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Abstract. Jointly clustering the rows and the columns of large matri-
ces, a.k.a. co-clustering, finds numerous applications in the real world
such as collaborative filtering, market-basket and micro-array data anal-
ysis, graph clustering, etc. In this paper, we formulate an information-
theoretic objective cost function to solve this problem, and develop a
fast agglomerative algorithm to optimize this objective. Our algorithm
rapidly finds highly similar clusters to be merged in an iterative fash-
ion using Locality-Sensitive Hashing. Thanks to its bottom-up nature, it
also enables the analysis of the cluster hierarchies. Finally, the number
of row and column clusters are automatically determined without requir-
ing the user to choose them. Our experiments on both real and synthetic
datasets show that the proposed algorithm achieves high-quality cluster-
ing solutions and scales linearly with the input matrix size.

1 Introduction

Clustering is a widely used technique that aims to group similar objects together,
with numerous applications such as data summarization, classification, and out-
lier detection. Typically, the input data is represented as a two-mode matrix,
e.g. customer-product purchasing data, document-term occurrence data, user-
webpage browsing data, etc. Traditional clustering focuses only on one-mode,
that is, clustering one dimension of the data matrix based on similarities along
the second dimension, e.g., document clustering based on term similarity.

Another class of methods focuses on the two-mode clustering problem (a.k.a.
bi-, co-, or block clustering), which aims at simultaneously clustering both di-
mensions of the data matrix, e.g. document clusters based on term similarity
together with term clusters based on document appearance similarity. An illus-
tration of co-clustering is given in Fig. 1. Co-clustering has many applications
such as micro-array data analysis, market-basket analysis, (bi-partite) graph
clustering, to name but a few. The main advantage of co-clustering is that the
joint clustering of the rows and columns fully and succinctly summarizes the
underlying structure of relations in the data for both types of objects.

In this paper, we propose a fast agglomerative hierarchical co-clustering tech-
nique, that scales linearly with the input matrix size. Our motivation is that
agglomerative clustering techniques are known to alleviate the resolution-limit
problem in clustering [10], being able to find smaller size clusters effectively. Our
proposed algorithm, called CoClusLSH, rapidly finds the most similar objects
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to merge, using ideas from Locality-Sensitive Hashing, and iteratively builds the
row and column cluster hierarchies. The two hierarchies are built in an alternat-
ing fashion, such that the clustering of both object types is intertwined.

In clustering, one of the main challenges is to determine the “correct” or a
“good” number of clusters. In hierarchical clustering, this challenge translates
to picking a level of the hierarchy to “cut”, the subtrees of which determine the
final clustering. It is often a hard task for the user to specify the number of
output clusters, especially for large datasets. We circumvent this challenge by
formulating an information-theoretic co-clustering objective cost function, based
on the number of bits needed to encode the input matrix. Our goal then is to find
a clustering that achieves as low of a cost as possible. We update this cost while
growing up our cluster hierarchies and merge wo clusters only when it yields a
lower cost. This principled way of building the clustering is exactly what guides
us in “when to stop”—stop growing the hierarchies when no further merges can
reduce the objective cost. As such, the number of sub-hierarchies at algorithm
termination automatically gives us the number of row and column clusters.

The main merits of our method over the (cited) previous proposals are that
(i) it automatically finds a good number of clusters [9,19], (ii) achieves linear
scalability [12], and (iii) provides the cluster hierarchies [7] (see §4 for details).
None of the previous approaches exhibits all three properties at the same time.
We summarize our main contributions as follows:

– We propose a new technique for agglomerative co-clustering, and formulate
an information-theoretic objective that enables us to determine the number
of row/column clusters automatically in a principled data-driven way,

– We develop a fast algorithm called CoClusLSH that rapidly finds similar
clusters to merge in order to grow the row/column hierarchies,

– We show that CoClusLSH scales linearly with the input matrix size,
– Experiments on synthetic and real datasets with ground truth cluster labels

demonstrate the effectiveness and efficiency of our method.

2 Proposed Method

2.1 Problem Definition
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Fig. 1. (a) Example graph with n=900, and
m=180, where (b) CoClusLSH finds k=5
type-1 and l=3 type-2 clusters.

