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Abstract. Finding the k nearest neighbors (k-nns) of a given vertex in
a graph has many applications such as link prediction, keyword search,
and image tagging. An established measure of vertex-proximity in graphs
is the Personalized Page Rank (ppr) score based on random walk with
restarts. Since ppr scores have long-range correlations, computing them
accurately and efficiently is challenging when the graph is too large to
fit in main memory, especially when it also changes over time. In this
work, we propose an efficient algorithm to answer ppr-based k-nn queries
in large time-evolving graphs. Our key approach is to use a divide-and-
conquer framework and efficiently compute answers in a distributed fash-
ion. We represent a given graph as a collection of dense vertex-clusters
with their inter connections. Each vertex-cluster maintains certain infor-
mation related to internal random walks and updates this information
as the graph changes. At query time, we combine this information from
a small set of relevant clusters and compute ppr scores efficiently. We
validate the effectiveness of our method on large real-world graphs from
diverse domains. To the best of our knowledge, this is one of the few
works that simultaneously addresses answering k-nn queries in possibly
disk-resident and time-evolving graphs.

Keywords: vertex proximity · personalized pagerank · time-evolving
graphs · disk-resident graphs · distributed pagerank · dynamic updates

1 Introduction

Quantifying the proximity, relevance, or similarity between vertices, and more
generally finding the k nearest neighbors (k-nns) of a given vertex in a large,
time-evolving graph is a fundamental building block for many applications. Per-
sonalized PageRank (ppr) has proved to be a very effective proximity measure for
the link prediction and recommendation problems in such applications. Thanks
to its effectiveness, there exist many algorithms in the literature that are de-
signed to compute the ppr scores of a given vertex in a graph efficiently [4,
10–13, 25]. These works, however, cannot handle graphs that are larger than a
certain size, that is, they are not optimally designed for very large disk-resident
graphs. Moreover, they cannot work with graphs that dynamically change over
time. Other previous works deal with computing ppr queries on either disk-
resident static graphs [21, 3] or special families of time-evolving graphs [26].
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In this work we propose ClusterRank, an algorithm for efficient computa-
tion of ppr queries for both disk-resident and time-evolving general graphs. Our
main motivation is to build a unified framework that will enable us to tackle both
of these two challenges. Our key idea is to take a divide-and-conquer approach;
simply put, we split the graph into relatively small vertex-clusters and decom-
pose the overall problem into simulating intra-cluster and inter-cluster random
walks. This decomposition enables us to handle disk-resident graphs since the
work is carefully split across distributed compute nodes. What is more, thanks
to this modular design of our approach, our updates are local and fast when the
graph changes over time. We summarize our main contributions as follows.

– Fast query processing: We propose a fast algorithm to answer k-nn queries
on large graphs, with query response time sub-linear in input graph size.

– Dynamic updates: The algorithm includes fast, incremental update proce-
dures for handling additions or deletions of edges and vertices. Thus it also
works with time-evolving graphs.

– Disk-resident graphs: Our method can operate when the graph resides en-
tirely on disk. Moreover, it loads only a small and relevant portion of the
graph into memory to answer a query or perform dynamic updates.

We demonstrate the effectiveness and efficiency of our method, w.r.t. query
accuracy and response time, on large real-world graphs from various domains.

2 Preliminaries and Overview

Vertex-Proximity. We consider finding the k-nn’s of a given vertex in a graph.
To calculate the k-nn’s of a vertex, one needs to define a distance metric between
two vertices. A widely used proximity measure that is based on random walks
is Personalized Page Rank (ppr). Given a restart vertex q and a parameter
α ∈ (0, 1), consider the random walk with restart starting at vertex q, such that
at any step when currently present at a vertex v, it chooses any of its neighbors
with equal probability α/dv, and returns to the restart vertex q with probability
(1−α). The stationary probability at vertex u of the random walk with restart is
defined as the ppr score of u with respect to the query vertex q. The ppr score
is known to be robust under noise or small changes in the graph, in contrast
to shortest paths, and favors existence of many short paths between vertices.
Therefore, in this paper we consider the problem of finding the k-nn’s of any
given vertex in a graph, where proximity is measured by the ppr score.

Overview. The main challenge in answering a k-nn query is the computational
overhead involved in simulating a random walk on a large graph that may not
even fit in memory. We employ a divide-and-conquer principle to handle this
challenge. We cluster the graph into relatively small vertex-clusters and decom-
pose the problem into simulating intra-cluster and inter-cluster random walks.

For a subset S of vertices, conditioned on the event that the random walk is
in S, the probability that it steps out of S is proportional to its conductance—
the ratio of the weight of edges crossing S to the weight of all edges incident to
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1. Pre-computation (Offline)
a. Cluster the graph into low-conductance, possibly overlapping clusters. For each

vertex v, we identify a unique cluster containing v and call it the parent of v.
Store these clusters on one or more compute nodes.

b. For each cluster, compute and store some auxiliary information relating to
intra-cluster random walks, independently of other clusters.

2. Query processing (Online)
a. Given a query vertex, identify the ‘right’ subset of clusters to consider. (If all

the clusters are considered, then the final answer is exact.)
b. Combine the auxiliary information of identified clusters to compute ppr scores.

