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Abstract—Fraud is a social process that occurs over time. We
introduce a new approach, called AFRAID, which utilizes active
inference to better detect fraud in time-varying social networks.
That is, classify nodes as fraudulent vs. non-fraudulent. In active
inference on social networks, a set of unlabeled nodes is given
to an oracle (in our case one or more fraud inspectors) to label.
These labels are used to seed the inference process on previously
trained classifier(s). The challenge in active inference is to select
a small set of unlabeled nodes that would lead to the highest
classification performance. Since fraud is highly adaptive and
dynamic, selecting such nodes is even more challenging than
in other settings. We apply our approach to a real-life fraud
data set obtained from the Belgian Social Security Institution to
detect social security fraud. In this setting, fraud is defined as the
intentional failing of companies to pay tax contributions to the
government. Thus, the social network is composed of companies
and the links between companies indicate shared resources. Our
approach, AFRAID, outperforms the approaches that do not utilize
active inference by up to 15% in terms of precision.

I. INTRODUCTION

Data mining techniques offer a good solution to find
patterns in vast amounts of data. Human interaction is often an
indispensable part of data mining in many critical application
domains [1], [2]. Especially in fraud detection, inspectors are
guided by the results of data mining models to obtain a primary
indication where fraudulent behavior might situate. However,
manual inspection is time-consuming and efficient techniques
that dynamically adapt to a fast changing environment are
essential. Due to the limited resources of fraud inspectors,
fraud detection models are required to output highly precise
results, i.e. the hit rate of truly identified fraudsters should be
maximal. In this work, we investigate how active inference
fosters the fraud detection process for business applications
over time. Active inference is a subdomain of active learning
where a network-based algorithm (e.g., collective inference)
iteratively learns the label of a set of unknown nodes in the
network in order to improve the classification performance.
Given a graph at time t with few known fraudulent nodes,
which k nodes should be probed – that is, inspected to confirm
the true label – such that the misclassification cost of the
collective inference (CI) algorithm is minimal. In this work, we
consider across-network and across-time learning, as opposed
to within-network learning [3]. We combine the results of CI
with local-only features in order to learn a model at time t and
predict which entities (i.e., nodes) are likely to commit fraud
at time t+ 1.
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Fig. 1: Fraud process: a fraudulent company files for bankruptcy
in order to avoid paying taxes and transfers its resources to other
companies that are part of the illegal setup, also known as a spider
construction.

Each time period fraud inspectors have a limited budget b at
their disposal to investigate suspicious instances. This budget
might refer to time, money or the number of instances to be
inspected. If we invest k of budget b to ask inspectors about
the true label of a set of instances selected based on a selection
criterion, will the total budget b be better spent? That is, do we
achieve more precise results by investing a part of the budget
(k) in learning an improved algorithm while the remaining
budget l = b−k is used to investigate the re-evaluated results,
rather than by using the complete budget b to inspect the initial
results without learning?

We propose AFRAID (short for: Active Fraud Investigation
and Detection) and apply our developed approach to social
security fraud. In social security fraud, companies set up illegal
constructions in order to avoid paying tax contributions. While
detection models can rapidly generate a list of suspicious
companies, which k companies should be inspected such that
the expected label of all other companies minimizes the tax
loss due to fraud?

Our contributions are the following:
• Fraud is dynamic and evolves over time. We propose a

new approach for active inference in a timely manner
by (1) using time-evolving graphs, and (2) weighing
inspectors’ decisions according to recency. (1) The
influence that nodes exercise on each other varies
over time. We capture the extent of influence in time-
varying edge weights of the graph. Additionally, we
attach greater importance to recent fraud. (2) Given
that an inspector labels a specific node as legitimate at
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Fig. 2: A summary graph St at time t contains all nodes and edges observed between time t and time t− s.

time t, can we assume that the node is still legitimate
at time t + 1? We introduce how to temporarily
integrate an inspector’s decision in the network model,
decreasing the value of the decision over time.

• We propose a combination of simple and fast probing
strategies to identify nodes that might possibly distort
the results of a collective inference approach and apply
these strategies to a large real-life fraud graph. We
evaluate probing decisions made by (1) a committee
of local classifiers, and (2) by insights provided by
inspectors. (1) A committee of local classifiers col-
lectively votes for the most uncertain nodes without
relying on domain expertise. (2) Inspectors use their
intuition to formalize which nodes might distort the
collective inference techniques.