We consider the problem of co-
clustering, i.e. joint clustering the
rows and columns of a large binary
matrix (such a matrix can be thought
of as a bipartite graph). In particular,
given a bipartite graph with n type-
1 nodes, m type-2 nodes, and their
binary connectivity information, our
goal is to cluster the type-1 nodes into
k, and the type-2 nodes into l dis-
joint clusters such that the nodes in
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the same cluster have “similar connectivity”. Intuitively, a set of nodes have
similar connectivity if their neighbors “highly” overlap (for e.g., see Fig. 1).

Given the above problem description, two main questions arise: (P1) how to
choose the number of node clusters k and l?, and (P2) how to assign the nodes to
their “proper” clusters? (P2) aims at summarizing the adjacency matrixA of the
graph with homogeneous, rectangular regions of high and low densities, while
(P1) deals with choosing the right number of clusters and hence the number
of these rectangular regions. Roughly speaking, having more clusters allows us
to obtain more homogeneous regions. At the very extreme we can have n × m
“regions” each with perfect 0 or 1 density which, however, does not provide any
summary. As such, a co-clustering algorithm should achieve a good trade-off
between homogeneity and the number of regions. Intuitively, this trade-off calls
for model selection, which brings us to the next section.

2.2 Problem Formulation

In order to achieve a proper balance between the homogeneity and the number
of the rectangular regions, we use a similar objective function to [7] founded on
the Minimum Description Length (MDL) principle [25]. MDL provides a model
selection criterion based on lossless compression principles, where the objective is
to compress/transmit/store the adjacency matrixA using as few bits as possible.
The compression cost consists of two main parts: the number of bits required
to encode (1) the clustering “summary” (model description cost), and (2) each
rectangular region (data description cost) given the model.

Next we describe each part in detail in the context of our objective function
after providing the notation.

Notation. Let k and l respectively denote the number of disjoint row- and
column-clusters, and R : {1, 2, . . . , n} → {1, 2, . . . , k} and C : {1, 2, . . . ,m} →
{1, 2, . . . , l} denote the assignments of rows to row-clusters and columns to
column-clusters. We refer to (R,C) as a mapping. To better describe a map-
ping, let us rearrange the rows and columns of the adjacency matrix A such
that all rows corresponding to row-cluster-1 are listed first, followed by rows
in row-cluster-2, and so on. We also rearrange the columns in a similar fashion
using column-cluster assignments. One can imagine that such a rearrangement
sub-divides A into k × l two-dimensional, rectangular blocks (as in Fig. 1 (b)),
which we will refer to as Bij , i = 1, . . . , k and j = 1, . . . , l. Finally, let (ri, cj)
denote the dimensions of Bij , where ri denotes the size of row cluster i, and cj
denotes the size of column cluster j.

Objective Function. Our objective function consists of a two-part (lossless)
compression cost of the adjacency matrix A. This cost can be thought of as
the total number of bits required to encode A. The first part is the model
description cost that consists of describing the mapping (R,C). The second part
is the data description cost that consists of encoding the sub-matrices (i.e., the
Bij “blocks”), given the mapping. Intuitively, a good choice of (R,C) would
compress A well, and yield a low total description cost. In particular:
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The Model Description Cost consists of encoding the number of row and column
clusters and the corresponding mapping.

– The matrix dimensions of A require log� n+ log� m bits, where log� denotes
the universal code length for integers.1 This term is independent of any
particular mapping.

– The number of row and column clusters (k, l) require log� k + log� l bits.
– The row and column cluster assignments with arithmetic coding require

nH(P ) + mH(Q) bits, where H denotes the Shannon entropy function, P
is a multinomial random variable with the probability pi =

ri
n and ri is the

size of the i-th row cluster, 1 ≤ i ≤ k. Similarly, Q is another multinomial
random variable with the probability qj =

cj
m and cj is the size of the j-th

column cluster, 1 ≤ j ≤ l.

The Data Description Cost consists of encoding the actual blocks.

– For each block Bij , i = 1, . . . , k, j = 1, . . . , l, encoding n1(Bij), i.e. the
number of 1s it contains, takes log2(ricj + 1) bits.

