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Internet 

Biological Network  

Social Network  

Networked	  systems	  are	  everywhere!	  

Manipulating Robustness of Large Networks 

Road network Power grid Phone network 

Terrorist Network  

How	  robust	  are	  these	  networks?	  



Network	  Robustness	  
n  Robustness is the ability of a network                  

to continue performing well                                
when it is subject to failures or attacks.  
q  random failure (server down) 
q  cascading failure (virus propagating) 
q  targeted attack (carefully-chosen agents down) 

n  Goal: precise definition that can be computed 
q  Computable measure allows to: 

n  compare two networks 
n  modify existing network to improve its robustness 
n  design robust new network  
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Main	  questions	  
How to measure the robustness  

of a given network? 

How to modify a given network  
to improve its robustness? 
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Main	  questions	  
n  How to measure the robustness of a given 

network? 
q  interpretable 
q  (strictly) monotonic 
q  captures redundancy 
q  … 

n  How to modify a given network to improve its 
robustness? 
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Main	  questions	  
n  How to measure the robustness of a given 

network? 
q  interpretability, monotonicity, redundancy, … 

n  How to modify a given network to improve its 
robustness? 
q  under policies: node/edge deletion, edge rewiring, 

edge addition, … 
q  subject to constraints: cost, #agents to modify, 

connectivity constraints between agents, …  

Chan, Akoglu, Tong Manipulating Robustness of Large Networks 6 

Q2 

Q1 



Today’s	  Roadmap	  
q  Network Robustness 

q  Intro 
q  Main Questions 

q  Measuring Robustness 
q  Modifying Robustness 
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Robustness	  Measures	  
n  Study of robustness: 

q  mathematics, physics, computer science, biology  
n  A long (!) and profoundly diverse list of measures: 

q  vertex/edge connectivity 
q  avg. shortest distance 
q  max. shortest distance (diameter) 
q  efficiency 
q  vertex/edge betweenness 
q  clustering coefficient  
q  largest component fraction/avg. component size 
q  total pairwise connectivity 
q  average available flows 
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Robustness	  Measures	  
n  … 
n  algebraic connectivity 
n  effective resistance 
n  number of spanning trees 
n  principal eigenvalue        
n  spectral gap     
n  natural connectivity 
n  other (combinatorial) measures:  

q  toughness, scattering number, tenacity, integrity, fault diameter, 
isoperimetric number, min balanced cut, restricted connectivity, … 
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eigenvalues  
of the Laplacian L  

eigenvalues  
of the adjacency A 



Robustness	  Measures	  
n  … 
n  algebraic connectivity 
n  effective resistance 
n  number of spanning trees 
n  principal eigenvalue        
n  spectral gap     
n  natural connectivity 
n  other (combinatorial) measures:  

q  toughness, scattering number, tenacity, integrity, fault diameter, 
isoperimetric number, min balanced cut, restricted connectivity, … 
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eigenvalues  
of the Laplacian L  

eigenvalues  
of the adjacency A 

	   	  an	  avalanche	  (!)	  of	  measures…	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
which	  one(s)	  to	  use?	  	  



A “guide” for “good” measures	  
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n  Strict monotonicity 
q  improves strictly when edges are added 
q  *related: differentiates graphs 

n  Redundancy 
q  accounts for alternative/back-up paths 

n  Stability 
q  does not change drastically by small changes 
q  *related: meaningful for disconnected graphs 

n  Interpretability 
q  its meaning is intuitively clear 



A “guide” for “good” measures!
Measures S. Monotone Redundant Stable Interpretable 

vertex / edge connectivity 

avg. shortest distance 

diameter 
efficiency 
vertex / edge betweenness 
clustering coefficient 
largest component fraction 
total pairwise connectivity 
avg. available flows 
algebraic connectivity 
effective resistance 
number of spanning trees 
spectral radius / gap 
natural connectivity 
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Our	  choice:	  natural	  connec<vity	  	  
as	  a	  reliable	  robustness	  measure	  



Today’s	  Roadmap	  
q  Network Robustness 

q  Intro 
q  Main Questions 

q  Measuring Robustness 
q  Modifying Robustness 

14 Chan, Akoglu, Tong Manipulating Robustness of Large Networks 

Q1 

Q2 



Natural	  connectivity	  

 
n  “average” eigenvalue of the graph 

n  Interpretation:  
q  weighted sum of closed walks in the graph  
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J. Wu, B. Mauricio, Y.-J. Tan, and H.-Z. Deng. Natural connectivity of complex networks.             
Chinese Physics Letters, 27(7):78902, 2010.  



Main	  questions	  
How to measure the robustness  

of a given network? 

How to modify a given network  
to improve its robustness? 
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natural connectivity 

optimally, rather than ad-hoc 

[Chan, Akoglu, Tong SDM’14] 



3 Manipulation Problems!
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The above arguments show that (1) natural connectiv-
ity exhibits characteristics about the communicability in the
network through alternative paths, which closely relate to ro-
bustness. It associates the robustness to network topology,
graph spectra, and dynamical properties. Moreover, it was
shown [21] that (2) natural connectivity has strong discrim-
ination in quantifying the robustness of complex networks
and can exhibit the variation of robustness sensitively even
for disconnected networks (unlike e.g., algebraic connectiv-
ity). Finally, (3) natural connectivity can be shown to change
strictly monotonically with the addition/deletion of more and
more nodes/edges [26], which agrees with intuition (unlike
e.g., node/edge connectivity, algebraic connectivity). These
indicate that the natural connectivity can measure the robust-
ness of complex networks stably even for very small sized
and disconnected networks. For all these reasons, we choose
to embrace natural connectivity as our network robustness
measure in our study.

4 Manipulating Network Robustness
4.1 Problem Definitions We start by introducing the
problems we address to manipulate network robustness. Due
to space considerations, we briefly (but formally) describe
our problems below.1

PROBLEM 1. MIOBI-BREAKEDGE (Edge Deletion)

Given: A large network G (with n⇥ n adjacency matrix
A) and an integer (budget) k;

Output: A set of k edges from A, the deletion of which
creates the largest drop of the network robustness (as
given in Equ. (3.1)) of G.

PROBLEM 2. MIOBI-BREAKNODE (Node Deletion)

Given: A large network G (with n⇥ n adjacency matrix
A) and an integer (budget) k;

Output: A set of k nodes from A, the deletion of which
creates the largest drop of the network robustness (as
given in Equ. (3.1)) of G.

PROBLEM 3. MIOBI-MAKEEDGE (Edge Addition)

Given: A large network G (with n⇥ n adjacency matrix
A) and an integer (budget) k;

Output: A set of k non-edges of A, the addition of which
creates the largest increase in the network robustness
(as given in Equ. (3.1)) of G.

1We remark that we focus on node/edge deletion and edge addition op-
erations to manipulate graph robustness. Another possible graph operation
is edge rewiring [3], where existing edges are rewired to connect different
pairs of nodes. A principled rewiring can also be done using similar meth-
ods to ours; in particular by removing an existing edge via reverse MIOBI-
BREAKEDGE, and adding it back via MIOBI-MAKEEDGE.

A naive way to solve these problems is to try all of
the possible subsets of size of k and select the one that
will yield the best result. However, this type of strategy
is very inefficient. For example, in the case of MIOBI-
BREAKEDGE, we need to consider

�m
k

�
where |E| = m;

for MIOBI-BREAKNODE, we need to consider
�n
k

�
where

|V | = n; and for MIOBI-MAKEEDGE, we need to consider
�
(

n
2)�m

k

�
. It is no surprise that these problems can be hard to

solve, due to computational limitations (see Supplementary
Section A for a discussion on the complexity and formal
proofs related to the hardness of the problems).

Next we describe our proposed approximation algo-
rithms to solve the problems formulated in this section. Note
that the first two problems aim at maximally decreasing (i.e.,
“breaking”) network robustness, whereas the third problem
aims at improving (i.e., “making”) the robustness.

4.2 “Breaking” Network Robustness

Problem 1: Edge Deletion First, we address the edge
deletion problem MIOBI-BREAKEDGE, which aims to find
the set of k edges to delete from the graph so that the
robustness is shrunk the most.

Let S denote the selected set of k edges to be removed.
Let us then write the new, updated robustness ¯�

�

as

(4.2) ¯�
�

= ln(

1

n

nX

j=1

e�j+��j
)

where ��j is the difference in �j after the adjustment to the
graph. To quantify the updated robustness of the graph in
face of change, we need to be able to efficiently update the
eigenvalues of A when the graph changes.
Updating the eigenvalues. Using the first order matrix
perturbation theory [24], we can compute changes to the
eigenvalues ��j efficiently.

Let (�j ,uj) be the jth (eigenvalue, eigenvector) pair
of the graph G with adjacency matrix A. Let �A and
(��j ,�uj) denote the change in A and (�j ,uj) 8j, respec-
tively (where �A is symmetric). Suppose after the adjust-
ment A becomes

˜A = A+�A

where (

˜�j , ũj) is written as
˜�j = �j +��j and ˜uj = uj +�uj

LEMMA 4.1. Given a perturbation �A to a matrix A, its
eigenvalues can be updated by
(4.3) ��j = uj

0
�Auj.

Proof. See Supplementary Section B.1. ⇤
Using Lemma 4.1, perturbing A with any given edge

(p, r) affects the eigenvalues as

(4.4) ��j = uj
0
�Auj = �2upjurj

where �A(p, r) = �A(r, p) = �1 and 0 elsewhere.
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ination in quantifying the robustness of complex networks
and can exhibit the variation of robustness sensitively even
for disconnected networks (unlike e.g., algebraic connectiv-
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indicate that the natural connectivity can measure the robust-
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and disconnected networks. For all these reasons, we choose
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• Proof #1: If YES to P1(G,k) YES to P2(G, n-k) 
YES to P1      Skxk = 0               λ(A) = λ(0) = 0      YES to P2 

 

• Proof #2: If NO to P1(G,k) NO to P2(G, n-k) 
     Suppose YES to P2                 λ(A) = λ(0) ≤  0              
          Skxk = 0          Nodes in S being ind. set      contradict  

Given an undirected/unweighted graph G, and k 
• P1 (k-independent set problem): is there k 

nodes, no two of which are adjacent? 
• P2 (k-node immunization problem): is there 

k nodes, the deletions of which makes the 
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n  Node deletion is NP-hard 
n  Basic idea: reduction from P1 (known NP-hard) 
n  P1 (k-independent set): are there k nodes                                                     

no two of which are adjacent? 
n  P2 (k node deletion): are there k nodes                                                   

deletion of which makes all eigenvalues ≤ 0? 



Problem	  hardness	  (2)	  
n  Edge deletion is NP-hard* 

n  Basic idea: reduction from P1 (known NP-hard) 
n  P1 (Hamiltonian Path): is there a path that visits every node 

exactly once? 
n  P2 (k edge deletion): are there k edges deletion of which makes 

the largest eigenvalue ≤                          ?  

	  	  	  Proof	  #1:	  If	  YES	  to	  P1(G,	  k)	  à	  YES	  to	  P2(G,	  e-‐k)	  
    YES	  to	  P1	  	  	  	  	  	  	  	  Remove	  non-‐HP	  edges	  	  
  Proof	  #2:	  If	  NO	  to	  P1(G,	  k)	  à	  NO	  to	  P2(G,	  e-‐k)	  
   Suppose	  YES	  to	  P2	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  graph	  cannot	  be	  
tree	  (eig.	  >	  	  	  	  	  	  	  	  	  	  	  	  	  )	  or	  contain	  cycle	  (eig.	  ≥2)	  	  	  	  	  	  path	  	  	  	  	  	  	  contradict	  
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A.2 k edge deletion

P1 (k-edge deletion problem ED): are there k edges, the deletion of which makes the largest eigenvalue of
the graph  ↵, for some positive ↵?

Let us first modify the problem for exact equality,

P1’ (modified k-edge deletion problem m-ED): are there k edges, the deletion of which makes the largest
eigenvalue of the graph = ↵, for some positive ↵?

and tie it to the k-clique problem:

P2 (k-clique problem CL): is there a clique of size k in the graph?

• NP: It is easy to see that P1’ is in NP, since given a graph G we can guess the k edges to be deleted
and compute the largest eigenvalue of the graph in polynomial time.

• NP-hard: In order to show that m-ED 2 NP-Hard, we will reduce from CL (as in P2) to our m-ED (as
in P1’). The conversion of an instance of CL to an instance of m-ED works the following way. An
instance of CL is a graph G(V,E) and an integer k. We pass G, and e � (k�1)k

2 and ↵ = k � 1 to
m-ED, e = |E|. We show that a yes instance of CL maps to a yes instance of m-ED, and vice versa.

– =) Assume C is a yes instance of CL, i.e. there exists a clique C of size k in G. Thus removing
all the rest of the edges E\E(C) would give us a all-ones-but-diagonal k ⇥ k adjacency matrix
¯A the eigenvalue of which is k-1. Thus, the edges in E\E(C) form a yes instance of our m-ED.

– (= This time assume S is a yes instance of m-ED. Thus, after removing the set S of edges of
size s = e � (k�1)k

2 from G, we have �1(
˜A) = k � 1, where ˜A is the adjacency matrix of the

resulting graph ˜G. Now we have to show that ˜G can only be a k-clique. A theorem by [3] states
that for any graph G(V,E), �1(G) 

q
2|E|p�1

p where p denotes the size of a maximal clique
in the graph and the inequality is sharp if the graph is a clique of size p. From this, we conclude
that if ˜G is a k-clique, then �1(

˜G) = k � 1. If it is not a k-clique, then the maximal clique size

p < k, and hence �1(
˜G) 

q
2

(k�1)k
2

p�1
p <

q
2

(k�1)k
2

k�1
k = k � 1. We thus can conclude

that for the largest eigenvalue of ˜G to be as large as k � 1, it must include a maximal clique of
size k. As such, edges in E\S form a k-clique of G and thus a yes instance of CL.

Since the conversion of problem instances runs in poly-time, (P2 p P1’) and P2 is NP-Complete, P1’
is NP-Hard. As we also show that P1’ is in NP, P1 is in fact NP-Complete.

Next we prove the NP-Completeness of the general edge-deletion problem P1. Our reduction this is time is
from the well-known NP-Complete problem Hamiltonian Path:

P3 (Hamiltonian Path problem HP): is there a path that visits every node exactly once in the graph?
• NP: It is easy to see that P1 is in NP, as we can guess the k edges to be deleted and compute the largest

eigenvalue of the graph in poly-time.
• NP-hard: In order to show that ED 2 NP-Hard, we will reduce from HP (as in P3) to our ED (as in

P1). The conversion of an instance of HP to an instance of ED works the following way. An instance
of HP is a graph G(V,E) with |E| = e edges. We pass G, and k = e� (n� 1) and ↵ = 2 cos(

⇡
n+1)

to ED, for |V | = n. We show that a yes instance of HP maps to a yes instance of ED, and vice versa.
– =) Assume P is a yes instance of HP, i.e. there exists a path P of length n � 1 in G. Then

removing all the rest of the edges E\E(P ) would give us a chain graph the principal eigenvalue
of which is 2 cos( ⇡

n+1). Thus, the edges in E\E(P ) form a yes instance of our ED.

2

* Showed for largest eigenvalue, considering all eigenvalues is harder 

– (= This time assume S is a yes instance of ED. Thus, after removing the set S of edges of size
|S| = e� (n�1) from G, we have �1(

˜A)  2 cos(

⇡
n+1), where ˜A is the adjacency matrix of the

resulting graph ˜G. Now we have to show that ˜G can only be a Hamiltonian Path. Assume that ˜G

is not a Hamiltonian Path. If it is not a path but connected, then it must be a tree. According to a
theorem by [5], a path Pn visiting n nodes has strictly smaller spectral radius (largest eigenvalue)
than all other connected graphs with n nodes, where �1(Pn) = 2 cos(

⇡
n+1). This ensures that

˜G is a path, if it is connected. Next we show that it cannot be disconnected. Without loss of
generality, assume ˜G has two components, one with x nodes and another with n � x nodes.
Since those are connected, they must contain at least x � 1 and n � x � 1 edges respectively.
Since there exists n � 1 edges in total, either one of the components should contain the extra
edge, creating a cycle in that component. A graph that contains a cycle has largest eigenvalue
� 2, which contradicts P1 with ↵  2 cos(

⇡
n+1) < 2. Therefore, we conclude that ˜G should

be a connected graph, and that ˜G is a (connected) path. A path on all n nodes of a graph is a
Hamiltonian Path. As such, edges in E\S form a yes instance of HP.

