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ABSTRACT
Online reviews capture the testimonials of “real” people and
help shape the decisions of other consumers. Due to the
financial gains associated with positive reviews, however,
opinion spam has become a widespread problem, with of-
ten paid spam reviewers writing fake reviews to unjustly
promote or demote certain products or businesses. Existing
approaches to opinion spam have successfully but separately
utilized linguistic clues of deception, behavioral footprints,
or relational ties between agents in a review system.

In this work, we propose a new holistic approach called
SpEagle that utilizes clues from all metadata (text, times-
tamp, rating) as well as relational data (network), and har-
ness them collectively under a unified framework to spot
suspicious users and reviews, as well as products targeted
by spam. Moreover, our method can e�ciently and seam-
lessly integrate semi-supervision, i.e., a (small) set of labels
if available, without requiring any training or changes in its
underlying algorithm. We demonstrate the e↵ectiveness and
scalability of SpEagle on three real-world review datasets
from Yelp.com with filtered (spam) and recommended (non-
spam) reviews, where it significantly outperforms several
baselines and state-of-the-art methods. To the best of our
knowledge, this is the largest scale quantitative evaluation
performed to date for the opinion spam problem.

1. INTRODUCTION
Online product and business reviews are increasingly valu-

able sources for consumers to make decisions on what to pur-
chase, where to eat, which care provider to see, etc. They
are powerful since they reflect testimonials of “real” peo-
ple, unlike e.g., advertisements. Financial incentives associ-
ated with reviews, however, have created a market of (often
paid) users to fabricate fake reviews to either unjustly hype
(for promotion) or defame (under competition) a product or
business, the activities of whom are called opinion spam [9].

The problem is surprisingly prevalent; it is estimated that
more than 20% of Yelp’s reviews are fake [3], with steady
growth [16], while one-third of all consumer reviews on the
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Figure 1: SpEagle collectively utilizes both metadata

(review text, timestamp, rating) and the review network

(plus available labels, if any) under a unified framework

to rank all of users, reviews, and products by spamicity.

Internet are estimated to be fake [24]. While widespread,
it is a hard and mostly open problem. The key challenge
is obtaining large ground truth data to learn from, however
manual labeling of reviews is extremely di�cult by merely
reading them, where humans are only slightly better than
random [22], unlike e.g., labeling email spam. This renders
supervised methods inadmissible to a large extent.

Since the seminal work of Jindal et al. on opinion spam
[9], a variety of approaches have been proposed. At a high
level, those can be categorized as linguistic approaches [6,
21, 22] that analyze the language patterns of spam vs. be-
nign users for psycholinguistic clues of deception, behavioral
approaches [7, 9, 10, 13, 15, 18, 28] that utilize the review-
ing behaviors of users (e.g., temporal and distributional foot-
prints), and graph-based methods [1, 5, 14, 26] that leverage
the relational ties between users, reviews, and products with
minimal to no external information. Current approaches can
also be grouped as those that detect fake reviews [6, 7, 9,
13, 14, 22, 26, 28], spam users [1, 5, 15, 18, 26], or spam user
groups [19, 29]. (See §4 for details)

These have made considerable progress in understanding
and spotting opinion spam, however the problem remains far
from fully solved. In this work, we capitalize on our prior
work [1] to propose a new method, SpEagle (for Spam Ea-

gle), that can utilize clues from all of metadata (text, time-
stamp, rating) as well as relational data (review network),
and harness them collectively under a unified framework to
spot spam users, fake reviews, as well as targeted products.
Moreover, SpEagle can seamlessly integrate labels on any
subset of objects (user, review, and/or product) when avail-
able, without any changes in its algorithm (See Figure 1).
We summarize the contributions of this work as follows.



• We propose SpEagle, a new approach for the opinion
spam detection problem, which ties together relational
data with metadata, i.e., it utilizes all of graph, be-
havioral, and review content information collectively.

• SpEagle considers the user–review–product graph to
formulate the problem as a network-based classifica-
tion task, in which users are labeled as spammer or
benign, reviews as fake or genuine, and products as
target or non-target (of spam) (§2.2). This formula-
tion accepts prior knowledge on the class distribution
of the nodes, which is estimated from metadata. In
particular, SpEagle uses the metadata (text, times-
tamps, ratings) to design and extract indicative fea-
tures of spam which are converted into a spam score
to be used as part of class priors (§2.2.1).

• SpEagle works in a completely unsupervised fashion.
However, it is amenable to easily leverage label in-
formation (when available). As such, we introduce a
semi-supervised version of our method called SpEagle

+,
which accepts as input labels for a (small) set of user,
review, and/or product nodes in the graph (§2.2.2).
The integration of labels is e�cient and seamless; it
requires no training on the labeled data and the main
inference steps of the algorithm remain intact (§2.2.3).

• SpEagle extracts features for all user, review, and
product nodes using metadata. To reduce computa-
tional overhead, we investigate the e↵ectiveness of our
features and their categories (user vs. review vs. prod-
uct and text vs. behavior), and design SpLite (for
SpEagle-Light), which uses only a few review fea-
tures (and completely avoids feature extraction for users
and products) (§2.2.4).

We evaluate our method on three real-world datasets col-
lected from Yelp.com, containing filtered (spam) and recom-
mended (non-spam) reviews. To the best of our knowledge,
our work provides the largest scale quantitative evaluation
to date for the opinion spam problem. Our results demon-
strate that (i) SpEagle outperforms several baselines and
state-of-the-art techniques [1, 26], (ii) performance can be
boosted significantly by SpEagle

+ with only limited super-
vision, and (iii) SpLite provides significant speed-up with
only a slight compromise in detection performance (§3).

2. METHODOLOGY
In this work, we build on our FraudEagle framework

[1] and extend it in two main directions; (1) we expand its
graph representation (structure and semantics), and (2) we
incorporate meta-information into its network-only solution.

In a nutshell, we formulate the spam detection problem
as a network classification task on the user-review-product
network. In this task, users are to be classified as spammer

or benign, products as targeted or non-targeted, and reviews
as fake or genuine. To aid the network classification, we
utilize additional metadata (i.e., ratings, time stamps, and
review text) to extract indicative features of spam, which
we incorporate into the inference procedure. Our proposed
method works in a completely unsupervised fashion, however
it can easily accommodate labels when available. As such,
it is amenable to semi-supervised detection.

In §2.1, we first introduce FraudEagle for completeness
and to lay out the main framework that forms the foundation
for our proposed method SpEagle, described in §2.2.

