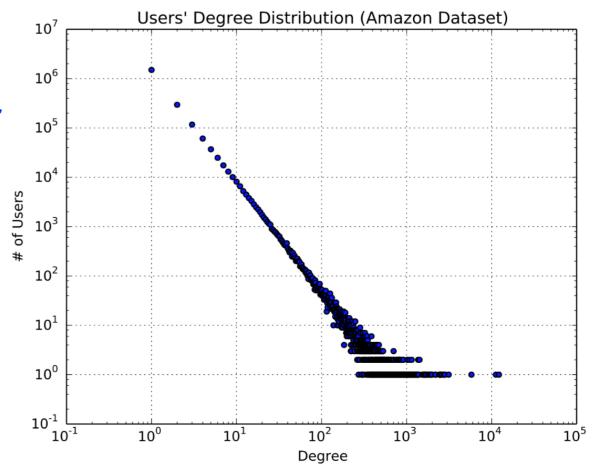


- Quantification:
 - Shannon Entropy (H) of neighbors' centrality;



Observation 2: Self-similarity

- Graph portions should have similar distribution as the whole graph
 - → Product's neighbors should follow power-law-like distribution as the global distribution of all users;



Ye & Akoglu

Discovering Opinion Spammer Groups by Network Footprints

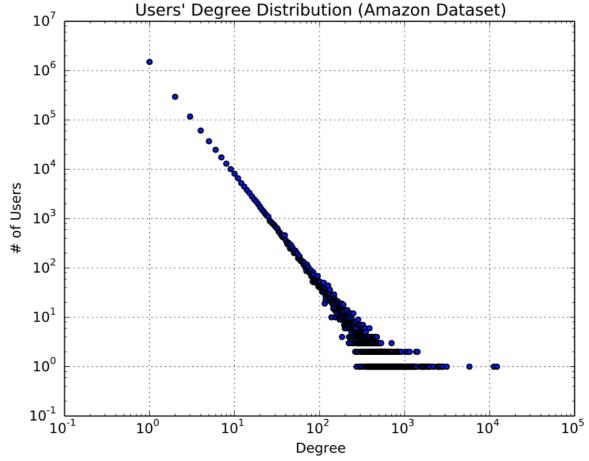
(Degree or Pagerank)

P⁽ⁱ⁾: centrality histogram

1. Network Footprint Score (NFS)

Observation 2: Self-similarity

- Graph portions should have similar distribution as the whole graph
 - → Product's neighbors should follow power-law-like distribution as the global distribution of all users;



of product *i*'s neighbors KL-Divergence (KL) between neighbors and all users'

Quantification:

 $\mathbf{\dot{p}}(i)$ KL_c c: type of centrality

k: index of bins

 q_k

Q: centrality histogram

of all users

 $=\sum_{k} p_{k}^{(i)} \log p_{k}^{(i)}$

Stony Brook University

Computer Science

- NFS: integrating 4 observations
 - $f(H(i)) = P(H \le H(i))$ $f(KL(i)) = 1 P(KL \le KL(i))$ $NFS(i) = 1 \sqrt{\frac{f(H_{deg}(i))^2 + f(H_{pr}(i))^2 + f(KL_{deg}(i))^2 + f(KL_{pr}(i))^2}{4}}$ NFS distribution
- of products Interpretation: 10¹ Entropy Abnormality NFS 0.8 Entropy KL Divergence Abnormality Ó 0.4 0 **Right-bottom:**more abnormal 1.21 [3.8] [9.24][25.82] Ο Veighbors' Depree Range Neighbors' Degree Range 0.2 0.0 0.5 2.0 1.5 2.5 1.0 **KL** Divergence

.2] [3.8] [9.24]