– To encode the actual blocks Bij , we first calculate their density Pij(1) =
n1(Bij)/n(Bij), where n(Bij) = n1(Bij)+n0(Bij) = ricj . Then, the number
of bits required to encode each block can be written as:

E(Bij) = −n1(Bij) log2(Pij(1))− n0(Bij) log2(Pij(0)) = n(Bij)H(Pij(1)).

Overall, the Total Encoding Cost (Length L(A;R,C) in bits) becomes

L(A;R,C) = log� n+ log� m+ log� k + log� l+

k∑

i=1

ri log2(
n

ri
) +

l∑

j=1

cj log2(
m

cj
) +

k∑

i=1

l∑

j=1

(
log2(ricj + 1) + E(Bij)

)
(1)

2.3 Proposed Algorithm CoClusLSH

Minimizing our objective function in Equ. (1) is intractable for very large graphs
as the number of possible orderings of rows/columns is combinatorial. Thus, we
develop an algorithm that aims at finding a fast approximate solution.

Our CoClusLSH algorithm starts by assigning each row and column in A to
their respective clusters. In the main loop, it alternates between trying to merge
candidate column and row clusters, for reduced cost. In order to rapidly find
sufficiently similar candidate clusters, it employs the LSH technique [11] and
generates a signature for each cluster which is then used to hash the clusters into
multiple hash tables. Candidate clusters hashed to the same buckets are then
tested for merge. The algorithm terminates when no more merges can be done
for lower cost. The clusters at termination constitutes the final set of clusters,
and the intermediate merge operations define the cluster hierarchies.

We provide the detailed pseudocode for CoClusLSH in Algorithm 1.

1 The optimal number of bits required to encode a positive integer x whose range is
unknown is log� x ≈ log2 x+ log2 log2 x+ . . . of the positive terms [25].
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Algorithm 1. CoClusLSH

Input: n×m adjacency matrix A, LSH parameters r, b
Output: A heuristic solution towards minimizing total encoding L(A;R,C):

number of row and column groups (k∗, l∗), associated mapping (R∗, C∗)
1. Set R0:={1, 2, . . . , n} → {1, 2, . . . , n} Set C0:={1, 2, . . . ,m} → {1, 2, . . . ,m}

2. Set k0=n, l0=m. Let T denote the outer iteration index. Set T = 0.
3. repeat
4. CT+1, lT+1:=Merge-ColClus(A, CT , lT , kT , r, b)
5. RT+1, kT+1:=Merge-RowClus(A, RT , kT , lT , r, b)
6. if L(A;RT+1, CT+1) ≥ L(A;RT , CT ) then
7. return (k∗, l∗)=(kT , lT ), (R∗, C∗)=(RT , CT )
8. else Set T = T + 1 end if
9. until convergence

Procedure 1. Merge-ColClus (Procedure 2 Merge-RowClus is similar)
Input: n×m adjacency matrix A, CT , lT , kT , LSH parameters r, b
Output: CT+1, lT+1

1. {Step 1. Generate signatures} initialize signature matrix S[i][j] ∈ R
rb×lT

2. if T = 0 then {use Jaccard similarity // generate min-hash signatures }
3. for i = 1 to rb do
4. πi ← generate random permutation (1 . . . n)
5. for j = 1 to lT do S[i][j] ← minv∈Njπi(v) end for
6. end for
7. else {use cosine similarity //generate random-projection signatures}
8. for i = 1 to rb do
9. rndi ← pick a random hyperplane ∈ R

kT×1

10. for j = 1 to lT do S[i][j] ← sign(P:j(1) · rndi) end for
11. end for
12. end if
13. {Step 2. Generate hash tables}
14. for h = 1 to b do
15. for j = 1 to lT do hash(S[(h− 1)r + 1 : hr][j]) end for
16. end for
17. {Step 3. Merge clusters from hash tables }
18. Build candidate groups: union of elements that hash to at least one same

bucket in all hash tables, i.e. c1, c2 ∈ g if hashh(c1) = hashh(c2) for ∃ h.
19. for each each candidate group g do
20. while more merges happen do
21. cr ← pick a random element (col. cluster) from g
22. for all clusters c ∈ g, CT (c) �= CT (cr) do
23. LU ← update cost when CT (c) and CT (cr) are merged by Equ. (2)
24. if LU < 0 then
25. lT = lT − 1. CT (c) = CT (cr) = min(CT (c), CT (cr)).
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26. Merge Bic and Bicr ∀i, 1 ≤ i ≤ kT .
27. end if
28. end for
29. end while
30. end for
31. lT+1 = lT , CT+1 = CT

Algorithm Details. Merge-ColClus, and similarly Merge-RowClus, con-
sists of three main steps: (1) generate LSH signatures (Line 1), (2) generate hash
tables (Line 13), and (3) merge clusters using hash buckets (Line 17).

