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Abstract—Given a topic and its top-k most relevant words
generated by a topic model, how can we tell whether it is
a low-quality or a high-quality topic? Topic models provide
a low-dimensional representation of large document corpora,
and drive many important applications such as summariza-
tion, document segmentation, word-sense disambiguation, etc.
Evaluation of topic models is an important issue; since low-
quality topics potentially degrade the performance of these
applications. In this paper, we develop a graph mining and
machine learning approach for the external evaluation of
topic models. Based on the graph-centric features we extract
from the projection of topic words on the Wikipedia page-
links graph, we learn models that can predict the human-
perceived quality of topics (based on human judgments),
and classify them as high or low quality. Experiments on
four real-world corpora show that our approach boosts the
prediction performance up to 30% over three baselines of
various complexities, and demonstrate the generality of our
method to diverse domains. Further, we provide interpretation
of our models and outline the discriminating characteristics of
topic quality.
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I. INTRODUCTION

Topic modeling is an area that focuses on the extraction
of topics from document corpora. Given a large collection
of documents D and the number of desired topics T , a
topic modeling method M , such as LDA [1], models each
document d ∈ D as a multinomial distribution over T topics,
where each topic is in turn a multinomial distribution over
W words. Typically, only a small number of words are
important (i.e. have high likelihood) in each topic (also only
a small number of topics are relevant for each document).

Topic models have been studied widely [1], [2], [3] and
have important applications in database summarization [4],
word-sense discrimination [5], information discovery [6],
and many others. Naturally these applications rely on the
quality of topics that the topic models generate. An issue of
concern, however, is that it is often likely for topic models
to output low-quality topics in addition to the high-quality
ones. For example, consider the two topics with their top
10 most likely words in Table I. From humans’ perspective,
the first topic (T1) consists of more semantically coherent
words, while the second topic (T2) contains patchy groups
of mostly incoherent words.

Low-quality topics can potentially degrade the perfor-
mance of the applications; e.g. they could mislead topic-
based document similarity, introduce noise in clustering,
and cause poor semantic interpretation. This makes the
evaluation of topic models a crucial task.

Previous research focused on the statistical (or quantita-
tive) evaluation of topic models [7]. This type of evaluation
measures either the generalization performance of a topic
model based on likelihood on held-out test datasets, or
its performance on external tasks. However these do not
measure the interpretability of individual topics. In fact, the
seminal paper [8] showed that there is a negative correla-
tion between human evaluation and statistical evaluation of
topic models. This finding started a new episode in topic
model evaluation, by shifting focus to semantic coherence of
topics. It prompted researchers to come up with conceptual
(or qualitative) evaluation techniques, that can identify the
human-perceived quality of topics.

Several works on conceptual evaluation of topic models
have been proposed within the last 4-5 years [8], [9], [10],
[11], which consider the coherence of individual topics. [8]
elicits human input, while others try to develop a single
statistical measure that mimics real human judgements on
topic-evaluation tasks. (See §V for details on related work).
None of these proposals (i) exploits a collection of evidential
measures, or (ii) builds a learning model to predict con-
ceptual topic quality; which is the basis of our work. We
summarize our contributions below.

• Problem formulation: We formulate the evaluation
problem as a supervised classification task and derive a
predictive model that “learns” from human judgments
to classify topics as good or poor as perceived by
humans.

• Novel graph-centric features using Wikipedia: To con-
struct a set of evidential features for our learner, we
develop a novel graph mining approach which revolves
around the creation and extraction of graph-centric
properties of the topic-words’ projection subgraphs on
the Wikipedia page-links graph (referred to as Wik-
iLinks throughout text). WikiLinks consists of nodes
that represent “things” that have a Wikipedia page
where edges capture the hyperlinks among these pages.
Intuitively, we think of semantically coherent topics



Table I
EXAMPLE TOPICS T1 (HIGH-QUALITY) AND T2 (LOW-QUALITY) OF A TOPIC MODEL.

T1: steam, engine, valve, piston, cylinder, pressure, boiler, air, pump, pipe
T2: cut, system, capital, pointed, opening, building, character, round, france, paris

to consist of words that are “close-by” in this graph,
and construct features based on graph topology and
closeness accordingly.

• Experiments: Using our predictive model we perform
experiments on topics extracted from four real-world
document corpora: two from news, one from books,
and one from medicine. Our results show the effective-
ness and generality of our approach in predicting and
interpreting the human-perceived quality of topic mod-
els, where we achieve up to 30% better classification
performance compared to three baseline predictors.

In the rest of the paper, we give an overview of our
proposed method (§II), explain it in detail (§III) present
experiment results (§IV), survey related work (§V), and
conclude with summary and future directions (§VI).

II. OVERVIEW

Problem Statement. The main research question we con-
sider can be stated as follows:

Given a set of topics output by a topic model, how can we
learn to classify them into low- versus high-quality topics

(as perceived by humans)?