2.1 FraudEagle Framework
The network representation used by FraudEagle [1] is

the user–product bipartite network with signed edges. The
user-product network G = (V,E±) contains N user nodes
U = {u

1

, . . . , u
N

} and M product nodes P = {p
1

, . . . , p
M

},
V = U[P , connected through signed edges (u

i

, p
j

, s) 2 E±.
The edges capture ‘review’ relations, where each edge sign
s 2 {+,�} depicts whether a review is positive or negative.

The goal of classification on a network is to assign a label
to each node. In their formulation, the domain of class la-
bels is L

U

= {benign, spammer} for users and L

P

= {good-
quality, bad-quality} for products. To formally define the
classification problem, the network is represented as a pair-
wise Markov Random Field (MRF) [11]. An MRF model
consists of an undirected graph where each node i is asso-
ciated with a random variable Y

i

that can be in one of a
finite number of states, that is, classes. In pairwise MRFs,
the label of a node is assumed to be dependent only on
its neighbors and independent of all the other nodes in the
graph. The joint probability of labels is then written as a
product of individual and pairwise factors, parameterized
over the nodes and the edges, respectively:

P (y) =
1
Z

Y

Yi2V

�
i

(y
i

)
Y

(Yi,Yj ,s)2E

±

 s

ij

(y
i

, y
j

) (1)

where y denotes an assignment of labels to all nodes, y
i

refers to node i’s assigned label, and Z is the normalization
constant. The individual factors � : L! R+ are called prior

(or node) potentials, and represent initial class probabilities
for each node, often initialized based on prior knowledge.
The pairwise factors  s : L

U

⇥ L

P

! R+ are called com-

patibility (or edge) potentials, and capture the likelihood of
a node with label y

i

to be connected to a node with label
y
j

through an edge with sign s. To reduce the number of
model parameters, the edge potentials are often shared (in
this case, across all edges with the same sign). In case no ex-
ternal information or domain knowledge is available, one can
set all the priors as unbiased/uninformative (i.e., equal prob-
ability for each class). Otherwise, one can estimate them for
every node separately using external sources.

In FraudEagle, one of the design goals is to avoid the
requirement for additional sources to estimate priors. This
also facilitates generality, as external sources may di↵er across
domains. Therefore, the priors are all set as unbiased to
�
i

= {0.5, 0.5}, 8i 2 V . On the other hand, the compati-
bility potentials are ideally estimated from labeled data. In
a problem setting such as opinion spam detection however,
obtaining reasonable amount of labeled data is extremely
di�cult due to the challenges that human annotators face.
Therefore, these parameters are set based on several intu-
itions reflecting the modus-operandi of spammers and other-
wise normal behavior of regular users: (i) benign users often
write positive reviews to good-quality products and negative
reviews to bad-quality products, in contrast (ii) spammers
more likely write positive reviews to bad-quality products
(to hype) and/or negative reviews to good-quality products
(to defame, e.g., under competition), (iii) spammers can
also write genuine-looking reviews to camouflage their mis-
activities (i.e., positive reviews to good-quality and negative
reviews to bad-quality products), although (iv) the same
(e.g., writing negative reviews to good-quality products) is
less likely for benign users (but can happen depending on
individual experience). Under these assumptions, the fol-



lowing parameter settings are used, for a small ✏ value.1

 s=+ Product
User good bad

benign 1� ✏ ✏
spammer 2✏ 1� 2✏

 s=� Product
User good bad

benign ✏ 1� ✏
spammer 1� 2✏ 2✏

Given the model parameters (�
i

, 8i 2 V and  s for
s 2 {+,�}), the task is to infer the maximum likelihood
assignment of states (class labels) to the random variables
associated with the nodes, in other words, to find the y that
maximizes the joint probability of the network as given in
Eqn. (1). This is the inference problem which is combina-
torially hard. The enumeration of all possible assignments
is exponential to the network size and thus intractable for
large graphs. Exact inference is known to be NP-hard for
general MRFs, where instead iterative approximate infer-
ence algorithms such as Loopy Belief Propagation (LBP)
[31] are used. We describe the details of the inference pro-
cedure in the context of our proposed method below.

2.2 Proposed Method SpEagle

Besides the relational information between users and prod-
ucts, there exist a variety of metadata in review datasets.
Those include the text content of reviews, timestamps, and
star ratings. Earlier work have used metadata to design
features that are indicative of spam [9, 13, 19, 22, 28].
FraudEagle, on the other hand, completely excludes meta-
information and solely relies on the relational structure of
the data. The main motivation of this work is to bridge
the relational data and the metadata to improve detection
performance. In particular, we aim to leverage the meta-
data to estimate initial class probabilities for users, prod-
ucts, and reviews, which we incorporate as prior potentials
of the nodes under a new MRF model.

Our motivation requires two main changes to be made
in the FraudEagle framework. First, we represent the
reviews as nodes inside the network. As such, we model
the relational data as a user–review–product network, where
each review node is connected to its corresponding user and
product nodes (See Figure 1). The reason is that we can
use metadata to estimate a “suspicion score” not only for
users and products, but also for reviews. Representing re-
views explicitly as nodes enables us to readily integrate this
information to the formulation as prior potentials of reviews.

The second change is related to the semantics of class la-
bels for products. The domain of class labels for products
in FraudEagle is L

P

= {good-quality, bad-quality}. How-
ever, the metadata does not lend itself to estimating mean-
ingful priors for these classes. Two possible ways of infer-
ring product quality, average rating and sentiment analysis
of reviews, could be misleading—both average ratings and
review sentiment of products associated with fake reviewing
are tempered with, and thus are not reliable. We could,
on the other hand, use the metadata to perform behav-
ioral analysis on products to characterize the likelihood that
they are under manipulation (See §2.2.1). In other words,
the “suspicion score” of a product estimated from metadata
would not translate to its quality but to its likelihood of be-
ing a target of opinion spam. Therefore, in our formulation
the products are labeled as L

P

= {non-target, target}. As
the semantics of the network representation has changed, we

1Sensitivity analysis in [1] found that ✏ 2 [0.01, 0.15] yields desir-
able and comparable results. In this work we use ✏ = 0.1.

also discard the sentiment, i.e. the signs on the edges and
use an unsigned network G = (V,E). This is because under
the new setting, a targeted product can be associated with
negative as well as positive fake reviews, when manipulated
with an intent to defame or to hype, respectively.