• We investigate the benefits of investing k of the total
budget b in learning a better model, and find that active
inference boosts the performance of the classifier in
terms of precision and recall.

The remainder of the paper is organized as follows: back-
ground (§ II), network definition (§ III), problem definition and
active inference (§ IV), results (§ V), related work (§ VI) and
conclusion (§ VII).

II. BACKGROUND

The data used in this study is obtained from the Belgian
Social Security Institution, a federal governmental service that
collects and manages employer and employee social contribu-
tions. Those contributions are used to finance various branches
of social security including the allowance of unemployment
funds, health insurance, family allowance funds, etc. Although
the contributions both concern employees and employers (i.e.,
companies), the taxes are levied at employer level. That means
that the employer is responsible for transferring the taxes to
the Social Security Institution.

We say that a company is fraudulent if the company is
part of an illegal set up to avoid paying these taxes. Recent
developments have shown that fraudulent companies do not op-
erate by themselves, but rely on other associate companies [4],
[5]. They often use an interconnected network, the so-called
spider constructions, to perpetrate tax avoidance. Figure 1
illustrates the fraud process. A company that cannot fulfill
its tax contributions to the government files for bankruptcy.
If the company is part of an illegal setup, all its resources
(e.g., address, machinery, employees, suppliers, buyers, etc.)
are transferred to other companies within the setup. While the

economical structure of the company is disbanded by means
of bankruptcy, the technical structure is not changed as all
resources are re-allocated to other companies and continue
their current activities. Network analysis is thus a logical
enrichment of traditional fraud detection techniques.

Companies can be related to each other by means of
common resources they use(d). Although we cannot specify
the exact type of resources, the reader can understand resources
in terms of shared addresses, employees, suppliers, buyers,
etc. The data we have at our disposal contains 10M records
of which resources belong(ed) to which companies for which
time period. The data consists of 390k companies and 5,6M
resources. Remark that resources can be associated with more
than one company at the same time. Although resource sharing
(or transferring) might indicate a spider construction, non-
fraudulent companies also exchange resources (e.g., in an
acquisition or merger between companies all resources of one
company are allocated to the other, employees changing jobs
creates a relationship between two companies, etc.). Also,
fraudulent setups use innocent resources to cover up their
tracks. Given a set of companies, resources and the relations
between them at time t, our objective is to identify those
companies that have a high likelihood to perpetrate fraud at
time t+ 1.

III. NETWORK DEFINITION

In this section, we will elaborate on how to use the
temporal-relational data to create time-evolving fraud net-
works. Given relational data at time t, the corresponding graph
is defined as Gt = (Vt, Et), with Vt the set of nodes (or points,
or vertices) and Et the set of edges (or lines, or links) observed
at time t. Graph Gt describes the static network at time t.

Besides current relationships, dynamic graphs keep track of
the evolution of past information, e.g. nodes that are added to
or removed from the network, edges that appear and disappear,
edge weights that vary over time, etc. In order to include a time
aspect in the network, we define the summary graph St at time
t as all the nodes and edges observed between time t− s and
t. Figure 2 depicts how a summary graph is created. For our
problem setting, we include all historical information available
(s = t), as fraud is often subtle and takes a while before
the relational structure is exhibited. Although historical links
hold important information about possible spread of fraud,
their impact differs from more recent links. Based on work
of [6], [7], we exponentially decay the edge weight over time
as follows



w(i, j) = e−αh (1)

with α the decay value (here: α = 0.02) and h the
time passed since the relationship between node i and j
occurred and where h = 0 depicts a current relationship.
Mathematically, a network is represented by an adjacency
matrix A of size n× n where{

ai,j = w(i, j) if i and j are connected
ai,j = 0 otherwise

(2)

Since companies are explicitly connected to the resources
they use, our fraud graph has a dual structure: every edge in
the network connects a company to a resource. The network
composed of n companies and m resources is called a bipartite
network, and is of size n ×m. The corresponding adjacency
matrix is Bn×m. As we know when a resource was assigned to
a company, the edge weight corresponds to the recency of their
relationship, exponentially decayed over time. In case multiple
relationships exist between a company and a resource, we only
include the most recent one. An edge weight with maximum
value 1 refers to a current assignment.