3. Graph update processing (Online/Batch)
a. Given an update (addition/deletion of one or more vertices/edges), identify

the ‘right’ subset of clusters to update.
b. Update the identified clusters and their auxiliary information.

Fig. 1. Main components of proposed framework

S. Thus a low-conductance cluster “holds” the random walk longer than a high-
conductance cluster. This makes low conductance a natural choice for estimating
quality of a cluster for our purposes. We allow the clusters to overlap since it is
natural for a vertex to belong to multiple communities.

Consider a random walk with restart starting at q. Let the sequence of ver-
tices the walk visits be v0, v1, v2, . . .. A vertex may appear several times in this
sequence. The stationary distribution of this walk is the relative frequency with
which different vertices appear in this walk. Now suppose q ∈ Si. As the random
walk steps through this sequence, it stays in cluster Si for a while, then jumps
to another cluster Sj . Next it stays in Sj for a while before jumping to yet an-
other cluster, and so on. The clusters thus visited by the walk may also repeat.
As a result, one can partition the walk into a sequence of contiguous blocks of
vertices where each block represents a portion of the walk inside a cluster and
consecutive blocks represent a jump from a cluster to another.

Now it is easy to describe how to simulate the random walk based on the
clusters. For each cluster Si and each “entry” vertex v ∈ Si, one can compute the
characteristics of the random walk inside Si assuming it entered Si through v.
These characteristics include the probabilities with which it exits Si to different
“exit” vertices and the expected number of times it visits various vertices in Si
before exiting. Interestingly this information can be computed for each cluster Si
independent of other clusters. Our method pre-computes and stores this informa-
tion for each cluster. At query time, it combines this information across different
clusters to compute the desired ppr scores. Whenever the graph changes, due
to addition/deletion of vertices/edges, it updates the relevant clusters and their
information appropriately. Our overall framework is given in Figure 1.

3 Proposed Method

We propose ClusterRank, a method to address the following two problems.

P1) Given a large edge-weighted graph G, a query vertex q in G and an integer
k, find k vertices in G that have highest ppr scores w.r.t. q.
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P2) Given a large edge-weighted graph G(t) at time t, a subset D(t) of existing
edges in G(t) and a set A(t) of new edges, update the graph structure and
the relevant auxiliary information to delete the edges in D(t) and add the
edges in A(t), i.e., compute G(t+ 1) := (G(t) \D(t)) ∪A(t).

We next describe the components in Fig. 1 in detail. To simplify the presen-
tation, we assume the graph is unweighted. Our techniques, however, extend to
graphs with non-negative edge-weights and directed graphs.5

3.1 Pre-Computation

The pre-computation involves two steps which can be performed offline.

3.1.1. Clustering the graph. To distribute a graph across compute nodes,
one can use any top-performing known graph partitioning algorithm [1, 8, 15, 19,
23, 22]. In this work, we use [1] which finds low-conductance clusters and allows
clusters to overlap. We assign each vertex v to a unique cluster S containing v
that contains the maximum number of v’s neighbors. We call such a cluster the
parent cluster of v. The notion of parent clusters is used while query processing.

3.1.2. Computing auxiliary information for clusters. Given the overlap-
ping clustering computed as S = {S1, S2, . . . , Sp}, we next compute certain
auxiliary information for each cluster Si ∈ S independently of others clusters.
Assume that the query vertex q 6∈ Si and assume that the random walk with
restart enters Si through a vertex u ∈ Si. We simulate this random walk with
restart till it exits cluster Si. Suppose the random walk is at vertex v ∈ Si. In one
step, with probability 1 − α, the random walk restarts at q and hence exits Si.
With probability α, it picks a neighbor w ∈ Γ (v) at random. Here Γ (v) denotes
the set of neighbors of v in G. If w ∈ Si, the random walk continues within Si.
If w 6∈ Si, the random walk exits Si to vertex w. The auxiliary information for
each cluster Si consists of two matrices, the Count matrix and the Exit matrix.

Count matrix. The count matrix Ci is an |Si| × |Si| matrix defined as follows.
The entry Ci(u, v), for u, v ∈ Si, equals the expected number of times a random
walk with restart (restarting at q 6∈ Si) starting at u visits v before exiting Si.
The following lemma gives a closed-form expression for Ci. Let Ti be an |Si|×|Si|
matrix that gives transition probabilities of a random walk within Si without
restart, i.e., for u, v ∈ Si, let Ti(u, v) = 1/|Γ (u)| if v ∈ Γ (u) and 0 otherwise.

Lemma 1. Ci = (I − αTi)−1 where I is the |Si| × |Si| identity matrix.

Proof. It is easy to see that Ci satisfies the following relation for all u, v ∈ Si.