The joint probability of our formulation can be written
similar to Eqn. (1), where the node set V = U [ P [ R
now consists of three types of nodes, including the Q re-
view nodes R = {r

1

, . . . , r
Q

}, with labels from domain L

R

=
{genuine, fake}. Moreover, the compatibility potentials are
typed as  t

ij

reflecting the two types of relations in the net-
work; the user-review edges (u

i

, r
k

, t = ‘write’) 2 E and the
review-product edges (r

k

, p
j

, t = ‘belong’) 2 E. In terms of
setting the model parameters, we estimate the prior poten-
tials �

i

from metadata for all three types of nodes, 8i 2 V ,
which we describe in §2.2.1. On the other hand, we initialize
the compatibility potentials  t

ij

so as to enforce homophily
[17]. In particular, we assume that all the reviews written
by spammers (benign users) are fake (genuine), and that
with high probability fake (genuine) reviews belong to tar-
geted (non-targeted) products; although with some proba-
bility fake reviews may also belong to non-targeted prod-
ucts as part of camouflage, and similarly genuine reviews
may co-exist along with fake reviews for targeted products.
Nevertheless, we assume that the majority of the reviews for
targeted (non-targeted) products are fake (genuine), which
possibly needs to hold true for a spam campaign to be able
to manipulate the average rating of a targeted product suc-
cessfully. Overall, SpEagle uses the following settings.

Table 1: Compatibility potentials  

t

used by SpEagle.

User ( t=‘write’)
Review benign spammer
genuine 1 0
fake 0 1

( t=‘belong’) Product
non-target target

1� ✏ ✏
✏ 1� ✏

Next, we describe how we estimate the prior potentials
from metadata for all the user, review, and product nodes.
Then, we introduce the semi-supervised version of SpEa-

gle and show how labels can be used if available. We pro-
vide an outline of our algorithm and present the inference
steps for computing the class assignments. Finally, we intro-
duce a light version of SpEagle for computational speed-up.

2.2.1 From metadata to features to priors

To estimate the prior potentials, we first extract indicative
features of spam from available metadata (ratings, times-
tamps, review text) and then convert them to prior class
probabilities. The priors are estimated for all three types
of nodes. As such, we compute features for users, products,
and reviews separately. Most of our features have been used
several times in previous work on opinion spam detection
including [5, 9, 13, 15, 18, 20], while several are introduced
in this work. Table 2 includes brief descriptions for the fea-
tures. Most of them are self-explanatory, and hence we omit
detailed explanation for brevity. Instead, we provide refer-
ences to prior work where they have also been used.

In particular, we show the user and product features in
Table 2 (top). All but one of these features can be de-
fined for both, where we either consider all reviews of a
user or all reviews of a product. One feature (BST) applies
only to users, which captures the burstiness related to the
age of a user, defined as the number of days between their
first and the last review. Intuitively, spammers are short-



term members of a review site rather than veterans, which is
characterized by BST. We also show the review features in
Table 2 (bottom). Note that all the features are categorized
into two—behavioral versus text-based. Text-based ones are
solely derived from review content. Behavioral features are
based on time stamps, ratings, distributions, ranks, etc. In
the experiments, we evaluate the e↵ectiveness of individual
features as well as the feature categories.

Given a set of values {x
1i

, . . . , x
Fi

} for the F features of a
node i, the next step is to combine them into a spam score
S
i

2 [0, 1], such that the class priors can be initialized as {1�
S
i

, S
i

}. The features, however, may have di↵erent scales and
varying distributions. To unify them into a comparable scale
and interpretation, we leverage the cumulative distribution
function (CDF). In particular, when we design the features,
we have an understanding of whether a high (H) or a low

(L) value is more suspicious for each feature. For example,
high average rating deviation (avgRD) and low entropy of
rating distribution (ERD) are suspicious. To quantify the
extremity of a feature value x, we then use the empirical
CDF to estimate the probability that the data contains a
value as low or as high as x. More formally, for each feature
l, 1  l  F , and its corresponding value x

li

, we compute

f(x
li

) =

(
1� P (X

l

 x
li

), if high is suspicious (H)

P (X
l

 x
li

), otherwise (L)

where X
l

denotes a real-valued random variable associated
with feature l with probability distribution P . To compute
f(·), we use the empirical probability distribution of each
feature over all the nodes of the given type. Overall, the
features with suspiciously low or high values all receive low
f values. Finally we combine these f values to compute the
spam score of a node i as follows.

S
i

= 1�

sP
F

l=1

f(x
li

)2

F
(2)

Figure 2 shows the CDF of example features for filtered
(considered as spam) versus recommended (considered as
non-spam) reviews and associated reviewers in one of our
Yelp datasets. Notice that spam review(er)s obtain higher
values for certain features (e.g., those in top row) and lower
values for some others (bottom row)—hence the (H) and (L)
distinction in the f(·) function above. Also notice that the
individual features provide only weak evidence on their own,
as the CDF curves of the classes are somewhat close to each
other. We aim to obtain a stronger signal by combining the
multiple evidence from all the features using Eqn. (2).

2.2.2 Semi-supervised SpEagle

One of the key advantages of our formulation is that it
enables seamless integration of labeled data when available.
We describe two possible ways to incorporate label infor-
mation. The first scenario does not involve any learning on
the labeled data. Specifically, given the labels for a set of
nodes (reviews, users, and/or products), we simply initiate
the priors as {✏, 1 � ✏} for those that are associated with
spam (i.e., fake, spammer, or target), and {1 � ✏, ✏} oth-
erwise. The priors of unlabeled nodes are estimated from
metadata as given in Eqn. (2). The inference procedure re-
mains the same. As this integration does not require model
training or any other changes, it is extremely e�cient. It is
particularly suitable when the size of the labeled data is too
small or unbalanced to learn from.

Table 2: Features for users, products, and reviews
derived from metadata; categorized as behavior and
text-based. H/L depicts if a High/Low value of the
feature is more likely to be associated with spam.