In the first iteration of Merge-ColClus, i.e. T = 0, the clusters consist of
singleton nodes. As the similarity measure, we use Jaccard similarity which is
high for those nodes with many exclusive common neighbors. Min-hashing is
designed to capture the Jaccard similarity between binary vectors (Lines 2-6).
For T > 0, the clusters consist of multiple nodes. As the similarity measure of two
(column) clusters c1 and c2, we use the density similarity of their corresponding
row blocks Bic1 and Bic2 , ∀i. As such, each column cluster c can be represented
by a length kT vector in which the entries denote the density Pic(1) of each
row block i. We use their cosine similarity to compare two real-value vectors. To
capture cosine similarity, we generate random-projection-based signatures (Lines
7-12). At the end of step (1), each cluster has a length-rb signature.

In step (2), we split the signature of each cluster into b length-r sub-signatures,
and hash each sub-signature using standard hashing (Lines 14-16).

Step (3) involves the main merging operations. First we construct the group
of candidate clusters to be merged. We put all clusters that hash to the same
hash bucket in at least one hash table into the same group (Line 18). Next, we
iterate over the groups to identify those clusters the merge of which will reduce
the total cost (Line 19). We pick a cluster at random from a given group and test
it against other clusters in the group, where we merge two clusters if the cost
reduces. We continue the merges until no more merges can be done for lower
cost (Lines 20-30). By focusing only on the highly similar candidate clusters
within groups, Merge-ColClus omits the consideration of merge between all
clusters; this contributes to a reduction in the running time while enabling the
merge among good candidate clusters that are highly similar.

A crucial computation in step (3) is to update the total cost when two candi-
date clusters are merged (Line 23). In the following we show that the update-cost
LU can be computed locally without requiring the re-computation of the total
cost. As such, we decide to merge two clusters if their update-cost is less than 0
(Line 24), i.e. when the merge reduces the total objective cost.

Updating the Total Objective Cost. When two column (or row) clusters are
merged, we can analyze how the encoding cost is expected to change. Without
loss of generality, assume two column clusters of sizes c1 and c2 are to be merged.

Lemma 1. If two clusters are merged, then the total cluster assignment cost,
i.e.

∑l
j=1 cj log2(

m
cj
), will decrease.
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Proof. The assignment cost cj log2
m
cj

remains the same for cj �= c1, c2. We have

(c1 + c2) log2
m

(c1 + c2)
= c1 log2 m+ c2 log2 m− c1 log2(c1 + c2)− c2 log2(c1 + c2)

< c1 log2 m+ c2 log2 m− c1 log2 c1 − c2 log2 c2 = c1 log2
m

c1
+ c2 log2

m

c2
. ��

Lemma 2. If two clusters are merged, then total cost
∑k

i=1

∑l
j=1 log2(ricj +1)

of encoding the number of 1s for blocks will decrease.

Proof. The log2(ricj + 1) cost remains the same for clusters cj �= c1, c2, ∀i.
log2(ri(c1 + c2) + 1) = log2(ric1 + ric2 + 1) < log2(r

2
i c1c2 + ric1 + ric2 + 1)

= log2((ric1 + 1)(ric2 + 1)) = log2(ric1 + 1) + log2(ric2 + 1).