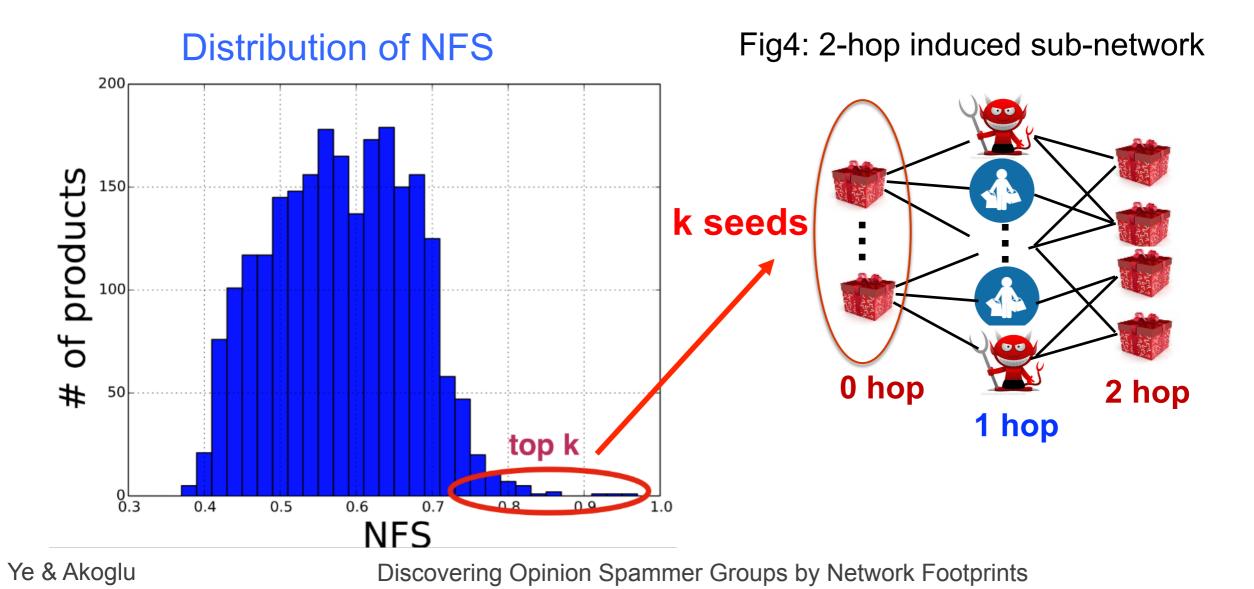
Degree entropy vs. KL-divergence in iTunes

Product outliers are in red circles

Discovering Opinion Spammer Groups by Network Footprints 🎲

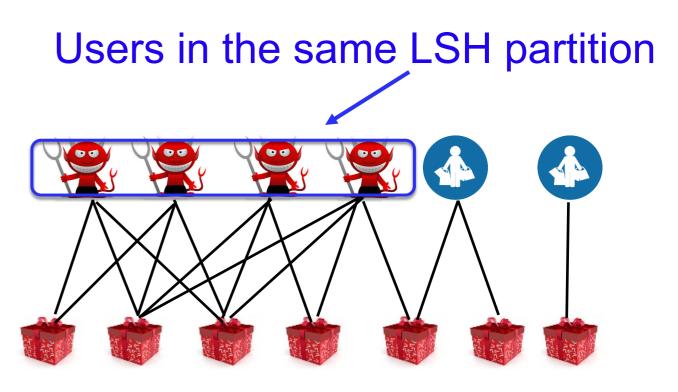
Stony Brook University Computer Science

- Induce local sub-network:
 - k products with highest NFS, k chosen by mixture modeling [Gao et al. ICDM 2006]
 - 2. Induce a 2-hop sub-network: k abnormal products as seeds