Since the conversion of problem instances runs in poly-time, (P3 p P1) and P3 is NP-Complete, P1
is NP-Hard. Having shown that P1 is also in NP, we conclude that P1 is NP-Complete.
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B Proofs (Omitted) in the Main Paper

B.1 Proof of Lemma 4.1
PROOF. We can write (A+�A)(uj +�uj) = (�j +��j)(uj +�uj) Expanding the above, we get

Auj +�Auj +A�uj +�A�uj = �juj +��juj + �j�uj +��j�uj

By concentrating on first-order approximation, we assume that all high-order perturbation terms are negligible,
including �A�uj and ��j�uj. Further, by using the fact that Auj = �juj (i.e., canceling these terms) we obtain

�Auj +A�uj = ��juj + �j�uj (1)

Next we multiply both sides by uj
0 and by symmetry of A and orthonormal property of its eigenvectors we get

Equ. (4.3), which concludes the proof. ⇤
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– (= This time assume S is a yes instance of ED. Thus, after removing the set S of edges of size
|S| = e� (n�1) from G, we have �1(

˜A)  2 cos(

⇡
n+1), where ˜A is the adjacency matrix of the

resulting graph ˜G. Now we have to show that ˜G can only be a Hamiltonian Path. Assume that ˜G

is not a Hamiltonian Path. If it is not a path but connected, then it must be a tree. According to a
theorem by [5], a path Pn visiting n nodes has strictly smaller spectral radius (largest eigenvalue)
than all other connected graphs with n nodes, where �1(Pn) = 2 cos(

⇡
n+1). This ensures that

˜G is a path, if it is connected. Next we show that it cannot be disconnected. Without loss of
generality, assume ˜G has two components, one with x nodes and another with n � x nodes.
Since those are connected, they must contain at least x � 1 and n � x � 1 edges respectively.
Since there exists n � 1 edges in total, either one of the components should contain the extra
edge, creating a cycle in that component. A graph that contains a cycle has largest eigenvalue
� 2, which contradicts P1 with ↵  2 cos(

⇡
n+1) < 2. Therefore, we conclude that ˜G should

be a connected graph, and that ˜G is a (connected) path. A path on all n nodes of a graph is a
Hamiltonian Path. As such, edges in E\S form a yes instance of HP.

Since the conversion of problem instances runs in poly-time, (P3 p P1) and P3 is NP-Complete, P1
is NP-Hard. Having shown that P1 is also in NP, we conclude that P1 is NP-Complete.
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The above arguments show that (1) natural connectiv-
ity exhibits characteristics about the communicability in the
network through alternative paths, which closely relate to ro-
bustness. It associates the robustness to network topology,
graph spectra, and dynamical properties. Moreover, it was
shown [21] that (2) natural connectivity has strong discrim-
ination in quantifying the robustness of complex networks
and can exhibit the variation of robustness sensitively even
for disconnected networks (unlike e.g., algebraic connectiv-
ity). Finally, (3) natural connectivity can be shown to change
strictly monotonically with the addition/deletion of more and
more nodes/edges [26], which agrees with intuition (unlike
e.g., node/edge connectivity, algebraic connectivity). These
indicate that the natural connectivity can measure the robust-
ness of complex networks stably even for very small sized
and disconnected networks. For all these reasons, we choose
to embrace natural connectivity as our network robustness
measure in our study.

4 Manipulating Network Robustness
4.1 Problem Definitions We start by introducing the
problems we address to manipulate network robustness. Due
to space considerations, we briefly (but formally) describe
our problems below.1

PROBLEM 1. MIOBI-BREAKEDGE (Edge Deletion)

Given: A large network G (with n⇥ n adjacency matrix
A) and an integer (budget) k;

Output: A set of k edges from A, the deletion of which
creates the largest drop of the network robustness (as
given in Equ. (3.1)) of G.

PROBLEM 2. MIOBI-BREAKNODE (Node Deletion)

Given: A large network G (with n⇥ n adjacency matrix
A) and an integer (budget) k;

Output: A set of k nodes from A, the deletion of which
creates the largest drop of the network robustness (as
given in Equ. (3.1)) of G.

PROBLEM 3. MIOBI-MAKEEDGE (Edge Addition)

Given: A large network G (with n⇥ n adjacency matrix
A) and an integer (budget) k;

Output: A set of k non-edges of A, the addition of which
creates the largest increase in the network robustness
(as given in Equ. (3.1)) of G.

1We remark that we focus on node/edge deletion and edge addition op-
erations to manipulate graph robustness. Another possible graph operation
is edge rewiring [3], where existing edges are rewired to connect different
pairs of nodes. A principled rewiring can also be done using similar meth-
ods to ours; in particular by removing an existing edge via reverse MIOBI-
BREAKEDGE, and adding it back via MIOBI-MAKEEDGE.

A naive way to solve these problems is to try all of
the possible subsets of size of k and select the one that
will yield the best result. However, this type of strategy
is very inefficient. For example, in the case of MIOBI-
BREAKEDGE, we need to consider

�m
k

�
where |E| = m;

for MIOBI-BREAKNODE, we need to consider
�n
k

�
where

|V | = n; and for MIOBI-MAKEEDGE, we need to consider
�
(

n
2)�m

k

�
. It is no surprise that these problems can be hard to

solve, due to computational limitations (see Supplementary
Section A for a discussion on the complexity and formal
proofs related to the hardness of the problems).

Next we describe our proposed approximation algo-
rithms to solve the problems formulated in this section. Note
that the first two problems aim at maximally decreasing (i.e.,
“breaking”) network robustness, whereas the third problem
aims at improving (i.e., “making”) the robustness.

4.2 “Breaking” Network Robustness

Problem 1: Edge Deletion First, we address the edge
deletion problem MIOBI-BREAKEDGE, which aims to find
the set of k edges to delete from the graph so that the
robustness is shrunk the most.

Let S denote the selected set of k edges to be removed.
Let us then write the new, updated robustness ¯�

�

as

(4.2) ¯�
�

= ln(

1

n

nX

j=1

e�j+��j
)

where ��j is the difference in �j after the adjustment to the
graph. To quantify the updated robustness of the graph in
face of change, we need to be able to efficiently update the
eigenvalues of A when the graph changes.
Updating the eigenvalues. Using the first order matrix
perturbation theory [24], we can compute changes to the
eigenvalues ��j efficiently.

Let (�j ,uj) be the jth (eigenvalue, eigenvector) pair
of the graph G with adjacency matrix A. Let �A and
(��j ,�uj) denote the change in A and (�j ,uj) 8j, respec-
tively (where �A is symmetric). Suppose after the adjust-
ment A becomes

˜A = A+�A

where (

˜�j , ũj) is written as
˜�j = �j +��j and ˜uj = uj +�uj

LEMMA 4.1. Given a perturbation �A to a matrix A, its
eigenvalues can be updated by
(4.3) ��j = uj

0
�Auj.

Proof. See Supplementary Section B.1. ⇤
Using Lemma 4.1, perturbing A with any given edge

(p, r) affects the eigenvalues as

(4.4) ��j = uj
0
�Auj = �2upjurj

where �A(p, r) = �A(r, p) = �1 and 0 elsewhere.
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Using Lemma 4.1, perturbing A with any given edge

(p, r) affects the eigenvalues as

(4.4) ��j = uj
0
�Auj = �2upjurj

where �A(p, r) = �A(r, p) = �1 and 0 elsewhere.

As such, for Problem 1 we are interested in k edges that
will minimize ¯�

�

in Equ. (4.2), or equivalently

min . e�1+��1
+ e�2+��2

+ . . .+ e�n+��n

e�1
(e��1

+ e(�2��1)e��2
+ . . .+ e(�n��1)e��n

)

c
1

(e��1
+ c

2

e��2
+ . . .+ cne

��n
)(4.5)

where cj’s denote constant terms and cj  1, 8j � 2.
To find the k most effective edges, we follow a cautious

strategy which iteratively finds the best single edge to re-
move, for k steps. That is, every time an edge is removed,
the criterion/score that is used to find an edge to remove will
be updated for the remaining edges, since each removed edge
changes this score as it changes the robustness.

This cautious edge deletion strategy has been used in
prior research [14] where edge betweenness is used as cri-
terion to remove edges to decrease robustness. Instead of
choosing the top-k edges with the highest edge betweenness
in one shot, the idea is to remove a single edge in each step
after which the betweenness is updated for the remaining,
where this procedure is repeated for the next k steps. This
is often referred as the “re-calculated” strategy and has been
shown to perform better (i.e., affect robustness more) com-
pared to its top-k counterpart.

Therefore, following the re-calculated strategy and by
using Equ. (4.4) and (4.5) we will choose the edge (p, r)
that minimizes the following:
(4.6)

min

(p,r)2E
c
1

✓
e�2up1ur1

+c
2

e�2up2ur2
+. . .+cne

�2upnurn

◆

Our criterion/score to select edges to remove as given
in Equ. (4.6) changes whenever an edge is removed, as the
graph structure and thus eigenvectors uj change. Thus, after
every step we also need to update the eigenvectors. The key
question is how to compute changes �uj efficiently. For
that, we again resort to matrix perturbation theory [24].
Updating the eigenvectors.
LEMMA 4.2. Given a perturbation �A to a matrix A, its
eigenvectors can be updated by

(4.7) �uj =

nX

i=1,i 6=j

✓
ui

0
�Auj

�j � �i
ui

◆
.

Proof. See Supplementary Section B.2. ⇤
Finally, we remark that it is infeasible to compute all

the n eigenvalues of graphs with n nodes, for very large n.
Luckily, given the skewed spectrum of real-world graphs,
only the top few eigenvalues have large magnitudes which
implies that the cj terms in Equ.s (4.5, 4.6) become much
smaller for increasing j. Thus, compute the top t eigenvalues
to approximate the robustness of a graph in our experiments.

The pseudo-code of our algorithm for the edge deletion
problem MIOBI-BREAKEDGE is given in Algorithm 1. For
a fixed budget k, MIOBI-BREAKEDGE is linear w.r.t the size
of the graph for both time and space cost.

Algorithm 1 MIOBI-BREAKEDGE

Input: Graph G(V,E), its adj. matrix A, and int. budget k
Output: Set S of k edges to be removed

1: S = ;

2: Compute the top t (eigenvalue, eigenvector) pairs
(�j ,uj) of A, 1  j  t

3: for step = 1 to k do
4: Select the edge (p̄, r̄) out of 8(p, r) 2 E that mini-

mizes Equ. (4.6) for top t eigenvectors, i.e.

min

(p,r)2E
c
1

✓
e�2up1ur1

+c
2

e�2up2ur2
+. . .+cte

�2upturt

◆

where c
1

= e�1 and cj = e(�j��1) for 2  j  t
5: S := S [ (p̄, r̄), E := E\(p̄, r̄)
6: Update A; A(p̄, r̄) = 0 and A(r̄, p̄) = 0

7: Update top t eigenvalues of A by Equ. (4.3)
8: Update top t eigenvectors of A by Equ. (4.7)
9: end for

10: Return S

LEMMA 4.3. Complexity of MIOBI-BREAKEDGE. The
time cost of Alg. 1 is O(kmt + knt2). The space cost of
Alg. 1 is O(m+ nt+ k).

Proof. See Supplementary Section B.3. ⇤
Problem 2: Node Deletion Next, we address the node
deletion problem MIOBI-BREAKNODE, which aims to find
the set S of k nodes to delete from the graph so that the
robustness is reduced the most. Deletion of a node involves
deletion of the node as well as all its incident edges, i.e.
edges attached to it.

Similar to edge deletion, we can delete nodes from the
graph one by one (i.e., re-calculated strategy). To do so, we
need to find a score similar to Equ. (4.6) for each node to
quantify its effect of change on the graph spectrum. Again,
using ��j = uj

0
�Auj from Lemma 4.1, we will write

down a score for each node i where only the ith row and ith

column of �A contain non-zero entries; (i, v) = (v, i) =

�1, v 2 N (i), for neighbors N (i) of i.
We can illustrate the node scoring with a toy example,

where say we are to remove a node i with 3 neighbors
indexed by n

1

, n
2

, n
3

. Let wj = uj
0
�A. We can see that

wn1j = wn2j = wn3j = �uij, and wij = �

P
v2N(i) uvj.

As such, ��j = wjuj = �uijun1j � uijun2j � uijun3j �P
v2N (i) uvjuij, equivalently ��j = �uij(un1j + un2j +

un3j +
P

v2N (i) uvj) = �2uij
P

v2N (i) uvj.
Thus, in general ��j for a removal of node i is given as

(4.8) ��j = uj
0
�Auj = �2uij

X

v2N (i)

uvj

Equ. (4.8) essentially states that the change in the jth

eigenvalue for a node i’s removal is twice as the sum of

min./max.	  

As such, for Problem 1 we are interested in k edges that
will minimize ¯�

�

in Equ. (4.2), or equivalently
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��n
)(4.5)

where cj’s denote constant terms and cj  1, 8j � 2.
To find the k most effective edges, we follow a cautious

strategy which iteratively finds the best single edge to re-
move, for k steps. That is, every time an edge is removed,
the criterion/score that is used to find an edge to remove will
be updated for the remaining edges, since each removed edge
changes this score as it changes the robustness.

This cautious edge deletion strategy has been used in
prior research [14] where edge betweenness is used as cri-
terion to remove edges to decrease robustness. Instead of
choosing the top-k edges with the highest edge betweenness
in one shot, the idea is to remove a single edge in each step
after which the betweenness is updated for the remaining,
where this procedure is repeated for the next k steps. This
is often referred as the “re-calculated” strategy and has been
shown to perform better (i.e., affect robustness more) com-
pared to its top-k counterpart.

Therefore, following the re-calculated strategy and by
using Equ. (4.4) and (4.5) we will choose the edge (p, r)
that minimizes the following:
(4.6)

min

(p,r)2E
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◆

Our criterion/score to select edges to remove as given
in Equ. (4.6) changes whenever an edge is removed, as the
graph structure and thus eigenvectors uj change. Thus, after
every step we also need to update the eigenvectors. The key
question is how to compute changes �uj efficiently. For
that, we again resort to matrix perturbation theory [24].
Updating the eigenvectors.
LEMMA 4.2. Given a perturbation �A to a matrix A, its
eigenvectors can be updated by

(4.7) �uj =

nX

i=1,i 6=j

✓
ui

0
�Auj

�j � �i
ui

◆
.

Proof. See Supplementary Section B.2. ⇤
Finally, we remark that it is infeasible to compute all

the n eigenvalues of graphs with n nodes, for very large n.
Luckily, given the skewed spectrum of real-world graphs,
only the top few eigenvalues have large magnitudes which
implies that the cj terms in Equ.s (4.5, 4.6) become much
smaller for increasing j. Thus, compute the top t eigenvalues
to approximate the robustness of a graph in our experiments.

The pseudo-code of our algorithm for the edge deletion
problem MIOBI-BREAKEDGE is given in Algorithm 1. For
a fixed budget k, MIOBI-BREAKEDGE is linear w.r.t the size
of the graph for both time and space cost.

Algorithm 1 MIOBI-BREAKEDGE

Input: Graph G(V,E), its adj. matrix A, and int. budget k
Output: Set S of k edges to be removed

1: S = ;

2: Compute the top t (eigenvalue, eigenvector) pairs
(�j ,uj) of A, 1  j  t

3: for step = 1 to k do
4: Select the edge (p̄, r̄) out of 8(p, r) 2 E that mini-

mizes Equ. (4.6) for top t eigenvectors, i.e.

min

(p,r)2E
c
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✓
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+c
2

e�2up2ur2
+. . .+cte

�2upturt

◆

where c
1

= e�1 and cj = e(�j��1) for 2  j  t
5: S := S [ (p̄, r̄), E := E\(p̄, r̄)
6: Update A; A(p̄, r̄) = 0 and A(r̄, p̄) = 0

7: Update top t eigenvalues of A by Equ. (4.3)
8: Update top t eigenvectors of A by Equ. (4.7)
9: end for

10: Return S

LEMMA 4.3. Complexity of MIOBI-BREAKEDGE. The
time cost of Alg. 1 is O(kmt + knt2). The space cost of
Alg. 1 is O(m+ nt+ k).

Proof. See Supplementary Section B.3. ⇤
Problem 2: Node Deletion Next, we address the node
deletion problem MIOBI-BREAKNODE, which aims to find
the set S of k nodes to delete from the graph so that the
robustness is reduced the most. Deletion of a node involves
deletion of the node as well as all its incident edges, i.e.
edges attached to it.

