
Noname manuscript No.
(will be inserted by the editor)

Assessing and Altering Robustness of Large Graphs

Hau Chan · Leman Akoglu · Hanghang Tong

Received: date / Accepted: date

Abstract The function and performance of many networked systems, such as com-
munication and transportation networks, rely on their resilience, defined as their abil-
ity to continue functioning in the face of damage to parts of the network. The damage
can be in the form of intentional targeted attacks or failures of random or cascad-
ing nature. Prior research has proposed various measures to assess graph robustness
as well as various manipulation strategies to alter it. In this work, our contributions
are two-fold. First, we critically analyze a diverse list of proposed robustness mea-
sures and identify their strengths and weaknesses in quantifying graph robustness.
Our analysis suggests natural connectivity, based on the weighted count of closed
walks in a graph, to be a reliable measure. Second, we formulate three graph manip-
ulation problems involving node and edge deletions to degrade, and edge additions
to improve the robustness of a given graph as defined by its natural connectivity.
We study the hardness of these problems and propose the first principled alteration
algorithms that directly optimize the corresponding robustness measure. Our direct
optimization leads to significant improvement over many existing ad-hoc heuristic
strategies. Extensive experiments on real-world datasets demonstrate the effective-
ness and scalability of our methods against a long list of competitor heuristics.

Keywords graph mining · robustness · vulnerability assessment · connectivity ·
graph spectrum · edge manipulation · node manipulation · network design

Hau Chan
Department of Computer Science, Stony Brook University, Stony Brook, NY 11794.
Tel.: +1-631-632-9801, Fax: +1-631-632-2303.
E-mail: hauchan@cs.stonybrook.edu

Leman Akoglu
Department of Computer Science, Stony Brook University, Stony Brook, NY 11794.
E-mail: leman@cs.stonybrook.edu

Hanghang Tong
Department of Computer Science, City College, City University of New York, New York, NY 10031 USA.
E-mail: tong@cs.ccny.cuny.edu

2 Hau Chan et al.

1 Introduction

Robustness, generally speaking, measures the resilience of a network in response to
the external perturbations (e.g., intentional attacks or random failures), is a funda-
mental property for a variety of networks, such as social, information, communica-
tion, biological networks and so on. Networks that sustain their functionality and
responsiveness under such changes (targeted or random) are considered to be more
robust than others that fail to do so.

In the past few decades, research on robustness has been concerned with mea-
suring the robustness of a given network [1,16,15], tracking its dynamics when the
network evolves over time [35], manipulating its structure (e.g., by removing nodes)
to alter its robustness [1,3,19], and comparing the robustness of different networks
under a certain type of perturbation [1,7,4].

In particular, a vast majority of prior works have focused on quantifying robust-
ness and thanks to those efforts we now have a variety of different robustness mea-
sures, e.g., size of largest connected component, inverse shortest distances, algebraic
connectivity, etc. In principle, the common ingredient/component of these measures
is the level of network connectivity. While each of these robustness measures has
its own emphasis and rationality, as we discuss in the next section, many measures
have several shortcomings in capturing the desired connectivity and resilience prop-
erties of networks. For example measures based on shortest distances, such as di-
ameter, efficiency, etc., are quite sensitive to small alterations. Moreover, they do
not account for redundancy, i.e., alternative paths between the nodes. Several other
measures, such as algebraic connectivity, clustering coefficient, etc., do not change
strictly monotonically when e.g., new edges are added to the network. In addition,
some measures including algebraic connectivity and diameter, are meaningless for
disconnected graphs; they either take the same value for all such graphs or are not
well-defined (see §2.1 for more details).

Ideally, a fully connected network is the most robust; however it is not feasible
to design fully connected real-world networks due to several constraints, such as
physical space, budget, etc. Alternatively, building alternative (i.e., redundant) paths
among the nodes helps improve the resilience against damage in the network. The
more and shorter these alternative paths are, the better the resilience would be. Thus,
several more recent robustness measures [26,45] are built on the so-called subgraph
centrality, which measures the total (weighted) count of loops in the network.

While most prior research focused on robustness measures, little has been done on
how to manipulate the robustness of a given network by modifying its underlying link
structure. For instance, how can we enhance the robustness of a power grid network
by carefully introducing a few new power lines? How can we break down a disease
network by removing (say by an operation) some of its cells? How can we maximally
break down an adversary network (e.g., a terrorist network) by cutting out some of
its communication channels? To date, little, except a few ad-hoc solutions has been
proposed to answer these kinds of questions (see §2.2 for more details).

In this work, we focus on two critical problems related to network robustness;
(1) quantifying/measuring, and (2) manipulating/altering the robustness in large net-
works. In particular, we address the following questions: (Q1) Robustness measure:

Assessing and Altering Robustness of Large Graphs 3

While there exist many different robustness measures, it is unclear for the practitioner
which measure should s/he choose. What is a good robustness measure that captures
the desired resilience properties of a graph? (Q2) Manipulation algorithms: Given
such a desired measure, how can we design effective and scalable algorithms that
directly optimize it for manipulating robustness?

We start by carefully choosing natural connectivity [45] as a reliable robustness
measure. Next we propose a novel framework called MIOBI (for Make It or Break
It) for controlling the robustness of a given graph by modifying its topology. In par-
ticular, we address two new problems. First, we focus on the problem of maximally
decreasing the robustness of a given network by deleting nodes or links. Second, we
study the problem of maximally increasing the robustness by carefully introducing a
set of new links. A unique feature of our methods is that they aim to directly optimize
the corresponding robustness measure, which leads to significant performance im-
provement over the existing, ad-hoc solutions. The proposed methods scale to large
graphs, with near-linear complexity in time and space. We summarize our main con-
tributions as follows:

– Analysis of robustness measures: We analyze several measures in the literature
for their capabilities of capturing desired resilience properties of graphs, such as
accounting for alternative paths (redundancy), strictly increasing with addition of
new edges (strict monotonicity), etc. We conclude that natural connectivity, that
satisfies all of our criteria, proves to be a reliable measure.

– Robustness manipulation problems: We formulate two manipulation problems to
degrade graph robustness via (1) edge and (2) node removal (respectively called
MIOBI-BREAKEDGEand MIOBI-BREAKNODE), as well as one problem to im-
prove robustness via edge addition (called MIOBI-MAKEEDGE). We further an-
alyze the computational hardness of the posed problems theoretically.

– Principled robustness manipulation algorithms: We propose effective and scal-
able algorithms to identify the best operations for a given budget for each prob-
lem. Our algorithms are based on theoretical bases and provide the first princi-
pled, rather than ad-hoc, solutions. Prior research has considerable discrepancy
between robustness measures used and manipulation algorithms employed (e.g.,
largest connected component size as measure vs. degree-based removal for ma-
nipulation). We bridge this gap by directly optimizing our chosen robustness mea-
sure under manipulation.

– Extensive experiments: We evaluate our methods on a long list of real-world
datasets across various domains (e.g., email, P2P, Internet AS topology) for effec-
tiveness and scalability. We show that i) our proposed methods outperform a long
list of ad-hoc strategies, and ii) successfully scale to large-scale graphs with the
empirical running time growing near-linearly in graph size (number of edges).

2 Related Work

Due to its wide range of applications, robustness has been studied extensively in var-
ious communities, including physics, biology, networking, mathematics, and com-

4 Hau Chan et al.

puter science. We organize related work on robustness into two sections: (1) work on
proposing measures to quantify robustness, and (2) work on studying the effects of
network manipulation on robustness.

2.1 Measuring Robustness

Simple and effective measures of robustness are essential in the areas of network de-
sign and monitoring. In graph theory, robustness can comprise of properties ranging
from redundancy and diversity, to concepts such as the ability to operate under pertur-
bation or the efficiency of feedback mechanisms. In principle, the graph connectivity
is a fundamental measure of the robustness of a network.

In [1] network robustness is defined as the critical removal fraction of nodes (or
edges) from the network that causes its sudden disintegration. To monitor disintegra-
tion, they propose to track the diameter, relative size of the largest connected com-
ponent (LCC), and average size of isolated clusters. Intuitively, as the fraction of
removed nodes/edges increases, the performance of the network eventually collapses
at a critical fraction f that corresponds to the network robustness; the larger f is, the
more robust the network is. The critical removal fraction f , however, while can be
computed analytically for special network structures [7,4], in general it needs to be
computed via simulations. Moreover, component sizes do not fully reflect the level of
connectedness of a given network. Pairwise connectivity [39], based on the fraction
of pairs that have at least one path between them, has also been used to quantify the
connectedness of a graph. Like LCC size, this measure also assesses connectivity at a
coarse level, ignoring the count and length of (back-up) paths between the node pairs.

Other prior works have proposed mathematically compact representations to quan-
tify robustness. These measures include connectivity based on minimum node/edge
cut [16], average inverse shortest path (geodesic) distances of connected components
[1,3,19], and algebraic connectivity based on the second smallest (or first non-zero)
eigenvalue of the Laplacian [15]. However, these measures only partly reflect the abil-
ity of graphs to retain connectedness after manipulation, and fail to exhibit the vari-
ation of robustness sensitively [45]. In particular, shortest paths are prone to change
drastically with simple alterations and do not capture redundancies (i.e., alternative
paths). Moreover, algebraic connectivity takes the value of zero for all disconnected
graphs which makes it a measure that is too coarse for complex networks, and it does
not change monotonically with the addition/deletion of more edges [45].

Related to geodesic distance, [35] propose a modified measure for time-varying
graphs called shortest temporal distance. [11,26] incorporate the spectral gap re-
lated to spectral expansion properties [12] as well as subgraph centralities of the
nodes in the network, to quantify network robustness. More recently, [31] propose a
community-centric measure of robustness where they quantify the the change in the
clustering structure of the topology as measured by modularity [30].

Other measures include toughness [6], scattering number [20], tenacity [25], in-
tegrity [2], fault diameter [22], restricted connectivity [5], and isoperimetric number
(related to node/edge expansion) [29]. These take into account the cost as well as

Assessing and Altering Robustness of Large Graphs 5

the magnitude of damage to a network. However, these are combinatorial measures
which are often hard to compute efficiently for general graphs.

In summary, while all these and several other measures capture graph connectivity
one way or another, they have one or more of the following shortcomings: i) prone
to drastic changes by small graph alterations, ii) partially capturing connectivity or
alternative paths, iii) combinatorial to compute efficiently, iv) meaningful only for
connected graphs, and v) non-monotonically changing by more modifications. Thus,
we adopt natural connectivity [45] as our measure, which successfully avoids these
pitfalls (details in §3).

2.2 Altering Robustness

One can study the change in robustness under i) few and random node/edge failures,
or ii) many or targeted failures (or attacks). In their study, [1] showed that scale-
free graphs are resilient to random failures but sensitive to targeted attacks, while for
random networks there is smaller difference between the two. As such, researchers
proposed and studied different manipulation strategies for targeted attack scenarios
for real-world networks.

The most frequently studied strategy to degrade robustness has been the removal
of most connected (i.e., highest degree) nodes [1,3,19]. Further, [19] compared this
strategy to node/edge removals based on betweenness centrality and showed that be-
tweenness yields better results, especially for removal of edges. Different from most,
and similar to our MIOBI-MAKEEDGE, [3] investigated modification schemes to im-
prove network robustness. In particular, they studied (1) edge rewiring, and (2) edge
addition strategies based on i) random, or ii) preferential schemes. They concluded
that in general preferential edge additions, i.e. connecting lowest degree nodes, yield
the best result. Other works also explore edge rewiring strategies to improve graph
robustness [24,28,36].

More theoretical work in this area includes [21] that define what is called an
(ε, k)-failure where deletion of k nodes/edges disconnects a graph of n nodes into two
components, each of at least size εn. They give theoretical bounds on the existence
and selection of a set of “witness” nodes D called detection nodes, such that some
two nodes in D gets disconnected when/if an ε, k-failure occurs. As such, this work
focuses on the detectability of failures/attacks.

Finally, designing networks that are optimal with respect to some survivability
criteria [16,38,34] is a related but different research topic. These consider building
a network from scratch, whereas we aim at modifying an existing network as effec-
tively as possible under a given budget, without causing substantial changes to its
existing structure.

We remark that a vast majority of prior research revolves around ad-hoc ma-
nipulation techniques. They either use simulations, assume special network mod-
els/structures (e.g., random graphs), or develop heuristic edge/node elimination strate-
gies, and compare them across each other (e.g., betweenness versus degree based
removals). There exists a small group of works which propose systematic approxi-
mation algorithms to manipulate a graph robustness measure of their interest. These

6 Hau Chan et al.

include the optimization for pairwise connectivity [9] and community-structure [31].
Our work is in the same lines of this latter group, where we propose a set of princi-
pled, rather than ad-hoc, algorithms for graph manipulation.

3 Assessing Graph Robustness

In this section we first introduce the notation and then describe natural connectivity,
the robustness measure we adopt in our work.

3.1 Notation

Table 1 lists the notation used in text. We consider undirected unipartite irreducible
graphs G(V,E) with a vertex/node set V of size n and an edge set E of size m. An
(undirected) edge of G between nodes p and r in V is written as (p, r) ∈ E. The set
of neighbors and degree of a node i ∈ V are denoted by N (i) and di, respectively.
We use uppercase bold letters for matrices (e.g., A) and lowercase bold for vectors
(e.g., a). Given a matrix A, A(i, j) corresponds to the element at ith row and jth

column of A. Moreover, A(i, :) and A(:, j) represent the ith row and jth column
of matrix A, respectively. We denote the transpose with a prime (e.g., A′, a′). The
eigenvalue and associated eigenvector pairs of the adjacency matrix A are denoted
by (λj ,uj). The ith element of an eigenvector uj is represented by uij.

Table 1: Notation used throughout text.