We give a more detailed definition of our problem in (§III-A)
and provide the highlights of our proposed method next.

Proposed Topic Evaluation Framework. We describe our
framework in five parts; (§III-B) Wikipedia page-links graph,
(§III-C) graph projections, (§III-D) graph-centric features,
(§III-E) labeled case libraries, and (§III-F) prediction mod-
els. A flow-diagram showing the operation of our method is
given in Figure 1.

(§III-B) WikiLinks graph: Wikipedia is a large knowledge
base being used and edited by millions of people around the
world. To evaluate the human-perceived quality of topics, we
use this knowledge base generated by humans themselves.
Particularly we use the WikiLinks graph, in which nodes
represent Wikipedia pages and edges denote their hyperlink
relations.

(§III-C) Graph projections: Given a set of k topic words,
we project the words onto the WikiLinks graph, that is,
we map each topic word to the page that is associated
with it in the graph. For example, the word steam in
T1 above would map to page (or WikiLinks node) http:
//en.wikipedia.org/wiki/Steam. We then consider the induced
subgraph of these nodes (projection graph), which may not
be a connected subgraph. We choose several connector nodes
in the original graph to obtain a second subgraph (spanning
graph).

(§III-D) Graph-centric features: Wikipedia links graph
is constructed by humans where editors introduce edges
between pages (i.e. nodes in WikiLinks) by their relevance.
Therefore, we expect the words of a semantically coherent
topic to lie “close-by” in this graph, and extract features
based on graph closeness.

(§III-E) Generating labeled case libraries: For our su-
pervised classification task, we obtain binary training labels
for topics (good versus poor quality). We consider two
learning settings; one of predicting the relative quality of
topics (based on rank order of words) where the labels are
obtained implicitly, and another of predicting the absolute
(i.e. human-perceived) quality of topics (based on human
judgments) where labels are obtained explicitly.

(§III-F) Learning to predict topic quality: Finally, we
use the graph-centric properties from (§III-D) as evidential
features and the case libraries from (§III-E) as labels to learn
statistical models that provide predictors of topic quality.
Given many possible graph-centric features, we perform
feature selection to identify a subset of discriminative ones,
which we use to interpret our models.

III. PROPOSED FRAMEWORK

A. Problem Definitions

We consider the topic quality prediction problem. We
study it under two settings: (1) absolute and (2) relative
quality prediction.

Our main problem aims to build models to predict the
absolute, or the human-perceived, quality of the topics. Here,
scores provided by several human judges determine the
positive and negative class training labels.

• (P1) Absolute (Human-Perceived) Quality Predic-
tion: Given a topic (i.e. a set of k words), predict its
quality (good/poor) as judged by humans.

We also study a related classification task of predicting
relative quality of topic words. Each topic output by a topic
model consists of a sequence of top-K words sorted by their
relevance to the topic. In other words, the words ranked
higher are more strongly related to a given topic than the
words that come later in the sequence. We treat the top-k
words of the topics as the positive (i.e. good) class examples,
and bottom-k words in top-K as the negative (i.e. poor)
class examples. For example for k = 10, bottom-k consists
of words in rank order [11-20] when K = 20, and [91-100]
when K = 100. As such, the prediction task becomes easier
when K gets larger, since the separation between the training
examples increases. Obtaining good prediction accuracy on
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Figure 1. Proposed topic evaluation framework. Given output topics by a topic model, projection and spanning graphs of topic words are created based
on the WikiLinks structure and graph-centric features are extracted for learning predictive models.

this task would prove WikiLinks a suitable external resource
to rely on.

• (P2) Relative Quality Prediction: Discriminate good
versus poor quality topics defined by top-k versus
bottom-k words, respectively.

Having described our classification problems, we next
need to represent each topic with a set of features. Our key
idea for feature extraction is to exploit Wikipedia, and use
this human-generated resource to construct topic subgraphs,
from which we derive evidential topic features.

B. Wikipedia Links Graph
Wikipedia page-links dataset contains internal links be-

tween Wikipedia articles (i.e. entities)1. As such, the page-
links data lends itself for a graph representation (which we
call the WikiLinks graph) in which nodes denote Wikipedia
entities, and edges capture the internal link relations among
the Wikipedia articles.

For example, let us consider the entity steam. The cor-
responding Wiki-page can be found at http://en.wikipedia.
org/wiki/Steam. Other Wiki-pages can be reached from this
page by following hyperlinks on this page, e.g., the page
on piston (http://en.wikipedia.org/wiki/Piston) and mist
(http://en.wikipedia.org/wiki/Mist) are among those other,
related entities. As such, the nodes piston and mist are
1-hop away from steam, thus are its neighbors.