Ci(u, v) =


1 + α

∑
w∈Γ (u)∩S

Ti(u,w)Ci(w, v), if v = u;

α
∑

w∈Γ (u)∩S

Ti(u,w)Ci(w, v), otherwise.
(1)

In matrix form, the above relation can be written as Ci = I + αTiCi. ut
5 We modify directed graphs by adding a self-loop to each vertex, such that no vertex

has out-degree zero. This ensures the random walk matrix remains a Markov chain.
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Exit matrix. Let Bi = Γ (Si) \ Si denote the set of vertices not in Si that are
adjacent to vertices in Si. The exit matrix Ei is an |Si|×(|Bi|+1) matrix defined
as follows. The entry Ei(u, b), for u ∈ Si and b ∈ Bi, is the probability that a
random walk with restart (restarting at q 6∈ Si) starting at u exits Si while
jumping to vertex b ∈ Bi. Since the random walk can exit Si while jumping to a
restart vertex q (assumed not to be in Si), we have an additional column in Ei
corresponding to q. Of course, we do not know the identity of the restart vertex q
at the pre-computation phase. Therefore we treat q as a symbolic representative
of the restart vertex. The entry Ei(u, q), for u ∈ Si, is the probability that
the random walk exits Si while jumping to the restart vertex q. The following
lemma gives a closed-form expression for Ei. Let T+

i be an |Si|×(|Bi|+1) matrix
that gives exit probabilities of a random walk from vertices in Si to vertices in
Bi ∪ {q}, i.e., for u ∈ Si and b ∈ Bi, let T+

i (u, b) = α/|Γ (u)| if b ∈ Γ (u) and 0
otherwise; and for u ∈ Si, T+

i (u, q) = 1− α.

Lemma 2. Ei = (I − αTi)−1T+
i = CiT

+
i where I is the identity matrix.

Proof. It is easy to see that Ei satisfies the following relation ∀u ∈ Si and
∀b ∈ Bi ∪ {q}.

Ei(u, b) =


1− α+ α

∑
w∈Γ (u)∩S

Ti(u,w)Ei(w, v), if b = q;

T+
i (u, b) + α

∑
w∈Γ (u)∩S

Ti(u,w)Ei(w, v), otherwise.
(2)

In matrix form, the above relation can be written as Ei = T+
i + αTiEi. ut

There are a couple of ways in which one can compute matrices Ci and Ei
for a cluster. One can directly use the closed-form expressions given above. In
this case, computing auxiliary information for a cluster Si containing s vertices
and containing b vertices in the neighborhood Γ (Si) \ Si involves, computing
an inverse (I − αTi)−1 of an s× s matrix and multiplying an s× s matrix and
an s × (b + 1) matrix. This takes a total of O(s3 + s2b) time using Gaussian
elimination for inverting and textbook matrix products. One can reduce this
time complexity by using Strassen’s algorithm [24]. An alternative is to use the
relations (1) and (2) to compute these matrices in an iterative fashion. This ap-
proach, however, is often found less effective than computing the matrix inverse.

3.2 Query Processing

The second component of ClusterRank deals with query answering, and con-
sists of two steps: (1) updating the auxiliary information for those clusters that
contain the query vertex, and (2) combining such information from a subset of
“relevant” clusters to compute the final ppr scores.

3.2.1. Updating the matrices given a query vertex. Given a query vertex
q, we first identify its unique parent cluster Si. We then update the count matrix
Ci and the exit matrix Ei to reflect the fact that the restart vertex now lies inside
the cluster Si. We remark that the count and exit matrices corresponding to any
other cluster, say Sj with j 6= i, containing the query vertex are not updated.



6 Authors Suppressed Due to Excessive Length

Count matrix with a query vertex inside. Given a query vertex q and its parent
cluster Si, the count matrix Cqi is an |Si| × |Si| matrix defined analogously. The
entry Cqi (u, v), for u, v ∈ Si, equals the expected number of times a random walk
with restart (restarting at q ∈ Si) starting at u visits v before exiting Si. The
following lemma gives a closed-form expression for Cqi . Let Qq be an |Si| × |Si|
matrix with all entries in the column q equal to 1 and all other entries zero.

Lemma 3. Cqi = (I − αTi − (1− α)Qq)
−1 where I is the |Si| × |Si| identity.

Proof. Recall that the random walk restarts at q ∈ Si at every step with prob-
ability 1− α. Therefore Cqi satisfies the following relation for all u, v ∈ Si.

Cqi (u, v) =


1 + (1− α)Cqi (q, v) + α

∑
w∈Γ (u)∩S

Ti(u,w)Cqi (w, v), if v = u;

(1− α)Cqi (q, v) + α
∑

w∈Γ (u)∩S

Ti(u,w)Cqi (w, v), otherwise.
(3)

In matrix form, the above relation becomes Cqi = I + (1−α)QqC
q
i +αTiC

q
i . ut

Exit matrix given a query vertex inside. Given a query vertex q ∈ Si, the exit
matrix Eqi is an |Si| × |Bi| matrix defined analogously. The entry Eqi (u, b), for
u ∈ Si and b ∈ Bi, is the probability that a random walk with restart (restarting
at q ∈ Si) starting at u exits Si while jumping to vertex b ∈ Bi. Note that since
the random walk does not exit Si due to a restart, Eqi has only |Bi| columns.

The following lemma gives a closed-form expression for Eqi . Let T+q
i be an

|Si| × |Bi| matrix that gives exit probabilities of a random walk from vertices
in Si to vertices in Bi, i.e., for u ∈ Si and b ∈ Bi, let T+

i (u, b) = α/|Γ (u)| if
b ∈ Γ (u) and 0 otherwise. This matrix is T+

i with the last column dropped.

Lemma 4. Eqi = (I − αTi − (1− α)Qq)
−1T+q

i = Cqi T
+q
i .

Proof. Recall that the random walk restarts at q ∈ Si at every step with prob-
ability 1− α. Therefore Eqi satisfies the following relation ∀u ∈ Si and ∀b ∈ Bi.