Symbol Definition and Description
G(V,E) undirected, unipartite network
n number of nodes |V | in the network
m number of edges |E| in the network
k budget (number of edges/nodes to add/delete)
(p, r) undirected edge in E between nodes p and r
A,B, . . . matrices (bold upper case)
A(i, j) element at ith row and jth column of A
A(i, :) the ith row of matrix A
A(:, j) the jth column of matrix A
A′ transpose of matrix A
a,b, . . . vectors (bold lower case)
A,B, C, . . . sets (calligraphic)
λj jth largest (in module) eigenvalue of A
uj n× 1 eigenvector of A associated with λj .
uij ith entry in uj

N (i) set of neighbors of node i
di degree of node i

3.2 Our Robustness Measure

In this paper, we adopt a spectral measure of robustness in complex networks, called
natural connectivity [45], which can be written as follows.

Assessing and Altering Robustness of Large Graphs 7

λ̄A = ln(
1

n

n∑
j=1

eλj) (1)

which corresponds to an “average” eigenvalue of G(V,E), where λ1 ≥ λ2 ≥ ... ≥
λn denote a non-increasing ordering of the eigenvalues of its adjacency matrix A.
When the context is clear, the superscript A will be omitted (i.e. λ̄A ≡ λ̄).

Natural connectivity not only has a simple mathematical formulation that can be
interpreted as the average eigenvalue of the graph, but it also has clear physical and
structural meaning that can be tied to several connectivity properties of networks.
In particular, it explicitly characterizes the redundancy of alternative paths in the
network by quantifying the weighted number of closed walks of all lengths.

A walk in G is an alternating sequence of nodes and edges v0e1v1e2v2 . . . ekvk
where vi ∈ V and ei(vi−1, vi) ∈ E. The walk is closed if v0 = vk. The number
of walks is an important measure for network robustness. Intuitively, it captures the
redundancy of routes between the nodes and redundant routes ensure that connections
between nodes remain possible in face of damage to the network. Ideally, robustness
could consider the number of alternative routes of different lengths for all pairs of
nodes, however this measure becomes intractable for very large graphs. Therefore,
natural connectivity focuses on the closed walks of the graph.

Closed walks can be directly related to the subgraphs of a graph and derived
from the sum of the subgraph centralities of all the nodes in the graph. The subgraph
centrality SC(i) of a node i is determined based on the “weighted” sum of the number
of closed walks that it participates in. Therefore,

S(G) =

n∑
i=1

SC(i) =

n∑
i=1

∞∑
k=0

(Ak)ii
k!

=

n∑
i=1

n∑
j=1

uij
2eλj

=

n∑
j=1

eλj

n∑
i=1

uij
2 =

n∑
j=1

eλj

where (Ak)ii is the number of closed walks of length k of node i. The k! scaling
ensures that (i) the weighted sum does not diverge, and (ii) longer walks count less.
We note that S(G) is also known as the Estrada index of the graph [10]. As such, we
can write

λ̄ = ln(
1

n

n∑
j=1

eλj) = ln(
1

n
S(G))

Moreover, natural connectivity is closely related to self-communicability [13] of
nodes in the network. The general communicability function between nodes p, q is
written as

Cpq =

∞∑
k=0

ck(Ak)pq

and thus, subgraph centrality can be thought of as self-communicability with facto-
rial penalization of walk lengths. The general communicability between any pair of

8 Hau Chan et al.

nodes p, q (again with factorial penalty) can be written as (using Taylor series and the
spectral decomposition of A)

Cpq =

n∑
j=1

upjuqje
λj .

The above arguments show that (1) natural connectivity exhibits characteristics
about the communicability in the network through alternative paths, which closely
relate to robustness. It associates the robustness to network topology, graph spectra,
and dynamical properties. Moreover, it was shown [37] that (2) natural connectivity
has strong discrimination in quantifying the robustness of complex networks and can
exhibit the variation of robustness sensitively even for disconnected networks (unlike
e.g., algebraic connectivity). Finally, (3) natural connectivity changes strictly mono-
tonically with the addition/deletion of more and more nodes/edges [45], which agrees
with intuition (unlike e.g., node/edge connectivity, algebraic connectivity). These in-
dicate that the natural connectivity can measure the robustness of complex networks
stably even for very small sized and disconnected networks. For these reasons, we
adopt natural connectivity as our network robustness measure in our study.

4 Altering Graph Robustness

Given a network and its robustness, a simple manipulation technique to increase or
decrease its robustness is to add (new) edges or remove (existing) edges/nodes, re-
spectively. In this paper, we will focus on node/edge deletion and edge addition op-
erations to manipulate graph robustness.

4.1 Problem Definitions

We start by introducing the problems we address to manipulate network robustness.

4.1.1 Decrease the Robustness of the Network

There are many reasons why one would want to decrease the robustness of the given
network. This depends on the motivations and objectives of the manipulator(s).

For example, if an adversary wants to attack the (cyber or physical) network,
of course, he/she would want to target/destroy some of the edges and the nodes of
the network such that they will maximize some utility function. Understanding the
strategies of the attacker would help the law-enforcers or network designers to better
protect the network.

On the other end of the spectrum, the goal of the network designers or the law-
enforcers is completely opposite of the attacker yet there are times in which the de-
signers want to break the robustness of the network. Consider a scenario in which
there is an epidemic (a virus in a computer network or a disease in a human network).
To prevent the spreading the epidemic, the designers may shut down some links or

Assessing and Altering Robustness of Large Graphs 9

even some nodes in the network temporary. The law-enforcers might want to break
the terrorists communicate network and target the “important” communication chan-
nels (edges) and terrorists (nodes) such that they will break the network the most.

To make the network less robust (or decrease the robustness of the network), we
consider the network manipulations in which one can (a) remove some number of
(existing) edges and (b) remove some number of (existing) nodes in the network.

Given a large network G = (V,E) (represented by an n × n adjacency matrix
A). we want to find a set of k edges of E such that the removal set creates the largest
drop of the network robustness according to Equation (1).

Problem 1 MIOBI-BREAKEDGE (Edge Deletion)
Given a large networkG = (V,E) (represented by an n×n adjacency matrix A).
With a limited budget k or with k edges removal, we want to find a set of k edges
of E such that the removal set creates the largest drop of the network robustness
according to Equation (1).
More formally, let A′ be an n×n adjacency matrix of a networkG′ = (V,E−S)
for some set S ⊂ E. We want to find S ⊂ E of size k such that

S ∈ arg maxS′⊂E:|S′|=k(λ̄A − λ̄A′
).

Problem 2 MIOBI-BREAKNODE (Node Deletion)
Given a large networkG = (V,E) (represented by an n×n adjacency matrix A).
With a limited budget k or with k nodes removal, we want to find a set of k nodes
of V such that the removal set creates the largest drop of the network robustness
according to Equation (1).
More formally, let A′ be an n × n adjacency matrix of a network G′ = (V −
S,E − T) where T = {{u, v} : u ∈ S or v ∈ S} for some set S ⊂ N . We want
to find S ⊂ N of size k such that

S ∈ arg maxS′⊂N :|S′|=k(λ̄A − λ̄A′
).

4.1.2 Increase the Robustness of the Network

Imagine that you are a system designer of a network and your goal is to increase the
fault-tolerance and connectivity of the existing network, or a electricity planner of a
power grid network and your goal is to decrease the chance of blackout, or even a cell
phone network provider and your goal is to increase the cellular signals or coverage
areas. The most natural way to accomplish these tasks is to add new links to the
network so that they are more robust then before.

To make the network more robust (or increase the robustness of the network),
we consider the network manipulation in which one can add some number of (new)
edges to the network.

Problem 3 MIOBI-MAKEEDGE (Edge Addition)
Given a large network G = (V,E) (represented by an n × n adjacency matrix
A). With a limited budget k or with k edges addition, we want to find a set of k
edges of E such that the addition set creates the largest increase of the network
robustness according to Equation (1).

10 Hau Chan et al.

More formally, let Ē = {{u, v} : u, v ∈ V and {u, v} /∈ E} be the set of edges
not in G (or the complement of E) and let A′ be an n × n adjacency matrix of a
network G′ = (V,E ∪ S) for some set S ⊂ Ē. We want to find S ⊂ Ē of size k
such that

S ∈ arg maxS′⊂Ē:|S′|=k(λ̄A′ − λ̄A).

4.1.3 Other Manipulations

Another way to make the network more robust, is to consider manipulating the net-
work by adding several number of (new) nodes to the network. However, the exact
formulation need to be carefully defined. For example, how to set the degree of the
nodes to be introduced should be decided.

Another possible graph operation is edge rewiring [3], where existing edges are
rewired to connect different pairs of nodes. A principled rewiring can also be done
using similar methods to ours; in particular by removing an existing edge via reverse
MIOBI-BREAKEDGE, and adding it back via MIOBI-MAKEEDGE. Edge rewiring
may also enforce that only one end of a to-be-modified edge can be changed.

4.2 Analysis of Problem Hardness

Given the manipulation problems we formulated in the previous sections, the question
is “how hard are these problems to solve computationally?” Intuitively, the problems
are hard as they involve set selection. In fact, a naive way to solve our manipulation
problems is to try all of the possible subsets of size of k of the given set and select the
one that will yield the best result. This type of strategy is of course very inefficient.
For example, in the case of MIOBI-BREAKEDGE, given a budget k, we have to
try all the possible

(
m
k

)
subsets of size k where |E| = m. In the case of MIOBI-

BREAKNODE, given a budget k, we have to try all the possible
(
n
k

)
subsets of size k

where |V | = n. In the case of MIOBI-MAKEEDGE, given a budget k, we have to try

all the possible
((n

2)−m
k

)
subset of size k.

In this section, we analyze the computational complexity of our problems more
formally. We show that the decision versions of MIOBI-BREAKNODE and MIOBI-
BREAKEDGE are NP-Complete1. We note that it remains a challenge to show the
hardness (or the lack thereof) of the MIOBI-MAKEEDGE problem.

4.2.1 MIOBI-BREAKNODE

We show that the optimal k-node deletion problem is NP-Complete. Our solution has
two parts. We first show that the decision version of MIOBI-BREAKNODE is in NP
and then show that MIOBI-BREAKNODE is NP-Hard.

The decision version of MIOBI-BREAKNODE is stated as:
1 While we can show the hardness across all the eigenvalues for MIOBI-BREAKNODE and hence for

the exact natural connectivity measure as defined in Equ. (1), we are able to do so only for the largest
eigenvalue for MIOBI-BREAKEDGE.

Assessing and Altering Robustness of Large Graphs 11

P1 (k-node deletion problem MIOBI-BREAKNODE): are there k nodes, the deletion
of which makes all the eigenvalues of the graph ≤ 0 and hence natural connectivity
λ̄ ≤ 1?

Our reduction is from a known NP-Complete problem called the Independent Set
(IS) problem:

P2 (k-independent set problem IS): are there k nodes in the graph, no two of which
are adjacent?

– NP: In order to show that MIOBI-BREAKNODE ∈ NP, we must show that there
exists a polynomial time “witness” algorithm that takes an instance of the problem
and a certificate as parameters, and verifies that the certificate is a yes instance of
the particular input problem. Specifically, our instance is a graph G(V,E), and
our certificate is a set of nodes. Our algorithm performs 2 steps: (1) remove all
the nodes in the certificate as well as the edges attached to them from the graph;
(2) recompute the eigenvalues of the graph and check if all of them are ≤ 0. This
algorithm’s complexity is dominated by the eigen-decomposition of the adjacency
matrix of the graph, which is O(n3) [33] (n = |V |), and is clearly polynomial
time. Thus, MIOBI-BREAKNODE ∈ NP.

– NP-hard: To show that MIOBI-BREAKNODE is NP-Hard, we will reduce from
IS (as in P2) to our MIOBI-BREAKNODE (as in P1). Our reduction consists of
demonstrating a polynomial time conversion of an instance of P2 to an instance
of P1, and an if-and-only-if proof that a yes instance of P2 maps to a yes instance
of P1 and vice versa.
The conversion of an instance of IS to an instance of MIOBI-BREAKNODE works
the following way. An instance of IS is a graph G and an integer k. We pass G,
and n − k to MIOBI-BREAKNODE, n = |V |. Now we will show that a yes
instance of IS maps to a yes instance of MIOBI-BREAKNODE, and vice versa.

– =⇒ Assume S is a yes instance of IS, i.e. there exists an independent set S
of size k in G. Thus removing all the rest of the nodes V \S would give us k
disconnected nodes with an all-zero k×k adjacency matrix Ā. All eigenvalues
of a null-matrix is 0 and thus, λ̄(Ā) = 1

k

∑
i e
λi = 1. Thus, the nodes in V \S

form a yes instance of our MIOBI-BREAKNODE.
– ⇐= This time assume S is a yes instance of MIOBI-BREAKNODE. Thus,

after removing S from G, we have λi(Ã) ≤ 0, ∀i, where Ã is the adjacency
matrix of the resulting graph. Since Ãij ≥ 0,∀i, j, i.e. non-negative, by the
Perron-Frobenius theory [27] it has a real and non-negative eigenvalue λpf ≥
0, where for other eigenvalues λ of Ã, |λ| ≤ λpf . This implies that λi(Ã) =
0, ∀i. A matrix M with all zero eigenvalues is nilpotent, i.e. Mk = 0 for
some positive integer k. The only non-negative symmetric integer nilpotent
matrix is the null matrix. Since we also work with undirected (symmetric),
un/weighted (binary/integer) graphs, we conclude Ã to be all-zero. As such,
nodes in V \S form an independent set of G and thus a yes instance of IS.

Since the conversion of problem instances runs in polynomial time (P2 ≤p P1)
and P2 is NP-Complete, P1 is NP-Hard. As we also show that P1 is in NP, P1 is
in fact NP-Complete.

12 Hau Chan et al.

4.2.2 MIOBI-BREAKEDGE

P1 (k-edge deletion problem MIOBI-BREAKEDGE): are there k edges, the deletion
of which makes the largest eigenvalue of the graph ≤ α, for some positive α?