WikiLinks is an excellent resource to guide for human-
perceived evaluation of topic qualities, exactly because it is
created by humans themselves—the entities are linked by
their relatedness, as perceived by human editors.

Our key insight is to exploit the “graph-closeness” of
related entities in WikiLinks to quantify the semantic quality

1http://wiki.dbpedia.org/Downloads38#wikipedia-pagelinks

of topics. Intuitively, the words of a semantically coherent
topic, such as {steam engine valve piston ...},
would have high proximity in the WikiLinks. In fact, the
wiki-page for engine directly links to steam, and steam
links to engine through steam engine. putting these
two words 1-2 hops away. In the sample visualization2 of
WikiLinks in Figure 1(b), related entities are observed to
cluster in the graph topology.

As for coverage, Wikipedia provides a comprehensive
resource with a massive collection of entities. In our version
of WikiLinks1, the graph statistics are:

|N | Directed |E| Undirected |E|
WikiLinks 17, 170, 893 158, 373, 970 117, 434, 138

C. Projection and Spanning Graphs

We next provide definitions for topic subgraphs. Consider
the WikiLinks graph G(N,E) with node set N , edge set
E (we experimented with both directed and undirected Wik-
iLinks). Let W denote the set of k topic words, i.e. |W | = k.
We project the topic words onto WikiLinks by mapping each
word to a node (or entity) in the graph. In general, not all
words will exist in WikiLinks, that is, |N ∩ W | ≤ k. We
denote the mapped word set as M = N ∩W ⊆W .

• Topic projection graph is a subgraph gM (M,EM )
induced on G with node set M and edge set EM :
{(u, v) ∈ E, u ∈M ∧ v ∈M}.

This graph may potentially consist of multiple discon-
nected components. In order to obtain a connected graph,
we use a set of additional, connector nodes C ⊆ N to build
a graph that spans the topic words.

2Resource: http://www.flickr.com/photos/mbiddulph/6070900906/



• Topic spanning graph is a subgraph gS(M ∪ C,ES)
with node set U =M ∪C and edge set ES : {(u, v) ∈
E, u ∈ U ∧ v ∈ U}.

Ideally, the spanning graph contains the minimal set C to
make the projection graph connected. However, it is NP-hard
to find the minimal set, by reduction from the Steiner tree
problem [12]): given a set X of nodes, interconnect them
by a subgraph of shortest cost, where cost is defined as the
sum of the (weights) of edges in the resulting subgraph.
Therefore, we use the Minimum Spanning Tree (MST)
approximation of the Steiner tree problem.

To construct the spanning graph, we first compute the
pairwise shortest paths among the mapped M nodes to build
a graph gSP with edge weights w(u, v), where w(u, v) de-
notes the shortest path length in G between nodes u, v ∈M .
For undirected WikiLinks, gSP is a complete graph as all
nodes have paths from one to another (i.e. WikiLinks is a
weakly connected graph). For directed WikiLinks, gSP may
contain missing edges as not all nodes have a directed path
to others (i.e. WikiLinks contains multiple strongly connected
components). Next we find the MST of gSP , and expand it to
obtain the spanning graph. Expansion involves introducing
the connector nodes along the shortest paths of the MST,
where we denote the union of connector nodes by C. Note
that the spanning graph may no longer be a tree but may
contain loops due to the intersection of the connector node
sets of the paths.

Following on our running example, we show the projec-
tion and spanning graphs for the topics T1 and T2 of §I in
Figure 2.

D. From Topic Subgraphs to Graph-Centric Features

Given the projection and spanning subgraphs, we generate
a set of evidential graph-centric features. There are many
features one could extract from a given graph. We want
features that could potentially help differentiate good topics
from poor ones. Good-quality topic words are conjectured
to lie “close-by” in WikiLinks, reachable with many short
paths from one another. On the other hand, the words of a
poor topic would be separated in the graph topology. We can
observe that these insights hold for T1 (good) and T2 (poor)
of §I in Figure 2. Specifically, T1 contains more words that
exist in WikiLinks (i.e. words that map to WikiLinks nodes),
consists of fewer connected components in its projection
subgraph (i.e. more nodes with direct connection), requires
fewer connector nodes to build its spanning graph, and so
on. Using these observations, we construct features based
on graph topology and closeness.

Table II gives the list of features we constructed. In total,
we constructed 19 features capturing the key topological
properties of the projection and spanning subgraphs, as well
as the closeness measures of the topic words in the original

WikiLinks graph.3 We group our features into three:
• PROJ contains features of the projection graph gM ,

such as the maximum node degree, the number of
connected components in gM , etc.;

• D-SPAN consists of topological features of the directed
spanning graph gS including its density, ratio of con-
nector nodes to mapped nodes, etc.;

• D-SP consists of features capturing the pairwise reach-
ability between the topic words (excluding the self-
pairs), based on the directed shortest paths.