IV. ACTIVE INFERENCE

Collective inference is a network analysis technique where
the label of a node in the network is said to depend on the
label of the neighboring nodes. In social network analysis,
this is often referred to as homophily [8], where one tends to
adopt the same behavior as one’s associates (e.g., committing
fraud if all your friends are fraudsters). A change in the
label of one node might cause the label of the neighboring
nodes to change which in turn can affect the label of their
neighbors, and so on. As a consequence, a wrong expectation
of one node strongly affects the estimated label of the other
nodes. Active inference is analogous to active learning. It
selects an observation to be labeled in order to improve the
classification performance. While active learning iteratively re-
learns and updates a classifier by the newly acquired label,
active inference re-evaluates the labels of the neighboring
nodes using an existing model. For a profound literature survey
of active learning, we refer the reader to [9].

In this work, we train a set of out-of-time local classifiers
~LC at time t where each observation i is composed of a set of

features ~xi derived at time t − 1 and the corresponding label
Li = {fraud, non-fraud} observed at time t. The set of fea-
tures consists of (1) intrinsic features ~ai, and (2) neighborhood
features (see IV-A). Intrinsic features are features that occur in
isolation and do not depend on the neighborhood. The intrinsic
features that describe the companies in our analysis include
age, sector, financial statements, legal seat, etc. The neighbor-
hood features are derived by a collective inference technique.
We apply each classifier LCm to observations from time t in
order to predict which observations are likely to commit fraud
at time t+1. In active inference, we ask inspectors their most
probable label at time t+1 and already integrate this label in
the current network setting to infer a new expectation of the
neighbors’ label. We say that we learn across-time and across-
network. Recall that inspectors have a total budget b at their
disposal each timestamp, and are able to invest k < b budget
in improving the current collective inference algorithm. Using

Algorithm 1: Active inference for time-varying fraud
graphs.

input : Summary graph St−1 and St where
St = (Vs,t, Es,t), time-weighted collective inference
algorithm wRWR′, budget k, set of labeled
fraudulent nodes Lt−1 and Lt.

output: Labeled nodes Lt+1.

# Initialize LCt
~ξt−1 ← wRWR′(St−1,Lt−1); IV-A

LCt ← LC(~xt−1[~at−1, aggr( ~Nt−1), ~ξt−1],Lt);
# Active inference

`← 0
while ` < k do

~ξt ← wRWR′(St,Lt);
Lt+1 ← LCt(~xt[~at, aggr( ~Nt), ξt],Lt);
Select node vi to probe; IV-B
if y(vi) = fraudulent then
Lt(vi)← (fraud,t); IV-C1

else if y(vi) = non-fraudulent then
∀vj ∈ Ni : w(j, i) = 0; IV-C2

end
`← `+ 1

end

the updated feature set, the LC re-learns a new estimate of
each of the nodes’ fraud probability. However, as inspectors’
decisions are only temporarily valid, we temporally weigh the
belief in a decision, by decreasing its value in time. Algorithm
1 provides more details on the procedure for active inference
in time-varying fraudulent networks, and will be discussed in
the remainder of this section.

A. Collective Inference Technique

Many collective inference algorithms have been proposed
in the literature (see [10] for an overview). We employ a set
of local classifiers that evaluates the classification decision on
both intrinsic and neighborhood features. For the neighborhood
features, we make a distinction between (1) local neighborhood
features and (2) a global neighborhood feature. The local
neighborhood features are based on the labels of the direct
neighbors. Recall that in our bipartite graph only the labels of
the companies are known, and that the first order neighborhood
of each company is composed of its resources. We define the
direct neighborhood of a company as the company’s resources
and their associations. As the number of neighbors for each
node differs, the neighborhood labels are aggregated in a fixed-
length feature vector [10] (here: length = 3). The following
aggregated features aggr(Ni) are derived from the network
for each company i.

• Weighted Sum: the number of fraudulent companies
associated through a similar resource, weighted by the
edges.

• Weighted Proportion: the fraction of fraudulent com-
panies associated through a similar resource, weighted
by the edges.



? ?

a b c

Fig. 3: Time-weighted collective inference algorithm. (a) At time t, two companies in the subgraph are fraudulent. The intensity of the color
refers to the recency of the fraudulence. (b) Propagation of fraud through the network by the wRWR′ algorithm. (c) Cutting the incoming
edges after probing node ‘?’ and confirming its non-fraudulent label.