Let us first modify the problem for exact equality,

P1’ (modified k-edge deletion problem M-MIOBI-BREAKEDGE): are there k edges,
the deletion of which makes the largest eigenvalue of the graph = α, for some positive
α?

and tie it to the k-clique problem:

P2 (k-clique problem CL): is there a clique of size k in the graph?

– NP: It is easy to see that P1’ is in NP, since given a graph G we can guess the k
edges to be deleted and compute the largest eigenvalue in polynomial time.

– NP-hard: In order to show that M-MIOBI-BREAKEDGE ∈ NP-Hard, we will
reduce from CL (as in P2) to our M-MIOBI-BREAKEDGE (as in P1’). The con-
version of an instance of CL to an instance of M-MIOBI-BREAKEDGE works the
following way. An instance of CL is a graph G(V,E) and an integer k. We pass
G, and e− (k−1)k

2 and α = k−1 to M-MIOBI-BREAKEDGE, e = |E|. We show
that a yes instance of CL maps to a yes instance of M-MIOBI-BREAKEDGE, and
vice versa.

– =⇒ Assume C is a yes instance of CL, i.e. there exists a clique C of size k in
G. Thus removing all the rest of the edges E\E(C) would give us a all-ones-
but-diagonal k × k adjacency matrix Ā the eigenvalue of which is k-1. Thus,
the edges in E\E(C) form a yes instance of our M-MIOBI-BREAKEDGE.

– ⇐= This time assume S is a yes instance of M-MIOBI-BREAKEDGE. Thus,
after removing the set S of edges of size s = e − (k−1)k

2 from G, we have
λ1(Ã) = k − 1, where Ã is the adjacency matrix of the resulting graph G̃.
Now we have to show that G̃ can only be a k-clique. A theorem by [32]

states that for any graph G(V,E), λ1(G) ≤
√

2|E|p−1
p where p denotes the

size of a maximal clique in the graph and the inequality is sharp if the graph
is a clique of size p. From this, we conclude that if G̃ is a k-clique, then
λ1(G̃) = k − 1. If it is not a k-clique, then the maximal clique size p < k,

and hence λ1(G̃) ≤
√

2 (k−1)k
2

p−1
p <

√
2 (k−1)k

2
k−1
k = k − 1. We thus can

conclude that for the largest eigenvalue of G̃ to be as large as k − 1, it must
include a maximal clique of size k. As such, edges in E\S form a k-clique of
G and thus a yes instance of CL.

Since the conversion of problem instances runs in poly-time, (P2 ≤p P1’) and P2
is NP-Complete, P1’ is NP-Hard. As we also show that P1’ is in NP, P1 is in fact
NP-Complete.

Next we prove the NP-Completeness of the general edge-deletion problem P1. Our
reduction this is time is from the well-known NP-Complete problem Hamiltonian
Path:

P3 (Hamiltonian Path problem HP): is there a path that visits every node exactly once
in the graph?

Assessing and Altering Robustness of Large Graphs 13

– NP: It is easy to see that P1 is in NP, as we can guess the k edges to be deleted
and compute the largest eigenvalue of the graph in poly-time.

– NP-hard: In order to show that MIOBI-BREAKEDGE ∈ NP-Hard, we will re-
duce from HP (as in P3) to our MIOBI-BREAKEDGE (as in P1). The conversion
of an instance of HP to an instance of MIOBI-BREAKEDGE works the following
way. An instance of HP is a graph G(V,E) with |E| = e edges. We pass G, and
k = e− (n− 1) and α = 2 cos(π

n+1) to MIOBI-BREAKEDGE, for |V | = n. We
show that a yes instance of HP maps to a yes instance of MIOBI-BREAKEDGE,
and vice versa.

– =⇒ Assume P is a yes instance of HP, i.e. there exists a path P of length
n− 1 in G. Then removing all the rest of the edges E\E(P) would give us a
chain graph the principal eigenvalue of which is 2 cos(π

n+1). Thus, the edges
in E\E(P) form a yes instance of our MIOBI-BREAKEDGE.

– ⇐= This time assume S is a yes instance of MIOBI-BREAKEDGE. Thus,
after removing the set S of edges of size |S| = e− (n− 1) from G, we have
λ1(Ã) ≤ 2 cos(π

n+1), where Ã is the adjacency matrix of the resulting graph
G̃. Now we have to show that G̃ can only be a Hamiltonian Path. Assume that
G̃ is not a Hamiltonian Path. If it is not a path but connected, then it must be
a tree. According to a theorem by [44], a path Pn visiting n nodes has strictly
smaller spectral radius (largest eigenvalue) than all other connected graphs
with n nodes, where λ1(Pn) = 2 cos(π

n+1). This ensures that G̃ is a path, if
it is connected. Next we show that it cannot be disconnected. Without loss of
generality, assume G̃ has two components, one with x nodes and another with
n− x nodes. Since those are connected, they must contain at least x− 1 and
n − x − 1 edges respectively. Since there exists n − 1 edges in total, either
one of the components should contain the extra edge, creating a cycle in that
component. A graph that contains a cycle has largest eigenvalue ≥ 2, which
contradicts P1 with α ≤ 2 cos(π

n+1) < 2. Therefore, we conclude that G̃
should be a connected graph, and that G̃ is a (connected) path. A path on all
n nodes of a graph is a Hamiltonian Path. As such, edges in E\S form a yes
instance of HP.

Since the conversion of problem instances runs in poly-time, (P3 ≤p P1) and P3
is NP-Complete, P1 is NP-Hard. Having shown that P1 is also in NP, we conclude
that P1 is NP-Complete.

4.3 Our Approach

Our approach to tackle these problems is first compute values to quantify edges/nodes
based on the natural connectivity scores and then select edges/nodes based on the
measurements. There are two basic ways in which edges/nodes can be scored and
selected: Greedy and Adaptive.

In the case of Greedy, the values for edges/nodes are computed exactly once (for
the unmodified original network) for a specific method. Then we rank the edges/nodes
accordingly based on the computed values and select the top k candidates to re-
move/add one step at a time.

14 Hau Chan et al.

In the case of Adaptive, the values for edges/nodes are recomputed each time af-
ter each operation (and hence the iterative update of our eigenvalues/eigenvectors). At
each step, we rank the edges/nodes accordingly base on the computed values and se-
lect the top candidate to remove/add. We then repeat this process k times/operations.

This cautious edge deletion strategy (or in our context Adaptive), has been used
in prior research [19,8] where for example edge betweenness is used as criterion to
remove edges to decrease the robustness the most. In their papers, instead of choosing
the top-k edges with the highest edge betweenness in one shot, their idea is to remove
a single edge in each step after which the betweenness is updated for the remaining,
where this procedure is repeated for the next k steps. This is often referred as the “re-
calculated” (or “iteratively-selected”) strategy and has been shown to perform better
(i.e., affect robustness more) compared to its top-k counterpart.

Therefore, to find the k most effective edges, we will follow a more unorthodox
yet cautious strategy (Adaptive) which will iteratively find the best single edge to
remove, for k steps. That is, every time an edge is removed the criterion/score that
is used to find an edge to remove will be updated for the remaining edges. That is
because each removed edge changes this score as it changes the robustness.

Clearly, Adaptive is more expensive than Greedy in computation time. Moreover,
one would expect that Adaptive will be more effective than Greedy using our meth-
ods. In the experiment, we will show that indeed Adaptive is more effective than
Greedy empirically on 16 real-world datasets.

In the following subsections, we introduce our methods to solve each of the
problems efficiently. In particular, the running time and space of our algorithms for
MIOBI-BREAKEDGE and MIOBI-BREAKNODE are linear in the size of the graph.
The running time of our algorithm for MIOBI-MAKEEDGE is sub-quadratic and
takes linear space.

4.3.1 “Breaking” Network Robustness

Next we describe our proposed algorithms to solve the problems formulated in the
previous section. Note that the first two problems aim at maximally decreasing (i.e.,
“breaking”), whereas the third problem aims at improving (i.e., “making”) network
robustness.

Solution to Problem 1: Edge Deletion
First, we address the edge deletion problem MIOBI-BREAKEDGE, which aims

to find the set of k edges to delete from the graph so that the robustness is shrunk the
most.

Let S denote the selected set of k edges to be removed. Let us then write the new,
updated robustness λ̄∆ as

λ̄∆ = ln(
1

n

n∑
j=1

eλj+∆λj) (2)

where ∆λj is the difference in eigenvalue λj after the adjustment to the graph.
Therefore, we need to be able to efficiently update the eigenvalues of A when the

Assessing and Altering Robustness of Large Graphs 15

graph changes in order to quantify the updated robustness of the graph in the face of
change.

Updating the eigenvalues. Using the first order matrix perturbation theory [41], we
can compute changes to the eigenvalues ∆λj efficiently.

Let (λj ,uj) be the jth (eigenvalue, eigenvector) pair of the graph G with adja-
cency matrix A. Let ∆A and (∆λj , ∆uj) denote the change in A and (λj ,uj) ∀j,
respectively (where ∆A is symmetric). Suppose after the adjustment A becomes

Ã = A +∆A

where (λ̃j , ũj) is written as

λ̃j = λj +∆λj

ũj = uj +∆uj

Lemma 1 Given a perturbation ∆A to a matrix A, its eigenvalues can be updated
by

∆λj = uj
′∆Auj. (3)

PROOF of Lemma 1. We can write

(A +∆A)(uj +∆uj) = (λj +∆λj)(uj +∆uj)

Expanding the above, we get

Auj +∆Auj + A∆uj +∆A∆uj = λjuj +∆λjuj + λj∆uj +∆λj∆uj

By concentrating on first-order approximation, we assume that all high-order per-
turbation terms are negligible, including∆A∆uj and∆λj∆uj. Further, by using the
fact that Auj = λjuj (i.e., canceling these terms) we obtain

∆Auj + A∆uj = ∆λjuj + λj∆uj (4)

Next we multiply both sides by uj
′ and by symmetry of A and orthonormal prop-

erty of its eigenvectors we get Equ. (3), which concludes the proof.
ut

Using Lemma 1, perturbing A with any given edge (p, r) affects the eigenvalues
as

∆λj = uj
′∆Auj = −2upjurj (5)

where ∆A(p, r) = ∆A(r, p) = −1 and 0 elsewhere.
As such, for Problem 1 we are interested in k edges that will minimize λ̄∆ in Equ.

(2), or equivalently

min eλ1+∆λ1 + eλ2+∆λ2 + . . .+ eλn+∆λn

eλ1(e∆λ1 + e(λ2−λ1)e∆λ2 + . . .+ e(λn−λ1)e∆λn)

c1(e∆λ1 + c2e
∆λ2 + . . .+ cne

∆λn) (6)

where cj’s denote constant terms and cj ≤ 1, ∀j ≥ 2.

16 Hau Chan et al.

Therefore, following the re-calculated strategy and by using Equ. (5) and (6) we
will choose the edge (p, r) that minimizes the following:

min
(p,r)∈E

c1

(
e−2up1ur1 + c2e

−2up2ur2 + . . .+ cne
−2upnurn

)
(7)

Our criterion/score to select edges to remove as given in Equ. (7) changes when-
ever an edge is removed, as the graph structure and thus eigenvectors uj change.
Thus, after every step we also need to update the eigenvectors. The key question is
how to compute changes ∆uj efficiently. For that, we again resort to matrix pertur-
bation theory [41].

Updating the eigenvectors.

Lemma 2 Given a perturbation ∆A to a matrix A, its eigenvectors can be updated
by

∆uj =

n∑
i=1,i6=j

(
ui
′∆Auj

λj − λi
ui

)
. (8)

PROOF of Lemma 2. Using the orthogonality property of the eigenvectors, we
can write the change ∆uj of eigenvector uj as a linear combination of the original
eigenvectors:

∆uj =

n∑
i=1

αijui (9)

where αij’s are small constants that we aim to determine.
Using Equ. (9) in Equ. (4) from the proof of Lemma 1, we obtain

∆Auj + A

n∑
i=1

αijui = ∆λjuj + λj

n∑
i=1

αijui

which is equivalent to

∆Auj +

n∑
i=1

λiαijui = ∆λjuj + λj

n∑
i=1

αijui

Multiplying both sides of the above equation by uk
′, k 6= j, we get

uk
′∆Auj + λkαkj = λjαkj

Therefore,

αkj =
uk
′∆Auj

λj − λk
(10)

for k 6= j. To obtain αjj we use the following derivation.

ũj
′ũj = 1⇒ (uj +∆uj)

′(uj +∆uj) = 1

⇒ 1 + 2uj
′∆uj + ‖∆uj‖2 = 1

Assessing and Altering Robustness of Large Graphs 17

After we discard the high-order term, and substitute ∆uj with Equ. (9) we get 1 +
2αjj = 1⇒ αjj = 0.

We note that for a slightly better approximation, one can choose not to ignore the

high-order term which is equal to ‖∆uj‖2 =
n∑
i=1

α2
ij . Thus, one can compute αjj as

1 + 2αjj +

n∑
i=1

α2
ij = 1⇒ 1 + 2αjj + α2

jj +

n∑
i=1
i 6=j

α2
ij = 1

⇒ (1 + αjj)
2 +

n∑
i=1
i 6=j

α2
ij = 1⇒ αjj =

√√√√√1−
n∑
i=1
i 6=j

α2
ij − 1

All in all, using the αij’s as given by Equ. (10) and αjj = 0, we can see that ∆uj

in Equ. (9) is equal to Equ. (8).
ut

Finally, we remark that it is infeasible to compute all the n eigenvalues of graphs
with n nodes, for very large n. Luckily, given the skewed spectrum of real-world
graphs [14], only the top few eigenvalues have large magnitudes which implies that
the cj terms in Equ.s (6,7) become smaller and smaller for increasing j. Therefore,
we will focus on and compute the top t eigenvalues to approximate the robustness of
a graph in our experiments.