Next we describe how we construct labeled case libraries
for training and how we learn classification models for topic
quality prediction.

E. Generating Case Libraries

We used news articles, books, and medical documents as
our corpora. Descriptions of the datasets are in Table III.

For the prediction of the human-perceived (absolute) qual-
ity of topics (P1), we used the BOOKS and NEWS corpora, as
previously used in [10], [11].4 They consist of T = 120 and
T = 117 topics, respectively. We considered the topics to
consist of their top-10 words. All 237 topics were presented
to 9 human judges. The judges were given guidelines on
how to judge the goodness of the topics, and decide to what
extent the topics were coherent, interpretable, meaningful,
and easy-to-label with a short subject heading. They were
also shown examples of good and bad topics. Notice that
the BOOKS and NEWS corpora come from domains that are
quite general, and thus we do not require the judges to have
expertise in a specific domain (e.g., medicine).

These nine judges evaluated the topics and provided
annotations for each topic in 3-point scale: 1: ‘good’, 2:
‘mediocre’, 3: ‘poor’. We used these human ratings to
generate labels for our classification models. Specifically,
topics with average rating below 1.5 are assigned to the
positive (good) class, and negative otherwise. Examples of
training topics from BOOKS (top few words) are given below
(average rating in parentheses):

+ silk lace embroidery tapestry gold embroidered ... (1)
+ garden plant soil planting seed bloom spring ... (1.11)
+ seed trees soil root planting plant tree ... (1.33)
− world people soul mind read reading live ... (2.56)
− white munich phil room student people head ... (2.67)
− person occasion purpose respect answer short ... (3)

We assume that there exists a global ground truth of
labels and each human expert is a noisy version of it. To
validate this, we performed two measurements to quantify
the inter-annotator agreement among the nine judges. The
average pairwise Spearman’s rank correlation coefficient is

3Our experiments with directed and undirected versions of the Wik-
iLinks graph revealed that the directed features provide more predictive
power than the undirected ones. Therefore we focus our discussion on the
directed features.

4We thank David Newman and his group for sharing the NEWS and
BOOKS datasets as well as their human topic annotations.
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Figure 2. Projection and spanning graphs, gM and gS respectively, for the two example topics T1 and T2 as given in §I. Blue square: mapped topic
word, dotted white square: missing word, gray oval: connector node.

Table II
EVIDENTIAL FEATURES PROJ AND D-SPAN EXTRACTED RESPECTIVELY FROM PROJECTION AND SPANNING GRAPHS OF TOPIC WORDS ON WikiLinks,

AS WELL AS PAIRWISE SHORTEST PATH FEATURES D-SP, ALL USED IN MODEL LEARNING. (MST: MINIMUM SPANNING TREE)

WikiLinks Feature Description
PROJ: Topic projection graph (gM ) features (4)
gMNumMiss number of missing words in WikiLinks (i.e. k − |M |)
gMNumConnComp number of connected components in gM
gMSizeMaxComp number of nodes in largest component of gM
gMMaxDeg maximum node degree in gM
D-SPAN: (Directed) Topic spanning graph (gS) features (6)
gSAvgMSTWeight average weight of MST (i.e. WMST /|M |)
gSRatioC ratio of connector to original nodes in gS (i.e. |C|/|M |)
gSMaxDegreeM maximum original node degree in gS
gSMaxDegreeC maximum connector node degree in gS
gSAvgDegree average degree of nodes in gS
gSDensity density of gS (i.e. |ES |/(|M ∪ C|(|M ∪ C| − 1)))
D-SP: (Directed) Shortest path features among topic word pairs (9)
NumNoPath number of pairs with no directed path inbetween
AvgSPLen average pairwise directed shortest path length
MaxSPLen maximum pairwise directed shortest path length
NumSP1 number of pairwise directed paths of length 1
NumSP2 number of pairwise directed paths of length 2
NumSP3 number of pairwise directed paths of length 3
NumSP4 number of pairwise directed paths of length 4
NumSP5 number of pairwise directed paths of length 5
NumSP6+ number of pairwise directed paths of length ≥ 6

found as ρ = .73 for NEWS and ρ = .78 for BOOKS.
We also used Cohen’s kappa, which provides a measure of
the degree to which two judges concur in their respective
sortings of items into mutually exclusive categories. As our
categories are ordinal, where a human-rating of 1 is better
than 2 which in turn is better than 3, we used a weighted
version of the statistic. The average pairwise Cohen’s kappa
is found as κ = .64 for NEWS (max κ = .79), and
κ = .69 for BOOKS (max κ = .85). Randomization tests
yielded κ = 0 as expected. While there is no precise rule
for interpreting kappa scores, [13] suggests that scores in
the range (.60, .80] correspond to “substantial agreement”
between the annotators.