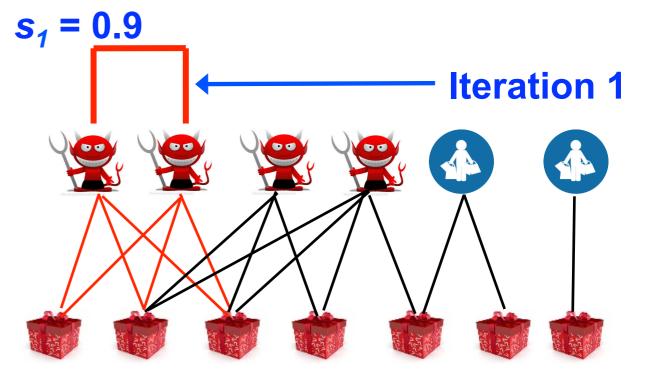


Stony Brook University Computer Science

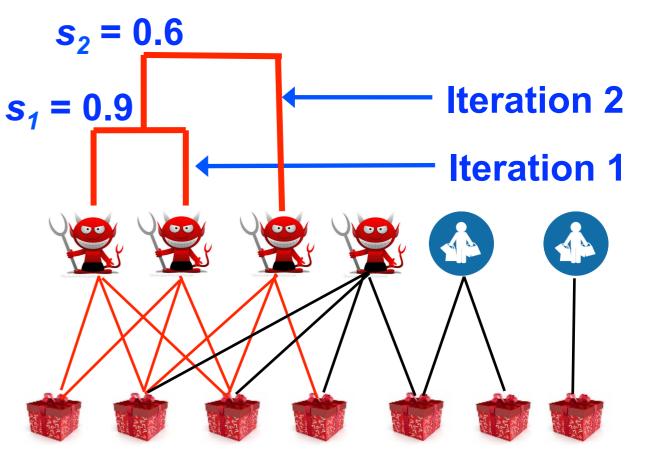
- Efficient clustering
 - 1. Init similarity thresholds
 - $S = \{S_1, S_2, ..., S_n\}$
 - For each iteration *i*, use
 Locality Sensitive Hashing
 (LSH) to partition users
 - In each partition, merge user groups if all pair-wise similarities are larger than s_i
 - 4. Terminate if no new merges, otherwise go to step 2



- Efficient clustering
 - 1. Init similarity thresholds
 - $S = \{S_1, S_2, ..., S_n\}$
 - For each iteration *i*, use
 Locality Sensitive Hashing (LSH) to partition users
 - In each partition, merge user groups if all pair-wise similarities are larger than s_i
 - 4. Terminate if no new merges, otherwise go to step 2

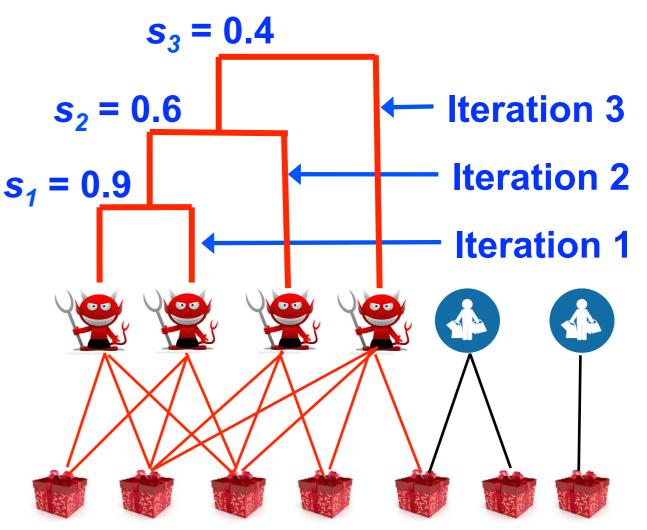


- Efficient clustering
 - 1. Init similarity thresholds
 - $S = \{S_1, S_2, ..., S_n\}$
 - For each iteration *i*, use
 Locality Sensitive Hashing (LSH) to partition users
 - In each partition, merge user groups if all pair-wise similarities are larger than s_i
 - 4. Terminate if no new merges, otherwise go to step 2



Stony Brook University Computer Science

- Efficient clustering
 - 1. Init similarity thresholds
 - $S = \{S_1, S_2, ..., S_n\}$
 - For each iteration *i*, use
 Locality Sensitive Hashing (LSH) to partition users
 - In each partition, merge user groups if all pair-wise similarities are larger than s_i
 - 4. Terminate if no new merges, otherwise go to step 2