The detailed pseudo-code of our algorithm for the edge deletion problem MIOBI-
BREAKEDGE is given as follows.

Algorithm 1 MIOBI-BREAKEDGE

Input: Graph G(V,E), its adj. matrix A, and int. budget k
Output: Set S of k edges to be removed
1: S = ∅
2: Compute the top t (eigenvalue, eigenvector) pairs (λj ,uj) of A, 1 ≤ j ≤ t
3: for step = 1 to k do
4: Select the edge (p̄, r̄) out of ∀(p, r) ∈ E that minimizes Equ. (7) for top t eigenvectors, i.e.

min
(p,r)∈E

c1

(
e−2up1ur1 + c2e

−2up2ur2 + . . .+ cte
−2upturt

)
where c1 = eλ1 and cj = e(λj−λ1) for 2 ≤ j ≤ t

5: S := S ∪ (p̄, r̄), E := E\(p̄, r̄)
6: Update A; A(p̄, r̄) = 0 and A(r̄, p̄) = 0
7: Update top t eigenvalues of A by Equ. (3)
8: Update top t eigenvectors of A by Equ. (8)
9: end for

10: Return S

Complexity Analysis. The efficiency of the proposed Algorithm 1 is given in the fol-
lowing lemma; for a fixed budget k, MIOBI-BREAKEDGE is linear with respect to
the size of the graph for both time and space cost.

18 Hau Chan et al.

Lemma 3 Complexity of MIOBI-BREAKEDGE. The time cost of Alg. 1 isO(kmt+
knt2). The space cost of Alg. 1 is O(m+ nt+ k).

PROOF SKETCH. Computing top t eigenvalues and eigenvectors (step 2) takesO(nt+
mt + nt2) using iterative approximate methods by Lanczos [23]. Computing scores
(step 4) takes O(mt). Updating eigenvalues (step 7) and eigenvectors (step 8) takes
O(t) and O(nt2), respectively. Overall complexity for k iterations is then O(k(mt+
nt2)).

Storing the edge-list of graphG requiresO(m). The eigenvalue, eigenvector pairs
take O(t) and O(nt) respectively. We find the edge with minimum score in each
iteration with O(1) space. Finally, O(k) is required to store selected edges. Overall,
space cost is O(m+ nt+ k). ut

Solution to Problem 2: Node Deletion
Next, we address the node deletion problem MIOBI-BREAKNODE, which aims

to find the set S of k nodes to delete from the graph so that the robustness is reduced
the most. Deletion of a node involves deletion of the node as well as all its incident
edges, i.e. edges attached to it.

Similar to edge deletion, we can delete nodes from the graph one by one (i.e., re-
calculated strategy). To do so, we need to find a score similar to Equ. (7) for each node
to quantify its effect of change on the graph spectrum. Again, using∆λj = uj

′∆Auj

from Lemma 1, we will write down a score for each node i where only the ith row
and ith column of ∆A contain non-zero entries; (i, v) = (v, i) = −1, v ∈ N (i), for
neighbors N (i) of i.

We can illustrate the node scoring with a toy example, where say we are to remove
a node i with 3 neighbors indexed by n1, n2, n3. Let wj = uj

′∆A. We can see
that wn1j = wn2j = wn3j = −uij, and wij = −

∑
v∈N(i) uvj. As such, ∆λj =

wjuj = −uijun1j − uijun2j − uijun3j −
∑
v∈N (i) uvjuij, equivalently ∆λj =

−uij(un1j + un2j + un3j +
∑
v∈N (i) uvj) = −2uij

∑
v∈N (i) uvj.

Thus, in general ∆λj for a removal of node i is given as

∆λj = uj
′∆Auj = −2uij

∑
v∈N (i)

uvj (11)

Equ. (11) essentially states that the change in the jth eigenvalue for a node i’s
removal is twice as the sum of eigenscores of i’s neighbors multiplied by the eigen-
score of i, where eigenscores denote the corresponding entries in the associated jth

eigenvector.
For Problem 2 we are interested in selecting k nodes that will minimize λ̄∆ in

Equ. (2). As we will select the nodes iteratively one by one, we will pick the node i
that minimizes the following at every step.

min
i∈V

c1

(
e
−2ui1

∑
v∈N(i)

uv1

+ . . .+ cne
−2uin

∑
v∈N(i)

uvn
)

(12)

where cj’s denote the constants as before. Note that we will also consider only the
top t eigenvectors to compute the node selection scores in the experiments.

Assessing and Altering Robustness of Large Graphs 19

Algorithm 2 for the node deletion problem MIOBI-BREAKNODE follows similar
lines as of the algorithm for MIOBI-BREAKEDGE, where we use Equ. (12) instead
of Equ. (7) in Line 4 of Algorithm 1.

Algorithm 2 MIOBI-BREAKNODE

Input: Graph G(V,E), its adj. matrix A, and int. budget k
Output: Set S of k nodes to be removed
1: S = ∅
2: Compute the top t (eigenvalue, eigenvector) pairs (λj ,uj) of A, 1 ≤ j ≤ t
3: for step = 1 to k do
4: Select the node ī out of ∀i ∈ V that minimizes Equ. (12) for top t eigenvectors, i.e.

min
i∈V

c1

(
e
−2ui1

∑
v∈N(i)

uv1

+ . . .+ cte
−2uit

∑
v∈N(i)

uvt
)

where c1 = eλ1 and cj = e(λj−λ1) for 2 ≤ j ≤ t
5: S := S ∪ ī, V := V \̄i, E := E\(̄i, v), v ∈ N (̄i)
6: Update A; A(:, ī) = 0 and A(̄i, :) = 0
7: Update top t eigenvalues of A by Equ. (3)
8: Update top t eigenvectors of A by Equ. (8)
9: end for

10: Return S

Complexity Analysis. MIOBI-BREAKNODE is also linear in graph size for both time
and space cost.

Lemma 4 Complexity of MIOBI-BREAKNODE. The time cost of Alg. 2 isO(kmt+
knt2). The space cost is O(m+ nt+ k).

PROOF SKETCH. Computing top t eigenvalues and eigenvectors: O(nt+mt+nt2).
Computing scores: O(mt). Updating eigenvalues/vectors: O(t) and O(nt2). Overall
for k iterations: O(k(mt+ nt2)).

Storing the graph: O(m). The eigenvalue/vector pairs: O(t) and O(nt). Min-
scoring node in each iteration: O(1). Selected nodes: O(k). Overall: O(m+nt+ k).

ut

4.3.2 “Making” Network Robustness

Solution to Problem 3: Edge Addition
In this section, we address the edge addition problem MIOBI-MAKEEDGE, to

find the set of k edges to place to the graph so that the robustness is improved the
most.

MIOBI-MAKEEDGE is a harder and computationally more demanding problem
than MIOBI-BREAKEDGE, since there are O(n2) potential edges to add to a given
graph (compared toO(m) edges to remove). As for large graphs quadratic operations
are not desirable, we need to design an algorithm that is fast and that scales well.

20 Hau Chan et al.

Similar to deletion, we will adopt the re-calculated strategy for edge additions and
find the k edges one by one iteratively. As such, at every iteration, we are interested
in finding the edge that maximizes the following.

max
(p,r)/∈E
p∈V,r∈V

c1

(
e2up1ur1 + c2e

2up2ur2 + . . .+ cne
2upnurn

)
(13)

According to the Perron-Frobenius theorem [17], the principal eigenvector associ-
ated with the largest eigenvalue of non-negative irreducible matrices has all positive
entries. As G(V,E) is a connected undirected graph, A is irreducible and u1 is a
positive vector. On the other hand other uj’s, j > 1, might potentially have negative
entries. This makes finding the edge that maximizes Equ. (13) without enlisting all
O(n2) edges challenging.

Next we introduce a fast approximation strategy to pick edges to add without
enlisting all possible edges. In particular, we note that the second and onwards terms
in Equ. (13) keep getting smaller and smaller, due to the skewed spectrum of large
real-world graphs [43,26]. Therefore, we focus on the first term, i.e. e2up1ur1 . We
create a set C ⊂ V of size dmax, where dmax denotes the maximum node degree in
G, that consists of the nodes with highest u1 entries. For all non-edges (p, r) of G,
p ∈ C, r ∈ C, p 6= r, we compute Equ. (13) considering the top t eigenvectors, and
we add the edge (p̄, r̄) with the maximum value. We repeat this procedure k times.
Algorithm 3 gives the steps of our proposed edge addition algorithm in detail.

Algorithm 3 MIOBI-MAKEEDGE

Input: Graph G(V,E), its adj. matrix A, and int. budget k
Output: Set S of k edges to be added
1: S = ∅
2: Compute the top t (eigenvalue, eigenvector) pairs (λj ,uj) of A, 1 ≤ j ≤ t
3: for step = 1 to k do
4: Compute the largest degree dmax of A
5: Find the candidate subset C of dmax nodes with the highest u1 eigen-scores
6: Select the edge (p̄, r̄) out of ∀(p, r) /∈ E, p ∈ C, r ∈ C, p 6= r, that maximizes Equ. (13) for top

t eigenvectors, i.e.

max
(p,r)/∈E
p∈C,r∈C

c1

(
e2up1ur1 + c2e

2up2ur2 + . . .+ cte
2upturt

)

7: S := S ∪ (p̄, r̄), E := E ∪ (p̄, r̄)
8: Update A; A(p̄, r̄) = 1 and A(r̄, p̄) = 1
9: Update top t eigenvalues of A by Equ. (3)

10: Update top t eigenvectors of A by Equ. (8)
11: end for
12: Return S

Complexity Analysis. MIOBI-MAKEEDGE is linear in graph size for space, and sub-
quadratic for time cost.

Assessing and Altering Robustness of Large Graphs 21

Lemma 5 Complexity of MIOBI-MAKEEDGE. The time cost of Alg. 3 is O(mt+
kd2

maxt+ knt2). The space cost is O(m+ nt+ k).

PROOF SKETCH. Computing top t eigenvalues and eigenvectors: O(nt+mt+nt2).
Computing scores:O(d2

maxt). Updating eigenvalues/vectors:O(t) andO(nt2). Over-
all for k iterations: O(mt+ k(d2

maxt+ nt2)).
Storing the graph:O(m). The eigenvalues/vectors:O(t) andO(nt). Max-scoring

edge in each iteration: O(1). Selected edges: O(k). Overall: O(m+ nt+ k). ut

4.3.3 Higher Order Approximation for Eigenvectors

Before we conclude this section, we discuss a potentially ‘better’ method to update
the eigenvectors (we note that the estimation of ∆λj(j = 1, ..., t) remains the same
as before, i.e., by using Equ. (3)).

In Lemma 2, we establish that we can update ∆uj via Equ. (8) quite efficiently.
In the proof of Lemma 2, we write the change ∆uj as a linear combination of the
original eigenvectors:

∆uj =

t∑
i=1

αijui (14)

then substitute the expression into Equ. (4) and solve for the αij terms.
However, Equ. (4) is obtained from Equ. (4) by removing high-order perturbation

terms. It appears that if we plug Equ. (14) into Equ. (4) and keep the higher order
terms, we could provide a better estimation of the eigenvectors by selecting ‘better’
α values.

Now, suppose that we plug Equ. (14) into Equ. (4) and multiply both sides by
u′k (k = 1, ..., t), k 6= j. Then, for a given uj (j = 1, ..., t) we have

X(k, j) + (λk − λj −∆λj)αk,j +

t∑
i=1

X(k, i)αi,j = 0 (15)

where X(k, i) = u′k∆Aui (k, i = 1, ..., t).
For simplicity, we let αj = [α1,j , ..., αk,j]

′ and D = diag(λj + ∆λj − λk) for
k = 1, ..., t. In this matrix form, we have the following linear system for αj :

(D−X)αj = X(:, j)

Solving for αj , we have

αj = (D−X)−1X(:, j)

We can see that the above new formula includes the original estimation in Equ. (10)
as a special case by dropping ∆λj and X. Theoretically, this will give us a better es-
timation, and help us get around the multiplicity issue of the eigenvalues. However,
this method of update is more expensive; the new formula involves a matrix inverse
and increases the time complexity by an additional t4 where t is the number of eigen-
vectors to be updated. Thus, it appears that Equ. (8) is more appropriate for large
networks, which we will use to update the eigenvectors in this paper.

22 Hau Chan et al.

5 Experimental Evaluation

We evaluate our algorithms with respect to (A) effectiveness in manipulating graph
robustness, and (B) running time and scalability, on several real-world graphs. For
each kind of graph manipulation, i.e. problem setting, we compare to several ad-hoc
heuristic strategies that we compiled.

Datasets. We use the datasets shown in Table 2 (all available at http://snap.
stanford.edu/data/) to evaluate our methods.

– Oregon Autonomous System (AS) Router Network This network is AS-level
connectivity networks inferred from Oregon route-views, and were collected once
a week, for 9 consecutive weeks. The nine Oregon datasets, which we name as
Oregon-A through Oregon-I, correspond to each of the weeks.

– Gnutella Peer-to-Peer Network The Gnutella graph is the peer-to-peer (P2P)
connectivity networks collected daily, for 5 consecutive days. The five Gnutella
datasets, which we name as P2P-GnutellaA through P2P-GnutellaE, correspond
to each of the days.

– Wikipedia Vote Network When a user of Wikipedia submit a request to become
an administrator, an election will be hold publicly and any user of Wikipedia
can participate or vote in the election. The Wikipedia Vote (Wiki-Vote) network
dataset contains such election data. Wiki-Vote contains 2,794+ elections with
103,689 total number of votes and 7,115 voters and candidates. Naturally, an
edge in this graph corresponds to a user voted for the candidate in an election.

– Enron Email Network This dataset is resultant from an investigation by the Fed-
eral Energy Regulatory Commission (FERC) to track email communication be-
tween different email addresses. The edges in the network correspond to at least
once email between the email addresses (nodes of the network). There are 36,692
nodes (email addresses) and 367,662 edges in this network.