For the prediction of the relative quality of topics (P2),
we used the publicly available PRESS5 and BRAIN6 corpora
and learned topic models with T = 100 and T = 200 topics,
respectively. We considered the top-10 words for each topic
to be in the positive (good) class. For the negative class, we
built three case libraries with words of ranks [11-20], [31-
40], and [91-100]. This way we constructed three different
learning tasks each with 200 and 400 training examples for
PRESS and BRAIN, respectively. Examples of training topics
from PRESS (top few words) are given below ([top 1-10] vs.
[91-100]):

5http://www.cs.princeton.edu/∼blei/lda-c/
6https://code.google.com/p/topic-modeling-tool/downloads/list



Table III
DATASETS USED IN OUR EXPERIMENTS. D: NUMBER OF DOCUMENTS IN THE CORPUS, T : NUMBER OF TOPICS, Labels: WHETHER HUMAN

ANNOTATIONS EXIST OR NOT.

Dataset D T Labels Description
BOOKS 12, 000 120 Yes Books downloaded from the Internet Archive
NEWS 55, 000 117 Yes NYTimes news articles from LDC Gigaword
PRESS 2, 246 100 No Documents from the Associated Press
BRAIN 10, 000 200 No Pubmed abstracts for the query “brain injury”

+ space soviet shuttle nasa launch mission earth venus ...
− jupiter day help report released days data laboratory ...
+ research scientists researchers animals project state ...
− defense usda caused two temperatures side agricultural ...
+ power cars heat oil fuel energy electricity day ...
− account total carbon year just united lower i plan ...

F. Learning to Predict

After constructing our topic libraries with labeled ex-
amples (§III-E) and extracting their graph-centric features
(§III-D), we train logistic regression classifiers with L1 norm
regularization.

More specifically, we are given n training examples (n
topics) {(x(i), y(i), i = 1, . . . , n}, where each x(i) ∈ Rm

is an m dimensional feature vector, and y(i) ∈ {1, 0}
denotes the class label (1: positive (good) vs. 0: negative
(poor)). Logistic regression classifier models the probability
distribution of the class label y given a feature vector x as
p(y = 0|x;w) = σ(wTx) = 1

1+exp(−wT x)
, where w ∈ Rm

are the parameters of the model (feature weights), and σ(.)
is the sigmoid function.

We regularize the logistic regression model using
L1 norm, which corresponds to Bayesian learning un-
der the Laplace prior of the parameters; p(w) =
(λ/2)mexp(−λ‖w‖1), with λ > 0. The maximum
a posteriori estimate of the parameters can be ob-
tained by solving the (convex) optimization problem:
argminw

∑n
i=1− log p(y(i)|x(i);w) + λ‖w‖1. As such, the

Laplace prior “pushes” the weights towards zero, and bi-
ases the solution to be sparse. This helps us with feature
selection. In order to solve for the model parameters w, and
hence the feature “weights”, we employ efficient algorithms
[14] where we choose the hyperparameter λ using cross-
validation. We report the leave-one-out cross-validation ac-
curacies, which provide a good approximation to the true
accuracy of our models. The results of our experiments are
discussed in the next section.

IV. EXPERIMENT RESULTS

We start with discussing the performance results on the
relative quality prediction problem. Later, we introduce two
baseline techniques and proceed with human-perceived topic
quality prediction results.

A. Relative Quality Prediction

As given in §III-A, the relative quality prediction problem
(P2) deals with differentiating the top-ranked words of a
given topic from its non-top-ranked words. The goal of this
set of experiments is to understand the value of using the
graph-centric evaluation framework we developed. Achiev-
ing promising performance on this pilot study would show
us the feasibility of our approach.

In Table IV, we present the prediction accuracy of our
model on the PRESS and BRAIN topics. The results are listed
for our three different relative classification tasks (§III-E)
and for our various groups of features (§III-D). From the
tables, we observe that using our graph-centric features we
achieve improved classification performance in all cases, and
when features are used collectively we obtain 15% to 30%
boost over the random baseline. As expected, the boost is
gradually higher for the easier tasks (from left to right)
where the negative class words are chosen further down
in the rank order of topic words. These preliminary results
show that WikiLinks is useful as an external resource and that
our method is suitable for topic quality prediction tasks.

B. Building baselines

Before we move on to the results, we introduce two non-
trivial baselines that we developed and compared to our
approach, which are much smarter than the simple majority-
class baseline.

1) Google baseline:: Given a set of k topic words,
we used several Google operators7 to query for results
containing these words. In particular, from different types
of Google queries, we built four what we call “Google
features” per topic. Each Google feature is the logarithm
of the number of webpages returned for its corresponding
query, or in other words log(hitcount(query)).