Eqi (u, b) = T+q
i (u, b) + (1− α)Eqi (q, b) + α

∑
w∈Γ (u)∩S

Ti(u,w)Eqi (w, v).

In matrix form, we can write the above as Eqi = T+q
i +(1−α)QqE

q
i +αTiE

q
i . ut

Updating the matrices using Sherman-Morrison formula. Observe, from Lem-
mas 1 and 3, that the expressions for Ci and Cqi are quite similar—Ci is the
inverse of a matrix and Cqi is the inverse of the same matrix with (1−α)Qq sub-
tracted. Note also that (1−α)Qq is a rank-1 matrix. We can update the inverse
of a matrix efficiently when the matrix undergoes such a low-rank update. To
this end, we first quote a well-known lemma.

Lemma 5 (Sherman-Morrison-Woodbury [27]). Let n and k be any pos-
itive integers, A ∈ <n×n, U ∈ <n×k, Σ ∈ <k×k, V ∈ <k×n be any matrices:

(A+ UΣV )−1 = A−1 −A−1U(Σ−1 + V A−1U)−1V A−1.
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Note that UΣV is a rank-k matrix. Thus after updating A with a rank-k matrix,
its inverse can be computed from A−1 by doing 4 multiplications of n × n and
n× k matrices, 2 multiplications of n× k and k × k matrices and 1 inverse of a
k × k matrix. Thus overall time is O(n2k) since k ≤ n. This can be much more
efficient than computing the inverse of an n× n matrix from scratch, especially
if k is much smaller than n. If k = 1, the above formula reduces to what is
commonly known as Sherman-Morrison formula. We refer to the formula in the
above lemma as the smw formula in the remainder of the text.

To use this approach, we have to express the rank-1 matrix (1 − α)Qq as
UΣV where Σ is a 1 × 1 matrix, i.e., a scalar. This can be done simply by
setting Σ = (1 − α)

√
|Si|, U to be an |Si|-size column vector with all entries

1/
√
|Si| and V to be an |Si|-size row vector with all entries 0 except the entry

corresponding to q equal to 1. Thus Cqi can be computed from Ci in O(|Si|2)
time. Similarly, Eqi can be computed from Ci and Ei in O(|Si|2 + |Si||Bi|) time.

To simplify the notation in the following discussion, we let Ĉi (resp. Êi)
denote Cqi (resp. Eqi ) if Si is the parent cluster of q, and Ci (resp. Ei) otherwise.

3.2.2. Computing the PPR scores. Recall that to compute the ppr scores,
our method decomposes the random walk with restart starting from the query
vertex q into intra-cluster and inter-cluster random walks. Since the information
about intra-cluster random walks is already pre-computed (or appropriately up-
dated for the parent cluster of the query vertex), we next compute the necessary
information about the inter-cluster random walk. As a first step, we identify the
clusters “relevant” for answering the k-nn query for q. If we want to compute
ppr scores exactly, we label all the clusters as relevant. Working with all the
clusters to answer a query, however, leads to excessive query response time. It
turns out that one can reduce the query response time significantly by limiting
the number of relevant clusters. We employ two heuristics called 1-hop and 2-hop
to limit the relevant clusters. In the former, we label a cluster S as relevant if
and only if q ∈ S. In the latter, we label a cluster S as relevant if and only if
either q ∈ S or S is the parent cluster of some vertex b ∈ Bi = Γ (Si) \ Si for
some cluster Si such that q ∈ Si. Intuitively, these heuristics quickly identify the
vertices that are expected to have high ppr scores w.r.t. q.

Suppose Sq is the set of relevant clusters. Let ∪Sq denote the union of these
clusters. Recall that Bi = Γ (Si)\Si denotes the set of vertices which the random
walk inside Si may jump to while exiting Si. Now let Bq = ((∪Sq)∩(∪Si∈SqBi))∪
{q}. As the number of vertices in Bq relates to the efficiency of our method, we
explicitly limit |Bq|; we fix a parameter β, and while using either 1-hop or 2-
hop heuristic, we continue labeling the clusters relevant as long as |Bq| does not
exceed β or all the clusters according to the heuristic are labeled relevant.

Computing the inter-cluster random walk matrix. After identifying the relevant
clusters Sq, we gather their auxiliary information to compute the inter-cluster
random walk matrix. Recall that when the random walk with restart enters
u ∈ Si ∈ Sq, it exits Si while jumping to some vertex b ∈ Bi ∪ {q} (or b ∈ Bi if
Si is the parent cluster of q). The probability of this event is exactly given by
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Êi(u, b). Clearly, this vertex b can belong to multiple clusters. When the random
walk jumps to b, we assume that it enters the parent cluster of b.

Thus we can think of inter-cluster jumps as a random walk on the vertices
in Bq. Whenever the random walk jumps to a vertex b ∈ Bi \ ∪Sq that is not
in the relevant clusters, we assume that the random walk jumps back to q. The
transition matrix (of dimensions |Bq| × |Bq|) of this walk is as follows. For any
b1, b2 ∈ Bq, the probability that this random walk jumps from b1 to b2 is

Mq(b1, b2) =

{
Êi(b1, b2), if b2 6= q, Si is theparent cluster of b1;

1−
∑
b∈Bq\{q}Mq(b1, b), if b2 = q.