Evaluation criteria. Recall in this paper, we will use the natural connectivity mea-
sure (as shown in an earlier section) to quantify the robustness of the networkG(V,E)

λ̄ = ln(
1

n

n∑
j=1

eλj) (16)

which corresponds to an “average” eigenvalue of G, where λ1 ≥ λ2 ≥ ... ≥ λn
denote a non-increasing ordering of the eigenvalues of its adjacency matrix A. For
ease of computation, to compute the robustness of the network using the natural con-
nectivity measure, we only compute and use the first 25 eigenvalues (i.e. n = 25) to
approximate λ̄. Hence, throughout this experimental section, we report the robustness
of the network G(V,E) based on the first 25 eigenvalues.

To measure the effectiveness of our methods, we report the relative % change of
robustness

%∆R ≡ |Rinitial −Rfinal|
Rinitial

× 100%

Assessing and Altering Robustness of Large Graphs 23

Table 2: Dataset summary.

Dataset n m density

Oregon-A 633 1,086 0.0054
Oregon-B 1,503 2,810 0.0024
Oregon-C 2,504 4,723 0.0015
Oregon-D 2,854 4,932 0.0012
Oregon-E 3,995 7,710 0.0009
Oregon-F 5,296 10,097 0.0007
Oregon-G 7,352 15,665 0.0005
Oregon-H 10,860 23,409 0.0004
Oregon-I 13,947 30,584 0.0003

P2P-GnutellaA 6,301 20,777 0.0010
P2P-GnutellaB 8,114 26,013 0.0008
P2P-GnutellaC 8,717 31,525 0.0008
P2P-GnutellaD 8,846 31,839 0.0008
P2P-GnutellaE 10,876 39,994 0.0007

Wiki-Vote 7,115 100,762 0.0040
Email-Enron 36,692 183,811 0.0003

whereRinitial andRfinal denote the initial and the final robustness after k opera-
tions, respectively. The initial robustness scoreRinitial is computed using the original
network without any modification. After performing k operations, we recompute the
final robustness score Rfinal of the same network. Clearly, the larger of % change in
robustness, the more effective in manipulating the robustness of the network.

To measure computational cost and show that our methods are feasible for large
networks, we report the wall-clock time in seconds. The wall-clock time is simply the
time will take for our methods to complete the k operations. All the reported times are
on a 64-bit machine using Intel Core i5-3570K CPU @3.40GHz and 8GB memory,
running Ubuntu 12.10 (Kernel: Linux ubuntu 3.5.0-17-generic x86 64).

Set up. Recall that in our methods, we need to determine the number of eigen-pairs
to be used in the approximation. For the experiments here, we used top t = 50 eigen-
pairs. Due to the iterative-update nature of our methods for eigen-pairs, for large
perturbations to the graph (e.g., high degree nodes removed for node deletions), the
accumulated error for updating eigenvalues and vectors (using Equations (3)&(8))
increases rapidly and the performance degrades. To overcome this issue, we recom-
pute the exact eigen-pairs of the perturbed graph at every 50 operations. We call our
former, always-updated methods ‘Naive’ and the recomputed ones as ‘RC@50’.

Greedy vs. Adaptive. As mentioned in the earlier section, Greedy and Adaptive are
the two ways that edges/node can be scored and selected. We claim that Adaptive
will be more effective than the Greedy using our methods and we will show this is
true, empirically, in this section. To show this, we compute the percentage of relative
robustness improvement from Greedy to Adaptive

%RGreedy→Adaptiveimprove =
%∆RAdaptive −%∆RGreedy

%∆RGreedy
× 100%

24 Hau Chan et al.

Table 3: MIOBI-BREAKEDGE: % of relative robustness improvement from Greedy
to Adaptive

Dataset k=1%*m k=5%*m k=10%*m k=15%*m k=25%*m
O-A 0.00 5.89 3.51 3.22 8.39
O-B 1.13 6.29 8.20 10.96 16.13
O-C 4.60 5.95 12.26 13.76 18.56
O-D 4.09 7.56 14.20 30.96 8.87
O-E 4.84 4.70 14.36 21.55 15.76
O-F 5.78 5.87 14.36 20.55 19.14
O-G 9.19 21.63 13.90 19.74 15.15
O-H 10.15 24.85 15.33 19.40 14.08
O-I 12.96 32.32 18.58 23.91 20.12
P2P-A 0.67 18.42 20.68 7.15 11.38
P2P-B 4.16 23.71 11.11 7.93 12.35
P2P-C 41.69 61.15 16.85 17.81 19.67
P2P-D 37.30 20.10 10.30 15.96 17.82
P2P-E 46.66 20.80 28.60 31.03 32.48
W-V 1.34 3.88 6.39 8.33 13.26
E-E 2.18 21.87 49.15 55.43 37.76

where %∆RAdaptive and %∆RGreedy are the relative % change of robustness of
our methods under Adaptive and Greedy, respectively. Tables 3, 4, and 5 show the
percentage of relative robustness improvement of MIOBI-BREAKEDGE, MIOBI-
BREAKNODE, and MIOBI-MAKEEDGE, respectively, from Greedy to Adaptive,
across various number of edges/nodes removal and edges addition and across differ-
ent datasets. A non-negative entry in the table indicates that Adaptive performs better
than Greedy; the higher of the number, the better the perform of Adaptive compare
to Greedy. From these tables, the performance of our methods under Adaptive beats
our methods under Greedy for any of the datasets and any of the manipulation we
considered. Hence, for the later experiment, we will consider Adaptive for MIOBI-
BREAKEDGE, MIOBI-BREAKNODE, and MIOBI-MAKEEDGE.

5.1 Competing Heuristic Strategies against Proposed MIOBI Framework

To show the effectiveness of our proposed methods, we compare our methods to other
competitive strategies for each of the problem settings.

MIOBI-BREAKEDGE: Edge Deletion competing strategies. For edge deletion, we
compare our method to the following 11 heuristic strategies.

1. ‘rand’: we randomly (with equal probability) select edges to remove 2;
2. ‘rich-rich’: for each edge (p, r), we compute the value of dpdr and select the

edges with the highest dpdr to remove;
3. ‘poor-poor’: for each edge (p, r), we compute the value of dpdr and select the

edges with the lowest dpdr to remove;

2 The relative % change of robustness reported are averaged over 10 runs.

Assessing and Altering Robustness of Large Graphs 25

Table 4: MIOBI-BREAKNODE: % of relative robustness improvement from Greedy
to Adaptive

Dataset k=0.001%*n k=0.005%*n k=0.01%*n k=0.015%*n k=0.025%*n
O-A 0.00 0.00 0.00 1.07 3.18
O-B 9.88 5.63 4.30 8.60 5.38
O-C 0.00 2.56 4.78 4.18 6.45
O-D 0.00 8.87 9.94 14.52 12.15
O-E 0.00 6.72 10.55 12.80 15.21
O-F 0.00 6.11 8.14 6.40 9.12
O-G 8.99 5.23 5.93 8.76 11.28
O-H 11.03 4.29 8.27 8.53 10.66
O-I 3.30 10.19 10.58 13.02 15.51
P2P-A 0.31 3.90 43.55 4.82 7.70
P2P-B 0.27 0.71 5.11 7.24 10.16
P2P-C 53.13 54.27 25.88 22.40 18.44
P2P-D 16.08 2.61 7.68 10.69 15.14
P2P-E 11.53 15.90 23.98 26.96 37.50
W-V 0.21 0.89 3.43 5.56 9.63
E-E 0.29 28.14 47.33 54.11 47.79

Table 5: MIOBI-MAKEEDGE: % of relative robustness improvement from Greedy
to Adaptive

Dataset k=0.01%*n k=0.05%*n k=0.1%*n k=0.15%*n k=0.25%*n
O-A 0.00 0.00 3.29 2.19 2.95
O-B 0.00 2.46 4.13 5.78 8.59
O-C 0.00 3.69 6.51 7.83 20.34
O-D 0.00 2.53 1.69 1.17 2.95
O-E 0.00 3.77 4.44 5.93 12.95
O-F 0.45 3.74 9.22 15.81 34.39
O-G 0.38 2.19 6.67 15.90 31.67
O-H 0.63 3.19 9.15 19.46 34.92
O-I 0.73 2.85 9.80 22.08 36.25
P2P-A 1.00 7.82 7.78 4.61 9.39
P2P-B 0.48 7.69 2.84 7.09 11.00
P2P-C 1.49 7.63 14.57 16.50 13.77
P2P-D 3.21 6.65 7.39 9.82 6.87
P2P-E 3.88 23.76 22.08 18.17 12.97
W-V 0.12 0.42 0.55 0.84 1.67
E-E 0.40 1.99 7.73 12.96 18.15

4. ‘rich-poor’: for each edge (p, r), we compute the value of |dp − dr| and select
the edges with the highest |dp − dr| to remove;

5. ‘betw’: for each edge (p, r), we compute the the edge-betweenness (the number
of shortest paths between any pair of points that contain the edge (p, r)) and select
the edges with the highest edge-betweenness;

6. ‘embed’: for each edge (p, r), we compute the edge-embeddedness (the number
of common neighbors between p and r) and select the edges with the highest
edge-embeddedness [18];

26 Hau Chan et al.

7. ‘resist’: for each edge (p, r), we compute the effective resistance of (p, r) (roughly
speaking, it is equal to the probability of (p, r) appears in a random spanning tree
and it measures the commute time between p and r), and select edges with the
highest effective resistance [40];

8. ‘netmelt’: for each edge (p, r), we compute the (product of corresponding 1st

eigenvector values of p and r) value up1ur1 and select the edges with the highest
up1ur1 [42];

For the following heuristics, we use the concept of line graph. The line graph
L(G) of a graphG is a graph in which the nodes in L(G) correspond to the edges
in G and there an edge between two nodes in L(G) if the corresponding edges in
G incident to the same node (or to exactly one node) [42].

9. ‘line-deg’: for each (p, r) inG, we compute the degree of the corresponding node
in L(G) and select edges with the highest degree in L(G);

10. ‘line-eig’: for each (p, r) in G, we compute the eigen-centrality (the first eigen-
vector value) of the corresponding node in L(G) and select edges with the highest
eigen-centrality in L(G); and

11. ‘line-page’: for each (p, r), we compute the Pagerank score of the corresponding
node in L(G) and select edges with the highest Pagerank score in the line graph.

MIOBI-BREAKNODE: Node Deletion competing strategies. For node deletion, we
compare our method to the following 5 heuristic strategies.
1. ‘rand’: we randomly (with equal probability) select nodes to remove2;
2. ‘max-deg’: for each node i, we compute n′s degree and select the nodes with the

highest degree;
3. ‘eig’: for each node i, we compute its eigen-centrality (a value that is based on

the 1st eigenvector value) and select the nodes with the highest eigen-centrality;
4. ‘page’: for each node i, we compute i′s Pagerank score and select nodes with the

highest Pagerank score; and
5. ‘cluster’: for each node i, we compute i′s local clustering coefficient, the fraction

of the number of edges exists among i′s neighbors and the number of possible
edges that can exist among i′s neighbors, and select the nodes with the highest
local clustering coefficient.

MIOBI-MAKEEDGE: Edge Addition competing strategies. For node addition, we
compare our method to the following 5 heuristic strategies.

1. ‘rand’: we randomly (with equal probability) select k nonexistent edges to add2;
2. ‘rich-rich’: for each nonexistent edge (p, r), we compute the value of dpdr and

select the edges with the highest degree;
3. ‘poor-poor’: for each nonexistent edge (p, r), we compute the value of dpdr and

select the edges with the lowest degree (same as ‘preferential addition’ in [3]);
4. ‘rich-poor’: for each nonexistent edge (p, r), we compute the value of |dp − dr|

and select the edges with highest |dp − dr|;
5. ‘netgel’: for each nonexistent edge (p, r), we compute the (product of corre-

sponding 1st eigenvector values of p and r) value up1ur1 and select the edges
with the highest up1ur1 [42];

Assessing and Altering Robustness of Large Graphs 27

5.2 Effectiveness of Proposed MIOBI Framework

Figure 1, 2, and 3 show the performance results of % relative robustness change vs.
k for all methods all datasets of MIOBI-BREAKEDGE, MIOBI-BREAKNODE, and
MIOBI-MAKEEDGE, respectively. Using RC@50, our methods outperform all other
competitive strategies . Although our ‘Naive’ methods did not perform as well as
other strategies due to the accumulation of updating errors, it still outperform more
than half of the competitive strategies we introduced.

For edge removal, our method MIOBI-BREAKEDGE RC@50 achieves higher %
of relative robustness change than other competitive strategies across all the datasets
we considered. Among the strategies, ‘rich-rich’ obtains the second highest % of
relative robustness change.

For node removal, our method MIOBI-BREAKNODE RC@50 achieves one of
the highest % of relative robustness change among the competing strategies across all
the datasets we considered. Among the strategies, ‘max-deg’ % of relative robustness
change comes very close to our method.

For edge addition, our method MIOBI-MAKEEDGE RC@50 achieves the high-
est % of relative robustness change than other competitive strategies across all the
datasets we considered. None of the other strategies comes close to ours and our
methods outperforms all of them significantly.

5.3 Scalability of Proposed MIOBI Framework

We use the Oregon A-I datasets, sorted by the number of edges m, to evaluate the
scalability of the proposed algorithms for growing graph sizes. The run time results
are presented in Figure 4 for various k.3

We observe that the proposed methods empirically scale near-linearly wrt m,
which demonstrates that they are suitable for large graphs. In particular, for MIOBI-
BREAKEDGE and MIOBI-MAKEEDGE, the computation times of Naive and RC@50
are very close to each other as is evident from Figure 4 (a) and (c) across differ-
ent k values, respectively for edge removal and edge addition. Both approaches are
quite efficient for large graphs. On the other hand, the result is different for MIOBI-
BREAKNODE. In particular, Figure 4 (b) shows that the gap of computation times be-
tween Naive and RC@50 are larger than before for different values of k. We attribute
this behavior to the amount of perturbation caused by node removals; as a result of
each node that we remove, we also remove the edges that are attached to it, the count
of which often exceeds 50. Therefore, we essentially perform updates at every step
with RC@50, and hence its larger computation time. Note that the scalability, on the
other hand, remains near-linear at all cases.