Table V gives a summary of the Google features
we constructed. First, we queried for all the web-
pages that contain all the topic words in their text;
by using the allintext:word1, word2, . . . , wordk op-
erator. Second, we queried for the pages that contain
at least one of the query words in their title; using
intitle:word1 OR . . . OR intitle:wordk. Similar
to the latter, we also queried for pages by their anchor

7http://www.googleguide.com/advanced operators.html



Table IV
PRESS|BRAIN RELATIVE QUALITY PREDICTION RESULTS. CLASSIFICATION ACCURACIES FOR PREDICTING RELATIVE (TOP-k VERSUS NON TOP-k)

TOPIC QUALITY, FOR VARIOUS GROUPS OF FEATURES.

Feature set top-10 vs. top-[11-20] top-[31-40] top-[91-100]
PRESS BRAIN PRESS BRAIN PRESS BRAIN

BASELINE-MAJORITY 0.500 0.500 0.500 0.500 0.500 0.500
PROJ 0.505 0.622 0.715 0.705 0.765 0.725
D-SPAN 0.650 0.687 0.760 0.740 0.805 0.762
D-SP 0.605 0.665 0.710 0.760 0.750 0.790
PROJ+D-SPAN 0.650 0.687 0.745 0.722 0.790 0.777
PROJ+D-SP 0.650 0.672 0.710 0.752 0.815 0.800
PROJ+D-SPAN+D-SP 0.660 0.687 0.735 0.752 0.810 0.807

or URL containment using inanchor:word1 OR . . . OR
inanchor:wordk as well as using inurl:word1 OR
. . . OR inurl:wordk to obtain the third and fourth fea-
tures. As such, we represent each topic with four numerical
features, and learn classification models based on those
features.

Google features also rely on an external resource; the
Google search engine. Unlike WikiLinks features, however,
they do not exploit graph-centric properties of any projection
or spanning graphs. We compare to this Google baseline
to understand the amount of benefits gained by using the
WikiLinks graph.

2) PPR baseline:: A second baseline classifier we built
uses features based on the graph proximities among the
topic words. To measure the proximity of a given pair of
words on the WikiLinks graph, we used the personalized
PageRank (PPR) scores [15]. Intuitively, the PPR score of
a node v with respect to a given node u is high if there exist
many, short paths between these two nodes. We constructed
four PPR features capturing the pairwise graph-proximity
between the topic words (excluding the self-pairs) as given
in Table VI.

Table VI
PPR FEATURES GENERATED TO BUILD A BASELINE CLASSIFIER.

PPR Feature Description
AvgPPRscore average pairwise PPR score
MedPPRscore median pairwise PPR score
AvgPPRorder average pairwise PPR order
MedPPRorder median pairwise PPR order

PPR-based features also exploit the underlying Wik-
iLinks graph structure, and they are known as being more
robust than shortest paths in capturing graph-centric prox-
imities. As such, they build a strong baseline classifier.
However, PPR computations are expensive as they rely on
the mixing of random walks with restarts on the input graph
(in tens of millions of nodes/edges). On the other hand,
computing our graph features is fast since projected graphs
are fairly small, and finding the shortest paths takes only a
few seconds as often times the mapped nodes are close-by

and thus most of the graph need not be traversed. Therefore
we compare to PPR as a strong but expensive baseline, to
understand its relative benefits compared to our method.

C. Absolute (Human-Perceived) Quality Prediction

As we motivated throughout the paper, the absolute qual-
ity prediction problem (P1 in §III-A) deals with differentiat-
ing the good quality topics from poor ones as perceived by
human judges. We present our main results in Table VII.

We observe that all subsets of our feature groups out-
perform all three baselines. In particular, the Google base-
line introduces 3-10% improvement in accuracy over the
majority-class baseline, and the PPRbaseline based on the
WikiLinks graph structure yields up to 23% increase. While
these demonstrate the value of WikiLinks for this task,
PPRbaseline is costly as we discussed earlier. On the other
hand, all our graph-centric features introduce at least 25%
and up to 30% boost over the majority baseline. In fact
even the simplest group of our features PROJ, based on
the immediate induced subgraph of topic words on the
WikiLinks, outperforms the baselines alone.

We note that combined features do not always yield the
best accuracy. We attribute this to the fact that learning with
more features increases the size and complexity of our model
space. With the same amount of data to learn from and a
larger search space, our learning algorithm is less likely to
find a good model, where having sufficiently large training
data would mitigate this issue.

Cross-domain classification. In order to understand the
generalization power of our framework, we also studied
its cross-domain classification performance. Specifically, we
learned a classification model using the BOOKS dataset and
tested it on the NEWS dataset, similarly we also trained
on NEWS and treated BOOKS as our test data. We show
our results in Table VIII. The diagonal entries give the
leave-out-out cross-validation accuracies within the same
domain as before (last row in Table VII). The cross-domain
accuracies are given on the off-diagonal entries. We observe
that the cross-domain accuracies are fairly comparable to
those of within-domain. This generalization power is partic-



Table V
GOOGLE FEATURES GENERATED TO BUILD A BASELINE CLASSIFICATION MODEL.