(4)

We compute Mq from the auxiliary information stored (or appropriately up-
dated) for the relevant clusters. Recall that the random walk (or the correspond-
ing Markov chain) is called ergodic if it is possible to go from every state to every
other state (not necessarily in one move), and if the walk is aperiodic. Now we
can assume that the given graph G is connected without loss of generality.6 Thus,
if we label all clusters as relevant, the resulting Markov chain Mq is ergodic (un-
der very mild assumptions satisfied by large real-world graph topologies). Also,
from the definition of 1-hop or 2-hop heuristics, the resulting Markov chain Mq

is still ergodic even if we use these heuristics.
From the standard theorem of ergodic chains [9], we conclude that there is

a unique probability row-vector µ ∈ <|Bq| such that µMq = µ. This vector gives
the expected fraction of steps the random walk spends at any vertex b ∈ Bq.
This vector can be computed either by doing repeated multiplications of Mq

with the starting probability distribution (which is 1 at the coordinate q and
0 elsewhere); or by computing the top eigenvector of I −M>q corresponding to
eigenvalue 1. The eigenvector computation can be done in time O(|Bq|3).

We now “lift” this random walk back to the random walk with restart on
the union of the relevant clusters ∪Sq. Since a cluster Si ∈ Sq, the value Ĉi(u, v)
gives the expected number of times the random walk with restart (starting at
q) visits v ∈ Si before exiting Si. Therefore, for a vertex v ∈ ∪Sq, the quantity

πv =
∑

Si∈Sq :v∈Si

∑
b∈Bq :Si parent of v

µbĈi(b, v) (5)

gives the expected number of times the random walk with restart visits v ∈ ∪Sq
between consecutive inter-cluster jumps. Scaling these values so that they sum
up to 1, gives the fraction of steps the random walk visits v ∈ ∪Sq, i.e., π̂v =

πv∑
u∈∪Sq

πu
. The k-nn query can then be answered by identifying k vertices with

the highest values of π̂v. The following theorem is now evident.

Theorem 1. If we label all the clusters as relevant, the computed values {π̂v |
v ∈ G} equal the exact ppr values w.r.t. the query vertex q.7

The k-nn query is then answered by top k vertices with the highest π̂v.

6 If G is not connected, we focus on the connected component containing q.
7 For directed graphs, only vertices reachable from q by a directed path get non-zero
ppr values, i.e. {π̂v > 0 | q  v ∈ G}.
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3.3 Dynamic Updates

To simplify the presentation, we describe how to handle addition of a single
edge e = {u, v}. When an edge is added, the transition probability matrices Ti
and T+

i for some clusters Si are changed, resulting in the change of Ci and Ei
according to Lemmas 1 and 2. The key observation here is that the changes in
Ti and T+

i are low-rank. Therefore, new Ci and Ei can be computed from their
old versions using the smw formula. Let S(u) be the set of clusters containing
u and S(v) containing v. We consider several cases.
Case 1: S(u) = S(v) = ∅. This case arises when both vertices u and v are new
vertices. In this case, we add both these vertices to a cluster Si with the smallest
size. We also designate Si as the parent cluster of both u and v. Note that the
edge e forms a disconnected component in Si. Therefore, the matrices Ci and
Ei can be computed directly without resorting to the smw formula.

Consider a random walk with restart (restarting at q) starting at u. Since the
random walk restarts with probability 1− α, it is easy to see that the expected
number of times the random walk visits u before exiting {u, v} is 1

1−α2 and the
expected number of times the random walk visits v before exiting {u, v} is α

1−α2 .
It is now easy to observe that if the edge e = {u, v} is added to cluster Si, it’s
count matrix can be computed from the original count matrix Ci as on the left.

0 0

Ci
...

...
0 0

0 . . . 0 1
1−α2

α
1−α2

0 . . . 0 α
1−α2

1
1−α2


We then use Lemma 2 to compute the new Ei as CiT

+
i

where the new T+
i is computed as

 T+
i

0 . . . 0 α
0 . . . 0 α

 .
Case 2: S(v) = ∅. In this case, vertex v is a new vertex.
We add vertex v to each cluster Si ∈ S(u) and designate
some cluster picked arbitrarily among these as the parent

cluster of v. We now use the smw formula along with Lemma 1 to compute the
new count matrix Ci. The probability transition matrix Ti is updated as follows.
Let du be the degree of u before adding v. Add a new row and a new column both
corresponding to vertex v to Ti and add matrix Ai of the same dimensions where
Ai has all entries zero except Ai(u,w) = −1/du(du + 1) for all w ∈ Si ∩ Γ (u),
Ai(u, v) = 1/(du + 1), Ai(v, u) = 1. Since Ai has only two non-zero rows that
are linearly-independent, it has rank 2. Thus we compute an svd decomposition
Ai = UΣV where Σ is a 2× 2 matrix and update Ci using Lemma 5. We again
use Lemma 2 to compute the new matrix Ei as CiT

+
i where the matrix T+

i is
updated by adding a new row corresponding to v with all entries zero and adding
a matrix A+

i of the same dimensions. Here A+
i is a matrix with all zero entries

except A+
i (u, b) = −α/du(du + 1) for all b ∈ Bi ∩ Γ (u) and Ai(v, q) = 1− α.