Similar to edge deletion, we can delete nodes from the
graph one by one (i.e., re-calculated strategy). To do so, we
need to find a score similar to Equ. (4.6) for each node to
quantify its effect of change on the graph spectrum. Again,
using ��j = uj

0
�Auj from Lemma 4.1, we will write

down a score for each node i where only the ith row and ith

column of �A contain non-zero entries; (i, v) = (v, i) =

�1, v 2 N (i), for neighbors N (i) of i.
We can illustrate the node scoring with a toy example,

where say we are to remove a node i with 3 neighbors
indexed by n

1

, n
2

, n
3

. Let wj = uj
0
�A. We can see that

wn1j = wn2j = wn3j = �uij, and wij = �

P
v2N(i) uvj.

As such, ��j = wjuj = �uijun1j � uijun2j � uijun3j �P
v2N (i) uvjuij, equivalently ��j = �uij(un1j + un2j +

un3j +
P

v2N (i) uvj) = �2uij
P

v2N (i) uvj.
Thus, in general ��j for a removal of node i is given as

(4.8) ��j = uj
0
�Auj = �2uij

X

v2N (i)

uvj

Equ. (4.8) essentially states that the change in the jth

eigenvalue for a node i’s removal is twice as the sum of



Network	  modification	  
n  When the nodes/edges are modified, let 

denote updated robustness 

Chan, Akoglu, Tong Manipulating Robustness of Large Networks 21 

The above arguments show that (1) natural connectiv-
ity exhibits characteristics about the communicability in the
network through alternative paths, which closely relate to ro-
bustness. It associates the robustness to network topology,
graph spectra, and dynamical properties. Moreover, it was
shown [21] that (2) natural connectivity has strong discrim-
ination in quantifying the robustness of complex networks
and can exhibit the variation of robustness sensitively even
for disconnected networks (unlike e.g., algebraic connectiv-
ity). Finally, (3) natural connectivity can be shown to change
strictly monotonically with the addition/deletion of more and
more nodes/edges [26], which agrees with intuition (unlike
e.g., node/edge connectivity, algebraic connectivity). These
indicate that the natural connectivity can measure the robust-
ness of complex networks stably even for very small sized
and disconnected networks. For all these reasons, we choose
to embrace natural connectivity as our network robustness
measure in our study.

4 Manipulating Network Robustness
4.1 Problem Definitions We start by introducing the
problems we address to manipulate network robustness. Due
to space considerations, we briefly (but formally) describe
our problems below.1

PROBLEM 1. MIOBI-BREAKEDGE (Edge Deletion)

Given: A large network G (with n⇥ n adjacency matrix
A) and an integer (budget) k;

Output: A set of k edges from A, the deletion of which
creates the largest drop of the network robustness (as
given in Equ. (3.1)) of G.

PROBLEM 2. MIOBI-BREAKNODE (Node Deletion)

Given: A large network G (with n⇥ n adjacency matrix
A) and an integer (budget) k;

Output: A set of k nodes from A, the deletion of which
creates the largest drop of the network robustness (as
given in Equ. (3.1)) of G.

PROBLEM 3. MIOBI-MAKEEDGE (Edge Addition)

Given: A large network G (with n⇥ n adjacency matrix
A) and an integer (budget) k;

Output: A set of k non-edges of A, the addition of which
creates the largest increase in the network robustness
(as given in Equ. (3.1)) of G.

1We remark that we focus on node/edge deletion and edge addition op-
erations to manipulate graph robustness. Another possible graph operation
is edge rewiring [3], where existing edges are rewired to connect different
pairs of nodes. A principled rewiring can also be done using similar meth-
ods to ours; in particular by removing an existing edge via reverse MIOBI-
BREAKEDGE, and adding it back via MIOBI-MAKEEDGE.

A naive way to solve these problems is to try all of
the possible subsets of size of k and select the one that
will yield the best result. However, this type of strategy
is very inefficient. For example, in the case of MIOBI-
BREAKEDGE, we need to consider

�m
k

�
where |E| = m;

for MIOBI-BREAKNODE, we need to consider
�n
k

�
where

|V | = n; and for MIOBI-MAKEEDGE, we need to consider
�
(

n
2)�m

k

�
. It is no surprise that these problems can be hard to

solve, due to computational limitations (see Supplementary
Section A for a discussion on the complexity and formal
proofs related to the hardness of the problems).

Next we describe our proposed approximation algo-
rithms to solve the problems formulated in this section. Note
that the first two problems aim at maximally decreasing (i.e.,
“breaking”) network robustness, whereas the third problem
aims at improving (i.e., “making”) the robustness.

4.2 “Breaking” Network Robustness

Problem 1: Edge Deletion First, we address the edge
deletion problem MIOBI-BREAKEDGE, which aims to find
the set of k edges to delete from the graph so that the
robustness is shrunk the most.

Let S denote the selected set of k edges to be removed.
Let us then write the new, updated robustness ¯�

�

as

(4.2) ¯�
�

= ln(

1

n

nX

j=1

e�j+��j
)

where ��j is the difference in �j after the adjustment to the
graph. To quantify the updated robustness of the graph in
face of change, we need to be able to efficiently update the
eigenvalues of A when the graph changes.
Updating the eigenvalues. Using the first order matrix
perturbation theory [24], we can compute changes to the
eigenvalues ��j efficiently.

Let (�j ,uj) be the jth (eigenvalue, eigenvector) pair
of the graph G with adjacency matrix A. Let �A and
(��j ,�uj) denote the change in A and (�j ,uj) 8j, respec-
tively (where �A is symmetric). Suppose after the adjust-
ment A becomes

˜A = A+�A

where (

˜�j , ũj) is written as
˜�j = �j +��j and ˜uj = uj +�uj

LEMMA 4.1. Given a perturbation �A to a matrix A, its
eigenvalues can be updated by
(4.3) ��j = uj

0
�Auj.

Proof. See Supplementary Section B.1. ⇤
Using Lemma 4.1, perturbing A with any given edge

(p, r) affects the eigenvalues as

(4.4) ��j = uj
0
�Auj = �2upjurj

where �A(p, r) = �A(r, p) = �1 and 0 elsewhere.

The above arguments show that (1) natural connectiv-
ity exhibits characteristics about the communicability in the
network through alternative paths, which closely relate to ro-
bustness. It associates the robustness to network topology,
graph spectra, and dynamical properties. Moreover, it was
shown [21] that (2) natural connectivity has strong discrim-
ination in quantifying the robustness of complex networks
and can exhibit the variation of robustness sensitively even
for disconnected networks (unlike e.g., algebraic connectiv-
ity). Finally, (3) natural connectivity can be shown to change
strictly monotonically with the addition/deletion of more and
more nodes/edges [26], which agrees with intuition (unlike
e.g., node/edge connectivity, algebraic connectivity). These
indicate that the natural connectivity can measure the robust-
ness of complex networks stably even for very small sized
and disconnected networks. For all these reasons, we choose
to embrace natural connectivity as our network robustness
measure in our study.

4 Manipulating Network Robustness
4.1 Problem Definitions We start by introducing the
problems we address to manipulate network robustness. Due
to space considerations, we briefly (but formally) describe
our problems below.1

PROBLEM 1. MIOBI-BREAKEDGE (Edge Deletion)

Given: A large network G (with n⇥ n adjacency matrix
A) and an integer (budget) k;

Output: A set of k edges from A, the deletion of which
creates the largest drop of the network robustness (as
given in Equ. (3.1)) of G.

PROBLEM 2. MIOBI-BREAKNODE (Node Deletion)

Given: A large network G (with n⇥ n adjacency matrix
A) and an integer (budget) k;

Output: A set of k nodes from A, the deletion of which
creates the largest drop of the network robustness (as
given in Equ. (3.1)) of G.

PROBLEM 3. MIOBI-MAKEEDGE (Edge Addition)

Given: A large network G (with n⇥ n adjacency matrix
A) and an integer (budget) k;

Output: A set of k non-edges of A, the addition of which
creates the largest increase in the network robustness
(as given in Equ. (3.1)) of G.

1We remark that we focus on node/edge deletion and edge addition op-
erations to manipulate graph robustness. Another possible graph operation
is edge rewiring [3], where existing edges are rewired to connect different
pairs of nodes. A principled rewiring can also be done using similar meth-
ods to ours; in particular by removing an existing edge via reverse MIOBI-
BREAKEDGE, and adding it back via MIOBI-MAKEEDGE.

A naive way to solve these problems is to try all of
the possible subsets of size of k and select the one that
will yield the best result. However, this type of strategy
is very inefficient. For example, in the case of MIOBI-
BREAKEDGE, we need to consider

�m
k

�
where |E| = m;

for MIOBI-BREAKNODE, we need to consider
�n
k

�
where

|V | = n; and for MIOBI-MAKEEDGE, we need to consider
�
(

n
2)�m

k

�
. It is no surprise that these problems can be hard to

solve, due to computational limitations (see Supplementary
Section A for a discussion on the complexity and formal
proofs related to the hardness of the problems).

Next we describe our proposed approximation algo-
rithms to solve the problems formulated in this section. Note
that the first two problems aim at maximally decreasing (i.e.,
“breaking”) network robustness, whereas the third problem
aims at improving (i.e., “making”) the robustness.

4.2 “Breaking” Network Robustness

Problem 1: Edge Deletion First, we address the edge
deletion problem MIOBI-BREAKEDGE, which aims to find
the set of k edges to delete from the graph so that the
robustness is shrunk the most.

Let S denote the selected set of k edges to be removed.
Let us then write the new, updated robustness ¯�

�

as

(4.2) ¯�
�

= ln(

1
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j=1

e�j+��j
)

where ��j is the difference in �j after the adjustment to the
graph. To quantify the updated robustness of the graph in
face of change, we need to be able to efficiently update the
eigenvalues of A when the graph changes.
Updating the eigenvalues. Using the first order matrix
perturbation theory [24], we can compute changes to the
eigenvalues ��j efficiently.

Let (�j ,uj) be the jth (eigenvalue, eigenvector) pair
of the graph G with adjacency matrix A. Let �A and
(��j ,�uj) denote the change in A and (�j ,uj) 8j, respec-
tively (where �A is symmetric). Suppose after the adjust-
ment A becomes

˜A = A+�A

where (

˜�j , ũj) is written as
˜�j = �j +��j and ˜uj = uj +�uj

LEMMA 4.1. Given a perturbation �A to a matrix A, its
eigenvalues can be updated by
(4.3) ��j = uj

0
�Auj.

Proof. See Supplementary Section B.1. ⇤
Using Lemma 4.1, perturbing A with any given edge

(p, r) affects the eigenvalues as

(4.4) ��j = uj
0
�Auj = �2upjurj

where �A(p, r) = �A(r, p) = �1 and 0 elsewhere.

The above arguments show that (1) natural connectiv-
ity exhibits characteristics about the communicability in the
network through alternative paths, which closely relate to ro-
bustness. It associates the robustness to network topology,
graph spectra, and dynamical properties. Moreover, it was
shown [21] that (2) natural connectivity has strong discrim-
ination in quantifying the robustness of complex networks
and can exhibit the variation of robustness sensitively even
for disconnected networks (unlike e.g., algebraic connectiv-
ity). Finally, (3) natural connectivity can be shown to change
strictly monotonically with the addition/deletion of more and
more nodes/edges [26], which agrees with intuition (unlike
e.g., node/edge connectivity, algebraic connectivity). These
indicate that the natural connectivity can measure the robust-
ness of complex networks stably even for very small sized
and disconnected networks. For all these reasons, we choose
to embrace natural connectivity as our network robustness
measure in our study.

4 Manipulating Network Robustness
4.1 Problem Definitions We start by introducing the
problems we address to manipulate network robustness. Due
to space considerations, we briefly (but formally) describe
our problems below.1

PROBLEM 1. MIOBI-BREAKEDGE (Edge Deletion)

Given: A large network G (with n⇥ n adjacency matrix
A) and an integer (budget) k;

Output: A set of k edges from A, the deletion of which
creates the largest drop of the network robustness (as
given in Equ. (3.1)) of G.

PROBLEM 2. MIOBI-BREAKNODE (Node Deletion)

Given: A large network G (with n⇥ n adjacency matrix
A) and an integer (budget) k;

Output: A set of k nodes from A, the deletion of which
creates the largest drop of the network robustness (as
given in Equ. (3.1)) of G.

PROBLEM 3. MIOBI-MAKEEDGE (Edge Addition)

Given: A large network G (with n⇥ n adjacency matrix
A) and an integer (budget) k;

Output: A set of k non-edges of A, the addition of which
creates the largest increase in the network robustness
(as given in Equ. (3.1)) of G.

1We remark that we focus on node/edge deletion and edge addition op-
erations to manipulate graph robustness. Another possible graph operation
is edge rewiring [3], where existing edges are rewired to connect different
pairs of nodes. A principled rewiring can also be done using similar meth-
ods to ours; in particular by removing an existing edge via reverse MIOBI-
BREAKEDGE, and adding it back via MIOBI-MAKEEDGE.

A naive way to solve these problems is to try all of
the possible subsets of size of k and select the one that
will yield the best result. However, this type of strategy
is very inefficient. For example, in the case of MIOBI-
BREAKEDGE, we need to consider

�m
k

�
where |E| = m;

for MIOBI-BREAKNODE, we need to consider
�n
k

�
where

|V | = n; and for MIOBI-MAKEEDGE, we need to consider
�
(

n
2)�m

k

�
. It is no surprise that these problems can be hard to

solve, due to computational limitations (see Supplementary
Section A for a discussion on the complexity and formal
proofs related to the hardness of the problems).

Next we describe our proposed approximation algo-
rithms to solve the problems formulated in this section. Note
that the first two problems aim at maximally decreasing (i.e.,
“breaking”) network robustness, whereas the third problem
aims at improving (i.e., “making”) the robustness.

4.2 “Breaking” Network Robustness

Problem 1: Edge Deletion First, we address the edge
deletion problem MIOBI-BREAKEDGE, which aims to find
the set of k edges to delete from the graph so that the
robustness is shrunk the most.

Let S denote the selected set of k edges to be removed.
Let us then write the new, updated robustness ¯�

�

as

(4.2) ¯�
�

= ln(
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nX

j=1

e�j+��j
)

where ��j is the difference in �j after the adjustment to the
graph. To quantify the updated robustness of the graph in
face of change, we need to be able to efficiently update the
eigenvalues of A when the graph changes.
Updating the eigenvalues. Using the first order matrix
perturbation theory [24], we can compute changes to the
eigenvalues ��j efficiently.

Let (�j ,uj) be the jth (eigenvalue, eigenvector) pair
of the graph G with adjacency matrix A. Let �A and
(��j ,�uj) denote the change in A and (�j ,uj) 8j, respec-
tively (where �A is symmetric). Suppose after the adjust-
ment A becomes

˜A = A+�A

where (

˜�j , ũj) is written as
˜�j = �j +��j and ˜uj = uj +�uj

LEMMA 4.1. Given a perturbation �A to a matrix A, its
eigenvalues can be updated by
(4.3) ��j = uj

0
�Auj.

Proof. See Supplementary Section B.1. ⇤
Using Lemma 4.1, perturbing A with any given edge

(p, r) affects the eigenvalues as

(4.4) ��j = uj
0
�Auj = �2upjurj

where �A(p, r) = �A(r, p) = �1 and 0 elsewhere.

As such, for Problem 1 we are interested in k edges that
will minimize ¯�

�

in Equ. (4.2), or equivalently

min . e�1+��1
+ e�2+��2

+ . . .+ e�n+��n
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(e��1
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)(4.5)

where cj’s denote constant terms and cj  1, 8j � 2.
To find the k most effective edges, we follow a cautious

strategy which iteratively finds the best single edge to re-
move, for k steps. That is, every time an edge is removed,
the criterion/score that is used to find an edge to remove will
be updated for the remaining edges, since each removed edge
changes this score as it changes the robustness.

This cautious edge deletion strategy has been used in
prior research [14] where edge betweenness is used as cri-
terion to remove edges to decrease robustness. Instead of
choosing the top-k edges with the highest edge betweenness
in one shot, the idea is to remove a single edge in each step
after which the betweenness is updated for the remaining,
where this procedure is repeated for the next k steps. This
is often referred as the “re-calculated” strategy and has been
shown to perform better (i.e., affect robustness more) com-
pared to its top-k counterpart.