Datasets

- Synthetic datasets: (4 datasets, various generators and sizes)
 - Chung-Lu Generator [Chung et al., Internet Mathematics, 2003]
 - Random Typing Generator (RTG) [Akoglu et al., PKDD, 2009]
- Real-world datasets:
 - iTunes [Akoglu et al., ICWSM 2013]
 - Amazon [Jindal and Liu, WSDM 2008]

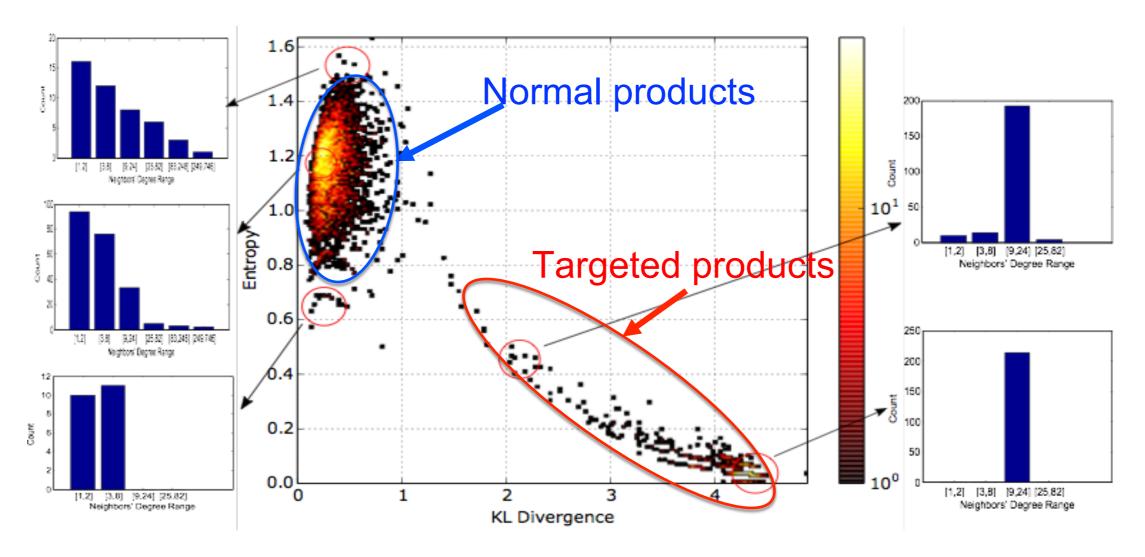
		Synthetic	Real-world Data			
	Chung-Lu1	Chung-Lu2	RTG1	RTG2	iTunes	Amazon
# of users	532,742	$2,\!133,\!399$	604,520	876,627	966,808	2,146,074
# of products	157,768	$665,\!381$	$604,\!805$	$876,\!950$	$15,\!093$	$1,\!230,\!916$
# of edges	$1,\!299,\!059$	$5,\!191,\!053$	$3,\!097,\!342$	$4,\!644,\!572$	$1,\!132,\!329$	$5,\!838,\!061$

Table 1. Summary of synthetic and real-world datasets used in this work.