User & Product Features

B
eh

a
vi
o
r

MNR H Max. number of reviews written in a day [18, 20]
PR H Ratio of positive reviews (4-5 star) [20]
NR H Ratio of negative reviews (1-2 star) [20]

avgRD H Avg. rating deviation avg(|d
i⇤|) of user (prod-

uct) i’s reviews [5, 15, 20], where |d

ij

| is absolute
rating deviation of i’s rating from j’s average rat-
ing: avg

eij2Ei⇤ |dij |, for dij = r

ij

�avg

e2E⇤j r(e)
WRD H Weighted rating deviation [15], where reviews

are weighed by recency:

P
eij2Ei⇤

|dij |wij
P

eij2Ei⇤
wij

, for

w

ij

= 1

(tij)
↵ (t

ij

is rank order of review e

ij

among reviews of j, ↵ = 1.5 is decay rate)
BST H Burstiness [5, 20]—spammers are often short-

term members of the site.

x

BST

(i) =

(
0, if L(i)� F (i) > ⌧

1�

L(i)�F (i)

⌧

, otherwise

where L(i)�F (i) is number of days between last
and first review of i, ⌧ = 28 days.

ERD L Entropy of rating distribution of user’s (prod-
uct’s) reviews [new]

ETG L Entropy of temporal gaps �
t

’s. Given the tem-
poral line-up of a user’s (product’s) reviews, each
�

t

denotes the temporal gap in days between
consecutive pairs [new]

T
ex
t

RL L Avg. review length in number of words [20]
ACS H Avg. content similarity—pairwise cosine simi-

larity among user’s (product’s) reviews, where a
review is represented as a bag-of-bigrams [5, 15]

MCS H Max. content similarity—maximum cosine simi-
larity among all review pairs [18, 20]

Review Features

B
eh

a
vi
o
r

Rank L Rank order among all the reviews of product [9]
RD H Absolute rating deviation from product’s average

rating [13]
EXT H Extremity of rating [18]: x

EXT

= 1 for ratings
{4, 5}, 0 otherwise (for {1, 2, 3})

DEV H Thresholded rating deviation of review e

ij

[18]:

x

DEV

(i) =

(
1, if

|rij�avge2E⇤j r(e)|
4

> �

1

0, otherwise

where �
1

is learned by recursive minimal entropy
partitioning

ETF H Early time frame [18]—spammers often review
early to increase impact. x

ETF

(f(e
ij

)) = 1 if
f(e

ij

) > �

2

, and 0 otherwise, where,

f(e
ij

) =

(
0, if T (i, j)� F (j) > �

T (i,j)�F (j)

�

, otherwise

where T (i, j)�F (j) is the di↵erence between the
time of review e

ij

and first review j, for � = 7
months, and �

2

is estimated by recursive minimal
entropy partitioning

ISR H Is singleton? If review is user’s sole review, then
x

ISR

= 1, otherwise 0 [new]

T
ex
t

PCW H Percentage of ALL-capitals words [9, 13]
PC H Percentage of capital letters [13]
L L Review length in words [13]

PP1 L Ratio of 1st person pronouns (‘I’, ‘my‘, etc.) [13]
RES H Ratio of exclamation sentences containing ‘!’ [13]
SW H Ratio of subjective words (by sentiWordNet) [13]
OW L Ratio of objective words (by sentiWordNet) [13]
F H Frequency of review (approximated using locality

sensitive hashing) [new]
DL

u

L Description length (information-theoretic) based
on unigrams (i.e., words) [new]

DL
b

L Description length based on bigrams [new]
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Figure 2: CDF distribution of example features for
spam vs. non-spam review(er)s. Spam review(er)s
often have (H)igher values for features in top row,
and (L)ower values for those in bottom row.

An alternative approach is to use the labeled data to train
classifier models (one for each type of node), and initialize
the prior potentials for unlabeled nodes with the class prob-
abilities provided by the classifiers. This approach is par-
ticularly possible in our setting, where we extract features
indicative of spam for each node in our network. When no
labels are available, we transform these features into priors
in an unsupervised fashion. In the semi-supervised scenario,
one can instead use the features and the supplied labels to
train models to obtain “supervised priors”. Note that the
class distribution of labeled data would likely be unbalanced.
Most learning methods are sensitive to skewed label distri-
bution. Therefore, one needs to either use cost-sensitive
methods [4, 25] or deploy under/over-sampling techniques
to balance the training data before learning [2]. Here again,
the modifications are only in initializing and estimating the
prior potentials of labeled and unlabeled nodes, respectively,
and the inference procedure remains intact. We discuss the
details of our proposed algorithm next.

2.2.3 The algorithm

We provide the steps of our SpEagle in Algorithm 1. As
input, we take the user–review–product graph G, compati-
bility potential parameters  t as given in Table 1, available
metadata for feature extraction, and a set of node labels L
(if any). Note that L can contain labels for a mixture of user,
review, and product nodes, or can be empty. We output the
corresponding class probabilities for all the unlabeled nodes.

First, we compute or initialize the prior class probabilities
for all the nodes (Lines 3-10). Specifically, the priors are
set to � {✏, 1� ✏} for those labeled nodes that belong to
the spam category (i.e., fake, spammer, or target), and to
� {1�✏, ✏} for nodes labeled as non-spam.2 For unlabeled
nodes, we compute their corresponding features in Table 2
(depending on their type), combine them into a spam score
S using Eqn. (2), and set the priors as � {1� S, S}.

In the remainder, we follow the main steps of the Loopy
Belief Propagation (LBP) algorithm [31]. LBP is based on
iterative message passing between the connected nodes. We
first initialize all the messages to 1 (Lines 11-13). At every
iteration, a message m

i!j

is then sent from each node i to
each neighboring node j, where T

i

, T
j

2 {U,R, P} denote

2Our experiments showed that the alternative approach discussed
in §2.2.2 produces similar results. We list the first approach in
Algorithm 1 due to its e�ciency, as it requires no training.

Algorithm 1: SpEagle

1 Input: User–Review–Product graph G = (V,E),
compatibility potentials  t (Table 1), review metada
(ratings, timestamps, text), labeled node set L

2 Output: Class probabilities for each node i 2 V \L
3 foreach i 2 V do // compute/initialize priors

4 if i 2 L then
5 if i is positive (spam) class then �

i

 {✏, 1� ✏}
6 else �

i

 {1� ✏, ✏}

7 else
8 Extract corresponding features in Table 2
9 Compute spam score S

i

using Eqn. (2)
10 �

i

 {1� S
i

, S
i

}

11 foreach (Y Ti
i

, Y
Tj
j

, t) 2 E do // initialize all msg.s

12 foreach y
j

2 L

Tj do
13 m

i!j

(y
j

) 1

14 repeat// iterative message passing

15 foreach (Y Ti
i

, Y
Tj
j

, t) 2 E do
16 foreach y

j

2 L

Tj do

17

m
i!j

(y
j

) = ↵
X

yi2LTi

✓
�
i

(y
i

)  t

ij

(y
i

, y
j

)