Case 3: u ∈ Si and v 6∈ Si. We again use the smw formula along with Lemma 1
to compute the new count matrix Ci. The probability transition matrix Ti is now
updated as follows. Let du be the degree of u before adding edge e = {u, v}. The
matrix Ti is updated by adding a matrix Ai of the same dimensions where Ai
has all entries zero except Ai(u,w) = −1/du(du + 1) for all w ∈ Si ∩Γ (u). Since
Ai has only one non-zero row, it has rank 1. Thus again we compute an svd
decomposition Ai = UΣV where Σ is a scalar and update Ci using Lemma 5.
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We use Lemma 2 to compute the new Ei as CiT
+
i where T+

i is updated as
follows. If v 6∈ Bi currently, we add a column corresponding to v with all entries
zero. Next we update T+

i as T+
i +A+

i where A+
i is a matrix with all zero entries

except A+
i (u, b) = −α/du(du+1) for all b ∈ Bi∩Γ (u) and A+

i (u, v) = α/(dv+1).
The case where u ∈ Si and v 6∈ Si is analogous and is omitted.
Case 4: u,v ∈ Si. The probability transition matrix Ti is now updated as fol-
lows. Let du be the degree of u and dv be the degree of v before adding edge
e = {u, v}. The matrix Ti is updated by adding a matrix Ai of the same di-
mensions where Ai has all entries zero except Ai(u,w) = −1/du(du + 1) for
all w ∈ Si ∩ Γ (u), Ai(u, v) = 1/(du + 1), Ai(v, w) = −1/dv(dv + 1) for all
w ∈ Si ∩ Γ (v), Ai(v, u) = 1/(dv + 1). Since Ai has only two non-zero rows that
are linearly-independent, it has rank 2. Thus again we compute an svd decom-
position Ai = UΣV where Σ is a 2× 2 matrix and update Ci using Lemma 5.

We use Lemma 2 to compute the new Ei as CiT
+
i where T+

i is updated
by adding a matrix A+

i of the same dimensions. Here A+
i is a matrix with

all zero entries except A+
i (u, b) = −α/du(du + 1) for all b ∈ Bi ∩ Γ (u) and

A+
i (v, b) = −α/dv(dv + 1) for all b ∈ Bi ∩ Γ (v).

4 Empirical Study

We evaluate our method, with respect to accuracy and efficiency, on both syn-
thetic and real-world graphs. We first give dataset description including synthetic
data generation and follow with experiment results.8

Synthetic data generation. Our graph generation algorithm is based on the
planted partitions model [6]. Simply put, given the desired number of vertices
in each partition we split the adjacency matrix into blocks defined by the parti-
tioning. For each block Bij , the user provides a probability pij . Using a random
process based on this probability we assign a 1, i.e. an edge, to each entry in each
block, and 0 otherwise. In other words, pij specifies the density of each block.

Using the above planted partitions model, we simulated a graph of 300K ver-
tices, with 100 partitions of equal size. We set pii = 10−3 and pi =

∑
j,j 6=i pij =

10−5, which yielded 909, 333 edges in the graph.
Real datasets. Our real graph datasets come from diverse domains such as
social, Web, and co-authorship networks, and vary in size from 1 million edges
to more than 20 million edges. We give a summary of our datasets in Table 1.

Table 1. Graph datasets (E: #edges, N: #vertices, real graph data source:
http://snap.stanford.edu/data) — C: #clusters and median conductance φ and size.

Dataset E N Description C med. φ med. size
Synthetic 300K 909K Planted partitions [6] 100 0.0210 3050
Web 1100K 325K http://nd.edu links 2793 0.0625 31
Amazon 900K 262K Product co-purchases 3739 0.1385 17
DBLP 1100K 329K Co-authorships 4670 0.2117 27
Live Journal 21500K 2700K Friendships 15252 0.5500 43

8 All experiments are performed on a 3-CPU 2.8 GHz AMD Opteron 854 server with
32GB RAM. The fly-back probability α for random walks is set to 0.15.
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4.1 Pre-computation

The first phase involves clustering a given graph and then computing auxiliary
information, i.e., the count and exit matrices C and E for each cluster.

There are several top-performing algorithms known for graph clustering such
as [1, 8, 15, 19]. We performed experiments using both METIS [15] and the An-
dersen et. al. algorithm [1]. For moderate sized graphs (e.g., with 1.1 million
edges), the qualities of query results obtained with either of the clustering algo-
rithms were comparable, both in running time and accuracy. However, for large
graphs (e.g., Live Journal with 21.5 million edges), METIS could not complete
the clustering computation while Andersen et. al. algorithm was able to compute
a clustering—it took about 35 seconds to compute each of the 15,000 clusters.

Amazon Web DBLP Live Journal
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40

tim
e 

(s
ec

on
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)

 

 

 Average time to extract one cluster

 Average C, E computation time per cluster

Fig. 2. Average time per cluster for two
phases of pre-computation: (1) clustering
and (2) C,E computation, for real graphs.

Table 1 shows the median conduc-
tance and size of the clusters found
in each dataset. As shown in [17], we
observe that good conductance clus-
ters are often of small size. Moreover,
graphs from different domains cluster
differently, where lower conductance
implies higher quality clusters.