• Weighted Mode: binary indicator for whether the
neighborhood is mainly fraudulent or non-fraudulent.

If – due to probing companies – the label of one of
the neighbors changes, the local neighborhood is directly
impacted. After each iteration of Algorithm 1, the local neigh-
borhood features are locally updated.

The global neighborhood feature is inferred using a variant
of Random Walk with Restarts (RWR) [11]. RWR computes
the relevance score between any two nodes in the network.
Given a time-varying fraudulent network, RWR allows us to
compute the extent to which each company is exposed to a
fraudulent company at time t using the following equation:

~ξt = c ·At · ~ξt + (1− c) · ~et (3)

with ~ξt a vector containing the exposure (or relevance)
scores at time t, At the adjacency matrix, c the restart
probability (here: 0.85) and ~et the restart vector. The exposure
score of a node in the network depends with a probability c
on its neighboring nodes, and with a probability of (1 − c)
on a personalized vector ~et. Considering the problem-specific
characteristics that concur with fraud, Equation 3 is modified
such that it satisfies (1) the bipartite structure defined by our
problem setting, (2) the temporal effect of confirmed fraudulent
companies on the network and (3) the fact that fraud should
equally affect each resource, regardless whether the resource
is assigned to a large or small company.

(1) Given our bipartite network of companies and re-
sources, we only know the label of fraudulent companies
and need to decide on how each (non-fraudulent) company
is currently exposed by the set of fraudulent companies.
Therefore, the adjacency matrix Bt of a bipartite summary
graph St with n nodes of type 1 (here: companies) and m
nodes of type 2 (here: resources), is transformed to a network
with an equal number of rows and columns according to [12],
and

M(n+m)×(n+m) =

(
0n×n Bn×m
B′m×n 0m×m

)
(4)

Remark that matrix M represents an undirected graph
where m(i, j) = m(j, i). The row-normalized adjacency
matrix is then denoted as Mnorm, where all rows sum up
to 1.

(2) As we want to determine how fraud affects the other
nodes, we initialize the restart vector with fraud. The restart
vector ~ei is constructed as follows{

ei = e−βh if i is a fraudulent company
ei = 0 otherwise

(5)

with β the decay value, and h the time passed at time
t since fraud is detected at that company. Equation 5 weighs
fraud in time and assigns a higher weight to more recent fraud.

(3) Finally, fraudulent companies with many resources will
have a smaller effect on their neighbors than companies with
only few resources. In order to avoid emphasizing low-degree
companies, we modify the starting vector with the degree:

~e ′ = ~e× ~d (6)

where ~e ′ is the element-wise product of the time-weighted
restart vector ~e and the degree vector ~d. The normalized
starting vector ~e ′norm defines the starting vector where all
elements sum to 1.

Equation 3 (referred to as wRWR′) is then re-written as

~ξt = c ·Mnorm,t · ~ξt + (1− c) · ~e ′norm,t (7)

In order to compute the exposure scores, Equation 7
requires a matrix inversion. As this is often unfeasible to com-
pute in practice, we use the power-iteration method iterating
Equation 7 until convergence [11]. Convergence is reached
when the change in exposure scores is marginal or after a
predefined number of iterations. The modified RWR algorithm
as described above is illustrated in Figure 3a and 3b.

B. Probing strategies

Given a set of observations with an estimated label by a
local classifier LC, which observation should be probed (i.e.,
checked for its true label) such that the predicted label of the
other observations are maximally improved? Recall that the
feature set of each observation from which the LC estimates
the label depends on the neighborhood of that observation. Any
change made in the label of one node has a direct impact on
the feature set of the neighbors. We define 5 probing strategies:
committee-based, entropy-based, density-based, combined and
random strategy.