3 All reported times are on a 64-bit machine, Intel Core i5-3570K CPU @3.40GHz and 8GB memory,
running Ubuntu 12.10.

28 Hau Chan et al.

0 100 200 300 400 500 600
0

10

20

30

40

50

60

70

(Remove k) Number of Edges

P
er

ce
nt

ag
e

of
 R

ob
us

tn
es

s
D

ec
re

as
e

Oregon−A: MIOBIBreakEdge % Decrease in Robustness (higher is better)

Random
Betweenness
Resistance
Embeddedness
LineDeg
LineEig
LinePage
NetMelt
Poor−Poor
Rich−Poor
Rich−Rich
MIOBIBreakEdge−Naive
MIOBIBreakEdge−RC@50

Student Version of MATLAB

0 500 1000 1500
0

10

20

30

40

50

60

70

80

(Remove k) Number of Edges

P
er

ce
nt

ag
e

of
 R

ob
us

tn
es

s
D

ec
re

as
e

Oregon−B: MIOBIBreakEdge % Decrease in Robustness (higher is better)

Random
Betweenness
Resistance
Embeddedness
LineDeg
LineEig
LinePage
NetMelt
Poor−Poor
Rich−Poor
Rich−Rich
MIOBIBreakEdge−Naive
MIOBIBreakEdge−RC@50

Student Version of MATLAB

(a) O-A: MIOBI-BREAKEDGE (b) O-B: MIOBI-BREAKEDGE

0 500 1000 1500 2000 2500
0

10

20

30

40

50

60

70

80

(Remove k) Number of Edges

P
er

ce
nt

ag
e

of
 R

ob
us

tn
es

s
D

ec
re

as
e

Oregon−C: MIOBIBreakEdge % Decrease in Robustness (higher is better)

Random
Betweenness
Resistance
Embeddedness
LineDeg
LineEig
LinePage
NetMelt
Poor−Poor
Rich−Poor
Rich−Rich
MIOBIBreakEdge−Naive
MIOBIBreakEdge−RC@50

Student Version of MATLAB

0 500 1000 1500 2000 2500
0

10

20

30

40

50

60

70

80

(Remove k) Number of Edges

P
er

ce
nt

ag
e

of
 R

ob
us

tn
es

s
D

ec
re

as
e

Oregon−D: MIOBIBreakEdge % Decrease in Robustness (higher is better)

Random
Betweenness
Resistance
Embeddedness
LineDeg
LineEig
LinePage
NetMelt
Poor−Poor
Rich−Poor
Rich−Rich
MIOBIBreakEdge−Naive
MIOBIBreakEdge−RC@50

Student Version of MATLAB

(b) O-C: MIOBI-BREAKEDGE (c) O-D: MIOBI-BREAKEDGE

0 500 1000 1500 2000 2500 3000 3500 4000
0

10

20

30

40

50

60

70

80

(Remove k) Number of Edges

P
er

ce
nt

ag
e

of
 R

ob
us

tn
es

s
D

ec
re

as
e

Oregon−E: MIOBIBreakEdge % Decrease in Robustness (higher is better)

Random
Betweenness
Resistance
Embeddedness
LineDeg
LineEig
LinePage
NetMelt
Poor−Poor
Rich−Poor
Rich−Rich
MIOBIBreakEdge−Naive
MIOBIBreakEdge−RC@50

Student Version of MATLAB

0 1000 2000 3000 4000 5000 6000
0

10

20

30

40

50

60

70

80

90

(Remove k) Number of Edges

P
er

ce
nt

ag
e

of
 R

ob
us

tn
es

s
D

ec
re

as
e

Oregon−F: MIOBIBreakEdge % Decrease in Robustness (higher is better)

Random
Betweenness
Resistance
Embeddedness
LineDeg
LineEig
LinePage
NetMelt
Poor−Poor
Rich−Poor
Rich−Rich
MIOBIBreakEdge−Naive
MIOBIBreakEdge−RC@50

Student Version of MATLAB

(e) O-E: MIOBI-BREAKEDGE (f) O-F: MIOBI-BREAKEDGE

0 500 1000 1500 2000 2500
0

10

20

30

40

50

60

70

80

(Remove k) Number of Edges

P
er

ce
nt

ag
e

of
 R

ob
us

tn
es

s
D

ec
re

as
e

Oregon−C: MIOBIBreakEdge % Decrease in Robustness (higher is better)

Random
Betweenness
Resistance
Embeddedness
LineDeg
LineEig
LinePage
NetMelt
Poor−Poor
Rich−Poor
Rich−Rich
MIOBIBreakEdge−Naive
MIOBIBreakEdge−RC@50

Student Version of MATLAB

0 500 1000 1500 2000 2500
0

10

20

30

40

50

60

70

80

(Remove k) Number of Edges

P
er

ce
nt

ag
e

of
 R

ob
us

tn
es

s
D

ec
re

as
e

Oregon−D: MIOBIBreakEdge % Decrease in Robustness (higher is better)

Random
Betweenness
Resistance
Embeddedness
LineDeg
LineEig
LinePage
NetMelt
Poor−Poor
Rich−Poor
Rich−Rich
MIOBIBreakEdge−Naive
MIOBIBreakEdge−RC@50

Student Version of MATLAB

(g) O-G: MIOBI-BREAKEDGE (h) O-H: MIOBI-BREAKEDGE

Fig. 1: % robustness change (higher is better) vs. k for MIOBI-BREAKEDGE and var-
ious heuristics on all datasets. Notice that our methods outperform all the heuristics.
(figures best in color)

Assessing and Altering Robustness of Large Graphs 29

0 2000 4000 6000 8000 10000 12000 14000 16000
0

10

20

30

40

50

60

70

80

90

(Remove k) Number of Edges

P
er

ce
nt

ag
e

of
 R

ob
us

tn
es

s
D

ec
re

as
e

Oregon−I: MIOBIBreakEdge % Decrease in Robustness (higher is better)

Random
Betweenness
Resistance
Embeddedness
LineDeg
LineEig
LinePage
NetMelt
Poor−Poor
Rich−Poor
Rich−Rich
MIOBIBreakEdge−Naive
MIOBIBreakEdge−RC@50

Student Version of MATLAB

0 1000 2000 3000 4000 5000 6000
0

10

20

30

40

50

60

70

80

(Remove k) Number of Edges

P
er

ce
nt

ag
e

of
 R

ob
us

tn
es

s
D

ec
re

as
e

P2P−GnutellaA: MIOBIBreakEdge % Decrease in Robustness (higher is better)

Random
Betweenness
Resistance
Embeddedness
LineDeg
LineEig
LinePage
NetMelt
Poor−Poor
Rich−Poor
Rich−Rich
MIOBIBreakEdge−Naive
MIOBIBreakEdge−RC@50

Student Version of MATLAB

(i) O-I: MIOBI-BREAKEDGE (j) P2P-A: MIOBI-BREAKEDGE

0 1000 2000 3000 4000 5000 6000 7000
0

10

20

30

40

50

60

70

80

90

(Remove k) Number of Edges

P
er

ce
nt

ag
e

of
 R

ob
us

tn
es

s
D

ec
re

as
e

P2P−GnutellaB: MIOBIBreakEdge % Decrease in Robustness (higher is better)

Random
Betweenness
Resistance
Embeddedness
LineDeg
LineEig
LinePage
NetMelt
Poor−Poor
Rich−Poor
Rich−Rich
MIOBIBreakEdge−Naive
MIOBIBreakEdge−RC@50

Student Version of MATLAB

0 1000 2000 3000 4000 5000 6000 7000 8000
0

10

20

30

40

50

60

70

80

(Remove k) Number of Edges

P
er

ce
nt

ag
e

of
 R

ob
us

tn
es

s
D

ec
re

as
e

P2P−GnutellaC: MIOBIBreakEdge % Decrease in Robustness (higher is better)

Random
Betweenness
Resistance
Embeddedness
LineDeg
LineEig
LinePage
NetMelt
Poor−Poor
Rich−Poor
Rich−Rich
MIOBIBreakEdge−Naive
MIOBIBreakEdge−RC@50

Student Version of MATLAB

(k) P2P-B: MIOBI-BREAKEDGE (l) P2P-C: MIOBI-BREAKEDGE

0 1000 2000 3000 4000 5000 6000 7000 8000
0

10

20

30

40

50

60

70

80

(Remove k) Number of Edges

P
er

ce
nt

ag
e

of
 R

ob
us

tn
es

s
D

ec
re

as
e

P2P−GnutellaD: MIOBIBreakEdge % Decrease in Robustness (higher is better)

Random
Betweenness
Resistance
Embeddedness
LineDeg
LineEig
LinePage
NetMelt
Poor−Poor
Rich−Poor
Rich−Rich
MIOBIBreakEdge−Naive
MIOBIBreakEdge−RC@50

Student Version of MATLAB

0 2000 4000 6000 8000 10000
0

10

20

30

40

50

60

70

(Remove k) Number of Edges

P
er

ce
nt

ag
e

of
 R

ob
us

tn
es

s
D

ec
re

as
e

P2P−GnutellaE: MIOBIBreakEdge % Decrease in Robustness (higher is better)

Random
Betweenness
Resistance
Embeddedness
LineDeg
LineEig
LinePage
NetMelt
Poor−Poor
Rich−Poor
Rich−Rich
MIOBIBreakEdge−Naive
MIOBIBreakEdge−RC@50

Student Version of MATLAB

(m) P2P-D: MIOBI-BREAKEDGE (n) P2P-E: MIOBI-BREAKEDGE

0 0.5 1 1.5 2 2.5 3

x 10
4

0

10

20

30

40

50

60

(Remove k) Number of Edges

P
er

ce
nt

ag
e

of
 R

ob
us

tn
es

s
D

ec
re

as
e

Wiki−Vote: MIOBIBreakEdge % Decrease in Robustness (higher is better)

Random
Betweenness
Resistance
Embeddedness
LineDeg
LineEig
LinePage
NetMelt
Poor−Poor
Rich−Poor
Rich−Rich
MIOBIBreakEdge−Naive
MIOBIBreakEdge−RC@50

Student Version of MATLAB

0 2 4 6 8 10

x 10
4

0

10

20

30

40

50

60

70

80

90

100

(Remove k) Number of Edges

P
er

ce
nt

ag
e

of
 R

ob
us

tn
es

s
D

ec
re

as
e

Email−Enron: MIOBIBreakEdge % Decrease in Robustness (higher is better)

Random
Betweenness
Resistance
Embeddedness
LineDeg
LineEig
LinePage
NetMelt
Poor−Poor
Rich−Poor
Rich−Rich
MIOBIBreakEdge−Naive
MIOBIBreakEdge−RC@50

Student Version of MATLAB

(o) W-V: MIOBI-BREAKEDGE (p) E-E: MIOBI-BREAKEDGE

Fig. 1: % robustness change (higher is better) vs. k for MIOBI-BREAKEDGE and var-
ious heuristics on all datasets. Notice that our methods outperform all the heuristics.
(figures best in color)

30 Hau Chan et al.

0 2 4 6 8 10 12 14 16
0

10

20

30

40

50

60

70

80

90

100

(Remove k) Number of Nodes

P
er

ce
nt

ag
e

of
 R

ob
us

tn
es

s
D

ec
re

as
e

Oregon−A: MIOBIBreakNode % Decrease in Robustness (higher is better)

Random
ClusterCoef
PageRank
1stEigVecCentrality
MaxDegree
MIOBIBreakEdge−Naive
MIOBIBreakEdge−RC@50

Student Version of MATLAB

0 5 10 15 20 25 30 35 40
0

10

20

30

40

50

60

70

80

90

100

(Remove k) Number of Nodes

P
er

ce
nt

ag
e

of
 R

ob
us

tn
es

s
D

ec
re

as
e

Oregon−B: MIOBIBreakNode % Decrease in Robustness (higher is better)

Random
ClusterCoef
PageRank
1stEigVecCentrality
MaxDegree
MIOBIBreakEdge−Naive
MIOBIBreakEdge−RC@50

Student Version of MATLAB

(a) O-A: MIOBI-BREAKNODE (b) O-B: MIOBI-BREAKNODE

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

80

90

100

(Remove k) Number of Nodes

P
er

ce
nt

ag
e

of
 R

ob
us

tn
es

s
D

ec
re

as
e

Oregon−C: MIOBIBreakNode % Decrease in Robustness (higher is better)

Random
ClusterCoef
PageRank
1stEigVecCentrality
MaxDegree
MIOBIBreakEdge−Naive
MIOBIBreakEdge−RC@50

Student Version of MATLAB

0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

70

80

90

100

(Remove k) Number of Nodes

P
er

ce
nt

ag
e

of
 R

ob
us

tn
es

s
D

ec
re

as
e

Oregon−D: MIOBIBreakNode % Decrease in Robustness (higher is better)

Random
ClusterCoef
PageRank
1stEigVecCentrality
MaxDegree
MIOBIBreakEdge−Naive
MIOBIBreakEdge−RC@50

Student Version of MATLAB

(b) O-C: MIOBI-BREAKNODE (c) O-D: MIOBI-BREAKNODE

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

(Remove k) Number of Nodes

P
er

ce
nt

ag
e

of
 R

ob
us

tn
es

s
D

ec
re

as
e

Oregon−E: MIOBIBreakNode % Decrease in Robustness (higher is better)