Google Feature Description
Operator: Log-count of webpages that contain:
allintext:word1, word2, . . . , wordk all the topic words in their text
intitle:word1 OR . . . OR intitle:wordk at least one topic word in their title
inanchor:word1 OR . . . OR inanchor:wordk at least one topic word in their anchor
inurl:word1 OR . . . OR inurl:wordk at least one topic word in their URL

Table VII
BOOKS AND NEWS ABSOLUTE QUALITY PREDICTION RESULTS.

ACCURACIES FOR PREDICTING ABSOLUTE (HUMAN-PERCEIVED) TOPIC
QUALITY, FOR VARIOUS GROUPS OF FEATURES.

Feature set BOOKS NEWS
BOOKS
+NEWS

BASELINE-MAJORITY 0.610 0.521 0.549
BASELINE-GOOGLE 0.642 0.624 0.629
BASELINE-PPR 0.842 0.735 0.785
PROJ 0.875 0.812 0.848
D-SPAN 0.892 0.769 0.844
D-SP 0.883 0.786 0.852
PROJ+D-SPAN 0.883 0.795 0.844
PROJ+D-SP 0.892 0.795 0.848
PROJ+D-SPAN+D-SP 0.900 0.821 0.831

Table VIII
CROSS-DOMAIN ABSOLUTE QUALITY PREDICTION RESULTS.

PPPPPPPPTrain
Test

BOOKS NEWS

BOOKS 0.900 0.769
NEWS 0.867 0.821

ularly driven by our graph-centric features that are domain-
independent.

Analysis of the prediction models. Finally, we study the
characteristics of our learned models. As we use Lasso-
regularization in our model training which lends itself to
feature selection, we analyze the selected features (i.e. those
with non-zero coefficients) for BOOKS and NEWS, as given
in Table IX. We notice that the two models coincide in the
majority of their selected features which hints towards the
consistent evidential power of those features. One traditional
way of interpreting the coefficients is to think in terms of
the log-odds ratio, log P (y=0)

P (y=1) = wTx. Here, an increase of
one unit in a particular feature i (under the same conditions
for the others) contributes to the log-odds by wi. Therefore
features with positive coefficients contribute to the odds that
a given topic is poor (i.e. y = 0), whereas features with
negative coefficients advocate for the topic being good. More
specifically, we deduce that good topics are those with fewer
missing mapped words onto WikiLinks (or larger M ), fewer
connector nodes C in their spanning graphs gS , and higher
degree nodes in their projection graphs.

V. RELATED WORK

Topic modeling has been a widely studied topic of interest
especially for the machine learning (ML) [1], [16] (LDA,
random projections), information retrieval (IR) [2], [3] (LSI,
pLSA), as well as cognitive science [17] communities.
Simply put, topic models describe the documents of a corpus
as a mixture of topics, which in turn consist of a mixture
of topic-words. Typically, only a small number of words are
important in each topic, and only a small number of topics
are present in each document. As such, topics provide low-
dimensional representation for document collections [16]
and drive many applications including document database
summarization [4], segmentation [18], ontology learning
[19], word-sense disambiguation [5], information discovery
[6], to name a few.

Evaluation of topic models is an important issue, as
unsupervised nature of the learning process makes model se-
lection hard. Within the last 4-5 years8, the natural language
processing (NLP) community has shown increasing interest
into the semantic coherence or in other words evaluation
of topic models in capturing the human-perceived quality
of topics. Accurately identifying and getting rid of low-
quality topics not only would improve the understanding and
interpretation of the semantic nature of topics, but it would
also help boost the performance of many applications as
listed above, e.g. better topic-based document similarity.

In this section we give a survey of topic model evaluation,
and present related works in chronological order. Most
works in quantitative evaluation of topic models [7] employ
a variety of measures of model fit, such as estimating the
likelihood of held-out documents or measuring the perfor-
mance of an external task that is independent of the topic
space such as information retrieval.

Drawbacks of model fit measures: While useful, these
methods ignore the evaluation of the interpretability and
semantic meaning of the topics for users. In fact, quite
surprisingly, [8] showed that “traditional measures nega-
tively correlated with the measures of topic quality” and
that “models are often trading improved likelihood for lower
interpretability”.

Later, [10] proposed a new measure called pairwise
mutual information (PMI) of topic-words based on co-
occurrence statistics of word-pairs in large external text

8The first works on topic quality evaluation dates back to 2009 [8], [10].



Table IX
SELECTED FEATURES AND LEARNED COEFFICIENTS OF OUR L1-REGULARIZED LOGISTIC REGRESSION MODEL FOR BOOKS AND NEWS. NEGATIVE

(POSITIVE) COEFFICIENTS CONTRIBUTE TO THE ODDS OF A GIVEN TOPIC TO BE GOOD (POOR) QUALITY.