Therefore, following the re-calculated strategy and by
using Equ. (4.4) and (4.5) we will choose the edge (p, r)
that minimizes the following:
(4.6)
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Our criterion/score to select edges to remove as given
in Equ. (4.6) changes whenever an edge is removed, as the
graph structure and thus eigenvectors uj change. Thus, after
every step we also need to update the eigenvectors. The key
question is how to compute changes �uj efficiently. For
that, we again resort to matrix perturbation theory [24].
Updating the eigenvectors.
LEMMA 4.2. Given a perturbation �A to a matrix A, its
eigenvectors can be updated by

(4.7) �uj =

nX
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✓
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.

Proof. See Supplementary Section B.2. ⇤
Finally, we remark that it is infeasible to compute all

the n eigenvalues of graphs with n nodes, for very large n.
Luckily, given the skewed spectrum of real-world graphs,
only the top few eigenvalues have large magnitudes which
implies that the cj terms in Equ.s (4.5, 4.6) become much
smaller for increasing j. Thus, compute the top t eigenvalues
to approximate the robustness of a graph in our experiments.

The pseudo-code of our algorithm for the edge deletion
problem MIOBI-BREAKEDGE is given in Algorithm 1. For
a fixed budget k, MIOBI-BREAKEDGE is linear w.r.t the size
of the graph for both time and space cost.

Algorithm 1 MIOBI-BREAKEDGE

Input: Graph G(V,E), its adj. matrix A, and int. budget k
Output: Set S of k edges to be removed

1: S = ;

2: Compute the top t (eigenvalue, eigenvector) pairs
(�j ,uj) of A, 1  j  t

3: for step = 1 to k do
4: Select the edge (p̄, r̄) out of 8(p, r) 2 E that mini-

mizes Equ. (4.6) for top t eigenvectors, i.e.

min

(p,r)2E
c
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◆

where c
1

= e�1 and cj = e(�j��1) for 2  j  t
5: S := S [ (p̄, r̄), E := E\(p̄, r̄)
6: Update A; A(p̄, r̄) = 0 and A(r̄, p̄) = 0

7: Update top t eigenvalues of A by Equ. (4.3)
8: Update top t eigenvectors of A by Equ. (4.7)
9: end for

10: Return S

LEMMA 4.3. Complexity of MIOBI-BREAKEDGE. The
time cost of Alg. 1 is O(kmt + knt2). The space cost of
Alg. 1 is O(m+ nt+ k).

Proof. See Supplementary Section B.3. ⇤
Problem 2: Node Deletion Next, we address the node
deletion problem MIOBI-BREAKNODE, which aims to find
the set S of k nodes to delete from the graph so that the
robustness is reduced the most. Deletion of a node involves
deletion of the node as well as all its incident edges, i.e.
edges attached to it.

Similar to edge deletion, we can delete nodes from the
graph one by one (i.e., re-calculated strategy). To do so, we
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0
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down a score for each node i where only the ith row and ith

column of �A contain non-zero entries; (i, v) = (v, i) =

�1, v 2 N (i), for neighbors N (i) of i.
We can illustrate the node scoring with a toy example,

where say we are to remove a node i with 3 neighbors
indexed by n
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0
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P
v2N(i) uvj.
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Equ. (4.8) essentially states that the change in the jth

eigenvalue for a node i’s removal is twice as the sum of

The above arguments show that (1) natural connectiv-
ity exhibits characteristics about the communicability in the
network through alternative paths, which closely relate to ro-
bustness. It associates the robustness to network topology,
graph spectra, and dynamical properties. Moreover, it was
shown [21] that (2) natural connectivity has strong discrim-
ination in quantifying the robustness of complex networks
and can exhibit the variation of robustness sensitively even
for disconnected networks (unlike e.g., algebraic connectiv-
ity). Finally, (3) natural connectivity can be shown to change
strictly monotonically with the addition/deletion of more and
more nodes/edges [26], which agrees with intuition (unlike
e.g., node/edge connectivity, algebraic connectivity). These
indicate that the natural connectivity can measure the robust-
ness of complex networks stably even for very small sized
and disconnected networks. For all these reasons, we choose
to embrace natural connectivity as our network robustness
measure in our study.

4 Manipulating Network Robustness
4.1 Problem Definitions We start by introducing the
problems we address to manipulate network robustness. Due
to space considerations, we briefly (but formally) describe
our problems below.1

PROBLEM 1. MIOBI-BREAKEDGE (Edge Deletion)

Given: A large network G (with n⇥ n adjacency matrix
A) and an integer (budget) k;

Output: A set of k edges from A, the deletion of which
creates the largest drop of the network robustness (as
given in Equ. (3.1)) of G.

PROBLEM 2. MIOBI-BREAKNODE (Node Deletion)

Given: A large network G (with n⇥ n adjacency matrix
A) and an integer (budget) k;

Output: A set of k nodes from A, the deletion of which
creates the largest drop of the network robustness (as
given in Equ. (3.1)) of G.

PROBLEM 3. MIOBI-MAKEEDGE (Edge Addition)

Given: A large network G (with n⇥ n adjacency matrix
A) and an integer (budget) k;

Output: A set of k non-edges of A, the addition of which
creates the largest increase in the network robustness
(as given in Equ. (3.1)) of G.

1We remark that we focus on node/edge deletion and edge addition op-
erations to manipulate graph robustness. Another possible graph operation
is edge rewiring [3], where existing edges are rewired to connect different
pairs of nodes. A principled rewiring can also be done using similar meth-
ods to ours; in particular by removing an existing edge via reverse MIOBI-
BREAKEDGE, and adding it back via MIOBI-MAKEEDGE.

A naive way to solve these problems is to try all of
the possible subsets of size of k and select the one that
will yield the best result. However, this type of strategy
is very inefficient. For example, in the case of MIOBI-
BREAKEDGE, we need to consider
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k
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for MIOBI-BREAKNODE, we need to consider
�n
k

�
where
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�
. It is no surprise that these problems can be hard to

solve, due to computational limitations (see Supplementary
Section A for a discussion on the complexity and formal
proofs related to the hardness of the problems).

Next we describe our proposed approximation algo-
rithms to solve the problems formulated in this section. Note
that the first two problems aim at maximally decreasing (i.e.,
“breaking”) network robustness, whereas the third problem
aims at improving (i.e., “making”) the robustness.

4.2 “Breaking” Network Robustness

Problem 1: Edge Deletion First, we address the edge
deletion problem MIOBI-BREAKEDGE, which aims to find
the set of k edges to delete from the graph so that the
robustness is shrunk the most.

Let S denote the selected set of k edges to be removed.
Let us then write the new, updated robustness ¯�

�

as

(4.2) ¯�
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= ln(
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e�j+��j
)

where ��j is the difference in �j after the adjustment to the
graph. To quantify the updated robustness of the graph in
face of change, we need to be able to efficiently update the
eigenvalues of A when the graph changes.
Updating the eigenvalues. Using the first order matrix
perturbation theory [24], we can compute changes to the
eigenvalues ��j efficiently.

Let (�j ,uj) be the jth (eigenvalue, eigenvector) pair
of the graph G with adjacency matrix A. Let �A and
(��j ,�uj) denote the change in A and (�j ,uj) 8j, respec-
tively (where �A is symmetric). Suppose after the adjust-
ment A becomes

˜A = A+�A

where (

˜�j , ũj) is written as
˜�j = �j +��j and ˜uj = uj +�uj

LEMMA 4.1. Given a perturbation �A to a matrix A, its
eigenvalues can be updated by
(4.3) ��j = uj

0
�Auj.

Proof. See Supplementary Section B.1. ⇤
Using Lemma 4.1, perturbing A with any given edge

(p, r) affects the eigenvalues as

(4.4) ��j = uj
0
�Auj = �2upjurj

where �A(p, r) = �A(r, p) = �1 and 0 elsewhere.
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eigenvalues of A when the graph changes.
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perturbation theory [24], we can compute changes to the
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ment A becomes
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eigenscores of i’s neighbors multiplied by the eigenscore of
i, where eigenscores denote the corresponding entries in the
associated jth eigenvector.

For Problem 2 we are interested in selecting k nodes that
will minimize ¯�

�

in Equ. (4.2). As we will select the nodes
iteratively one by one, we will pick the node i that minimizes
the following at every step.
(4.9)

min

i2V
c
1

✓
e
�2ui1

P
v2N(i)

uv1

+ . . .+ cne
�2uin

P
v2N(i)

uvn
◆

where cj’s denote the constants as before. Note that we will
also consider only the top t eigenvectors to compute the node
selection scores in the experiments.

The algorithm for the node deletion problem MIOBI-
BREAKNODE follows similar lines as of the algorithm for
MIOBI-BREAKEDGE, where we use Equ. (4.9) instead of
Equ. (4.6) in Line 4 of Algorithm 1 (omitted for brevity).

LEMMA 4.4. Complexity of MIOBI-BREAKNODE. The
time cost of Alg. for MIOBI-BREAKNODE is O(kmt +
knt2). The space cost is O(m+ nt+ k).
Proof. See Supplementary Section B.4. ⇤

4.3 “Making” Network Robustness

Problem 3: Edge Addition Finally we address the edge
addition problem MIOBI-MAKEEDGE; find k edges to
place to the graph so as to improve the robustness the most.

MIOBI-MAKEEDGE is a harder and computationally
more demanding problem than MIOBI-BREAKEDGE, since
there are O(n2

) potential edges to add to a given graph
(compared to O(m) edges to remove). As for large graphs
quadratic operations are not desirable, we need to design an
algorithm that is fast and that scales well.

Similar to deletion, we will adopt the re-calculated
strategy for edge additions and find the k edges one by one
iteratively. As such, at every iteration, we are interested in
finding the edge that maximizes the following.
(4.10)

max

(p,r)/2E
p2V,r2V

c
1

✓
e2up1ur1

+ c
2

e2up2ur2
+ . . .+ cne

2upnurn

◆

According to the Perron-Frobenius theorem [12], the
principal eigenvector associated with the largest eigenvalue
of non-negative irreducible matrices has all positive entries.
As G(V,E) is a connected undirected graph, A is irreducible
and u1 is a positive vector. On the other hand other uj’s,
j > 1, might potentially have negative entries. This
makes finding the edge that maximizes Equ. (4.10) without
enlisting all O(n2

) edges challenging.
Next we introduce a fast approximation strategy to

pick edges to add without enlisting all possible edges. In
particular, we note that the second and onwards terms in
Equ. (4.10) keep getting smaller and smaller, due to the

skewed spectrum of large real-world graphs [18]. Therefore,
we focus on the first term, i.e. e2up1ur1 . We create a set
C ⇢ V of size d

max

, where d
max

denotes the maximum
node degree in G, that consists of the nodes with highest u1

entries. For all non-edges (p, r) of G, p 2 C, r 2 C, p 6= r,
we compute Equ. (4.10) considering the top t eigenvectors,
and we add the edge (p̄, r̄) with the maximum value. We
repeat this procedure k times. Algorithm 2 gives the steps of
our proposed edge addition algorithm in detail.

LEMMA 4.5. Complexity of MIOBI-MAKEEDGE. The
time cost of Alg. 2 is O(mt + kd2

max

t + knt2). The space
cost is O(m+ nt+ k).

Proof. See Supplementary Section B.5. ⇤

Algorithm 2 MIOBI-MAKEEDGE

Input: Graph G(V,E), its adj. matrix A, and int. budget k
Output: Set S of k edges to be added

1: S = ;

2: Compute the top t (eigenvalue, eigenvector) pairs
(�j ,uj) of A, 1  j  t

3: for step = 1 to k do
4: Compute the largest degree d

max

of A
5: Find the candidate subset C of d

max

nodes with the
highest u1 eigen-scores

6: Select the edge (p̄, r̄) out of 8(p, r) /2 E, p 2 C, r 2

C, p 6= r, that maximizes Equ. (4.10) for top t
eigenvectors, i.e.

max

(p,r)/2E
p2C,r2C

c
1

✓
e2up1ur1

+c
2

e2up2ur2
+. . .+cte

2upturt

◆

7: S := S [ (p̄, r̄), E := E [ (p̄, r̄)
8: Update A; A(p̄, r̄) = 1 and A(r̄, p̄) = 1

9: Update top t eigenvalues of A by Equ. (4.3)
10: Update top t eigenvectors of A by Equ. (4.7)
11: end for
12: Return S

5 Experimental Evaluation
We evaluate our algorithms with respect to (1) effectiveness
in manipulating graph robustness, and (2) running time and
scalability, on several real-world graphs. For each kind of
graph manipulation, i.e. problem setting, we compare to
several ad-hoc heuristic strategies that we compiled.
Datasets. We use the datasets shown in Table 1 (available
at http://snap.stanford.edu/data/) to evaluate
our methods. The Oregon Autonomous System (AS) graphs
are AS-level router networks inferred from Oregon route-
views, and were collected once a week, for 9 consecutive
weeks. Gnutella graphs are the peer-to-peer (P2P) connec-
tivity networks collected daily, over 5 consecutive days.
Evaluation criteria. For effectiveness, we report the relative
% change of robustness, i.e. 100|R �

¯R|/R, where R and
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n  Deleting an edge from A: 

n  Deleting a node from A: 

n  Adding an edge to A: 

The above arguments show that (1) natural connectiv-
ity exhibits characteristics about the communicability in the
network through alternative paths, which closely relate to ro-
bustness. It associates the robustness to network topology,
graph spectra, and dynamical properties. Moreover, it was
shown [21] that (2) natural connectivity has strong discrim-
ination in quantifying the robustness of complex networks
and can exhibit the variation of robustness sensitively even
for disconnected networks (unlike e.g., algebraic connectiv-
ity). Finally, (3) natural connectivity can be shown to change
strictly monotonically with the addition/deletion of more and
more nodes/edges [26], which agrees with intuition (unlike
e.g., node/edge connectivity, algebraic connectivity). These
indicate that the natural connectivity can measure the robust-
ness of complex networks stably even for very small sized
and disconnected networks. For all these reasons, we choose
to embrace natural connectivity as our network robustness
measure in our study.

4 Manipulating Network Robustness
4.1 Problem Definitions We start by introducing the
problems we address to manipulate network robustness. Due
to space considerations, we briefly (but formally) describe
our problems below.1

PROBLEM 1. MIOBI-BREAKEDGE (Edge Deletion)

Given: A large network G (with n⇥ n adjacency matrix
A) and an integer (budget) k;

Output: A set of k edges from A, the deletion of which
creates the largest drop of the network robustness (as
given in Equ. (3.1)) of G.

PROBLEM 2. MIOBI-BREAKNODE (Node Deletion)

Given: A large network G (with n⇥ n adjacency matrix
A) and an integer (budget) k;

Output: A set of k nodes from A, the deletion of which
creates the largest drop of the network robustness (as
given in Equ. (3.1)) of G.

PROBLEM 3. MIOBI-MAKEEDGE (Edge Addition)

Given: A large network G (with n⇥ n adjacency matrix
A) and an integer (budget) k;

Output: A set of k non-edges of A, the addition of which
creates the largest increase in the network robustness
(as given in Equ. (3.1)) of G.

1We remark that we focus on node/edge deletion and edge addition op-
erations to manipulate graph robustness. Another possible graph operation
is edge rewiring [3], where existing edges are rewired to connect different
pairs of nodes. A principled rewiring can also be done using similar meth-
ods to ours; in particular by removing an existing edge via reverse MIOBI-
BREAKEDGE, and adding it back via MIOBI-MAKEEDGE.

A naive way to solve these problems is to try all of
the possible subsets of size of k and select the one that
will yield the best result. However, this type of strategy
is very inefficient. For example, in the case of MIOBI-
BREAKEDGE, we need to consider
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. It is no surprise that these problems can be hard to

solve, due to computational limitations (see Supplementary
Section A for a discussion on the complexity and formal
proofs related to the hardness of the problems).

Next we describe our proposed approximation algo-
rithms to solve the problems formulated in this section. Note
that the first two problems aim at maximally decreasing (i.e.,
“breaking”) network robustness, whereas the third problem
aims at improving (i.e., “making”) the robustness.

4.2 “Breaking” Network Robustness

Problem 1: Edge Deletion First, we address the edge
deletion problem MIOBI-BREAKEDGE, which aims to find
the set of k edges to delete from the graph so that the
robustness is shrunk the most.

Let S denote the selected set of k edges to be removed.
Let us then write the new, updated robustness ¯�

�

as

(4.2) ¯�
�

= ln(

1

n

nX

j=1

e�j+��j
)

where ��j is the difference in �j after the adjustment to the
graph. To quantify the updated robustness of the graph in
face of change, we need to be able to efficiently update the
eigenvalues of A when the graph changes.
Updating the eigenvalues. Using the first order matrix
perturbation theory [24], we can compute changes to the
eigenvalues ��j efficiently.