In Figure 2, we show the pre-
computation time for our graphs
which consists of two parts; the first
(blue) bars show the average time to
extract a single cluster, and the sec-
ond (red) bars give the average time to compute its corresponding C and E
matrices. Note that as each graph clustered into different number of clusters,
and hence we show the average time per cluster.

4.2 Query Processing

After pre-computation, our method is ready to process queries. In order to mea-
sure performance, we conducted experiments with 100 randomly chosen query
vertices from each graph. We report average running time and average accuracy
on all graphs. To compute accuracy, we need the “true” ppr scores. Thus, we
also compute the exact ppr (Exppr) scores using power-iterations [10].

One of the measures for accuracy is “precision at k” which can be defined as
|Tk ∩ T̂k|/k ∈ [0, 1], where Tk and T̂k denote the sets of top-k vertices using the
exact and the test algorithm, respectively. However, precision can be excessively
severe. In many real graphs, ties and near-ties in ppr scores are very common.
In such a case, we would like to say that the test algorithm works well if the
“true” scores of T̂k are large. Therefore we use the Relative Average Goodness

(rag) at k which is defined as rag(k) =
∑

v∈T̂k
p(v)∑

v∈Tk
p(v) ∈ [0, 1] where p(v) denotes

the “true” ppr score of vertex v w.r.t. the query vertex.
Figure 3 shows the average rag accuracy versus response time achieved by

ClusterRank for all four real-world graphs. Exppr response time is also shown
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Fig. 3. Average accuracy (RAG(50)) vs. response time (sec.) for (from left to right)
Web, Amazon, DBLP and Live Journal of ClusterRank 1-hop and 2-hop heuristics
compared to Exppr. The optimal point is depicted with a star.

with an rag score of 1. For the Web graph, both 1-hop and 2-hop average
accuracy is quite close to that of the exact algorithm (0.90 and 0.97, respec-
tively). As one might expect, the best accuracy is achieved using 2-hop with
β=5K (i.e., max. number of boundary vertices) since in that case more clus-
ters are considered as relevant. Notice the results are similar for other graphs.

2-hop 1-hop
β =5K 0.9986 / 5.12 0.9865 / 2.18
β =1K 0.9892 / 2.86 0.9865 / 2.12

We show the accuracy and response times
on our synthetic graph on the right, which
suggests that high accuracy is achieved for
graphs with well-pronounced clusters.
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Fig. 4. NCDF distribution of RAG(50) scores for (a.1) Web, (b.1) Live Journal; and
CDF distribution of query response times for (a.2) Web, (b.2) Live Journal. (using the
1-hop heuristic and β=5K). Our method performs better on Web graph than on Live
Journal, possibly due to higher quality clusters. Optimal point is depicted with a star.

In Figure 4, we show the distribution of (a) accuracy scores and (b) running
times of all the 100 queries in Web and Live Journal. The ideal point is also
marked with a star on each figure. We observe that around 80% of the queries in
Web (and around 20% in Live Journal) have an accuracy more than 0.9. Also,
90% of the queries take less than 5 seconds in both graphs.
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Fig. 5. Accuracy and response time for
ClusterRank (squares) and Exppr (tri-
angles) with increasing graph size.

We further study the perfor-
mance of ClusterRank on increas-
ing graph sizes. We first merge clus-
ters from our largest graph Live Jour-
nal to build a connected graph G1/2M
with half a million edges, and keep
growing the number of clusters to
obtain a set of increasingly larger
graphs, {G1M ,G2M , . . . ,G21M}. As be-
fore, we conduct experiments on 100
randomly chosen query vertices from
G1/2M and keep the same query set
for the larger graphs to ensure that
the query vertices exist in all graphs.

Figure 5 shows both rag accuracy and response time versus graph size for
ClusterRank and Exppr. ClusterRank’s accuracy remains ≈ 0.70 when
the graph becomes more than 40× larger. Moreover, its response time stays
almost constant at around 13 seconds across graphs with increasing size, while
Exppr’s response time grows up to 150 seconds following a quadratic trend.

’Christoph Zenger’ ’Shigehiko Katsuragawa’
’Hans-Joachim Bungartz’ ’Joo Kooi Tan’

’Ralf-Peter Mundani’ ’Yoshinori Otsuka’
’Ralf Ebner’ ’Feng Li’

’Tobias Weinzierl’ ’Masahito Aoyama’
’Anton Frank’ ’Shusuke Sone’

’Ioan Lucian Muntean’ ’Takashi Shinomiya’
’Thomas Gerstner’ ’Heber MacMahon’
’Clemens Simmer’ ’Junji Shiraishi’
’Dirk Meetschen’ ’Roger Engelmann’
’Susanne Crewell’ ’Kenya Murase’

Next, we analyze our
results qualitatively. We
build the DBLP graph
for years 2000-2007, and
run our method on 100
randomly chosen authors.
We list the top-proximity
authors we found to two
example authors.9 Bold-
faced authors are found to
be past or future collaborators, while others are highly related with overlapping
research interests (respectively, parallel computing and biomedical imaging).

4.3 Dynamic Updates

To study the performance of ClusterRank on dynamic updates, we use DBLP
which is a time-varying graph by years. First, we build a DBLP co-authorship
graph of 500K edges which spans from 1959 to 2001. Then, we perform updates
to our clusters by introducing the next 1K edges in time. Note that some new
edges also introduce new vertices to the graph.