1) Committee-based strategy: Rather than to rely on the
decision of one LC, many LCs decide on which node to pick
in a committee-based strategy. An often used approach is
uncertainty sampling. That is, sample that observation about
which all the members of the committee are the most uncertain.
Our committee is composed of the set of local classifiers
~LC. Each local classifier LCm expresses how confident it is

in the estimated label of each observation by means of a
probability. Sharma and Bilgic [13] distinguishes between two
types of uncertainty: most-surely and least-surely uncertainty.
The most-surely uncertain node is that node for which the
estimated probabilities of the local classifiers provide equally
strong evidence for each class. For example, when half of
the committee members vote for fraud, and the other half
vote for non-fraud, we say that the committee is most-surely
uncertain about the node’s label. Least-surely uncertainty refers
to that node for which the estimated probabilities do not have
significant evidence for either class. The committee is least-
surely uncertain about a node’s label if the probability of the
node to belong to a class is close to 0.5 for many classifiers.
Based on w[13], we combine positive (i.e., belonging to class
fraud) and negative (i.e., belonging to class non-fraud) evi-
dence learned from the set of models. Each local classifier LCm
assigns a fraud estimate to each node x. A model is in favor for
a positive label of node x when Px(+|LCm) > Px(−|LCm),
then LCm ∈ P for node x, otherwise LCm ∈ N . Evidence in
favor of node x being fraudulent is

E+(x) =
∏

LCm∈P

Px(+|LCm)

Px(−|LCm)
(8)

Evidence in favor of node x being a non-fraudulent is

E−(x) =
∏

LCm∈N

Px(−|LCm)

Px(+|LCm)
(9)

The most-surely uncertain node (MSU) in the set of unla-
beled nodes U is the node which has the maximal combined
evidence.

x∗ = argmax
x∈U

E(x) = E+(x)× E−(x) (10)

The least-surely uncertain node (LSU) is the node which
has the minimal combined evidence.

x∗ = argmin
x∈U

E(x) = E+(x)× E−(x) (11)

We define four types of committee-based strategies to
sample nodes: (1) most-surely uncertain (MSU), (2) least-
surely uncertain (LSU), (3) most-surely uncertain using the
best performing local classifiers (MSU+) and (4) least-surely
uncertain using the best performing local classifiers (LSU+).
We implemented sampling strategy (3) and (4), as we found
that some poorly performing classifiers fail to appropriately
weigh the feature set and distort the results of the uncertainty
sampling. Therefore, in MSU+ and LSU+, we allowed only
well-performing committee members (i.e., above average pre-
cision of all local classifiers) to vote on the node to be probed.

2) Entropy-based strategy: Fraud is highly imbalanced,
having only a limited set of confirmed fraudulent nodes avail-
able. However, our network exhibits statistically significant
signs of homophily (p-value < 0.02) which indicates that
fraudulent nodes tend to cluster together. Some non-fraudulent
nodes lie on the boundary between a cluster of fraudulent and
non-fraudulent nodes. The entropy-based strategy measures the
impurity of the neighbors’ labels and identifies these nodes that
are associated with a similar amount of fraudulent and non-
fraudulent nodes, and

x∗ = argmax
x∈U

Entropy(x)

= −d(2)rel,x log(d
(2)
rel,x)− (1− d(2)rel,x) log(1− d

(2)
rel,x)

(12)

with d(2)rel,x the fraction of fraudulent nodes associated with
node x in the second-order neighborhood (i.e., the companies)
at time t.

3) Density-based strategy: Spider constructions are sub-
graphs in the network that are more densely connected than
other subgraphs. The density-based strategy aims to find those
nodes of which the neighborhood is highly interconnected.

x∗ = argmax
x∈U

# of observed edges
# of all possible edges

(13)

4) Combined strategy: Based on experts’ expertise, the
combined strategy searches for companies that are located in
(1) a dense neighborhood (= high density), and (2) an impure
neighborhood (= high entropy). Evidence is aggregated by
multiplication [13]. The node with the maximum value for
the combined strategy is selected for probing, and

x∗ = argmax
x∈U

Combined(x) = Entropy(x)×Density(x) (14)

5) Random strategy: The random probing strategy ran-
domly picks a node in the network for probing.

Probing strategy (1) does not rely on domain expertise,
while (2)-(4) are guided by experts’ insights. Strategy (5) is
employed as baseline.

C. Temporal weighing of label acquisition

Based on the previous selection technique, the probed node
is sent to inspectors for further investigation. Inspectors will
confirm the true label of the node. Recall that in our setting
only companies can be directly attributed to fraud, resources
cannot be passed to the inspectors for investigation. Inspectors
will thus only label company nodes. At label acquisition, two
scenarios can occur for each node that is probed:

1) Classified as fraudulent: In this case, the node is added
to the bag of fraudulent nodes, and affects (1) the local
neighborhood features of the neighbors, and (2) the global
neighborhood feature of all nodes. (1) Up until now, the
sampled node was considered to be non-fraudulent. Hence,
we locally update the feature set of the company’s neighbors.
(2) The starting vector of the wRWR′ algorithm (see IV-A) is
re-created, treating the node as a fraudulent one. The global
neighborhood feature for each node is then updated.