Let (�j ,uj) be the jth (eigenvalue, eigenvector) pair
of the graph G with adjacency matrix A. Let �A and
(��j ,�uj) denote the change in A and (�j ,uj) 8j, respec-
tively (where �A is symmetric). Suppose after the adjust-
ment A becomes

˜A = A+�A

where (

˜�j , ũj) is written as
˜�j = �j +��j and ˜uj = uj +�uj

LEMMA 4.1. Given a perturbation �A to a matrix A, its
eigenvalues can be updated by
(4.3) ��j = uj

0
�Auj.

Proof. See Supplementary Section B.1. ⇤
Using Lemma 4.1, perturbing A with any given edge

(p, r) affects the eigenvalues as

(4.4) ��j = uj
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�Auj = �2upjurj

where �A(p, r) = �A(r, p) = �1 and 0 elsewhere.
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ity exhibits characteristics about the communicability in the
network through alternative paths, which closely relate to ro-
bustness. It associates the robustness to network topology,
graph spectra, and dynamical properties. Moreover, it was
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ination in quantifying the robustness of complex networks
and can exhibit the variation of robustness sensitively even
for disconnected networks (unlike e.g., algebraic connectiv-
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more nodes/edges [26], which agrees with intuition (unlike
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ness of complex networks stably even for very small sized
and disconnected networks. For all these reasons, we choose
to embrace natural connectivity as our network robustness
measure in our study.

4 Manipulating Network Robustness
4.1 Problem Definitions We start by introducing the
problems we address to manipulate network robustness. Due
to space considerations, we briefly (but formally) describe
our problems below.1

PROBLEM 1. MIOBI-BREAKEDGE (Edge Deletion)

Given: A large network G (with n⇥ n adjacency matrix
A) and an integer (budget) k;

Output: A set of k edges from A, the deletion of which
creates the largest drop of the network robustness (as
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Given: A large network G (with n⇥ n adjacency matrix
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PROBLEM 3. MIOBI-MAKEEDGE (Edge Addition)

Given: A large network G (with n⇥ n adjacency matrix
A) and an integer (budget) k;

Output: A set of k non-edges of A, the addition of which
creates the largest increase in the network robustness
(as given in Equ. (3.1)) of G.

1We remark that we focus on node/edge deletion and edge addition op-
erations to manipulate graph robustness. Another possible graph operation
is edge rewiring [3], where existing edges are rewired to connect different
pairs of nodes. A principled rewiring can also be done using similar meth-
ods to ours; in particular by removing an existing edge via reverse MIOBI-
BREAKEDGE, and adding it back via MIOBI-MAKEEDGE.

A naive way to solve these problems is to try all of
the possible subsets of size of k and select the one that
will yield the best result. However, this type of strategy
is very inefficient. For example, in the case of MIOBI-
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solve, due to computational limitations (see Supplementary
Section A for a discussion on the complexity and formal
proofs related to the hardness of the problems).

Next we describe our proposed approximation algo-
rithms to solve the problems formulated in this section. Note
that the first two problems aim at maximally decreasing (i.e.,
“breaking”) network robustness, whereas the third problem
aims at improving (i.e., “making”) the robustness.

4.2 “Breaking” Network Robustness

Problem 1: Edge Deletion First, we address the edge
deletion problem MIOBI-BREAKEDGE, which aims to find
the set of k edges to delete from the graph so that the
robustness is shrunk the most.
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where ��j is the difference in �j after the adjustment to the
graph. To quantify the updated robustness of the graph in
face of change, we need to be able to efficiently update the
eigenvalues of A when the graph changes.
Updating the eigenvalues. Using the first order matrix
perturbation theory [24], we can compute changes to the
eigenvalues ��j efficiently.

Let (�j ,uj) be the jth (eigenvalue, eigenvector) pair
of the graph G with adjacency matrix A. Let �A and
(��j ,�uj) denote the change in A and (�j ,uj) 8j, respec-
tively (where �A is symmetric). Suppose after the adjust-
ment A becomes
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where (
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LEMMA 4.1. Given a perturbation �A to a matrix A, its
eigenvalues can be updated by
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As such, for Problem 1 we are interested in k edges that
will minimize ¯�
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where cj’s denote constant terms and cj  1, 8j � 2.
To find the k most effective edges, we follow a cautious

strategy which iteratively finds the best single edge to re-
move, for k steps. That is, every time an edge is removed,
the criterion/score that is used to find an edge to remove will
be updated for the remaining edges, since each removed edge
changes this score as it changes the robustness.

This cautious edge deletion strategy has been used in
prior research [14] where edge betweenness is used as cri-
terion to remove edges to decrease robustness. Instead of
choosing the top-k edges with the highest edge betweenness
in one shot, the idea is to remove a single edge in each step
after which the betweenness is updated for the remaining,
where this procedure is repeated for the next k steps. This
is often referred as the “re-calculated” strategy and has been
shown to perform better (i.e., affect robustness more) com-
pared to its top-k counterpart.

Therefore, following the re-calculated strategy and by
using Equ. (4.4) and (4.5) we will choose the edge (p, r)
that minimizes the following:
(4.6)
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Our criterion/score to select edges to remove as given
in Equ. (4.6) changes whenever an edge is removed, as the
graph structure and thus eigenvectors uj change. Thus, after
every step we also need to update the eigenvectors. The key
question is how to compute changes �uj efficiently. For
that, we again resort to matrix perturbation theory [24].
Updating the eigenvectors.
LEMMA 4.2. Given a perturbation �A to a matrix A, its
eigenvectors can be updated by
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Proof. See Supplementary Section B.2. ⇤
Finally, we remark that it is infeasible to compute all

the n eigenvalues of graphs with n nodes, for very large n.
Luckily, given the skewed spectrum of real-world graphs,
only the top few eigenvalues have large magnitudes which
implies that the cj terms in Equ.s (4.5, 4.6) become much
smaller for increasing j. Thus, compute the top t eigenvalues
to approximate the robustness of a graph in our experiments.

The pseudo-code of our algorithm for the edge deletion
problem MIOBI-BREAKEDGE is given in Algorithm 1. For
a fixed budget k, MIOBI-BREAKEDGE is linear w.r.t the size
of the graph for both time and space cost.

Algorithm 1 MIOBI-BREAKEDGE

Input: Graph G(V,E), its adj. matrix A, and int. budget k
Output: Set S of k edges to be removed

1: S = ;

2: Compute the top t (eigenvalue, eigenvector) pairs
(�j ,uj) of A, 1  j  t

3: for step = 1 to k do
4: Select the edge (p̄, r̄) out of 8(p, r) 2 E that mini-

mizes Equ. (4.6) for top t eigenvectors, i.e.
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where c
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= e�1 and cj = e(�j��1) for 2  j  t
5: S := S [ (p̄, r̄), E := E\(p̄, r̄)
6: Update A; A(p̄, r̄) = 0 and A(r̄, p̄) = 0

7: Update top t eigenvalues of A by Equ. (4.3)
8: Update top t eigenvectors of A by Equ. (4.7)
9: end for

10: Return S

LEMMA 4.3. Complexity of MIOBI-BREAKEDGE. The
time cost of Alg. 1 is O(kmt + knt2). The space cost of
Alg. 1 is O(m+ nt+ k).

Proof. See Supplementary Section B.3. ⇤
Problem 2: Node Deletion Next, we address the node
deletion problem MIOBI-BREAKNODE, which aims to find
the set S of k nodes to delete from the graph so that the
robustness is reduced the most. Deletion of a node involves
deletion of the node as well as all its incident edges, i.e.
edges attached to it.

Similar to edge deletion, we can delete nodes from the
graph one by one (i.e., re-calculated strategy). To do so, we
need to find a score similar to Equ. (4.6) for each node to
quantify its effect of change on the graph spectrum. Again,
using ��j = uj

0
�Auj from Lemma 4.1, we will write

down a score for each node i where only the ith row and ith

column of �A contain non-zero entries; (i, v) = (v, i) =

�1, v 2 N (i), for neighbors N (i) of i.
We can illustrate the node scoring with a toy example,

where say we are to remove a node i with 3 neighbors
indexed by n
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. Let wj = uj
0
�A. We can see that
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As such, ��j = wjuj = �uijun1j � uijun2j � uijun3j �P
v2N (i) uvjuij, equivalently ��j = �uij(un1j + un2j +
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v2N (i) uvj) = �2uij
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v2N (i) uvj.
Thus, in general ��j for a removal of node i is given as
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�Auj = �2uij
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Equ. (4.8) essentially states that the change in the jth

eigenvalue for a node i’s removal is twice as the sum of

As such, for Problem 1 we are interested in k edges that
will minimize ¯�
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where cj’s denote constant terms and cj  1, 8j � 2.
To find the k most effective edges, we follow a cautious

strategy which iteratively finds the best single edge to re-
move, for k steps. That is, every time an edge is removed,
the criterion/score that is used to find an edge to remove will
be updated for the remaining edges, since each removed edge
changes this score as it changes the robustness.

This cautious edge deletion strategy has been used in
prior research [14] where edge betweenness is used as cri-
terion to remove edges to decrease robustness. Instead of
choosing the top-k edges with the highest edge betweenness
in one shot, the idea is to remove a single edge in each step
after which the betweenness is updated for the remaining,
where this procedure is repeated for the next k steps. This
is often referred as the “re-calculated” strategy and has been
shown to perform better (i.e., affect robustness more) com-
pared to its top-k counterpart.

Therefore, following the re-calculated strategy and by
using Equ. (4.4) and (4.5) we will choose the edge (p, r)
that minimizes the following:
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Our criterion/score to select edges to remove as given
in Equ. (4.6) changes whenever an edge is removed, as the
graph structure and thus eigenvectors uj change. Thus, after
every step we also need to update the eigenvectors. The key
question is how to compute changes �uj efficiently. For
that, we again resort to matrix perturbation theory [24].
Updating the eigenvectors.
LEMMA 4.2. Given a perturbation �A to a matrix A, its
eigenvectors can be updated by
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Proof. See Supplementary Section B.2. ⇤
Finally, we remark that it is infeasible to compute all

the n eigenvalues of graphs with n nodes, for very large n.
Luckily, given the skewed spectrum of real-world graphs,
only the top few eigenvalues have large magnitudes which
implies that the cj terms in Equ.s (4.5, 4.6) become much
smaller for increasing j. Thus, compute the top t eigenvalues
to approximate the robustness of a graph in our experiments.

The pseudo-code of our algorithm for the edge deletion
problem MIOBI-BREAKEDGE is given in Algorithm 1. For
a fixed budget k, MIOBI-BREAKEDGE is linear w.r.t the size
of the graph for both time and space cost.

Algorithm 1 MIOBI-BREAKEDGE

Input: Graph G(V,E), its adj. matrix A, and int. budget k
Output: Set S of k edges to be removed

1: S = ;

2: Compute the top t (eigenvalue, eigenvector) pairs
(�j ,uj) of A, 1  j  t

3: for step = 1 to k do
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= e�1 and cj = e(�j��1) for 2  j  t
5: S := S [ (p̄, r̄), E := E\(p̄, r̄)
6: Update A; A(p̄, r̄) = 0 and A(r̄, p̄) = 0

7: Update top t eigenvalues of A by Equ. (4.3)
8: Update top t eigenvectors of A by Equ. (4.7)
9: end for

10: Return S

LEMMA 4.3. Complexity of MIOBI-BREAKEDGE. The
time cost of Alg. 1 is O(kmt + knt2). The space cost of
Alg. 1 is O(m+ nt+ k).

Proof. See Supplementary Section B.3. ⇤
Problem 2: Node Deletion Next, we address the node
deletion problem MIOBI-BREAKNODE, which aims to find
the set S of k nodes to delete from the graph so that the
robustness is reduced the most. Deletion of a node involves
deletion of the node as well as all its incident edges, i.e.
edges attached to it.

Similar to edge deletion, we can delete nodes from the
graph one by one (i.e., re-calculated strategy). To do so, we
need to find a score similar to Equ. (4.6) for each node to
quantify its effect of change on the graph spectrum. Again,
using ��j = uj

0
�Auj from Lemma 4.1, we will write

down a score for each node i where only the ith row and ith

column of �A contain non-zero entries; (i, v) = (v, i) =

�1, v 2 N (i), for neighbors N (i) of i.
We can illustrate the node scoring with a toy example,

where say we are to remove a node i with 3 neighbors
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where cj’s denote constant terms and cj  1, 8j � 2.
To find the k most effective edges, we follow a cautious

strategy which iteratively finds the best single edge to re-
move, for k steps. That is, every time an edge is removed,
the criterion/score that is used to find an edge to remove will
be updated for the remaining edges, since each removed edge
changes this score as it changes the robustness.

This cautious edge deletion strategy has been used in
prior research [14] where edge betweenness is used as cri-
terion to remove edges to decrease robustness. Instead of
choosing the top-k edges with the highest edge betweenness
in one shot, the idea is to remove a single edge in each step
after which the betweenness is updated for the remaining,
where this procedure is repeated for the next k steps. This
is often referred as the “re-calculated” strategy and has been
shown to perform better (i.e., affect robustness more) com-
pared to its top-k counterpart.

Therefore, following the re-calculated strategy and by
using Equ. (4.4) and (4.5) we will choose the edge (p, r)
that minimizes the following:
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Our criterion/score to select edges to remove as given
in Equ. (4.6) changes whenever an edge is removed, as the
graph structure and thus eigenvectors uj change. Thus, after
every step we also need to update the eigenvectors. The key
question is how to compute changes �uj efficiently. For
that, we again resort to matrix perturbation theory [24].
Updating the eigenvectors.
LEMMA 4.2. Given a perturbation �A to a matrix A, its
eigenvectors can be updated by
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Proof. See Supplementary Section B.2. ⇤
Finally, we remark that it is infeasible to compute all

the n eigenvalues of graphs with n nodes, for very large n.
Luckily, given the skewed spectrum of real-world graphs,
only the top few eigenvalues have large magnitudes which
implies that the cj terms in Equ.s (4.5, 4.6) become much
smaller for increasing j. Thus, compute the top t eigenvalues
to approximate the robustness of a graph in our experiments.

The pseudo-code of our algorithm for the edge deletion
problem MIOBI-BREAKEDGE is given in Algorithm 1. For
a fixed budget k, MIOBI-BREAKEDGE is linear w.r.t the size
of the graph for both time and space cost.

Algorithm 1 MIOBI-BREAKEDGE

Input: Graph G(V,E), its adj. matrix A, and int. budget k
Output: Set S of k edges to be removed

1: S = ;

2: Compute the top t (eigenvalue, eigenvector) pairs
(�j ,uj) of A, 1  j  t

3: for step = 1 to k do
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= e�1 and cj = e(�j��1) for 2  j  t
5: S := S [ (p̄, r̄), E := E\(p̄, r̄)
6: Update A; A(p̄, r̄) = 0 and A(r̄, p̄) = 0

7: Update top t eigenvalues of A by Equ. (4.3)
8: Update top t eigenvectors of A by Equ. (4.7)
9: end for

10: Return S

LEMMA 4.3. Complexity of MIOBI-BREAKEDGE. The
time cost of Alg. 1 is O(kmt + knt2). The space cost of
Alg. 1 is O(m+ nt+ k).

Proof. See Supplementary Section B.3. ⇤
Problem 2: Node Deletion Next, we address the node
deletion problem MIOBI-BREAKNODE, which aims to find
the set S of k nodes to delete from the graph so that the
robustness is reduced the most. Deletion of a node involves
deletion of the node as well as all its incident edges, i.e.
edges attached to it.

Similar to edge deletion, we can delete nodes from the
graph one by one (i.e., re-calculated strategy). To do so, we
need to find a score similar to Equ. (4.6) for each node to
quantify its effect of change on the graph spectrum. Again,
using ��j = uj

0
�Auj from Lemma 4.1, we will write

down a score for each node i where only the ith row and ith

column of �A contain non-zero entries; (i, v) = (v, i) =

�1, v 2 N (i), for neighbors N (i) of i.
We can illustrate the node scoring with a toy example,

where say we are to remove a node i with 3 neighbors
indexed by n
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. Let wj = uj
0
�A. We can see that
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un3j +
P

v2N (i) uvj) = �2uij
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Thus, in general ��j for a removal of node i is given as
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Equ. (4.8) essentially states that the change in the jth

eigenvalue for a node i’s removal is twice as the sum of

The above arguments show that (1) natural connectiv-
ity exhibits characteristics about the communicability in the
network through alternative paths, which closely relate to ro-
bustness. It associates the robustness to network topology,
graph spectra, and dynamical properties. Moreover, it was
shown [21] that (2) natural connectivity has strong discrim-
ination in quantifying the robustness of complex networks
and can exhibit the variation of robustness sensitively even
for disconnected networks (unlike e.g., algebraic connectiv-
ity). Finally, (3) natural connectivity can be shown to change
strictly monotonically with the addition/deletion of more and
more nodes/edges [26], which agrees with intuition (unlike
e.g., node/edge connectivity, algebraic connectivity). These
indicate that the natural connectivity can measure the robust-
ness of complex networks stably even for very small sized
and disconnected networks. For all these reasons, we choose
to embrace natural connectivity as our network robustness
measure in our study.