Lemma 3. When two clusters merge, block encoding cost
∑k

i=1

∑l
j=1 E(Bij)

will increase, i.e., if Bi = [Bi1Bi2], then E(Bi1) + E(Bi2) ≤ E(Bi), ∀i.
Proof. E(Bij) remains the same for clusters cj �= c1, c2, ∀i. We have ∀i,

E(Bi) = n(Bi)H

(
n1(Bi)

n(Bi)

)
= n(Bi)H

(
n(Bi1)PBi1(1) + n(Bi2)PBi2(1)

n(Bi)

)

≥ n(Bi1)H(PBi1 (1)) + n(Bi2)H(PBi2 (1)) = E(Bi1) + E(Bi2)

where the inequality follows from the concavity of the entropy function H(·).
(also note that n(Bi1) + n(Bi2) = n(Bi)). 
�

Overall, the difference between the increase in the block encoding cost
(Lemma 3) and the decrease in the cluster assignment and number of non-zeros
encoding costs (Lemma 1 & 2) will determine whether two candidate clusters
are merged or not (in Line 23 of Procedure 1). This difference can be computed
quickly without requiring the re-computation of the total cost. Specifically, the
total update-cost LU when two (column) clusters of sizes c1 and c2 are merged
(where there are totally m columns, and l column clusters) is equal to

LU = −c1 log2
m

c1
− c2 log2

m

c2
+ (c1 + c2) log2

m

(c1 + c2)∑

i

− log2(ric1 + 1)− log2(ric2 + 1) + log2(ri(c1 + c2) + 1)

∑

i

(
− E(Bi1)− E(Bi2) + E(Bi)

)
− log�(l) + log�(l − 1) (2)

Table 1. Computational complexity of
CoClusLSH steps

T = 0 T ≥ 1

Step 1. O(n1(A)rb) O(klrb)
Step 2. O((n+m)rb) O((k + l)rb)
Step 3. O((n+m)M) O((k + l)M)

where the last two terms account for
the difference in encoding cost of the
number of column clusters, which will re-
duce by 1 in case of a merge.

Finally, we provide the time complex-
ity for all steps of our method in Table 1.
Details are omitted for lack of space.

3 Experiments

We next evaluate our method based on (1) clustering quality, and (2) scalability.
on both real and synthetic datasets (with/without ground truth cluster labels).
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3.1 Synthetic Datasets

Data Generation. To create synthetic data matrices, we use two different
schemes. In the first scheme, we fix a cluster size s, and increase the number of
such clusters k to obtain larger and larger graphs. In the second scheme, we fix
the number of clusters, and increase the size of the clusters to obtain various
size graphs. The generated matrices are diagonally strong, i.e. the density of the
diagonal blocks is p, whereas the off-diagonal blocks are all-zeros. Next, we add
random noise by adding ε fraction of non-zeros in the original matrix at random
entries, to study the effect of varying noise levels on the clustering performance.

We call the first set of synthetic graphs as CAVE1 graphs, with s = 500,
2 ≤ k ≤ 11, p = 0.9, and ε = {0.1, 0.2, 0.3, 0.4}. This gives us 4 sets of 10 graphs
of various sizes, where each set of graphs have a different level of noise.

The second set of graphs are called CAVE2 graphs, with s = 50t, 1 ≤ t ≤ 10,
k = 10, and p and ε as before. This way we also obtain 40 graphs. We provide
statistics of the largest CAVE1 and CAVE2 graph with 40% noise in Table 2.

Clustering Quality. We first study the effect of noise on the clustering quality.
As we work with synthetic datasets, we have the ground truth for the cluster
assignments and thus can compute the true/optimal encoding costs.
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Fig. 2. (a,b) True vs. CoClusLSH cost (y-axes), (c,d) Optimal vs. CoClusLSH NMI
(y-axes). (both avg. over 10 runs, bars depict σ) on the largest (a,c) CAVE1 and (b,d)
CAVE2 graph with varying noise levels 10%-40% (x-axes).

0

1

2

3

4

5

6

7

8

9

2 3 4 5 6 7 8 9 10 11

To
ta

l c
os

t (
in

 b
its

) 
M

ill
io

ns
 

number of clusters 
(cluster size=500, ϵ = 40%)  

CAVE1 graphs  
True cost
CoClusLSH min cost
CoClusLSH avg cost

0

1

2

3

4

5

6

7

50 100 150 200 250 300 350 400 450 500

To
ta

l c
os

t (
in

 b
its

) 
M

ill
io

ns
 

cluster size 
(#clusters=10, ϵ = 40%)  

CAVE2 graphs  
True cost
CoClusLSH min cost
CoClusLSH avg cost

Fig. 3. True cost vs. best and avg. CoClusLSH cost (over 10 runs, bars depict σ) on
all (left) CAVE1 and (right) CAVE2 graphs, when ε = 40%

In Figure 2 (a,b) we show the true cost in comparison to our CoClusLSH’s
cost for the largest CAVE1 and CAVE2 graphs, for the increasing noise levels. We
observe that the gap between the optimal and CoClusLSH’s cost increases with
more noise, however CoClusLSH still finds good approximate solutions.