2) Classified as non-fraudulent: Inspectors do not find
any evidence that this node will be involved in fraud at
time t + 1. However, this does not imply that the node will
always be non-fraudulent. The inspectors’ decision is only
valid for a limited time period. This decision does not impact
the local neighborhood features, as the node was treated as
non-fraudulent before. It only temporarily affects the exposure
scores computed by the wRWR′ algorithm. If we know for
certain that node i is legitimate at time t – based on e.g.,
inspectors’ labeling – the node should block any fraudulent
influence passing through. By temporarily cutting all the in-
coming edges to node i, node i will not receive any fraudulent
influences, and as a result cannot pass fraudulent influences to
its neighbors. The edge weight in the adjacency matrix M is
changed as follows:

∀j ∈ Ni : w(j, i) = (1− e−βd)e−αh (15)

with α and β decay values, t the time passed since the
decision that i is non-fraudulent where d = 0 if it is a current
decision, and h is the time passed since a relation between i
and j occurred. Remark that only incoming edges are cut from
the non-fraudulent node. The outgoing edges are still intact.
This mitigates the effect of fraud on its neighbors. This is
illustrated in Figure 3c.

V. RESULTS

We applied our proposed approach for active inference
in time-evolving graphs to a real-life data set obtained from
the Belgian Social Security Institution. We use historical data
for evaluation, allowing us to appropriately interpret results
and the value of active inference for our application domain.
We trained five local classifiers (i.e., Logistic Regression,
Random Forest, Naive Bayes, SVM and Decision Tree) for
two timestamps t1 and t2. Due to confidentiality issues, we
will not specify the exact timestamps of analysis. The local
classifiers ~LC of time t1 are learned using data features
of time t0 and their corresponding label at time t1. The
model is tested on data features of time t1 aiming to predict
the corresponding label at time t2. Because inspection is
time-consuming, the number of companies that are passed
on for further inspection is limited. In our problem setting,
we focus on the top 100 most probable fraudulent compa-
nies, out of more than 200k active companies, and evalu-
ate model performance on precision, recall and F1-measure.

Figure 4 shows the F1-measure of the local classifiers
obtained when investigating the top 100 most likely fraudulent
companies in function of the percentage of companies labeled
of the budget b. Precision and recall follow a similar pattern, as
the total number of companies that committed fraud between
t1 and t2 reaches approximately 200 (< 1%). The probing
strategy used is (MSU+). While Naive Bayes, SVM and De-
cision Tree are not significantly impacted, the probing strategy
is able to identify nodes that change the top 100 most probable
frauds for Logistic Regression and Random Forest. Although
the benefits for Logistic Regression are not pronounced, the
precision achieved by Random Forest increases from 3% up
to 15%. Figure 5 depicts the precision achieved by the probing
strategies themselves. On average, more than 50% of the
probed nodes are labeled by the inspectors as fraudulent.
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Fig. 4: Model performance of active inference on time t for
probing strategy MSU+.

Considering that there are only 200 out of 200k companies that
commit fraud during the next time period, this is translated in
an increase of approximately 25% recall. These results indicate
that the probing strategy on its own is a powerful approach to
detect many frauds.

Remark that the curves in Figure 4 vary a lot. This is
mainly due to the shift in the top 100 companies, depending
on which node is probed. Figure 6 illustrates how the changes
in precision (black curve) can be explained by changes in
the top 100 most suspicious companies (gray curve, in %).
We distinguish three scenarios, as indicated in the figure:
(A) The sampled node causes an increase in precision. The
sampled node is labeled as non-fraudulent hereby correctly
blocking fraudulent influence to the rest of its neighborhood,
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or the sampled node is labeled as fraudulent intensifying the
spread of fraud towards its neighborhood. (B) The sampled
node deludes the CI technique. This can be explained by the
innocent resources often attached to illegal setups. (C) The
sampled node does not have any influence on the top 100, and
can be seen as a lost effort.