NFS on Synthetic Graphs

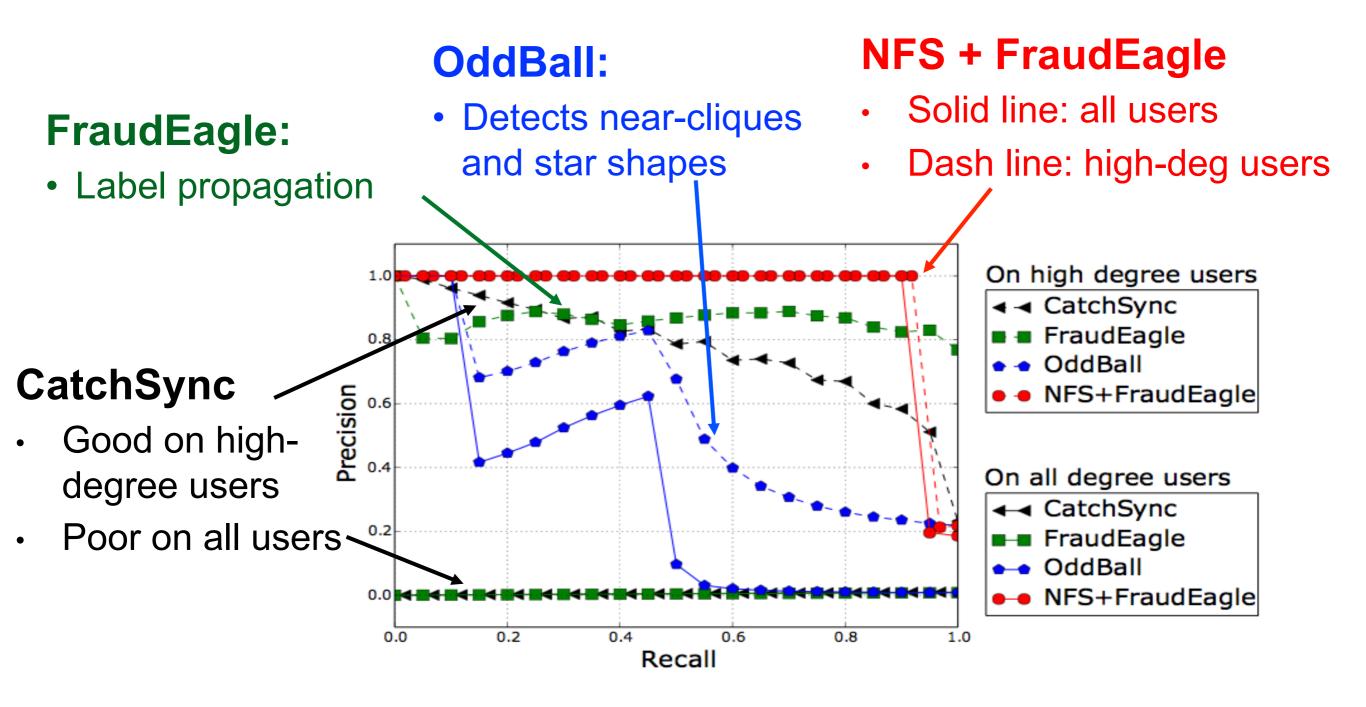
Stony Brook University Computer Science

Different region, different shape of centrality histograms



Degree Entropy vs. KL Divergence in Chung-Lu1 (10% pop. Camouf.)

NFS on Synthetic Graphs



AUC of Pre-Rec curve on RTG2 (30% random camouflage)

NFS on Synthetic Graphs

AUC of Pre-Rec Curve (Range [0, 1]; larger is better)

Dataset	Camouf.	HDP	Oddball[3]	CatchSync[16]	FE[1]	NFS+FE
	10% Pop.	6170	0.990/0.937	1.000/0.009	0.570/0.569	1.000/1.000
Chung- Lu1	30% Pop.	6172	0.997/0.973	1.000/0.008	0.570/0.570	1.000/1.000
	10% Rand.	6205	0.982/0.886	1.000/0.007	0.552/0.552	1.000/1.000
	30% Rand.	6266	0.881/0.386	0.957/0.007	0.532/0.526	1.000/1.000
Chung-	10% Pop.	25306	0.977/0.943	/	/ /	1.000/1.000
	30% Pop.	$\left 25302\right $	0.995/0.988	1.000/0.002	· · · ·	1.000/1.000
Lu2	10% Rand.	25330	0.955/0.887	1.000/0.002	0.280/0.279	1.000/1.000
	30% Rand.	25392	0.711/0.374	0.982/0.002	0.261/0.256	1.000/0.977
	10% Pop.	17771	0.945/0.852	1.000/0.008	/	1.000/1.000
	30% Pop.	17766	0.929/0.842	0.997/0.007	· · · · · ·	1.000/1.000
RTG1			0.918/0.803	/	0.168/0.168	1.000/1.000
	30% Rand.	17843	0.637/0.367	0.878/0.007	0.163/0.158	0.952/0.950
	10% Pop.	25658	0.906/0.778	1.000/0.005	/	1.000/1.000
RTG2	30% Pop.	25658	0.879/0.746	1.000/0.005	· · · · · · · · · · · · · · · · · · ·	1.000/1.000
	10% Rand.	25678	0.877/0.741	0.987/0.005	· ·	1.000/1.000
	30% Rand.	25716	0.577/0.331	0.778/0.005	0.119/0.115	0.952/0.951