To assess the cluster assignment quality, we use the Normalized Mutual In-
formation (NMI), a widely used measure for evaluating the clustering accuracy
of a method against the ground truth clustering [18]. The ideal NMI score is 1.
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Table 2. Datasets used in this work

Dataset A Dim. n×m n1(A)

US-SENATE 108 senators × 696 bills 40, 609
US-HOUSE 451 rep.s × 1, 646 bills 501, 602
POLBLOGS 362 blogs × 5, 895 words 776, 870
DBLP 1, 230 papers × 1, 230 papers 19, 267
CLASSIC 3, 893 doc.s × 4, 303 words 176, 347

NIPS 10, 617 words × 2, 864 authors 160, 059
YOUTUBE 77, 381 users × 30, 087 groups 260, 240

CAVE1–40%ε 5, 500 × 5, 500 3, 289, 021
CAVE2–40%ε 5, 000 × 5, 000 2, 974, 778

Figure 2 (c,d) depicts CoClusLSH’s average NMI score for the largest
CAVE1 and CAVE2 graphs, for increasing noise. As before, we observe that NMI
drops slightly with more noise, while it remains > 0.9 at all noise levels.

Next, we study the effect of increasing number of clusters (as in CAVE1 graphs)
and of increasing cluster sizes (as in CAVE2 graphs) on the performance. Figure 3
shows the true encoding cost againstCoClusLSH’s best and average cost across
all CAVE1 and CAVE2 graphs, respectively, for the most challenging case of ε =
40%. We observe that CoClusLSH recovers a low cost solution in all cases.
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Fig. 4. Total running time (in sec) of our CoClusLSH on
(left) CAVE1 and (right) CAVE2 graphs with varying noise

Scalability. Next,
we study the growth
in the running time
of CoClusLSH with
increasing graph size.
In §2.3 we showed
that the running time
is proportional to the
number of nonzeros,
the number of rows
and columns, and the
maximum number of clusters that hash to the same group. In Figure 4, we
show the total time w.r.t. these parameters, for all CAVE1 and CAVE2 graphs,
at varying noise levels. We observe that the run time grows linearly, and that
more noise demands more time for our algorithm to converge.

3.2 Real Datasets

Data description. Our real-world datasets include (Table 2): US-SENATE with
senators and US-HOUSE with The House representatives voting (1 ‘yes’, 0 ‘no’) on
congressional bills in the 111th US Congress; POLBLOGS with political blogs and
the words they use; DBLP with academic papers and their commonly used terms
relations; and finally CLASSIC with documents and the words they contain.

For the five datasets described above, we have the ground truth labels but
only for the rows. In particular US-SENATE and US-HOUSE both consist of two
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classes; (1) liberal and (2) conservative congressmen, POLBLOGS also has two
classes; (1) liberal and (2) conservative blogs, DBLP contains papers from four
classes of venues; (1) SIGIR (information retrieval), (2) STOC+FOCS (the-
ory), (3) AAAI (artificial intelligence), and (4) TODS (database systems), and
finally CLASSIC consists of documents from three different classes; (1) MED-
LINE (medical journals), (2) CISI (information retrieval) and (3) CRANFIELD
(aero-dynamics). In addition, we used two more real datasets, namely NIPS and
YOUTUBE, with many rows and columns for our scalability experiments. Unfor-
tunately, there are no class labels for the rows or columns for these datasets.

Clustering Quality. We evaluate CoClusLSH’s clustering performance using
two clustering quality measures, purity and NMI as before [18], using the ground
truth labels of the row nodes (note that we do not have the ground truth labels
for the column nodes for our datasets, thus we cannot compute the optimal
encoding cost as for the synthetic datasets).

Purity measures the coherence of labels within each cluster. It, however, is
expected to increase with the number of output clusters—in the extreme case
where each node belongs to its own cluster, purity becomes 1. NMI can trade
off the quality of the clustering against the number of clusters.