Figure 6 (left) shows the distribution of the number of clusters affected per
edge for the 1K new edges added, and (right) the distribution of update times.
We note that more than 90% of the new edges cause fewer than 5 clusters to
be updated. Moreover, 90% of the updates take less than 100 seconds, including
reading/writing of the C and E matrices of the affected clusters from/to the disk.

9 Note that direct neighbors, i.e. co-authors, are omitted from the top list as they
constitute trivial nearest neighbors.
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Fig. 6. Distributions of (left) number of clusters affected
and (right) affected cluster update times, per new edge.

Finally Table 2 shows
ClusterRank’s accu-
racy on the time-evolving
DBLP graph; i.e., after
the addition of (a) 1K
and (b) 500K new edges
to it, which initially
had 500K edges. We
notice that the accuracy
remains quite stable over
the course of the changes to the graph, even after when the graph size doubles.

Table 2. Accuracy on DBLP with 500K, and after it grows to 501K, and 1M edges.

DBLP(500K) DBLP(501K) DBLP(1M)
2-hop 1-hop 2-hop 1-hop 2-hop 1-hop

β =5K 0.8887 0.8241 0.8717 0.8124 0.8840 0.8375
β =1K 0.8565 0.8210 0.8446 0.8095 0.8583 0.8327

5 Related Work

Scalable and efficient algorithms for exact as well as approximate computation of
Page Rank (pr) scores in graphs has been studied widely [5, 7, 14, 16, 18, 20]. On
the other hand, computing the Personalized Page Rank (ppr) scores for a given
vertex, which is the central topic of our paper, is a considerably more general
and harder problem than computing pr scores. The reason is that pr scores
of vertices in a graph are stationary probabilities over a network-wide random
walk; hence, there is a single (global) pr score of each vertex. On the contrary,
ppr scores change as a function of the start vertex, and thus are a significant
generalization of pr scores.

Designing efficient algorithms to compute ppr scores has been an active
topic of relatively recent research due to its many applications including link-
prediction, proximity tracking in social networks and personalized web-search.
Tong et al. [25] develop fast methods for computing ppr scores. They exploit
community structure by graph partitioning and correlations among partitions
by low-rank approximation. However, their method is tuned for static graphs
and does not address dynamic updates. The later work by Tong et al. [26] is
the one which is closely related to our work; here, the authors consider prox-
imity tracking in time-evolving bipartite graphs and develop matrix algebraic
algorithms for efficiently answering proximity queries. The assumption that the
graph is bipartite, and further, the assumption that one of its partitions is of a
small size is critical to their design. For instance, these assumptions play a key
role in constructing a low-rank approximation of the graph adjacency matrix,
which is then perturbed to account for edge additions over time.

Sarkar and Moore [21] develop fast external memory algorithms for comput-
ing ppr scores on disk-resident graphs. They focus on suitable cluster represen-
tations in order to optimize disk accesses for minimizing query-time latency for



Fast Nearest Neighbor Search on Large Time-Evolving Graphs 15

static graphs. MapReduce based methods [3] optimized for disk-resident graphs
also cannot deal with dynamic graphs.

The development of efficient algorithms based on linear algebraic techniques
and segmented random-walks for fast computation of ppr scores on static graphs
has also been the subject of several works. Haveliwala [12] pre-compute multiple
importance scores w.r.t. various topics for each Web page towards personaliza-
tion; at query time, these scores are combined to form a context-specific, com-
posite ppr scores. Jeh and Widom [13] propose efficient algorithms to compute
“partial vectors” encoding personalized views, which are incrementally used to
construct the fully personalized view at query time. Fogaras et al. [10] use sim-
ulated random walk segments to approximate ppr scores by stitching the walk
segments to form longer walks. Chakrabarti et al. [4, 11] pre-compute random
walk “fingerprints” for a small fraction of the so-called hub vertices. At query
time, an “active” subgraph bounded by hubs is identified where ppr scores are
estimated by iterative ppv decompositions.

Most related to ours is the work by Bahmani et al. [2], which also uses
a divide-and-conquer approach: pre-computation (random walk segments) and
query-time combination of intermediate results (random walk using segments),
with fast query and update times. The main difference is their underlying in-
frastructure; [2] needs distributed shared memory for its employed random-
access Monte Carlo method, while we can work with fully distributed commod-
ity systems—once the graph is partitioned, the compute nodes operate indepen-
dently, and a dedicated node combines results only from relevant nodes.

6 Conclusion
We propose ClusterRank, an efficient method for answering ppr-based k-nn
queries in large time-evolving graphs. Our method addresses three major chal-
lenges associated with this problem: (1) fast k-nn queries; at query time, we
operate on a small subset of clusters and their pre-computed information, and
achieve a response time sub-linear in the size of the graph, (2) efficient incre-
mental dynamic updates; thanks to our divide-and-conquer approach, addition
or deletion of an edge/vertex triggers the update of only a small subset of clus-
ters, which involves at most rank-2 updates to their pre-computed information,
and (3) spilling to disk; as both query processing and dynamic updates operate
on subset of clusters, only a small fraction of the graph is loaded into memory at
all times while the rest sits on disk. As such, the modular design of our approach
is a natural way to handle both large and time-evolving graphs simultaneously.
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