4 Manipulating Network Robustness
4.1 Problem Definitions We start by introducing the
problems we address to manipulate network robustness. Due
to space considerations, we briefly (but formally) describe
our problems below.1

PROBLEM 1. MIOBI-BREAKEDGE (Edge Deletion)

Given: A large network G (with n⇥ n adjacency matrix
A) and an integer (budget) k;

Output: A set of k edges from A, the deletion of which
creates the largest drop of the network robustness (as
given in Equ. (3.1)) of G.

PROBLEM 2. MIOBI-BREAKNODE (Node Deletion)

Given: A large network G (with n⇥ n adjacency matrix
A) and an integer (budget) k;

Output: A set of k nodes from A, the deletion of which
creates the largest drop of the network robustness (as
given in Equ. (3.1)) of G.

PROBLEM 3. MIOBI-MAKEEDGE (Edge Addition)

Given: A large network G (with n⇥ n adjacency matrix
A) and an integer (budget) k;

Output: A set of k non-edges of A, the addition of which
creates the largest increase in the network robustness
(as given in Equ. (3.1)) of G.

1We remark that we focus on node/edge deletion and edge addition op-
erations to manipulate graph robustness. Another possible graph operation
is edge rewiring [3], where existing edges are rewired to connect different
pairs of nodes. A principled rewiring can also be done using similar meth-
ods to ours; in particular by removing an existing edge via reverse MIOBI-
BREAKEDGE, and adding it back via MIOBI-MAKEEDGE.

A naive way to solve these problems is to try all of
the possible subsets of size of k and select the one that
will yield the best result. However, this type of strategy
is very inefficient. For example, in the case of MIOBI-
BREAKEDGE, we need to consider

�m
k

�
where |E| = m;

for MIOBI-BREAKNODE, we need to consider
�n
k

�
where

|V | = n; and for MIOBI-MAKEEDGE, we need to consider
�
(

n
2)�m

k

�
. It is no surprise that these problems can be hard to

solve, due to computational limitations (see Supplementary
Section A for a discussion on the complexity and formal
proofs related to the hardness of the problems).

Next we describe our proposed approximation algo-
rithms to solve the problems formulated in this section. Note
that the first two problems aim at maximally decreasing (i.e.,
“breaking”) network robustness, whereas the third problem
aims at improving (i.e., “making”) the robustness.

4.2 “Breaking” Network Robustness

Problem 1: Edge Deletion First, we address the edge
deletion problem MIOBI-BREAKEDGE, which aims to find
the set of k edges to delete from the graph so that the
robustness is shrunk the most.

Let S denote the selected set of k edges to be removed.
Let us then write the new, updated robustness ¯�

�

as

(4.2) ¯�
�

= ln(

1

n

nX

j=1

e�j+��j
)

where ��j is the difference in �j after the adjustment to the
graph. To quantify the updated robustness of the graph in
face of change, we need to be able to efficiently update the
eigenvalues of A when the graph changes.
Updating the eigenvalues. Using the first order matrix
perturbation theory [24], we can compute changes to the
eigenvalues ��j efficiently.

Let (�j ,uj) be the jth (eigenvalue, eigenvector) pair
of the graph G with adjacency matrix A. Let �A and
(��j ,�uj) denote the change in A and (�j ,uj) 8j, respec-
tively (where �A is symmetric). Suppose after the adjust-
ment A becomes

˜A = A+�A

where (

˜�j , ũj) is written as
˜�j = �j +��j and ˜uj = uj +�uj

LEMMA 4.1. Given a perturbation �A to a matrix A, its
eigenvalues can be updated by
(4.3) ��j = uj

0
�Auj.

Proof. See Supplementary Section B.1. ⇤
Using Lemma 4.1, perturbing A with any given edge

(p, r) affects the eigenvalues as

(4.4) ��j = uj
0
�Auj = �2upjurj

where �A(p, r) = �A(r, p) = �1 and 0 elsewhere.
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ity exhibits characteristics about the communicability in the
network through alternative paths, which closely relate to ro-
bustness. It associates the robustness to network topology,
graph spectra, and dynamical properties. Moreover, it was
shown [21] that (2) natural connectivity has strong discrim-
ination in quantifying the robustness of complex networks
and can exhibit the variation of robustness sensitively even
for disconnected networks (unlike e.g., algebraic connectiv-
ity). Finally, (3) natural connectivity can be shown to change
strictly monotonically with the addition/deletion of more and
more nodes/edges [26], which agrees with intuition (unlike
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indicate that the natural connectivity can measure the robust-
ness of complex networks stably even for very small sized
and disconnected networks. For all these reasons, we choose
to embrace natural connectivity as our network robustness
measure in our study.

4 Manipulating Network Robustness
4.1 Problem Definitions We start by introducing the
problems we address to manipulate network robustness. Due
to space considerations, we briefly (but formally) describe
our problems below.1

PROBLEM 1. MIOBI-BREAKEDGE (Edge Deletion)

Given: A large network G (with n⇥ n adjacency matrix
A) and an integer (budget) k;

Output: A set of k edges from A, the deletion of which
creates the largest drop of the network robustness (as
given in Equ. (3.1)) of G.

PROBLEM 2. MIOBI-BREAKNODE (Node Deletion)

Given: A large network G (with n⇥ n adjacency matrix
A) and an integer (budget) k;

Output: A set of k nodes from A, the deletion of which
creates the largest drop of the network robustness (as
given in Equ. (3.1)) of G.

PROBLEM 3. MIOBI-MAKEEDGE (Edge Addition)

Given: A large network G (with n⇥ n adjacency matrix
A) and an integer (budget) k;

Output: A set of k non-edges of A, the addition of which
creates the largest increase in the network robustness
(as given in Equ. (3.1)) of G.

1We remark that we focus on node/edge deletion and edge addition op-
erations to manipulate graph robustness. Another possible graph operation
is edge rewiring [3], where existing edges are rewired to connect different
pairs of nodes. A principled rewiring can also be done using similar meth-
ods to ours; in particular by removing an existing edge via reverse MIOBI-
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solve, due to computational limitations (see Supplementary
Section A for a discussion on the complexity and formal
proofs related to the hardness of the problems).

Next we describe our proposed approximation algo-
rithms to solve the problems formulated in this section. Note
that the first two problems aim at maximally decreasing (i.e.,
“breaking”) network robustness, whereas the third problem
aims at improving (i.e., “making”) the robustness.

4.2 “Breaking” Network Robustness

Problem 1: Edge Deletion First, we address the edge
deletion problem MIOBI-BREAKEDGE, which aims to find
the set of k edges to delete from the graph so that the
robustness is shrunk the most.
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where ��j is the difference in �j after the adjustment to the
graph. To quantify the updated robustness of the graph in
face of change, we need to be able to efficiently update the
eigenvalues of A when the graph changes.
Updating the eigenvalues. Using the first order matrix
perturbation theory [24], we can compute changes to the
eigenvalues ��j efficiently.

Let (�j ,uj) be the jth (eigenvalue, eigenvector) pair
of the graph G with adjacency matrix A. Let �A and
(��j ,�uj) denote the change in A and (�j ,uj) 8j, respec-
tively (where �A is symmetric). Suppose after the adjust-
ment A becomes

˜A = A+�A

where (

˜�j , ũj) is written as
˜�j = �j +��j and ˜uj = uj +�uj

LEMMA 4.1. Given a perturbation �A to a matrix A, its
eigenvalues can be updated by
(4.3) ��j = uj

0
�Auj.

Proof. See Supplementary Section B.1. ⇤
Using Lemma 4.1, perturbing A with any given edge

(p, r) affects the eigenvalues as

(4.4) ��j = uj
0
�Auj = �2upjurj

where �A(p, r) = �A(r, p) = �1 and 0 elsewhere.

As such, for Problem 1 we are interested in k edges that
will minimize ¯�

�

in Equ. (4.2), or equivalently

min . e�1+��1
+ e�2+��2

+ . . .+ e�n+��n

e�1
(e��1

+ e(�2��1)e��2
+ . . .+ e(�n��1)e��n

)

c
1

(e��1
+ c

2

e��2
+ . . .+ cne

��n
)(4.5)

where cj’s denote constant terms and cj  1, 8j � 2.
To find the k most effective edges, we follow a cautious

strategy which iteratively finds the best single edge to re-
move, for k steps. That is, every time an edge is removed,
the criterion/score that is used to find an edge to remove will
be updated for the remaining edges, since each removed edge
changes this score as it changes the robustness.

This cautious edge deletion strategy has been used in
prior research [14] where edge betweenness is used as cri-
terion to remove edges to decrease robustness. Instead of
choosing the top-k edges with the highest edge betweenness
in one shot, the idea is to remove a single edge in each step
after which the betweenness is updated for the remaining,
where this procedure is repeated for the next k steps. This
is often referred as the “re-calculated” strategy and has been
shown to perform better (i.e., affect robustness more) com-
pared to its top-k counterpart.

Therefore, following the re-calculated strategy and by
using Equ. (4.4) and (4.5) we will choose the edge (p, r)
that minimizes the following:
(4.6)

min

(p,r)2E
c
1

✓
e�2up1ur1

+c
2

e�2up2ur2
+. . .+cne

�2upnurn

◆

Our criterion/score to select edges to remove as given
in Equ. (4.6) changes whenever an edge is removed, as the
graph structure and thus eigenvectors uj change. Thus, after
every step we also need to update the eigenvectors. The key
question is how to compute changes �uj efficiently. For
that, we again resort to matrix perturbation theory [24].
Updating the eigenvectors.
LEMMA 4.2. Given a perturbation �A to a matrix A, its
eigenvectors can be updated by

(4.7) �uj =

nX

i=1,i 6=j

✓
ui

0
�Auj

�j � �i
ui

◆
.

Proof. See Supplementary Section B.2. ⇤
Finally, we remark that it is infeasible to compute all

the n eigenvalues of graphs with n nodes, for very large n.
Luckily, given the skewed spectrum of real-world graphs,
only the top few eigenvalues have large magnitudes which
implies that the cj terms in Equ.s (4.5, 4.6) become much
smaller for increasing j. Thus, compute the top t eigenvalues
to approximate the robustness of a graph in our experiments.

The pseudo-code of our algorithm for the edge deletion
problem MIOBI-BREAKEDGE is given in Algorithm 1. For
a fixed budget k, MIOBI-BREAKEDGE is linear w.r.t the size
of the graph for both time and space cost.

Algorithm 1 MIOBI-BREAKEDGE

Input: Graph G(V,E), its adj. matrix A, and int. budget k
Output: Set S of k edges to be removed

1: S = ;

2: Compute the top t (eigenvalue, eigenvector) pairs
(�j ,uj) of A, 1  j  t

3: for step = 1 to k do
4: Select the edge (p̄, r̄) out of 8(p, r) 2 E that mini-

mizes Equ. (4.6) for top t eigenvectors, i.e.

min

(p,r)2E
c
1

✓
e�2up1ur1

+c
2

e�2up2ur2
+. . .+cte

�2upturt

◆

where c
1

= e�1 and cj = e(�j��1) for 2  j  t
5: S := S [ (p̄, r̄), E := E\(p̄, r̄)
6: Update A; A(p̄, r̄) = 0 and A(r̄, p̄) = 0

7: Update top t eigenvalues of A by Equ. (4.3)
8: Update top t eigenvectors of A by Equ. (4.7)
9: end for

10: Return S

LEMMA 4.3. Complexity of MIOBI-BREAKEDGE. The
time cost of Alg. 1 is O(kmt + knt2). The space cost of
Alg. 1 is O(m+ nt+ k).

Proof. See Supplementary Section B.3. ⇤
Problem 2: Node Deletion Next, we address the node
deletion problem MIOBI-BREAKNODE, which aims to find
the set S of k nodes to delete from the graph so that the
robustness is reduced the most. Deletion of a node involves
deletion of the node as well as all its incident edges, i.e.
edges attached to it.

Similar to edge deletion, we can delete nodes from the
graph one by one (i.e., re-calculated strategy). To do so, we
need to find a score similar to Equ. (4.6) for each node to
quantify its effect of change on the graph spectrum. Again,
using ��j = uj

0
�Auj from Lemma 4.1, we will write

down a score for each node i where only the ith row and ith

column of �A contain non-zero entries; (i, v) = (v, i) =

�1, v 2 N (i), for neighbors N (i) of i.
We can illustrate the node scoring with a toy example,

where say we are to remove a node i with 3 neighbors
indexed by n

1

, n
2

, n
3

. Let wj = uj
0
�A. We can see that

wn1j = wn2j = wn3j = �uij, and wij = �

P
v2N(i) uvj.

As such, ��j = wjuj = �uijun1j � uijun2j � uijun3j �P
v2N (i) uvjuij, equivalently ��j = �uij(un1j + un2j +

un3j +
P

v2N (i) uvj) = �2uij
P

v2N (i) uvj.
Thus, in general ��j for a removal of node i is given as

(4.8) ��j = uj
0
�Auj = �2uij

X

v2N (i)

uvj

Equ. (4.8) essentially states that the change in the jth

eigenvalue for a node i’s removal is twice as the sum of

eigenscores of i’s neighbors multiplied by the eigenscore of
i, where eigenscores denote the corresponding entries in the
associated jth eigenvector.

For Problem 2 we are interested in selecting k nodes that
will minimize ¯�

�

in Equ. (4.2). As we will select the nodes
iteratively one by one, we will pick the node i that minimizes
the following at every step.
(4.9)

min

i2V
c
1

✓
e
�2ui1

P
v2N(i)

uv1

+ . . .+ cne
�2uin

P
v2N(i)

uvn
◆

where cj’s denote the constants as before. Note that we will
also consider only the top t eigenvectors to compute the node
selection scores in the experiments.

The algorithm for the node deletion problem MIOBI-
BREAKNODE follows similar lines as of the algorithm for
MIOBI-BREAKEDGE, where we use Equ. (4.9) instead of
Equ. (4.6) in Line 4 of Algorithm 1 (omitted for brevity).

LEMMA 4.4. Complexity of MIOBI-BREAKNODE. The
time cost of Alg. for MIOBI-BREAKNODE is O(kmt +
knt2). The space cost is O(m+ nt+ k).
Proof. See Supplementary Section B.4. ⇤

4.3 “Making” Network Robustness

Problem 3: Edge Addition Finally we address the edge
addition problem MIOBI-MAKEEDGE; find k edges to
place to the graph so as to improve the robustness the most.

MIOBI-MAKEEDGE is a harder and computationally
more demanding problem than MIOBI-BREAKEDGE, since
there are O(n2

) potential edges to add to a given graph
(compared to O(m) edges to remove). As for large graphs
quadratic operations are not desirable, we need to design an
algorithm that is fast and that scales well.

Similar to deletion, we will adopt the re-calculated
strategy for edge additions and find the k edges one by one
iteratively. As such, at every iteration, we are interested in
finding the edge that maximizes the following.
(4.10)

max

(p,r)/2E
p2V,r2V

c
1

✓
e2up1ur1

+ c
2

e2up2ur2
+ . . .+ cne

2upnurn

◆

According to the Perron-Frobenius theorem [12], the
principal eigenvector associated with the largest eigenvalue
of non-negative irreducible matrices has all positive entries.
As G(V,E) is a connected undirected graph, A is irreducible
and u1 is a positive vector. On the other hand other uj’s,
j > 1, might potentially have negative entries. This
makes finding the edge that maximizes Equ. (4.10) without
enlisting all O(n2

) edges challenging.
Next we introduce a fast approximation strategy to

pick edges to add without enlisting all possible edges. In
particular, we note that the second and onwards terms in
Equ. (4.10) keep getting smaller and smaller, due to the

skewed spectrum of large real-world graphs [18]. Therefore,
we focus on the first term, i.e. e2up1ur1 . We create a set
C ⇢ V of size d

max

, where d
max

denotes the maximum
node degree in G, that consists of the nodes with highest u1

entries. For all non-edges (p, r) of G, p 2 C, r 2 C, p 6= r,
we compute Equ. (4.10) considering the top t eigenvectors,
and we add the edge (p̄, r̄) with the maximum value. We
repeat this procedure k times. Algorithm 2 gives the steps of
our proposed edge addition algorithm in detail.