AUC on highdegree users

AUC on all users

Discovering Opinion Spammer Groups by Network Footprints 💋

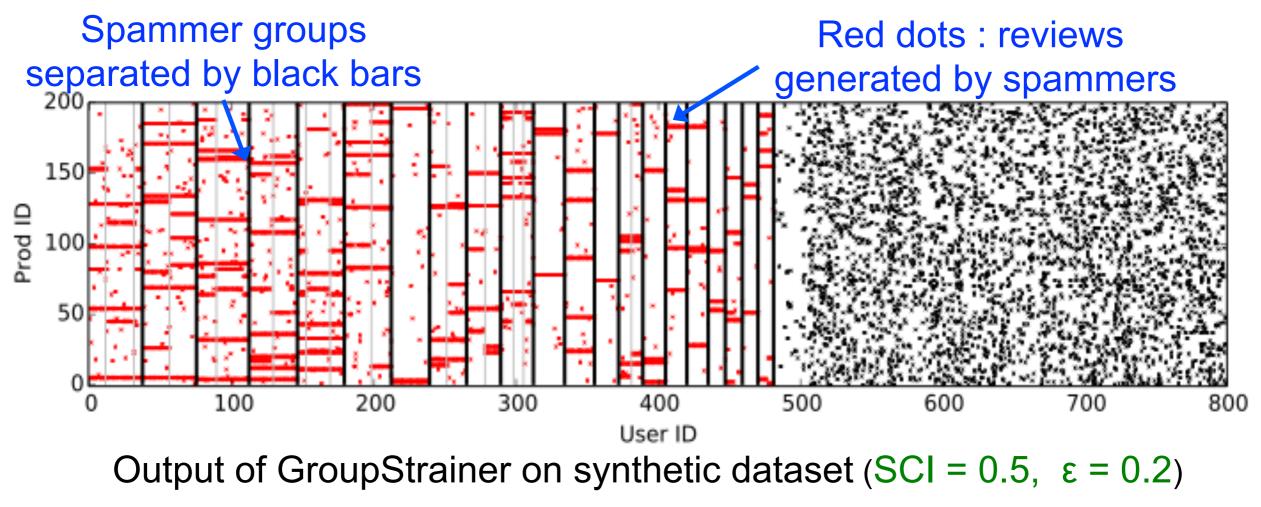
GroupStrainer on Synthetic Graphs

- Synthetic data generator (SCI, ε):
 - Collusion with Spammer Collusion Index (SCI) = camouflage index

$$SCI(g) = \sum_{g_i, g_j \subset g, i \neq j} \frac{|t(g_i) \cap t(g_j)|}{|t(g_i) \cup t(g_j)|} / \binom{n}{2}$$