Figure 7 and 8 compare the different probing strategies.
We distinguish between committee-based strategies (Figure 7)
and strategies using experts’ experience (Figure 8). In general,
MSU+, the Entropy-based and Combined strategy achieve
approximately the same precision. Consistent with the results
of [13], the probing strategies LSU and LSU+ do not contribute
to learning, as well as the Density and Random strategy.
Surprisingly, we observed that the MSU strategy which uses all
classifiers does not perform well. When we apply a committee-
based strategy composed of the best members or advanced
experts’ strategies (i.e., Entropy-based and Combined), we
achieve the best performance. We can conclude that a commit-
tee of local classifiers can mimic experts’ insights, which is
often preferred in order to make unbiased inspection decisions.

Finally, we evaluate how model performance is affected by
cutting the edges, and gradually re-integrating their influence in
time. Figure 9 shows the precision at time t2 with and without
integrating the edge cuts of time t1. Especially when the
probing budget is limited, the precision is positively impacted.
When more budget is invested in probing, the effects of
transferring decisions of the previous timestamps are similar
to the results achieved when no previous edge cuts are taken
into account.

VI. RELATED WORK

Active learning iteratively learns a classifier by selecting
unlabeled observations to be labeled, and update the classifier
accordingly. The label is assigned by an “oracle”, which often
refers to human interaction present in the learning process.
Although active learning is widely explored in the literature
(see [9] for an overview), it is only recently applied to
networked data. As network-based features often rely on the
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neighbors, an update in the neighborhood causes some features
to change. This is collective classification, and is proven to
be useful for fraud detection in [14], [15]. Active inference
refers to the process of iteratively sampling nodes such that
the collective classification prediction of all other nodes is
optimized. Most studies focus on within-network classification,
in which a subset of the nodes are labeled and the labels
of the other nodes need to be decided. The goal is to select
the most informative (set of) nodes to sample. Rattigan et al.
[16] suggest to select those nodes for probing that lie central
in the network and impact other nodes more significantly.
Macskassy [17] uses the Empirical Risk Minimization (ERM)
measure such that the expected classification error is reduced.
The Reflect and Correct (RAC) strategy [18], [19] tries to
find misclassified islands of nodes by learning the likelihood
of each node belonging to such island. In [20], the authors
propose ALFNET combining both content-only (or intrinsic)
features with features derived from the network. They use local
disagreement between a content-only and combined classifier



0 20 40 60 80 100

0.2

0.3

0.4

k (in %)

Pr
ec

is
io

n
of

th
e

to
p

10
0

with cutting edges
without cutting edges

Fig. 9: Precision on graphs when decision is weighted in time.

to decide which node to probe in a cluster. As opposed to
within-network learning, Kuwadekar and Neville [3] applied
active inference to across-network learning. That is, their
Relational Active Learning (RAL) algorithm is bootstrapped
on a fully-labeled network and then applied to a new unlabeled
network. Samples are chosen based on a utility score that
expresses the disagreement within a ensemble classifier. To the
best of the authors’ knowledge, active inference is not applied
to time-evolving graphs so far.

VII. CONCLUSION

In this work, we discussed how active inference can foster
classification in time-varying networks. We applied AFRAID,
a new active inference approach for time-evolving graphs, to
a real-life data set obtained from the Belgian Social Security
Institution with as goal to detect companies that are likely
to commit fraud in the next time period. Fraud is defined as
those companies that intentionally do not pay their taxes. Given
a time-varying network, we extracted (1) intrinsic features
and (2) neighborhood features. A change in the label of one
node might impact the feature set of the neighbors. This
is collective classification. We investigated the effect on the
overall performance of a set of classifiers, when we are able to
select a limited set of nodes to be labeled. Although the domain
requirements are rather strict (i.e., only 100 out of >200k
companies can be investigated each time period), Random
Forests benefit the most from active inference, achieving an
increase in precision up to 15%. We investigated different
probing strategies to select the most informative nodes in the
network and evaluate (1) committee-based and (2) expert-based
strategies. We find that committee-based strategies using high-
performing classifiers result in a slightly better classification
performance than expert-based strategies which is often pre-
ferred in order to obtain an unbiased set of companies for
investigation. We see that the probing strategies on their own
are able to identify those companies with the most uncertainty,
resulting in a total precision of up to 45%.
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