LEMMA 4.5. Complexity of MIOBI-MAKEEDGE. The
time cost of Alg. 2 is O(mt + kd2

max

t + knt2). The space
cost is O(m+ nt+ k).

Proof. See Supplementary Section B.5. ⇤

Algorithm 2 MIOBI-MAKEEDGE

Input: Graph G(V,E), its adj. matrix A, and int. budget k
Output: Set S of k edges to be added

1: S = ;

2: Compute the top t (eigenvalue, eigenvector) pairs
(�j ,uj) of A, 1  j  t

3: for step = 1 to k do
4: Compute the largest degree d

max

of A
5: Find the candidate subset C of d

max

nodes with the
highest u1 eigen-scores

6: Select the edge (p̄, r̄) out of 8(p, r) /2 E, p 2 C, r 2

C, p 6= r, that maximizes Equ. (4.10) for top t
eigenvectors, i.e.

max

(p,r)/2E
p2C,r2C

c
1

✓
e2up1ur1

+c
2

e2up2ur2
+. . .+cte

2upturt

◆

7: S := S [ (p̄, r̄), E := E [ (p̄, r̄)
8: Update A; A(p̄, r̄) = 1 and A(r̄, p̄) = 1

9: Update top t eigenvalues of A by Equ. (4.3)
10: Update top t eigenvectors of A by Equ. (4.7)
11: end for
12: Return S

5 Experimental Evaluation
We evaluate our algorithms with respect to (1) effectiveness
in manipulating graph robustness, and (2) running time and
scalability, on several real-world graphs. For each kind of
graph manipulation, i.e. problem setting, we compare to
several ad-hoc heuristic strategies that we compiled.
Datasets. We use the datasets shown in Table 1 (available
at http://snap.stanford.edu/data/) to evaluate
our methods. The Oregon Autonomous System (AS) graphs
are AS-level router networks inferred from Oregon route-
views, and were collected once a week, for 9 consecutive
weeks. Gnutella graphs are the peer-to-peer (P2P) connec-
tivity networks collected daily, over 5 consecutive days.
Evaluation criteria. For effectiveness, we report the relative
% change of robustness, i.e. 100|R �

¯R|/R, where R and

The above arguments show that (1) natural connectiv-
ity exhibits characteristics about the communicability in the
network through alternative paths, which closely relate to ro-
bustness. It associates the robustness to network topology,
graph spectra, and dynamical properties. Moreover, it was
shown [21] that (2) natural connectivity has strong discrim-
ination in quantifying the robustness of complex networks
and can exhibit the variation of robustness sensitively even
for disconnected networks (unlike e.g., algebraic connectiv-
ity). Finally, (3) natural connectivity can be shown to change
strictly monotonically with the addition/deletion of more and
more nodes/edges [26], which agrees with intuition (unlike
e.g., node/edge connectivity, algebraic connectivity). These
indicate that the natural connectivity can measure the robust-
ness of complex networks stably even for very small sized
and disconnected networks. For all these reasons, we choose
to embrace natural connectivity as our network robustness
measure in our study.

4 Manipulating Network Robustness
4.1 Problem Definitions We start by introducing the
problems we address to manipulate network robustness. Due
to space considerations, we briefly (but formally) describe
our problems below.1

PROBLEM 1. MIOBI-BREAKEDGE (Edge Deletion)

Given: A large network G (with n⇥ n adjacency matrix
A) and an integer (budget) k;

Output: A set of k edges from A, the deletion of which
creates the largest drop of the network robustness (as
given in Equ. (3.1)) of G.

PROBLEM 2. MIOBI-BREAKNODE (Node Deletion)

Given: A large network G (with n⇥ n adjacency matrix
A) and an integer (budget) k;

Output: A set of k nodes from A, the deletion of which
creates the largest drop of the network robustness (as
given in Equ. (3.1)) of G.

PROBLEM 3. MIOBI-MAKEEDGE (Edge Addition)

Given: A large network G (with n⇥ n adjacency matrix
A) and an integer (budget) k;

Output: A set of k non-edges of A, the addition of which
creates the largest increase in the network robustness
(as given in Equ. (3.1)) of G.

1We remark that we focus on node/edge deletion and edge addition op-
erations to manipulate graph robustness. Another possible graph operation
is edge rewiring [3], where existing edges are rewired to connect different
pairs of nodes. A principled rewiring can also be done using similar meth-
ods to ours; in particular by removing an existing edge via reverse MIOBI-
BREAKEDGE, and adding it back via MIOBI-MAKEEDGE.

A naive way to solve these problems is to try all of
the possible subsets of size of k and select the one that
will yield the best result. However, this type of strategy
is very inefficient. For example, in the case of MIOBI-
BREAKEDGE, we need to consider

�m
k

�
where |E| = m;

for MIOBI-BREAKNODE, we need to consider
�n
k

�
where

|V | = n; and for MIOBI-MAKEEDGE, we need to consider
�
(

n
2)�m

k

�
. It is no surprise that these problems can be hard to

solve, due to computational limitations (see Supplementary
Section A for a discussion on the complexity and formal
proofs related to the hardness of the problems).

Next we describe our proposed approximation algo-
rithms to solve the problems formulated in this section. Note
that the first two problems aim at maximally decreasing (i.e.,
“breaking”) network robustness, whereas the third problem
aims at improving (i.e., “making”) the robustness.

4.2 “Breaking” Network Robustness

Problem 1: Edge Deletion First, we address the edge
deletion problem MIOBI-BREAKEDGE, which aims to find
the set of k edges to delete from the graph so that the
robustness is shrunk the most.

Let S denote the selected set of k edges to be removed.
Let us then write the new, updated robustness ¯�

�

as

(4.2) ¯�
�

= ln(

1

n

nX

j=1

e�j+��j
)

where ��j is the difference in �j after the adjustment to the
graph. To quantify the updated robustness of the graph in
face of change, we need to be able to efficiently update the
eigenvalues of A when the graph changes.
Updating the eigenvalues. Using the first order matrix
perturbation theory [24], we can compute changes to the
eigenvalues ��j efficiently.

Let (�j ,uj) be the jth (eigenvalue, eigenvector) pair
of the graph G with adjacency matrix A. Let �A and
(��j ,�uj) denote the change in A and (�j ,uj) 8j, respec-
tively (where �A is symmetric). Suppose after the adjust-
ment A becomes

˜A = A+�A

where (

˜�j , ũj) is written as
˜�j = �j +��j and ˜uj = uj +�uj

LEMMA 4.1. Given a perturbation �A to a matrix A, its
eigenvalues can be updated by
(4.3) ��j = uj

0
�Auj.

Proof. See Supplementary Section B.1. ⇤
Using Lemma 4.1, perturbing A with any given edge

(p, r) affects the eigenvalues as

(4.4) ��j = uj
0
�Auj = �2upjurj

where �A(p, r) = �A(r, p) = �1 and 0 elsewhere.
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Table 1: Dataset summary.
Dataset n m density

Oregon-A 633 1,086 0.0054
Oregon-B 1,503 2,810 0.0024
Oregon-C 2,504 4,723 0.0015
Oregon-D 2,854 4,932 0.0012
Oregon-E 3,995 7,710 0.0009
Oregon-F 5,296 10,097 0.0007
Oregon-G 7,352 15,665 0.0005
Oregon-H 10,860 23,409 0.0004
Oregon-I 13,947 30,584 0.0003

P2P-GnutellaA 6,301 20,777 0.0010
P2P-GnutellaB 8,114 26,013 0.0008
P2P-GnutellaC 8,717 31,525 0.0008
P2P-GnutellaD 8,846 31,839 0.0008
P2P-GnutellaE 10,876 39,994 0.0007

¯R respectively denote the initial and the final robustness
after k operations (the larger the change, the better). For
computational cost, we report the wall-clock time in seconds.
Set up. We use top t = 50 eigen-pairs for our methods.
For large perturbations to the graph (e.g., high degree nodes
removed for node deletions), the accumulated error for up-
dating eigen-pairs (using Equ.s (4.3)&(4.7)) might increase
rapidly and the performance could degrade. To overcome
this issue, we recompute the exact eigen-pairs of the per-
turbed graph every 50 operations2. We call our always-
update methods ‘Naive’ and recomputed ones ‘RC@50’.

5.1 Effectiveness of Proposed MIOBI Framework We
start by describing the heuristic strategies we compared our
methods to, for each problem setting below.
MIOBI-BREAKEDGE competitor strategies (11). (1)
‘rand’: randomly picked k edges (avg.’ed over 10 runs); (2)
‘rich-rich’: edges (p, r) with highest dpdr; (3) ‘poor-poor’:
edges (p, r) with smallest dpdr; (4) ‘rich-poor’: edges (p, r)
with highest |dp � dr|; (5) ‘betw’: edges with highest edge-
betweenness; (6) ‘embed’: edges with highest embedded-
ness [13]; (7) ‘resist’: edges with highest effective resistance
[23]; (8) ‘netmelt’: edges (p, r) with highest up1ur1 [25];
(9) ‘line-deg’: edges with highest degree in the line graph;3
(10) ‘line-eig’: edges with highest eigen-centrality in the line
graph; and (11) ‘line-page’: edges with highest Pagerank
score in the line graph.
MIOBI-BREAKNODE competitor strategies (6). (1)
‘rand’: randomly picked k nodes (avg.’ed over 10 runs);
(2) ‘max-deg’: nodes with highest degree; (3) ‘eig’: nodes

2Sensitivity experiments showed that for a large set of recompute
intervals in [1, 1000], the results remained stable (ommitted for brevity).

3 The line graph L(G) of a graph G is one where each edge in G
becomes a node in L(G), and there is an edge from one node to the other in
L(G) if the target of the former edge is the same as the source of the latter
edge in the original graph G [25].

with highest eigen-centrality; (4) ‘page’: nodes with high-
est Pagerank score; (5) ‘cluster’: nodes with highest local
clustering coefficient; and
MIOBI-MAKEEDGE competitor strategies (5). (1) ‘rand’:
edges between randomly picked nodes (avg.’ed over 10

runs); (2) ‘rich-rich’: edges between nodes with highest
degrees; (3) ‘poor-poor’: edges between nodes with lowest
degrees (same as ‘preferential addition’ in [3]); (4) ‘rich-
poor’: edges (p, r) /2 E with highest |dp � dr|; (5) ‘netgel’:
edges (p, r) /2 E with highest up1ur1 [25];
Results. Fig. 1 shows the performance results; % robustness
change vs. k for all methods on two selected datasets (See
Supplementary Section C for plots on other datasets). Using
RC@50, our methods outperform all other heuristics for all
datasets we considered. We further notice that ‘rich-rich’
performs well for edge deletions, and ‘max-deg’ and ‘page’
achieve quite close performance to our method for node
deletions. For edge additions, ‘rich-rich’ performs the next-
best and our method outperforms all competitors with a large
margin.

To demonstrate performance on all datasets (fixed k),
we give Tables 2, 3, 4, resp. for all three problem settings.
We can see that our methods achieve the best performance
across almost all datasets, and all manipulation settings.

5.2 Scalability of Proposed MIOBI Framework We
used the Oregon A-I datasets, sorted by m, to evaluate the
scalability of the proposed algorithms. The run time results
are presented in Fig. 2 for various k.4 We can see that
the proposed methods empirically scale near-linearly wrt m,
which means that they are suitable for large graphs.

6 Conclusion
In this paper we studied graph robustness; in particular
problems related to its definition and manipulation in large
graphs. We first analyzed various definitions and measures
of robustness, and enlisted their capabilities of capturing de-
sired resilience properties and shortcomings. We identified
natural connectivity as a reliable measure, as it effectively
quantifies the existence of alternative paths in a network. We
formulated two new robustness manipulation problems, one
of which is to maximally decrease (or “break”) the robust-
ness with edge or node deletions, and another is to maxi-
mally improve (or “make”) the robustness with edge addi-
tions. We studied the hardness associated with these prob-
lems, and proposed effective, scalable, and adaptive algo-
rithms to solve them, which are founded on a principled
framework based on theoretical foundations. Finally, our ex-
periments showed the superiority of our methods compared
to a long list of heuristic, ad hoc strategies.

4All reported times are on a 64-bit machine, Intel Core i5-3570K CPU
@3.40GHz and 8GB memory, running Ubuntu 12.10.
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Edge Deletion Node Deletion Edge Addition 
random random random 
rich-rich: max. dpdr max. degree rich-rich: max. dpdr 

poor-poor: min. dpdr eig. centrality poor-poor: min. dpdr 

rich-poor: max. |dp-dr| pagerank rich-poor: max. |dp-dr| 
betweenness local clustering max. up1ur1 

embeddedness 
effective resistance 
highest  up1ur1 

lineG-degree 
lineG-eig. centrality 
lineG-pagerank 
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Figure 1: % robustness change (higher is better) vs. budget k for proposed MIOBI and various competing heuristics on two
datasets, (top) Oregon-G and (bottom) P2P-GnutellaD, for (a) edge deletions, (b) node deletions, and (c) edge additions.
Notice that our methods outperform all the heuristics at all ranges of k. (figures best viewed in color)

Table 2: Edge deletion performances: % robustness change (higher is better) for all graphs when k = 0.25m edges removed.
Methods O-A O-B O-C O-D O-E O-F O-G O-H O-I G-A G-B G-C G-D G-E
#Edges removed 543 1405 2362 2466 3855 5049 7833 11705 15292 5194 6503 7881 7960 9999
Random 41.16 42.02 37.48 37.18 39.31 38.45 40.32 40.38 39.65 24.71 24.86 28.00 27.05 27.79
Betweenness 29.49 24.53 24.41 23.56 24.74 25.53 27.99 28.44 29.12 4.51 3.62 13.82 7.46 11.00
Resistance 13.63 11.99 11.40 10.53 10.15 8.47 8.21 7.75 6.71 0.10 0.08 0.35 0.22 0.89
Embeddedness 54.76 56.04 52.92 55.03 56.63 55.82 57.31 60.50 61.07 67.90 62.60 45.24 43.62 26.82
LineDeg 41.10 42.52 43.67 57.95 54.63 55.33 53.18 64.58 67.91 73.94 74.24 63.57 67.67 50.29
LineEig 60.44 61.01 60.45 63.05 63.62 63.20 66.46 67.20 68.54 72.48 72.10 62.31 64.97 49.45
LinePage 41.10 42.52 43.67 57.95 53.77 55.33 53.18 64.58 66.17 73.91 74.15 63.71 67.60 50.00
NetMelt 60.99 61.22 61.38 73.17 68.33 68.86 72.58 75.36 72.47 71.58 71.51 62.36 64.47 48.78
Poor-Poor 13.97 10.67 8.61 2.66 4.80 3.27 3.53 2.55 2.09 0.02 0.02 0.20 0.09 0.59
Rich-Poor 35.78 38.93 40.93 48.52 49.99 46.81 43.98 57.95 64.05 73.26 72.75 62.25 64.45 45.85
Rich-Rich 63.50 64.35 64.30 74.48 74.95 70.12 75.16 79.07 76.01 75.84 76.11 68.95 70.89 55.80
MIOBI-Naive 57.26 64.84 65.00 66.86 70.59 74.88 78.62 79.59 81.66 75.19 74.60 66.88 69.40 50.01
MIOBI-RC@50 66.11 71.10 72.78 79.66 79.10 82.05 83.57 85.97 87.04 79.73 80.34 74.59 75.96 64.68

Table 3: Node deletion performances: % robustness change (higher is better) for all graphs when k=0.025n nodes removed.
Methods O-A O-B O-C O-D O-E O-F O-G O-H O-I G-A G-B G-C G-D G-E
#Nodes removed 16 38 63 71 100 132 184 272 349 158 203 218 221 272
Random 4.21 2.58 3.70 1.92 1.71 1.07 2.85 2.50 1.54 0.43 1.74 5.74 1.24 1.35
ClusterCoef 2.28 2.47 2.31 3.05 2.44 2.60 1.62 1.40 0.92 13.66 11.64 12.16 13.49 0.89
PageRank 93.06 91.47 93.69 92.20 92.93 92.22 93.19 93.21 93.63 75.26 74.58 62.96 65.29 45.91
1stEigVecCentrality 89.89 86.96 88.59 82.54 81.45 85.57 84.63 85.20 81.93 70.53 68.44 54.23 57.89 34.41
MaxDegree 92.25 90.80 93.44 92.36 92.81 92.35 93.18 93.06 93.55 75.56 74.85 63.52 65.86 46.68
MIOBI-Naive 92.38 82.55 89.82 82.20 83.92 83.30 70.22 71.72 69.03 36.60 51.39 59.65 54.67 38.48
MIOBI-RC@50 92.50 91.51 93.92 92.47 93.49 93.15 94.04 94.24 92.08 76.19 75.69 64.19 66.75 47.24
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(a) MIOBI-BREAKEDGE (b) MIOBI-BREAKNODE (c) MIOBI-MAKEEDGE