Random
ClusterCoef
PageRank
1stEigVecCentrality
MaxDegree
MIOBIBreakEdge−Naive
MIOBIBreakEdge−RC@50

Student Version of MATLAB

0 20 40 60 80 100 120 140
0

10

20

30

40

50

60

70

80

90

100

(Remove k) Number of Nodes

P
er

ce
nt

ag
e

of
 R

ob
us

tn
es

s
D

ec
re

as
e

Oregon−F: MIOBIBreakNode % Decrease in Robustness (higher is better)

Random
ClusterCoef
PageRank
1stEigVecCentrality
MaxDegree
MIOBIBreakEdge−Naive
MIOBIBreakEdge−RC@50

Student Version of MATLAB

(e) O-E: MIOBI-BREAKNODE (f) O-F: MIOBI-BREAKNODE

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

80

90

100

(Remove k) Number of Nodes

P
er

ce
nt

ag
e

of
 R

ob
us

tn
es

s
D

ec
re

as
e

Oregon−C: MIOBIBreakNode % Decrease in Robustness (higher is better)

Random
ClusterCoef
PageRank
1stEigVecCentrality
MaxDegree
MIOBIBreakEdge−Naive
MIOBIBreakEdge−RC@50

Student Version of MATLAB

0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

70

80

90

100

(Remove k) Number of Nodes

P
er

ce
nt

ag
e

of
 R

ob
us

tn
es

s
D

ec
re

as
e

Oregon−D: MIOBIBreakNode % Decrease in Robustness (higher is better)

Random
ClusterCoef
PageRank
1stEigVecCentrality
MaxDegree
MIOBIBreakEdge−Naive
MIOBIBreakEdge−RC@50

Student Version of MATLAB

(g) O-G: MIOBI-BREAKNODE (h) O-H: MIOBI-BREAKNODE

Fig. 2: % robustness change (higher is better) vs. k for MIOBI-BREAKNODE and
various heuristics on all datasets. Notice that our methods outperform all the heuris-
tics. (figures best in color)

Assessing and Altering Robustness of Large Graphs 31

0 50 100 150 200 250 300 350
0

10

20

30

40

50

60

70

80

90

100

(Remove k) Number of Nodes

P
er

ce
nt

ag
e

of
 R

ob
us

tn
es

s
D

ec
re

as
e

Oregon−I: MIOBIBreakNode % Decrease in Robustness (higher is better)

Random
ClusterCoef
PageRank
1stEigVecCentrality
MaxDegree
MIOBIBreakEdge−Naive
MIOBIBreakEdge−RC@50

Student Version of MATLAB

0 20 40 60 80 100 120 140 160
0

10

20

30

40

50

60

70

80

(Remove k) Number of Nodes

P
er

ce
nt

ag
e

of
 R

ob
us

tn
es

s
D

ec
re

as
e

P2P−GnutellaA: MIOBIBreakNode % Decrease in Robustness (higher is better)

Random
ClusterCoef
PageRank
1stEigVecCentrality
MaxDegree
MIOBIBreakEdge−Naive
MIOBIBreakEdge−RC@50

Student Version of MATLAB

(i) O-I: MIOBI-BREAKNODE (j) P2P-A: MIOBI-BREAKNODE

0 50 100 150 200 250
0

10

20

30

40

50

60

70

80

(Remove k) Number of Nodes

P
er

ce
nt

ag
e

of
 R

ob
us

tn
es

s
D

ec
re

as
e

P2P−GnutellaB: MIOBIBreakNode % Decrease in Robustness (higher is better)

Random
ClusterCoef
PageRank
1stEigVecCentrality
MaxDegree
MIOBIBreakEdge−Naive
MIOBIBreakEdge−RC@50

Student Version of MATLAB

0 50 100 150 200 250
0

10

20

30

40

50

60

70

(Remove k) Number of Nodes

P
er

ce
nt

ag
e

of
 R

ob
us

tn
es

s
D

ec
re

as
e

P2P−GnutellaC: MIOBIBreakNode % Decrease in Robustness (higher is better)

Random
ClusterCoef
PageRank
1stEigVecCentrality
MaxDegree
MIOBIBreakEdge−Naive
MIOBIBreakEdge−RC@50

Student Version of MATLAB

(k) P2P-B: MIOBI-BREAKNODE (l) P2P-C: MIOBI-BREAKNODE

0 50 100 150 200 250
0

10

20

30

40

50

60

70

(Remove k) Number of Nodes

P
er

ce
nt

ag
e

of
 R

ob
us

tn
es

s
D

ec
re

as
e

P2P−GnutellaD: MIOBIBreakNode % Decrease in Robustness (higher is better)

Random
ClusterCoef
PageRank
1stEigVecCentrality
MaxDegree
MIOBIBreakEdge−Naive
MIOBIBreakEdge−RC@50

Student Version of MATLAB

0 50 100 150 200 250 300
0

5

10

15

20

25

30

35

40

45

50

(Remove k) Number of Nodes

P
er

ce
nt

ag
e

of
 R

ob
us

tn
es

s
D

ec
re

as
e

P2P−GnutellaE: MIOBIBreakNode % Decrease in Robustness (higher is better)

Random
ClusterCoef
PageRank
1stEigVecCentrality
MaxDegree
MIOBIBreakEdge−Naive
MIOBIBreakEdge−RC@50

Student Version of MATLAB

(m) P2P-D: MIOBI-BREAKNODE (n) P2P-E: MIOBI-BREAKNODE

0 50 100 150 200
0

10

20

30

40

50

60

70

(Remove k) Number of Nodes

P
er

ce
nt

ag
e

of
 R

ob
us

tn
es

s
D

ec
re

as
e

Wiki−Vote: MIOBIBreakNode % Decrease in Robustness (higher is better)

Random
ClusterCoef
PageRank
1stEigVecCentrality
MaxDegree
MIOBIBreakEdge−Naive
MIOBIBreakEdge−RC@50

Student Version of MATLAB

0 200 400 600 800 1000
0

10

20

30

40

50

60

70

80

90

(Remove k) Number of Nodes

P
er

ce
nt

ag
e

of
 R

ob
us

tn
es

s
D

ec
re

as
e

Email−Enron: MIOBIBreakNode % Decrease in Robustness (higher is better)

Random
ClusterCoef
PageRank
1stEigVecCentrality
MaxDegree
MIOBIBreakEdge−Naive
MIOBIBreakEdge−RC@50

Student Version of MATLAB

(o) W-V: MIOBI-BREAKNODE (p) E-E: MIOBI-BREAKNODE

Fig. 2: % robustness change (higher is better) vs. k for MIOBI-BREAKNODE and
various heuristics on all datasets. Notice that our methods outperform all the heuris-
tics. (figures best in color)

32 Hau Chan et al.

0 20 40 60 80 100 120 140 160
0

5

10

15

20

25

30

35

(Add k) Number of Edges

P
er

ce
nt

ag
e

of
 R

ob
us

tn
es

s
In

cr
ea

se

Oregon−A: MIOBIMakeEdge % Increase in Robustness (higher is better)

Random
NetGel
Poor−Poor
Rich−Poor
Rich−Rich
MIOBIBreakEdge−Naive
MIOBIBreakEdge−RC@50

Student Version of MATLAB

0 50 100 150 200 250 300 350 400
0

5

10

15

20

25

30

35

40

(Add k) Number of Edges

P
er

ce
nt

ag
e

of
 R

ob
us

tn
es

s
In

cr
ea

se

Oregon−B: MIOBIMakeEdge % Increase in Robustness (higher is better)

Random
NetGel
Poor−Poor
Rich−Poor
Rich−Rich
MIOBIBreakEdge−Naive
MIOBIBreakEdge−RC@50

Student Version of MATLAB

(a) O-A: MIOBI-MAKEEDGE (b) O-B: MIOBI-MAKEEDGE

0 100 200 300 400 500 600 700
0

5

10

15

20

25

30

35

40

45

(Add k) Number of Edges

P
er

ce
nt

ag
e

of
 R

ob
us

tn
es

s
In

cr
ea

se

Oregon−C: MIOBIMakeEdge % Increase in Robustness (higher is better)

Random
NetGel
Poor−Poor
Rich−Poor
Rich−Rich
MIOBIBreakEdge−Naive
MIOBIBreakEdge−RC@50

Student Version of MATLAB

0 100 200 300 400 500 600 700 800
0

5

10

15

20

25

30

35

40

45

(Add k) Number of Edges

P
er

ce
nt

ag
e

of
 R

ob
us

tn
es

s
In

cr
ea

se

Oregon−D: MIOBIMakeEdge % Increase in Robustness (higher is better)

Random
NetGel
Poor−Poor
Rich−Poor
Rich−Rich
MIOBIBreakEdge−Naive
MIOBIBreakEdge−RC@50

Student Version of MATLAB

(b) O-C: MIOBI-MAKEEDGE (c) O-D: MIOBI-MAKEEDGE

0 200 400 600 800 1000
0

5

10

15

20

25

30

35

40

45

(Add k) Number of Edges

P
er

ce
nt

ag
e

of
 R

ob
us

tn
es

s
In

cr
ea

se

Oregon−E: MIOBIMakeEdge % Increase in Robustness (higher is better)

Random
NetGel
Poor−Poor
Rich−Poor
Rich−Rich
MIOBIBreakEdge−Naive
MIOBIBreakEdge−RC@50

Student Version of MATLAB

0 200 400 600 800 1000 1200 1400
0

10

20

30

40

50

60

(Add k) Number of Edges

P
er

ce
nt

ag
e

of
 R

ob
us

tn
es

s
In

cr
ea

se

Oregon−F: MIOBIMakeEdge % Increase in Robustness (higher is better)

Random
NetGel
Poor−Poor
Rich−Poor
Rich−Rich
MIOBIBreakEdge−Naive
MIOBIBreakEdge−RC@50

Student Version of MATLAB

(e) O-E: MIOBI-MAKEEDGE (f) O-F: MIOBI-MAKEEDGE

0 100 200 300 400 500 600 700
0

5

10

15

20

25

30

35

40

45

(Add k) Number of Edges

P
er

ce
nt

ag
e

of
 R

ob
us

tn
es

s
In

cr
ea

se

Oregon−C: MIOBIMakeEdge % Increase in Robustness (higher is better)

Random
NetGel
Poor−Poor
Rich−Poor
Rich−Rich
MIOBIBreakEdge−Naive
MIOBIBreakEdge−RC@50

Student Version of MATLAB

0 100 200 300 400 500 600 700 800
0

5

10

15

20

25

30

35

40

45

(Add k) Number of Edges

P
er

ce
nt

ag
e

of
 R

ob
us

tn
es

s
In

cr
ea

se

Oregon−D: MIOBIMakeEdge % Increase in Robustness (higher is better)

Random
NetGel
Poor−Poor
Rich−Poor
Rich−Rich
MIOBIBreakEdge−Naive
MIOBIBreakEdge−RC@50

Student Version of MATLAB

(g) O-G: MIOBI-MAKEEDGE (h) O-H: MIOBI-MAKEEDGE

Fig. 3: % robustness change (higher is better) vs. k for MIOBI-MAKEEDGE and var-
ious heuristics on all datasets. Notice that our methods outperform all the heuristics.
(figures best in color)

Assessing and Altering Robustness of Large Graphs 33

0 500 1000 1500 2000 2500 3000 3500
0

10

20

30

40

50

60

70

80

(Add k) Number of Edges

P
er

ce
nt

ag
e

of
 R

ob
us

tn
es

s
In

cr
ea

se

Oregon−I: MIOBIMakeEdge % Increase in Robustness (higher is better)

Random
NetGel
Poor−Poor
Rich−Poor
Rich−Rich
MIOBIBreakEdge−Naive
MIOBIBreakEdge−RC@50

Student Version of MATLAB

0 200 400 600 800 1000 1200 1400 1600
0

20

40

60

80

100

120

140

160

(Add k) Number of Edges

P
er

ce
nt

ag
e

of
 R

ob
us

tn
es

s
In

cr
ea

se

P2P−GnutellaA: MIOBIMakeEdge % Increase in Robustness (higher is better)

Random
NetGel
Poor−Poor
Rich−Poor
Rich−Rich
MIOBIBreakEdge−Naive
MIOBIBreakEdge−RC@50

Student Version of MATLAB

(i) O-I: MIOBI-MAKEEDGE (j) P2P-A: MIOBI-MAKEEDGE

0 500 1000 1500 2000 2500
0

20

40

60

80

100

120

140

160

180

(Add k) Number of Edges

P
er

ce
nt

ag
e

of
 R

ob
us

tn
es

s
In

cr
ea

se

P2P−GnutellaB: MIOBIMakeEdge % Increase in Robustness (higher is better)

Random
NetGel
Poor−Poor
Rich−Poor
Rich−Rich
MIOBIBreakEdge−Naive
MIOBIBreakEdge−RC@50

Student Version of MATLAB

0 500 1000 1500 2000 2500
0

50

100

150

200

250

300

(Add k) Number of Edges

P
er

ce
nt

ag
e

of
 R

ob
us

tn
es

s
In

cr
ea

se

P2P−GnutellaC: MIOBIMakeEdge % Increase in Robustness (higher is better)

Random
NetGel
Poor−Poor
Rich−Poor
Rich−Rich
MIOBIBreakEdge−Naive
MIOBIBreakEdge−RC@50

Student Version of MATLAB

(k) P2P-B: MIOBI-MAKEEDGE (l) P2P-C: MIOBI-MAKEEDGE

0 500 1000 1500 2000 2500
0

50

100

150

200

250

(Add k) Number of Edges

P
er

ce
nt

ag
e

of
 R

ob
us

tn
es

s
In

cr
ea

se

P2P−GnutellaD: MIOBIMakeEdge % Increase in Robustness (higher is better)

Random
NetGel
Poor−Poor
Rich−Poor
Rich−Rich
MIOBIBreakEdge−Naive
MIOBIBreakEdge−RC@50