Table 3. CoClusLSH clustering qual-
ity (purity and NMI) on real datasets
(avg. over 10 runs, all standard devia-
tions were < 0.03). Also shown is k∗,
avg. number of clusters found and k,
the true number of clusters.

Dataset Purity
(avg)

NMI
(avg)

k∗

(avg)
k

(true)

US-SENATE 0.9960 0.5569 12.0 2
US-HOUSE 0.9934 0.5172 28.9 2
POLBLOGS 0.5539 0.0142 18.9 2
DBLP 0.4723 0.0949 6.6 4
CLASSIC 0.3987 0.0241 5.0 3

We report both measures and the
number of clusters CoClusLSH out-
puts on our real datasets in Table 3.
We observe that CoClusLSH does par-
ticularly well on the US-SENATE and
US-HOUSE datasets, while clustering accu-
racy in comparison is lower for the other
datasets. Looking at the output clusters
by CoClusLSH, we realize that the clus-
ter structure in the congress datasets is
well pronounced, while the rest of the
real datasets are quite sparse with no
clear cluster structure. We show an ex-
ample output of CoClusLSH on the
US-HOUSE and DBLP datasets in Figure 5,
where CoClusLSH performs well on re-
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Fig. 5. Adjacency matrix of (left) US-HOUSE and (right) DBLP, with rows and columns
arranged by the cluster assignments of CoClusLSH.
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Fig. 6. Total running time of CoClusLSH on grow-
ing (left) NIPS and (right) YOUTUBE graphs.

Scalability. Finally, we
also experimentally study
that the running time of
CoClusLSH with respect
to the input size on real
graphs. For running time
measurements, we use the
NIPS and YOUTUBE datasets
with many rows each. To
generate graphs of growing

size, we increasingly sample the rows of these matrices, and report average
running time over 10 runs in Figure 6. We observe that the running time grows
linearly with the input graph size.

4 Related Work

Clustering algorithms in the row-mode only include k-means and its parameter-
free variants [13,23], spectral [21], and (probabilistic) hierarchical cluster-
ing [15,20,27]. Our problem deals with simultaneous clustering of rows and
columns, known as bi(dimensional)-, co-, or block clustering. Information-
theoretic co-clustering [9] employs a lossy coding scheme to co-cluster a two-
dimensional joint probability distribution, however, it requires the number of
clusters as input. Conjunctive clustering [19] finds top-k largest bi-clusters in
bipartite graphs, but requires two parameters for lower-bounding cluster sizes
in each dimension, a diversity parameter controlling overlap, and a density pa-
rameter.

Hierarchical tiling [12] extracts nested tiles (or blocks) of various densities
in the adjacency matrix. While parameter-free,it involves a quadratic prepro-
cessing step for row/column re-ordering. Bi-clustering has also been explored in
bioinformatics [1,24] often requiring the number of clusters as user input.

Cross-associations [7] automatically selects the number of clusters and scales
well to large graphs. It has been used in graph partitioning [6], and extended
to time-evolving [28] and attributed graphs [4]. Our approach exhibits the same
merits as [7], while enabling the cluster hierarchies.

Other relevant work to ours include frequent itemset and association rules
mining [3,5,14], where the support parameter is critical. In information retrieval
LSI [8] uses SVD to find latent concepts in the data matrix, which requires
the number of hidden concepts. In addition, subspace clustering [2,17] aims at
finding all the dense clusters in all subspaces. These methods often take input
parameters such as density and size thresholds to quickly scan their search space
(also see [16] for a survey on subspace, correlation, and pattern-based clustering).

Finally, LSH has been used to accelerate several other problems, such as
similarity search [26], outlier detection [29], and k-nearest neighbor search [22].
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5 Conclusion

We propose an approach for co-clustering large binary matrices, based on
an information-theoretic objective. To solve our objective, we develop a fast,
bottom-up clustering algorithm that rapidly finds the most similar rows/columns
to merge using locality-sensitive hashing, and determines the number of clusters
automatically. We demonstrate the effectiveness and scalability of the proposed
approach on real and synthetic datasets, where our algorithm recovers the clus-
ter structure with high accuracy, and has a running time that grows linearly
with the input matrix size. Our source code is freely available for academic use.2
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