Y

Yk2YNi
\Yj

m
k!i

(y
i

)

◆

18 until messages stop changing within a � threshold

19 foreach Y Ti
i

2 Y

V \L do // compute final beliefs

20 foreach y
i

2 L

Ti do

21 b
i

(y
i

) = � �
i

(y
i

)
Y

Yj2YNi

m
j!i

(y
i

)

the type of node i and j, respectively. The message repre-
sents the belief of i about j, i.e., what i “thinks” j’s label
distribution is. More formally, m

i!j

captures the probabil-
ity distribution over the class labels of j, and is computed
based on the class priors of i, the compatibility potentials
of the type of edge that connects i and j, and the messages
that i receive from its neighbors excluding j. The exact ex-
pression is given in Line 17, where N

i

denotes the set of i’s
neighbors and ↵ is a normalization constant to ensure that
class probabilities sum to 1. These messages are exchanged
iteratively over the edges until a “consensus” is reached, i.e.,
the messages stop changing between consecutive iterations
within a small threshold such as � = 10�3 (Lines 14-18).

When the messages stabilize, we compute the marginal
probability, called the belief b

i

(y
i

), of assigning each Y
i

as-
sociated with a node of type T

i

2 {U,R, P} with the label
y
i

in label domain L

Ti (Lines 19-21). The exact expression
is given in Line 21, where � is the normalization constant so
that the marginal probabilities sum to 1. For classification,
one can assign labels based on max

yi bi(yi). For ranking, we
sort by the probability values b

i

(y
i

), where y
i

= spammer
and y

i

= fake respectively for users and reviews.

2.2.4 Light-weight SpEagle

The original SpEagle computes all the features for every
(unlabeled) node of each type in the graph (Line 8, Alg. 1).
In the experiments we investigate the e↵ectiveness of the
features and identify a small subset of review features that



produces comparable performance to using all of them. As
such, we propose a light-weight version of our method, called
SpLite (for SpEagle-Light), where we initialize the pri-
ors for unlabeled reviews based on the spam score computed
only on those features, and use unbiased priors {0.5, 0.5} for
(unlabeled) users and products. This significantly reduces
the feature extraction overhead for reviews, and completely
avoids it for users and products, enabling speed-up with only
slight compromise in performance. We compare the perfor-
mance and running time of SpLite and SpEagle in §3.4.

3. EVALUATION
We evaluate our approach quantitatively on real-world

datasets with near-ground-truth. In the following we first
describe our datasets, evaluation metrics, and compared meth-
ods and then present the performance results.

Data description.

In this study, we use three datasets collected from Yelp.com,
summary statistics of which are given in Table 3. The first
dataset, named YelpChi, has been collected and used by
[20] and contains reviews for a set of restaurants and ho-
tels in the Chicago area. We collected two more datasets
from Yelp for this work, named as YelpNYC and YelpZip.
YelpNYC contains reviews for restaurants located in NYC.
YelpZip is even larger, where we start with a zipcode in NY
state, collect reviews for restaurants in that zipcode3, in-
crease the zipcode number incrementally, and repeat. The
zipcodes are organized by geography, as such this process
gives us reviews for restaurants in a continuous region of
the U.S. map, including NJ, VT, CT, and PA.
Yelp has a filtering algorithm in place that identifies

fake/suspicious reviews and separates them into a filtered
list. The filtered reviews are also made public; the Yelp
page of a business shows the recommended reviews, while
it is also possible to view the filtered/unrecommended re-
views through a link at the bottom of the page. While
the Yelp anti-fraud filter is not perfect (hence the “near”
ground truth), it has been found to produce accurate re-
sults [27]. Our Yelp datasets contain both recommended and
filtered reviews. We consider them as genuine and fake,
respectively. We also separate the users into two classes;
spammers: authors of fake (filtered) reviews, and benign:
authors with no filtered reviews. We evaluate SpEagle on
both tasks: spammer detection and fake review detection.

Evaluation metrics.

We use four well-known ranking based metrics for our per-
formance evaluation. We obtain the (i) precision-recall (PR)
as well as (ii) ROC (true positive rate vs. FPR) curves,
where the points on a curve are obtained by varying the clas-
sification threshold. We compute the area under the curve,
respectively denoted as AP (average precision) and AUC.
For problems such as outlier/spam/fraud detection, often
the quality at the top of the ranking results are the most
important. Therefore, we also inspect (iii) precision@k and
(iv) NDCG@k, for k = {100, 200, . . . , 1000}. Precision@k
captures the ratio of spam(mers) in top k positions.
NDCG@k provides a weighted score, which favors rankings
where spam(mers) are ranked closer to the top. In partic-

ular, NDCG@k = DCG@k

IDCG@k

for DCG@k =
P

k

i=1

2

li�1

log2(i+1)

,

3Yelp allows to search for restaurants by zipcode, e.g., http:

//www.yelp.com/search?cflt=restaurants&find_loc=11794

Table 3: Review datasets used in this work.
Dataset #Reviews #Users #Products

(filtered %) (spammer %) (rest.&hotel)

YelpChi 67,395 (13.23%) 38,063 (20.33%) 201
YelpNYC 359,052 (10.27%) 160,225 (17.79%) 923
YelpZip 608,598 (13.22%) 260,277 (23.91%) 5,044

where l
i

captures the true label of item at rank i (1: spam,
0: non-spam) and IDCG@k is the DCG for ideal ranking
where all l

i

’s are 1.

Compared Methods.

We compare the performance of SpEagle to FraudEa-

gle [1] as well as to the graph-based approach by [26] de-
noted as Wang et al., thanks to their publicly available
implementations. We also consider Prior, where we use the
spam scores (for users and reviews) computed solely based
on metadata as discussed in §2.2.1. Prior does not use
the network information, and hence corresponds to SpEa-

gle without LBP. We also compare to the semi-supervised
SpEagle

+ with varying amount of labeled data, as well as
to the computationally light-weight version SpLite.

3.1 Detection results
We start by comparing the detection performance of the

methods. Table 4 provides the AP and AUC over all
three datasets for both user and review ranking. Notice
that SpEagle outperforms all others, Wang et al. and
Prior being the second best method for user and review
ranking, respectively. The superiority of SpEagle’s ranking
becomes more evident when the top of the ranking results
are considered through precision@k in Table 5, as well as
the NDCG@k in Figure 3.