Figure 1: % robustness change (higher is better) vs. budget k for proposed MIOBI and various competing heuristics on two
datasets, (top) Oregon-G and (bottom) P2P-GnutellaD, for (a) edge deletions, (b) node deletions, and (c) edge additions.
Notice that our methods outperform all the heuristics at all ranges of k. (figures best viewed in color)

Table 2: Edge deletion performances: % robustness change (higher is better) for all graphs when k = 0.25m edges removed.
Methods O-A O-B O-C O-D O-E O-F O-G O-H O-I G-A G-B G-C G-D G-E
#Edges removed 543 1405 2362 2466 3855 5049 7833 11705 15292 5194 6503 7881 7960 9999
Random 41.16 42.02 37.48 37.18 39.31 38.45 40.32 40.38 39.65 24.71 24.86 28.00 27.05 27.79
Betweenness 29.49 24.53 24.41 23.56 24.74 25.53 27.99 28.44 29.12 4.51 3.62 13.82 7.46 11.00
Resistance 13.63 11.99 11.40 10.53 10.15 8.47 8.21 7.75 6.71 0.10 0.08 0.35 0.22 0.89
Embeddedness 54.76 56.04 52.92 55.03 56.63 55.82 57.31 60.50 61.07 67.90 62.60 45.24 43.62 26.82
LineDeg 41.10 42.52 43.67 57.95 54.63 55.33 53.18 64.58 67.91 73.94 74.24 63.57 67.67 50.29
LineEig 60.44 61.01 60.45 63.05 63.62 63.20 66.46 67.20 68.54 72.48 72.10 62.31 64.97 49.45
LinePage 41.10 42.52 43.67 57.95 53.77 55.33 53.18 64.58 66.17 73.91 74.15 63.71 67.60 50.00
NetMelt 60.99 61.22 61.38 73.17 68.33 68.86 72.58 75.36 72.47 71.58 71.51 62.36 64.47 48.78
Poor-Poor 13.97 10.67 8.61 2.66 4.80 3.27 3.53 2.55 2.09 0.02 0.02 0.20 0.09 0.59
Rich-Poor 35.78 38.93 40.93 48.52 49.99 46.81 43.98 57.95 64.05 73.26 72.75 62.25 64.45 45.85
Rich-Rich 63.50 64.35 64.30 74.48 74.95 70.12 75.16 79.07 76.01 75.84 76.11 68.95 70.89 55.80
MIOBI-Naive 57.26 64.84 65.00 66.86 70.59 74.88 78.62 79.59 81.66 75.19 74.60 66.88 69.40 50.01
MIOBI-RC@50 66.11 71.10 72.78 79.66 79.10 82.05 83.57 85.97 87.04 79.73 80.34 74.59 75.96 64.68

Table 3: Node deletion performances: % robustness change (higher is better) for all graphs when k=0.025n nodes removed.
Methods O-A O-B O-C O-D O-E O-F O-G O-H O-I G-A G-B G-C G-D G-E
#Nodes removed 16 38 63 71 100 132 184 272 349 158 203 218 221 272
Random 4.21 2.58 3.70 1.92 1.71 1.07 2.85 2.50 1.54 0.43 1.74 5.74 1.24 1.35
ClusterCoef 2.28 2.47 2.31 3.05 2.44 2.60 1.62 1.40 0.92 13.66 11.64 12.16 13.49 0.89
PageRank 93.06 91.47 93.69 92.20 92.93 92.22 93.19 93.21 93.63 75.26 74.58 62.96 65.29 45.91
1stEigVecCentrality 89.89 86.96 88.59 82.54 81.45 85.57 84.63 85.20 81.93 70.53 68.44 54.23 57.89 34.41
MaxDegree 92.25 90.80 93.44 92.36 92.81 92.35 93.18 93.06 93.55 75.56 74.85 63.52 65.86 46.68
MIOBI-Naive 92.38 82.55 89.82 82.20 83.92 83.30 70.22 71.72 69.03 36.60 51.39 59.65 54.67 38.48
MIOBI-RC@50 92.50 91.51 93.92 92.47 93.49 93.15 94.04 94.24 92.08 76.19 75.69 64.19 66.75 47.24
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Node Deletion:  when k=0.025n nodes removed from each graph 

(a) MIOBI-BREAKEDGE (b) MIOBI-BREAKNODE (c) MIOBI-MAKEEDGE

Figure 1: % robustness change (higher is better) vs. budget k for proposed MIOBI and various competing heuristics on two
datasets, (top) Oregon-G and (bottom) P2P-GnutellaD, for (a) edge deletions, (b) node deletions, and (c) edge additions.
Notice that our methods outperform all the heuristics at all ranges of k. (figures best viewed in color)

Table 2: Edge deletion performances: % robustness change (higher is better) for all graphs when k = 0.25m edges removed.
Methods O-A O-B O-C O-D O-E O-F O-G O-H O-I G-A G-B G-C G-D G-E
#Edges removed 543 1405 2362 2466 3855 5049 7833 11705 15292 5194 6503 7881 7960 9999
Random 41.16 42.02 37.48 37.18 39.31 38.45 40.32 40.38 39.65 24.71 24.86 28.00 27.05 27.79
Betweenness 29.49 24.53 24.41 23.56 24.74 25.53 27.99 28.44 29.12 4.51 3.62 13.82 7.46 11.00
Resistance 13.63 11.99 11.40 10.53 10.15 8.47 8.21 7.75 6.71 0.10 0.08 0.35 0.22 0.89
Embeddedness 54.76 56.04 52.92 55.03 56.63 55.82 57.31 60.50 61.07 67.90 62.60 45.24 43.62 26.82
LineDeg 41.10 42.52 43.67 57.95 54.63 55.33 53.18 64.58 67.91 73.94 74.24 63.57 67.67 50.29
LineEig 60.44 61.01 60.45 63.05 63.62 63.20 66.46 67.20 68.54 72.48 72.10 62.31 64.97 49.45
LinePage 41.10 42.52 43.67 57.95 53.77 55.33 53.18 64.58 66.17 73.91 74.15 63.71 67.60 50.00
NetMelt 60.99 61.22 61.38 73.17 68.33 68.86 72.58 75.36 72.47 71.58 71.51 62.36 64.47 48.78
Poor-Poor 13.97 10.67 8.61 2.66 4.80 3.27 3.53 2.55 2.09 0.02 0.02 0.20 0.09 0.59
Rich-Poor 35.78 38.93 40.93 48.52 49.99 46.81 43.98 57.95 64.05 73.26 72.75 62.25 64.45 45.85
Rich-Rich 63.50 64.35 64.30 74.48 74.95 70.12 75.16 79.07 76.01 75.84 76.11 68.95 70.89 55.80
MIOBI-Naive 57.26 64.84 65.00 66.86 70.59 74.88 78.62 79.59 81.66 75.19 74.60 66.88 69.40 50.01
MIOBI-RC@50 66.11 71.10 72.78 79.66 79.10 82.05 83.57 85.97 87.04 79.73 80.34 74.59 75.96 64.68

Table 3: Node deletion performances: % robustness change (higher is better) for all graphs when k=0.025n nodes removed.
Methods O-A O-B O-C O-D O-E O-F O-G O-H O-I G-A G-B G-C G-D G-E
#Nodes removed 16 38 63 71 100 132 184 272 349 158 203 218 221 272
Random 4.21 2.58 3.70 1.92 1.71 1.07 2.85 2.50 1.54 0.43 1.74 5.74 1.24 1.35
ClusterCoef 2.28 2.47 2.31 3.05 2.44 2.60 1.62 1.40 0.92 13.66 11.64 12.16 13.49 0.89
PageRank 93.06 91.47 93.69 92.20 92.93 92.22 93.19 93.21 93.63 75.26 74.58 62.96 65.29 45.91
1stEigVecCentrality 89.89 86.96 88.59 82.54 81.45 85.57 84.63 85.20 81.93 70.53 68.44 54.23 57.89 34.41
MaxDegree 92.25 90.80 93.44 92.36 92.81 92.35 93.18 93.06 93.55 75.56 74.85 63.52 65.86 46.68
MIOBI-Naive 92.38 82.55 89.82 82.20 83.92 83.30 70.22 71.72 69.03 36.60 51.39 59.65 54.67 38.48
MIOBI-RC@50 92.50 91.51 93.92 92.47 93.49 93.15 94.04 94.24 92.08 76.19 75.69 64.19 66.75 47.24
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Edge Addition: when k=0.01n edges added to each graph 

Table 4: Edge addition performances: % robustness change (higher is better) for all graphs when k = 0.01n edges added.
Methods O-A O-B O-C O-D O-E O-F O-G O-H O-I G-A G-B G-C G-D G-E
#Edges added 6 15 25 29 40 53 74 109 139 63 81 87 88 109
Random 0.03 0.01 0.03 0.01 0.15 0.01 0.01 0.01 0.01 0.02 0.00 0.01 0.04 0.05
NetGel 1.79 2.70 2.42 2.40 2.58 3.57 4.20 4.73 4.98 5.48 6.84 12.29 11.84 18.85
Poor-Poor 0.02 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.38
Rich-Poor 0.55 0.47 0.58 0.77 0.64 0.55 0.42 0.44 0.45 0.26 0.22 0.08 0.31 1.58
Rich-Rich 3.38 3.97 3.58 3.86 3.66 5.24 5.94 6.76 6.86 9.58 12.52 14.94 18.70 24.29
MIOBI-Naive 3.49 4.37 4.10 4.05 4.14 5.60 6.59 7.36 7.75 10.38 13.13 22.62 20.74 34.25
MIOBI-RC@50 3.49 4.37 4.10 4.05 4.14 5.62 6.61 7.41 7.81 10.49 13.20 23.16 21.40 35.84
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Figure 2: Scalability of proposed methods: all three algorithms scale near-linearly wrt graph size. (figures best in color)

[3] A. Beygelzimer, G. Grinstein, R. Linsker, and I. Rish. Improv-
ing network robustness by edge modification. Physica A: Stat.
Mech. and its Appl., 357(3-4):593–612, 2005.

[4] D. S. Callaway, M. E. J. Newman, S. H. Strogatz, and D. J.
Watts. Network Robustness and Fragility: Percolation on
Random Graphs. Phys. Rev. Let., 85(25):5468–5471, 2000.

[5] H. Chan, L. Akoglu, and H. Tong. Manipulating the robustness
of large networks by node and edge alterations. Technical
Report, 2014.
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Table 4: Edge addition performances: % robustness change (higher is better) for all graphs when k = 0.01n edges added.
Methods O-A O-B O-C O-D O-E O-F O-G O-H O-I G-A G-B G-C G-D G-E
#Edges added 6 15 25 29 40 53 74 109 139 63 81 87 88 109
Random 0.03 0.01 0.03 0.01 0.15 0.01 0.01 0.01 0.01 0.02 0.00 0.01 0.04 0.05
NetGel 1.79 2.70 2.42 2.40 2.58 3.57 4.20 4.73 4.98 5.48 6.84 12.29 11.84 18.85
Poor-Poor 0.02 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.38
Rich-Poor 0.55 0.47 0.58 0.77 0.64 0.55 0.42 0.44 0.45 0.26 0.22 0.08 0.31 1.58
Rich-Rich 3.38 3.97 3.58 3.86 3.66 5.24 5.94 6.76 6.86 9.58 12.52 14.94 18.70 24.29
MIOBI-Naive 3.49 4.37 4.10 4.05 4.14 5.60 6.59 7.36 7.75 10.38 13.13 22.62 20.74 34.25
MIOBI-RC@50 3.49 4.37 4.10 4.05 4.14 5.62 6.61 7.41 7.81 10.49 13.20 23.16 21.40 35.84
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Figure 2: Scalability of proposed methods: all three algorithms scale near-linearly wrt graph size. (figures best in color)
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Summary	  
How to measure the robustness  

of a given network? 

How to modify a given network  
to improve its robustness? 

 
Leman’s note: Turn the above into summary 

statements and conclude. 
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Figure 1: % robustness change (higher is better) vs. budget k for proposed MIOBI and various competing heuristics on two
datasets, (top) Oregon-G and (bottom) P2P-GnutellaD, for (a) edge deletions, (b) node deletions, and (c) edge additions.
Notice that our methods outperform all the heuristics at all ranges of k. (figures best viewed in color)

Table 2: Edge deletion performances: % robustness change (higher is better) for all graphs when k = 0.25m edges removed.
Methods O-A O-B O-C O-D O-E O-F O-G O-H O-I G-A G-B G-C G-D G-E
#Edges removed 543 1405 2362 2466 3855 5049 7833 11705 15292 5194 6503 7881 7960 9999
Random 41.16 42.02 37.48 37.18 39.31 38.45 40.32 40.38 39.65 24.71 24.86 28.00 27.05 27.79
Betweenness 29.49 24.53 24.41 23.56 24.74 25.53 27.99 28.44 29.12 4.51 3.62 13.82 7.46 11.00
Resistance 13.63 11.99 11.40 10.53 10.15 8.47 8.21 7.75 6.71 0.10 0.08 0.35 0.22 0.89
Embeddedness 54.76 56.04 52.92 55.03 56.63 55.82 57.31 60.50 61.07 67.90 62.60 45.24 43.62 26.82
LineDeg 41.10 42.52 43.67 57.95 54.63 55.33 53.18 64.58 67.91 73.94 74.24 63.57 67.67 50.29
LineEig 60.44 61.01 60.45 63.05 63.62 63.20 66.46 67.20 68.54 72.48 72.10 62.31 64.97 49.45
LinePage 41.10 42.52 43.67 57.95 53.77 55.33 53.18 64.58 66.17 73.91 74.15 63.71 67.60 50.00
NetMelt 60.99 61.22 61.38 73.17 68.33 68.86 72.58 75.36 72.47 71.58 71.51 62.36 64.47 48.78
Poor-Poor 13.97 10.67 8.61 2.66 4.80 3.27 3.53 2.55 2.09 0.02 0.02 0.20 0.09 0.59
Rich-Poor 35.78 38.93 40.93 48.52 49.99 46.81 43.98 57.95 64.05 73.26 72.75 62.25 64.45 45.85
Rich-Rich 63.50 64.35 64.30 74.48 74.95 70.12 75.16 79.07 76.01 75.84 76.11 68.95 70.89 55.80
MIOBI-Naive 57.26 64.84 65.00 66.86 70.59 74.88 78.62 79.59 81.66 75.19 74.60 66.88 69.40 50.01
MIOBI-RC@50 66.11 71.10 72.78 79.66 79.10 82.05 83.57 85.97 87.04 79.73 80.34 74.59 75.96 64.68

Table 3: Node deletion performances: % robustness change (higher is better) for all graphs when k=0.025n nodes removed.
Methods O-A O-B O-C O-D O-E O-F O-G O-H O-I G-A G-B G-C G-D G-E
#Nodes removed 16 38 63 71 100 132 184 272 349 158 203 218 221 272
Random 4.21 2.58 3.70 1.92 1.71 1.07 2.85 2.50 1.54 0.43 1.74 5.74 1.24 1.35
ClusterCoef 2.28 2.47 2.31 3.05 2.44 2.60 1.62 1.40 0.92 13.66 11.64 12.16 13.49 0.89
PageRank 93.06 91.47 93.69 92.20 92.93 92.22 93.19 93.21 93.63 75.26 74.58 62.96 65.29 45.91
1stEigVecCentrality 89.89 86.96 88.59 82.54 81.45 85.57 84.63 85.20 81.93 70.53 68.44 54.23 57.89 34.41
MaxDegree 92.25 90.80 93.44 92.36 92.81 92.35 93.18 93.06 93.55 75.56 74.85 63.52 65.86 46.68
MIOBI-Naive 92.38 82.55 89.82 82.20 83.92 83.30 70.22 71.72 69.03 36.60 51.39 59.65 54.67 38.48
MIOBI-RC@50 92.50 91.51 93.92 92.47 93.49 93.15 94.04 94.24 92.08 76.19 75.69 64.19 66.75 47.24

	   	   	  Thank	  you! 	   	  	  
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