Student Version of MATLAB

0 500 1000 1500 2000 2500 3000
0

50

100

150

200

250

300

350

400

450

(Add k) Number of Edges

P
er

ce
nt

ag
e

of
 R

ob
us

tn
es

s
In

cr
ea

se

P2P−GnutellaE: MIOBIMakeEdge % Increase in Robustness (higher is better)

Random
NetGel
Poor−Poor
Rich−Poor
Rich−Rich
MIOBIBreakEdge−Naive
MIOBIBreakEdge−RC@50

Student Version of MATLAB

(m) P2P-D: MIOBI-MAKEEDGE (n) P2P-E: MIOBI-MAKEEDGE

0 500 1000 1500 2000
0

2

4

6

8

10

12

14

(Add k) Number of Edges

P
er

ce
nt

ag
e

of
 R

ob
us

tn
es

s
In

cr
ea

se

Wiki−Vote: MIOBIMakeEdge % Increase in Robustness (higher is better)

Random
NetGel
Poor−Poor
Rich−Poor
Rich−Rich
MIOBIBreakEdge−Naive
MIOBIBreakEdge−RC@50

Student Version of MATLAB

0 2000 4000 6000 8000 10000
0

10

20

30

40

50

60

70

(Add k) Number of Edges

P
er

ce
nt

ag
e

of
 R

ob
us

tn
es

s
In

cr
ea

se

Email−Enron: MIOBIMakeEdge % Increase in Robustness (higher is better)

Random
NetGel
Poor−Poor
Rich−Poor
Rich−Rich
MIOBIBreakEdge−Naive
MIOBIBreakEdge−RC@50

Student Version of MATLAB

(o) W-V: MIOBI-MAKEEDGE (p) E-E: MIOBI-MAKEEDGE

Fig. 3: % robustness change (higher is better) vs. k for MIOBI-MAKEEDGE and var-
ious heuristics on all datasets. Notice that our methods outperform all the heuristics.
(figures best in color)

34 Hau Chan et al.

0 1 2 3 4 5 6 7

x 10
4

0

20

40

60

80

100

120

Number of Edges

T
im

e
(in

 S
ec

on
ds

)

Oregon: MIOBIBreakEdge Running times Naive and RC@50

K=10 RC@50
K=10 Naive
K=50 RC@50
K=50 Naive
K=100 RC@50
K=100 Naive
K=500 RC@50
K=500 Naive
K=1000 RC@50
K=1000 Naive

Student Version of MATLAB

0 1 2 3 4 5 6 7

x 10
4

0

2

4

6

8

10

Number of Edges

T
im

e
(in

 S
ec

on
ds

)

Oregon: MIOBIBreakNode Running times Naive and RC@50

K=1 RC@50
K=1 Naive
K=3 RC@50
K=3 Naive
K=6 RC@50
K=6 Naive
K=10 RC@50
K=10 Naive
K=20 RC@50
K=20 Naive

Student Version of MATLAB

(a) MIOBI-BREAKEDGE (b) MIOBI-BREAKNODE

0 1 2 3 4 5 6 7

x 10
4

0

100

200

300

400

500

Number of Edges

T
im

e
(in

 S
ec

on
ds

)

Oregon: MIOBIMakeEdge Running times Naive and RC@50

K=10 RC@50
K=10 Naive
K=50 RC@50
K=50 Naive
K=100 RC@50
K=100 Naive
K=200 RC50
K=200 Naive
K=350 RC@50
K=350 Naive

Student Version of MATLAB

(c) MIOBI-MAKEEDGE

Fig. 4: Scalability of proposed methods—all three algorithms scale near-linearly wrt
graph size. (figures best viewed in color)

6 Conclusion

In this work we studied graph robustness where we focused on two main problems; (i)
how to define and measure robustness of a graph topology, and (ii) how to maximally
and efficiently alter the robustness for large-scale graphs.

We first considered various definitions and measures of robustness, and ana-
lyzed their capabilities and shortcomings of capturing desired resilience properties
of graphs. We identified natural connectivity as a reliable measure, as it accounts for
the existence of alternative paths in a graph, effectively quantifies their count and
lengths, changes strictly monotonically by edge additions, etc. Later, we formulated
two new robustness manipulation problems, one of which is to maximally decrease
(or “break”) the robustness with edge or node deletions, and another is to maximally
improve (or “make”) the robustness with edge additions. We studied and showed the
hardness associated with these problems, and proposed effective, scalable, and adap-
tive algorithms to solve them, which are founded on a principled framework based

Assessing and Altering Robustness of Large Graphs 35

on theoretical foundations. Finally, our experiments showed the superiority of our
methods compared to a long list of heuristic, ad-hoc strategies.

We remark that applications from diverse domains of networked systems are
likely to benefit from our analysis and algorithms proposed in this work. For example,
network administrators are often involved with measuring and optimizing the perfor-
mance on infrastructure networks such as the Internet, the power-grid, road/airline
networks, and other transmission networks (e.g., oil, gas, etc.). Similarly, socially
connected networks, such as Twitter, Facebook, the blogosphere, as well as commu-
nities at smaller scales (e.g., school children), are often monitored by policy makers
and other entities who are concerned with optimizing or controlling the efficiency of
spread (e.g., information, disease, rumor, etc.) on these networks.

References

1. Albert, R., Jeong, H., Barabasi, A.L.: Error and attack tolerance of complex networks. Nature
406(6794), 378–382 (2000)

2. Barefoot, C.A., Entringer, R., Swart, H.: Integrity of trees and powers of cycles. Eighteenth Southeast-
ern International Conference on Combinatorics, Graph Theory, and Computing 58, 103–114 (1987)

3. Beygelzimer, A., Grinstein, G., Linsker, R., Rish, I.: Improving network robustness by edge modifi-
cation. Physica A: Statistical Mechanics and its Applications 357(3-4), 593–612 (2005)

4. Callaway, D.S., Newman, M.E.J., Strogatz, S.H., Watts, D.J.: Network Robustness and Fragility: Per-
colation on Random Graphs. Physical Review Letters 85(25), 5468–5471 (2000)

5. Choi, H.A., Esfahanian, A.H.: Restricted vertex-connectivity with application to fault-tolerant com-
puting. In: Proceedings of The International Conference on Operations Research (1990)

6. Chvátal, V.: Tough graphs and hamiltonian circuits. Discrete Mathematics 306(10-11), 910–917
(2006)

7. Cohen, R., Erez, K., Avraham, D.B., Havlin, S.: Breakdown of the Internet under Intentional Attack.
Physical Review Letters 86(16), 3682–3685 (2001). DOI 10.1103/physrevlett.86.3682

8. Crucitti, P., Latora, V., Marchiori, M., Rapisarda, A.: Error and attack tolerance of complex networks.
Physica A: Statistical Mechanics and its Applications (1-3), 388–394 (2004)

9. Dinh, T.N., Xuan, Y., Thai, M.T., Pardalos, P.M., Znati, T.: On new approaches of assessing network
vulnerability: Hardness and approximation. IEEE/ACM Trans. Netw. 20(2), 609–619 (2012)

10. Estrada, E.: Characterization of 3D molecular structure. Chemical Physics Letters 319(5-6), 713–718
(2000)

11. Estrada, E.: Network robustness to targeted attacks. the interplay of expansibility and degree distri-
bution. The European Physical Journal B - Condensed Matter and Complex Systems 52(4), 563–574
(2006)

12. Estrada, E.: Network robustness to targeted attacks. the interplay of expansibility and degree distri-
bution. The European Physical Journal B - Condensed Matter and Complex Systems 52(4), 563–574
(2006). DOI 10.1140/epjb/e2006-00330-7

13. Estrada, E., Hatano, N., Benzi, M.: The physics of communicability in complex networks. CoRR
abs/1109.2950 (2011)

14. Faloutsos, M., Faloutsos, P., Faloutsos, C.: On power-law relationships of the internet topology.
SIGCOMM Comput. Commun. Rev. 29(4), 251–262 (1999). DOI 10.1145/316194.316229. URL
http://doi.acm.org/10.1145/316194.316229

15. Fiedler, M.: Algebraic Connectivity of Graphs. Czechoslovak Mathematical Journal 23, 298–305
(1973)

16. Frank, H., Frisch, I.: Analysis and Design of Survivable Networks. Communication Technology, IEEE
Transactions on 18(5), 501–519 (1970). DOI 10.1109/tcom.1970.1090419

17. Gantmacher, F.: The Theory of Matrices. No. Bd. 2 in Chelsea Publishing. American Mathematical
Society (1960)

18. Granovetter, M.S.: Economic action and social structure: the problem of embeddedness. American
Journal of Sociology 91, 481–510 (1985)

36 Hau Chan et al.

19. Holme, P., Kim, B.J., Yoon, C.N., Han, S.K.: Attack vulnerability of complex networks. Physical
Review E 65(5), 056,109 (2002)

20. Jung, H.A.: On a class of posets and the corresponding comparability graphs. J. Comb. Theory, Ser.
B 24(2), 125–133 (1978)

21. Kleinberg, J.M., Sandler, M., Slivkins, A.: Network failure detection and graph connectivity. In: J.I.
Munro (ed.) SODA, pp. 76–85. SIAM (2004)

22. Krishnamoorthy, M., Krishnamurthy, B.: Fault diameter of interconnection networks. Computers &
Mathematics with Applications 13(5–6), 577 – 582 (1987)

23. Lanczos, C.: An iteration method for the solution of the eigenvalue problem of linear differential and
integral operators. J. Res. Nat. Bur. Stand. 45, 255–82 (1950)

24. Louzada, V.H.P., Daolio, F., Herrmann, H.J., Tomassini, M.: Smart rewiring for network robustness.
CoRR abs/1303.5269 (2013)

25. M. Cozzens, D.M., Stueckle, S.: The tenacity of a graph. Proc. 7th International Conference on the
Theory and Applications of Graphs 24, 1111–1122 (1995)

26. Malliaros, F.D., Megalooikonomou, V., Faloutsos, C.: Fast robustness estimation in large social
graphs: Communities and anomaly detection. In: SDM, pp. 942–953 (2012)

27. Meyer, C.D. (ed.): Matrix analysis and applied linear algebra. Society for Industrial and Applied
Mathematics, Philadelphia, PA, USA (2000)

28. Mieghem, P.V., Wang, H., Ge, X., Tang, S., Kuipers, F.A.: Influence of assortativity and degree-
preserving rewiring on the spectra of networks. The European Physical Journal B - Condensed Matter
and Complex Systems 76(4), 643–652 (2010)

29. Mohar, B.: Isoperimetric numbers of graphs. J. Comb. Theory, Ser. B 47(3), 274–291 (1989)
30. Newman, M.E.J.: Modularity and community structure in networks. Proc. Natl. Acad. Sci. USA 103,

8577 (2006)
31. Nguyen, N.P., Alim, M.A., Shen, Y., Thai, M.T.: Assessing network vulnerability in a commu-

nity structure point of view. In: ASONAM, pp. 231–235. ACM (2013). URL http://dblp.
uni-trier.de/db/conf/asunam/asonam2013.html#NguyenAST13

32. Nikiforov, V.: Some inequalities for the largest eigenvalue of a graph. Combinatorics, Probability &
Computing 11(2), 179–189 (2002)

33. Pan, V.Y., Chen, Z.Q.: The complexity of the matrix eigenproblem. In: J.S. Vitter, L.L. Larmore, F.T.
Leighton (eds.) STOC, pp. 507–516. ACM (1999)

34. Paul, G., Tanizawa, T., Havlin, S., Stanley, H.: Optimization of robustness of complex networks. The
European Physical Journal B - Condensed Matter and Complex Systems 38(2), 187–191 (2004)

35. Scellato, S., Leontiadis, I., Mascolo, C., Basu, P., Zafer, M.: Evaluating temporal robustness of mobile
networks. IEEE Trans. Mob. Comput. 12(1), 105–117 (2013)

36. Schneider, C.M., Moreira, A.A., Jr., J.S.A., Havlin, S., Herrmann, H.J.: Mitigation of malicious at-
tacks on networks. CoRR abs/1103.1741 (2011)

37. Shang, Y.L.: Local natural connectivity in complex networks. Chinese Physics Letters 28(6) (2011)
38. Shargel, B., Sayama, H., Epstein, I.R., Bar-Yam, Y.: Optimization of robustness and connectivity in

complex networks. Phys Rev Lett 90(6), 068,701 (2003)
39. Shen, Y., Nguyen, N.P., Xuan, Y., Thai, M.T.: On the discovery of critical links and nodes for assessing

network vulnerability. IEEE/ACM Trans. Netw. 21(3), 963–973 (2013). URL http://dblp.
uni-trier.de/db/journals/ton/ton21.html#ShenNXT13

40. Spielman, D.A., Srivastava, N.: Graph sparsification by effective resistances. SIAM J. Comput. 40(6),
1913–1926 (2011)

41. Stewart, G.W., Sun, J.G.: Matrix Perturbation Theory. Academic Press (1990)
42. Tong, H., Prakash, B.A., Eliassi-Rad, T., Faloutsos, M., Faloutsos, C.: Gelling, and melting, large

graphs by edge manipulation. In: CIKM, pp. 245–254. ACM (2012)
43. Tsourakakis, C.E.: Fast counting of triangles in large real networks without counting: Algorithms and

laws. In: ICDM, pp. 608–617. IEEE Computer Society (2008)
44. Van Mieghem, P., Stevanovic, D., Kuipers, F., Li, C., van de Bovenkamp, R., Liu, D., Wang, H.:

Decreasing the spectral radius of a graph by link removals (2011). URL http://dx.doi.org/
10.1103/PhysRevE.84.016101

45. Wu, J., Mauricio, B., Tan, Y.J., Deng, H.Z.: Natural connectivity of complex networks. Chinese
Physics Letters 27(7), 78902 (2010). DOI 10.1088/0256-307X/27/7/078902