3.2 Semi-supervised detection
Next we investigate how much the detection performance

can be improved by semi-supervision; i.e., providing SpEa-

gle with a subset of the review labels. We analyze per-
formance for varying amount of labeled data. Our datasets
contain di↵erent number of reviews (See Table 3), where
YelpChi is the smallest dataset and YelpZip is the largest.
To keep the number of provided labels at realistic size, we
label smaller percentages of the data for larger datasets; in
particular {1%, 5%, 10%} for YelpChi, {0.5%, 1%, 2%} for
YelpNYC, and {0.25%, 0.5%, 1%} for YelpZip.

Figure 3 shows the NDCG@k performance of semi-
supervised SpEagle, denoted as SpEagle

+, on all three
datasets for both user and review ranking, where varying
amount (%) of the review labels are provided (values are
averaged over 10 independent runs). Table 6 shows the
corresponding precision@k values for review ranking (user
ranking performance is similar, omitted for brevity). We no-
tice that the performance is improved considerably even with
very small amount of supervision, where the semi-supervised
results are significantly better than all the competing meth-
ods. For example, labeling only 1% of the reviews (around
670 labels for YelpChi, 3600 for YelpNYC, and 6000 for
YelpZip), precision@k for review ranking is increased by
4-22% on YelpChi, 44-56% on YelpNYC, and 39-47% on
YelpZip in absolute terms, for k 2 [100, 1000].4 Table 4
also includes the AP and AUC performance of SpEagle+

across all datasets for 1% labeled data.

4The corresponding absolute improvements for user ranking are
18-47% on YelpChi, 54-61% on YelpNYC, and 46-56% on YelpZip.



Table 4: AP and AUC performance of compared methods on all three datasets.
User Ranking Review Ranking

AP AUC AP AUC

Y’Chi Y’NYC Y’Zip Y’Chi Y’NYC Y’Zip Y’Chi Y’NYC Y’Zip Y’Chi Y’NYC Y’Zip

Random 0.2024 0.1782 0.2392 0.5000 0.5000 0.5000 0.1327 0.1028 0.1321 0.5000 0.5000 0.5000
FraudEagle 0.2537 0.2233 0.3091 0.6124 0.6062 0.6175 0.1067 0.1122 0.1524 0.3735 0.5063 0.5326
Wang et al. 0.2659 0.2381 0.3306 0.6167 0.6207 0.6554 0.1518 0.1255 0.1803 0.5062 0.5415 0.5982
Prior 0.2157 0.1826 0.2550 0.5294 0.5081 0.5269 0.2241 0.1789 0.2352 0.6707 0.6705 0.6838
SpEagle 0.3393 0.2680 0.3616 0.6905 0.6575 0.6710 0.3236 0.2460 0.3319 0.7887 0.7695 0.7942

SpEagle

+(1%) 0.3967 0.3480 0.4245 0.7078 0.6828 0.6907 0.3352 0.2757 0.3545 0.7951 0.7829 0.8040
SpLite

+ (1%) 0.3777 0.3331 0.4218 0.6744 0.6542 0.6784 0.3124 0.2550 0.3448 0.7693 0.7631 0.7923

Table 5: Precision@k of compared methods on (from
top to bottom) YelpChi, YelpNYC, and YelpZip.
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100 0.32 0.30 0.21 0.73 0.38 0.25 0.24 0.74

200 0.26 0.30 0.19 0.59 0.33 0.18 0.26 0.59

300 0.23 0.38 0.21 0.52 0.33 0.21 0.25 0.53

400 0.21 0.33 0.26 0.49 0.32 0.29 0.25 0.50

500 0.18 0.29 0.27 0.50 0.31 0.27 0.25 0.50

600 0.17 0.28 0.27 0.49 0.32 0.25 0.26 0.49

700 0.18 0.27 0.29 0.46 0.31 0.22 0.26 0.46

800 0.18 0.26 0.30 0.46 0.32 0.22 0.25 0.46

900 0.18 0.26 0.30 0.46 0.32 0.20 0.23 0.45

1000 0.19 0.28 0.32 0.45 0.31 0.20 0.23 0.45

100 0.34 0.21 0.15 0.44 0.34 0.10 0.17 0.44

200 0.30 0.19 0.19 0.46 0.32 0.12 0.22 0.46

300 0.28 0.17 0.18 0.44 0.34 0.09 0.27 0.44

400 0.27 0.21 0.17 0.44 0.34 0.11 0.21 0.44

500 0.25 0.22 0.17 0.41 0.33 0.11 0.22 0.41

600 0.23 0.27 0.17 0.40 0.32 0.13 0.22 0.40

700 0.22 0.37 0.16 0.39 0.32 0.12 0.22 0.39

800 0.22 0.45 0.16 0.39 0.32 0.13 0.20 0.39

900 0.22 0.50 0.15 0.38 0.31 0.13 0.22 0.38

1000 0.22 0.45 0.16 0.38 0.32 0.14 0.20 0.38

100 0.51 0.55 0.18 0.44 0.51 0.29 0.86 0.43
200 0.48 0.52 0.18 0.53 0.51 0.29 0.92 0.52
300 0.46 0.48 0.20 0.52 0.51 0.29 0.61 0.51
400 0.44 0.49 0.20 0.54 0.48 0.30 0.46 0.53

500 0.42 0.48 0.20 0.52 0.47 0.29 0.38 0.53

600 0.41 0.47 0.21 0.51 0.46 0.28 0.35 0.52

700 0.41 0.47 0.21 0.50 0.44 0.29 0.32 0.50

800 0.40 0.49 0.22 0.50 0.45 0.29 0.34 0.49

900 0.39 0.48 0.22 0.49 0.44 0.28 0.30 0.48

1000 0.39 0.47 0.22 0.50 0.43 0.28 0.27 0.49

3.3 Analyzing priors
Next we investigate the informativeness of feature cate-

gories and individual features in estimating e↵ective priors.

User vs. Review vs. Product priors.

We start by analyzing the user, review, and product pri-
ors. To study the e↵ectiveness of a certain group of priors
(e.g., user, or user+review), we only initialize the priors for
the nodes in that group in the graph (as estimated from
metadata) and set the remaining node priors to unbiased,
i.e. {0.5, 0.5}. We then compare the performance of SpEa-
gle with priors of various groups.