BOOKS NEWS

Selected Feature Coefficient Selected Feature Coefficient
gMNumMiss 0.0626 gMNumMiss 0.0918
gSRatioC 0.2940 gSRatioC 0.5909
gMMaxDeg -0.2921 gMMaxDeg -0.4541
gMSizeMaxComp -0.8667 gSAvgMSTWeight 0.2598
NumSP2 -0.9685

corpora, and showed that PMI scores of topics are highly
correlated (according to Pearson’s correlation statistic) with
human scores. [11] showed that PMI outperforms a range of
other topic-scoring measures such as those based on lexical
similarity and similarity in a given ontology. In [20], the PMI
model is extensively evaluated on various different genres
and domains of corpora (news, books, National Institutes
of Health (NIH) abstracts) and various external corpora
(Wikipedia articles, Google 5-grams, pubmed.gov abstracts).

Drawbacks of PMI-based evaluation: First, it requires
the entire scan of external documents to compute the co-
occurrence count for every pair of topic-words which is quite
costly as the external corpora may be quite large (e.g., 2
million Wikipedia articles, 1 trillion Google 5-grams). Sec-
ond, the best correlation to human-perceived quality depends
on the type of external corpora used (according to [20],
Google for books, Wikipedia for news, and pubmed.gov
for NIH abstracts yield the best correlation). This makes
it challenging to identify relevant, and burdensome to keep
numerous corpora.

Rather than using external corpora, [9] proposed to use the
original (i.e. training) corpus itself, which has been used for
topic extraction, to compute a PMI-like score based on co-
occurrence statistics of topic-words in the original document
collection. Experiments on NIH document collection proved
to be effective in separating low- and high-quality topics
judged by domain experts. This is interesting, as the reasons
behind not using the training corpus was stated in [10] as
“...instead of using the collection itself to measure word
association..., we use a large external text data source to
provide regularization”. This, of course, comes with the
same challenges as for PMI. Recently [21] used cohesion
and specificity of the topics to define a conceptual topic rel-
evance score based on a concept hierarchy (i.e. an ontology).

Main drawback of existing methods: Relevance-based
[21] and PMI-like measures [10], [9] as well as others
compared to in [20] are all based on a single statistic. None
of the methods exploit a collection of evidential measures
to build a (learning) model that could potentially perform
better than its parts. This is exactly the approach we take in
this work.

Finally, while not directly applicable to evaluation, related
work include automatic topic labeling [22], [23], [24] where

the goal is to find a single most representative phrase (i.e.
topic label or name) for each topic. Most related work in
data mining that has inspired our work is [25], which used
graph mining for evaluating the quality of search engine
results to user queries. Other (although not directly) related
graph-based techniques include connection subgraphs, with
a goal of summarizing a subset of nodes [26], [27], [28].

VI. CONCLUSION AND RESEARCH DIRECTIONS

In this paper we introduced a novel graph mining ap-
proach for the external evaluation of topic models. We
proposed to use Wikipedia as an external resource, con-
structed graph-centric features based on its page-links graph
structure, and built classification models that can predict
human-perceived quality of topics based on those evidential
features. We summarize our contributions as follows.

• Novel evaluation framework: We develop a new topic
quality evaluation framework that classifies a given
topic as good or poor. It creates subgraphs of the topic
words based on Wikipedia, and use their graph-centric
properties to learn classification models.

• Wikipedia as a knowledge base: Wikipedia page-links
graph consists of articles about entities, which are
linked by their relatedness, as perceived by human edi-
tors. Thus we hypothesized that good, i.e. semantically
coherent, topics’ words would lie in close proximity
in this graph. We validated this hypothesis with experi-
ments that show significant improvements in prediction
performance when WikiLinks is exploited.

• Evidential graph-centric features: We constructed novel
features based on graph topology and closeness based
on WikiLinks, in particular we introduced the projection
and spanning subgraphs and their related features.

• Prediction models and experiments: Based on a care-
fully built list of features, we learned statistical classi-
fication models. Experiments highlighted the potential
value of employing contextual subgraphs for under-
standing the quality of topics. One key aspect of
our framework is its generality; it can be used with
real-world corpora from diverse domains (e.g., news,
books, and medicine), thanks to the immense cover-
age of Wikipedia as a knowledge base and domain-
independent nature of our features.



Future work will look at graph-centric features describing
the position of each mapped node in regard to other mapped
nodes as well as to the rest of the graph, to identify specific
topic words that are potentially out of context and outlying9.
Another research direction is to exploit the WikiLinks graph
structure to quantify the similarity of two or more topics by
their positioning of words in the graph.

We believe that the presented work reveals an example
where graph and data mining has potential impact to prob-
lems in related fields. We find that the proposed methods
achieve desirable performance and provoke interesting di-
rections for future research.
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