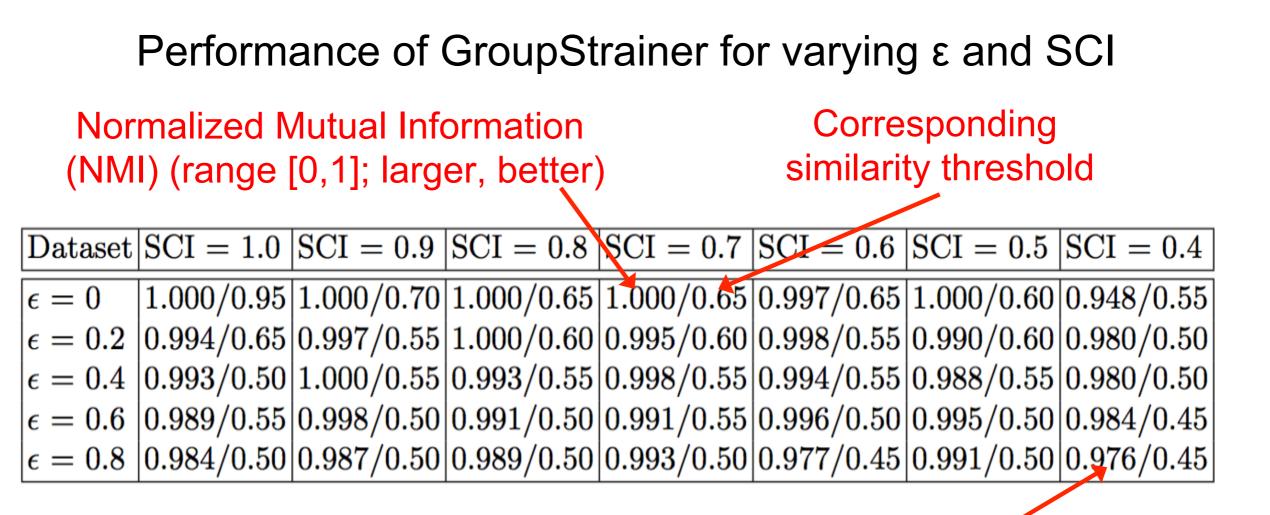
SCI equivalent to avg Jaccard similarity of groups' targets sets

• ε: fraction of noise reviews (i.e. camouflage) over spam reviews.



GroupStrainer on Synthetic Graphs

Stony Brook University Computer Science



NMI is large even if large noise & little collusion

Performance on Real Datasets

Stony Brook University Computer Science

Misnomer

All detected groups found suspicious (synchronized behaviors) in at least one aspect of time, rating, text