Table 7 shows the AP and AUC performance of SpEa-

gle across datasets with various prior groups. We find that
the review priors produce the most e↵ective results, followed
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Figure 3: NDCG@k of compared methods on (from
top to bottom) YelpChi, YelpNYC, and YelpZip for both
user and review ranking. Also shown are results for
SpEagle

+ with varying % of labeled data.

by user priors, and product priors. The di↵erence in per-
formance is especially pronounced on our largest dataset
YelpZip. To our surprise, we find that the product priors
alone yield performance that is lower than that by random
ranking. As a result, SpEagle with only user and review
priors performs almost as well as using all the priors.

Text- vs. Behavior-based priors.

Recall from Table 2 that our features are derived from
review text as well as behavioral clues. Here we investigate
the performance of SpEagle when priors are estimated from



Table 6: Precision@k of SpEagle

+ for review ranking on all three datasets with varying % of labeled data.
YelpChi YelpNYC YelpZip

k 0% 1% 5% 10% 0% 0.5% 1% 2% 0% 0.25% 0.5% 1%

100 0.7400 0.9300 0.9650 0.9950 0.4400 0.9650 0.9630 0.9930 0.4300 0.8740 0.8540 0.9090
200 0.5900 0.8195 0.9565 0.9600 0.4600 0.9595 0.9625 0.9790 0.5150 0.8850 0.8935 0.9130
300 0.5333 0.6910 0.9477 0.9500 0.4433 0.9557 0.9553 0.9713 0.5133 0.8303 0.9037 0.9173
400 0.4975 0.6162 0.9245 0.9408 0.4350 0.8935 0.9587 0.9710 0.5250 0.7823 0.8972 0.9225
500 0.5020 0.5736 0.8772 0.9344 0.4100 0.8076 0.9586 0.9664 0.5260 0.7574 0.8750 0.9212
600 0.4900 0.5617 0.8008 0.9110 0.3983 0.7602 0.9603 0.9633 0.5150 0.7320 0.8500 0.9218
700 0.4600 0.5407 0.7451 0.8671 0.3943 0.7079 0.9521 0.9623 0.4971 0.7090 0.8307 0.9226
800 0.4587 0.5125 0.7015 0.8078 0.3900 0.6685 0.9067 0.9616 0.4900 0.6946 0.8138 0.9178
900 0.4544 0.5018 0.6739 0.7570 0.3844 0.6307 0.8586 0.9610 0.4833 0.6711 0.7938 0.9106
1000 0.4510 0.4944 0.6471 0.7141 0.3820 0.5982 0.8225 0.9597 0.4880 0.6453 0.7744 0.9004

Table 7: AP and AUC performance of SpEagle when priors are initialized (estimated from metadata) for var-
ious node types; (U)sers, (R)eviews, (P)roducts (rest set to unbiased). P-priors yield the lowest performance,
while R-priors are the most e↵ective.

User Ranking Review Ranking

AP AUC AP AUC

Y’Chi Y’NYC Y’Zip Y’Chi Y’NYC Y’Zip Y’Chi Y’NYC Y’Zip Y’Chi Y’NYC Y’Zip

Random 0.2024 0.1782 0.2392 0.5000 0.5000 0.5000 0.1327 0.1028 0.1321 0.5000 0.5000 0.5000
SpEagle (U) 0.3197 0.2624 0.2808 0.6767 0.6483 0.6183 0.3043 0.2400 0.1427 0.7783 0.7629 0.5940
SpEagle (P) 0.1550 0.1357 0.1814 0.3905 0.3930 0.3801 0.0755 0.0640 0.0806 0.1643 0.2536 0.2277
SpEagle (R) 0.3226 0.2575 0.3449 0.6771 0.6477 0.6562 0.3098 0.2378 0.3180 0.7820 0.7656 0.7884
SpEagle (UR) 0.3398 0.2680 0.3615 0.6905 0.6575 0.6709 0.3241 0.2460 0.3320 0.7887 0.7695 0.7942

SpEagle (URP) 0.3393 0.2680 0.3616 0.6905 0.6575 0.6710 0.3236 0.2460 0.3319 0.7887 0.7695 0.7942
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Figure 4: (top) AP and (bottom) AUC performance
of SpEagle when various feature types are used to
estimate priors; text, behavior, all (See Table 2) on
all datasets for both (U)ser and (R)eview ranking.

only text-based versus only behavioral features (for all user,
review, and product nodes) as compared to using all the pos-
sible features. Figure 4 shows the AP and AUC performance
across all datasets for both user and review ranking.

We observe that using text-based features alone yields in-
ferior performance compared to behavioral features. More-
over, behavioral features alone produce comparable re-
sults to using all the features, where the di↵erences across
datasets and (U)ser vs. (R)eview ranking tasks are insignif-
icant. These findings are in agreement with those in [20],
which found that their behavioral features performed very
well, whereas the linguistic features were not as e↵ective.

3.4 SpLite performance
In light of our analysis results, we aim to design a “light”

version of SpEagle that is computationally more e�cient.
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Figure 5: AP performance of SpEagle when all
(green), individual (blue), and behavioral pairs (red,
only 3 shown) of (R)eview features are used to esti-
mate review priors (rest set to unbiased), on (from
top to bottom) YelpChi, YelpNYC, and YelpZip.

Our analyses suggest that (1) review priors alone are the
most e↵ective, and achieve comparable performance to using
priors for all user, review, and product nodes, and that (2)
behavioral features are superior to text-based features.



Table 8: NDCG@k performance comparison of SpEagle vs. SpLite (with 1% supervision on all datasets).
User Ranking Review Ranking

YelpChi YelpNYC YelpZip YelpChi YelpNYC YelpZip

k Sp’le SpLite Sp’le SpLite Sp’le SpLite Sp’le SpLite Sp’le SpLite Sp’le SpLite

100 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9354 0.9334 0.9694 0.9651 0.9219 0.9377
200 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.8469 0.8007 0.9665 0.9595 0.9200 0.9379
300 1.0000 0.9995 1.0000 1.0000 0.9997 1.0000 0.7373 0.6986 0.9597 0.9584 0.9216 0.9377
400 0.9645 0.9589 1.0000 1.0000 0.9998 1.0000 0.6682 0.6397 0.9615 0.9571 0.9248 0.9360
500 0.8841 0.8677 1.0000 1.0000 0.9998 1.0000 0.6255 0.6103 0.9610 0.9529 0.9234 0.9276
600 0.8205 0.8107 1.0000 1.0000 0.9998 1.0000 0.6089 0.5740 0.9620 0.9432 0.9236 0.9121
700 0.7731 0.7650 1.0000 1.0000 0.9999 1.0000 0.5864 0.5556 0.9552 0.8925 0.9240 0.9021
800 0.7416 0.7279 1.0000 1.0000 0.9999 1.0000 0.5587 0.5317 0.9179 0.8351 0.9199 0.8977
900 0.7157 0.6980 1.0000 1.0000 0.9999 1.0000 0.5458 0.5279 0.8775 0.7923 0.9138 0.8899
1000 0.6803 0.6670 1.0000 1.0000 0.9999 1.0000 0.5361 0.5218 0.8463 0.7577 0.9052 0.8810

The computationally most demanding component of
SpEagle is feature extraction (network inference is only
linear-time in number of edges in the graph [31]). Armed
with the above conclusions, our goal is then to identify a
few behavioral features for only the review nodes to be used
in estimating priors fast. The rest of the priors, i.e., those
for user and product nodes, are to be set to unbiased.

Figure 5 shows the AP performance of SpEagle (R) (as
discussed in Table 7) for the review ranking task on all three
datasets, when all the review features (blue bar), individual
review features (green bars), as well as pairs of behavioral
features (red bars, only 3 shown) are used. We find that
while there exists no single feature that produces high per-
formance across all datasets, using only two behavioral fea-
tures often yields similar performance to using all.

We design SpLite to utilize only the RD and EXT fea-
tures for estimating priors for only the review nodes. The
rest are set to unbiased. Table 8 compares SpEagle and
SpLite under 1% labeled data across all datasets for both
ranking tasks, and Figure 6 illustrates the running times.
Notice that SpLite reduces the feature extraction and hence
prior estimation overhead significantly, while yielding quite
comparable performance to SpEagle.
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Figure 6: (top) Total running time of SpEagle vs.
SpLite, (bottom) Break-down of runtime: feature
extraction and network inference, for all datasets.

4. RELATED WORK
Opinion spam is one of the new forms of Web-based spam,

and has been the focus of academic research in the last 7-8
years. We organize the various approaches to this problem
into three groups: behavior-, language-, and graph-based.

Behavior-based approaches. The approaches in this cat-
egory often leverage indicative features of spam extracted
from the metadata associated with user behavior (e.g., rat-
ing distribution), review content (e.g., number of capital
letters), and product profile (e.g., brand and price). The
seminal work by Jindal and Liu [9] use supervised learn-
ing based on 36 such features on a (pseudo) ground truth
dataset, constructed by labeling the duplicate reviews in an
Amazon dataset as fake reviews. Li et al. [13] train semi-
supervised models, and use the two views from reviews and
users under a co-training framework to spot fake reviews.
Jindal et al. [10] propose rule-based discovery of unusual
patterns in review data associated with the rating and brand
distribution of a user’s reviews. Other work that study rat-
ing based behavior of users include [7] and [15]. More re-
cently, Mukherjee et al. [18] utilize reviewing behaviors of
users in an unsupervised Bayesian inference framework to
detect opinion spammers. Xie et al. [28] monitor tempo-
ral behavior of products by tracking their average rating,
review count, and ratio of singleton reviewers, to spot sus-
picious single-time reviewers. Those spammers are particu-
larly challenging to detect, as they provide only a single re-
view. Besides detecting individual spammers, there has also
been work on identifying spammer groups through group-
level behavioral indicators of spam [19, 29].

Language-based approaches. Methods in this category
focus on the characteristics of language that the opinion
spammers use and how it di↵ers from the language used
in genuine reviews. This line of work is also related to
studies in deception [21]. Ott et al. [22] learn supervised
models to detect deceptive reviews based on linguistic fea-
tures of reviews as well as features borrowed from studies in
psychology. Amazon Mechanical Turk has been employed
to crowdsource fake reviews by paying anonymous online
users to write fake hotel reviews. Feng et al. [6] investi-
gate syntactic stylometry for deception detection, and show
that features derived from context-free-grammar parse trees
improve performance over shallow lexico-syntactic features.

An investigation by Mukherjee et al. [20] analyzed the
e↵ectiveness of linguistic and behavioral clues on a Yelp
dataset with filtered and recommended reviews, and found
that linguistic features are not as e↵ective and that Yelp’s
filter might be using a behavioral based approach.



Graph-based approaches. Wang et al. [26] consider the
user-review-product network and define scores for trusti-
ness of users, honesty of reviews, and reliability of prod-
ucts. These scores are formulated in terms of one another,
and are computed by an iterative algorithm similar to HITS
[12]. Akoglu et al. [1] proposed a detection framework based
on Markov Random Field (MRF) models on the signed bi-
partite network of users and products, which are connected
through positive or negative review relations (signed edges).
MRFs have also been utilized in [5] to model user-user rela-
tions that capture burst-membership, and in [29] to model
user-user collusion relations as well as user-attribute own-
ership relations. Li et al. [14] construct a user-IP-review
graph to relate reviews that are written by the same users
and from the same IPs. All of these approaches model the
fake review(er) detection problem as a collective classifica-
tion task on these networks, and employ algorithms such as
Loopy Belief Propagation (LBP) [31] or Iterative Classifica-
tion Algorithm (ICA) [23] for inference. Finally, Jiang et al.

[8] and most recently Ye and Akoglu [30] proposed graph-
based methods to identify group spammers solely based on
their abnormal network footprints.

5. CONCLUSION
In this work, we proposed a new holistic framework called

SpEagle that exploits both relational data (user–review–
product graph) and metadata (behavioral and text data)
collectively to detect suspicious users and reviews, as well as
products targeted by spam. Our main contributions are:

• SpEagle employs a review-network-based classifica-
tion task which accepts prior knowledge on the class
distribution of the nodes, estimated from metadata.

• SpEagle works in an unsupervised fashion, but can
easily leverage labels (if available). As such, we in-
troduce a semi-supervised version called SpEagle

+,
which improves performance significantly.

• We further design a light version of SpEagle called
SpLite which uses a very small set of review features
as prior information, providing significant speed-up.

We evaluated our method on three real-world datasets with
labeled reviews (filtered vs. recommended), as collected
from Yelp.com. As such, we provide the largest scale quan-
titative evaluation results on opinion spam detection to
date. Our results show that SpEagle is superior to sev-
eral baselines and state-of-the-art techniques. Our source
code and datasets with ground truth can be found at http:

//shebuti.com/collective-opinion-spam-detection/.
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