List of detected groups in Amazon

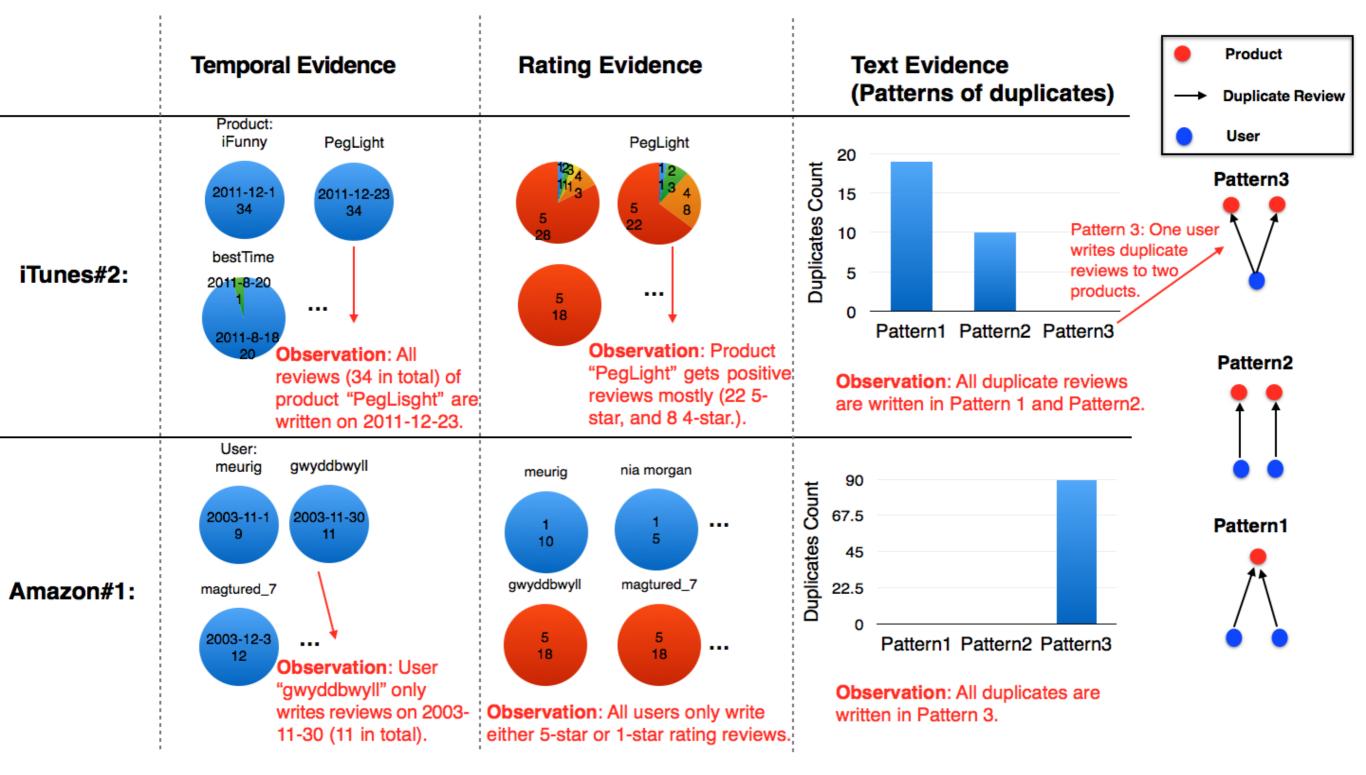
P: products, *U*: users, *t*: time, *: rating star, Dup: duplicates

		iTunes					Amazon					
ID	# P	#U	t, *	Dup	Developer	# P	#U	t, *	Dup	Category, Autho		
1	5	31	s, c	51/154	all same	10	20	c, c	90/138	Books, all sa	ame	
2	8	38	c, s	29/202	2 same	4	12	s, c	32/47	Books, all sa	ame	
3	4	61	s, c	34/144	all inaccessible	7	9	c, c	44/60	Books, all sa	ame	
4	4	17	c, s	0/68	1 inaccessible	7	19	s, c	5/88	Books, all sa	ame	
5	5	102	\mathbf{c}, \mathbf{s}	8/326	different	23	42	c, c	2/468	Music, all sa	ame	
6	6	50	s, c	4/173	all same	8	17	s, c	9/73	Books, $4/8$ s	same	
7	2	56	c, c	12/112	different	6	18	s, c	4/94	Movies&TV, a	ll same	
8	4	42	c, c	8/112	2 same							
9	6	67	s, c	0/137	all same							

Ye & Akoglu

Discovering Opinion Spammer Groups by Network Footprints

Case Study



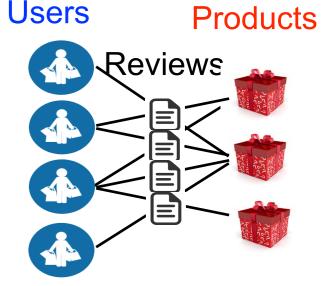
Abundant evidence of suspicious behaviors in various patterns

Ye & Akoglu

Discovering Opinion Spammer Groups by Network Footprints

Conclusion

- Two-step method to detect spammer groups:
 - NFS: a measure of suspiciousness for products based on network footprints
 - Competition of the second secon
- Advantages: unsupervised detection, adversarial robustness, sensemaking, and efficiency Use
- Validated on both synthetic and real-world data



Thank you!

Code and Data available:

http://www3.cs.stonybrook.edu/~juyye/

http://www3.cs.stonybrook.edu/~datalab/

