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Abstract. If a friend called you 50 times last month, how many times did you
call him back? Does the answer change if we ask about SMS, or e-mails? We
want to quantify reciprocity between individuals in weighted networks, and we
want to discover whether it depends on their topological features (like degree, or
number of common neighbors). Here we answer these questions, by studying the
call- and SMS records of millions of mobile phone users from a large city, with
more than 0.5 billion phone calls and 60 million SMSs, exchanged over a period
of six months. Our main contributions are: (1) We propose a novel distribution,
the Triple Power Law (3PL), that fits the reciprocity behavior of all 3 datasets
we study, with a better fit than older competitors, (2) 3PL is parsimonious; it has
only three parameters and thus avoids over-fitting, (3) 3PL can spot anomalies,
and we report the most surprising ones, in our real networks, (4) We observe that
the degree of reciprocity between users is correlated with their local topologi-
cal features; reciprocity is higher among mutual users with larger local network
overlap and greater degree similarity.

1 Introduction

One of the important aspects in human relations is the reciprocity, a.k.a. mutuality. Reci-
procity can be defined as the tendency towards forming mutual connections with one
another by returning similar acts, such as email and phone calls. In a highly reciprocal
relationship both parties share equal interest in keeping up their relationship, while in a
relationship with low reciprocity, one person is much more active than the other.

It is important to understand the factors that play role in the formation of reciprocity
as there exists evidence that reciprocal relationships are highly probable to persist in the
future [6]. Also, [18] shows that reciprocity related behaviors provide good features for
ranking and classification based methods for trust prediction. Reciprocity plays other
important roles in social and communication networks. For example, if the network sup-
ports a propagation process, such as spreading of viruses in email networks or spreading
of information and ideas in social networks, then the presence of mutual links clearly
speeds up the propagation. Non-existence of reciprocal links can also reveal unwanted
calls and emails in spam detection.

Despite its importance, reciprocity has remained an under-explored dynamic in net-
works. Most work in network science and social network analysis focus on node level
degree distributions [5, 10, 14], communities [20, 22, 19], and triadic relations, such as
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clustering coefficients and triangle closures [12]. The study of dyadic relations [26] and
the related bivariate distributions they introduce is, however, mostly overlooked, and
thus is the focus of this paper. Our motivation is grouped into two topics:

M1. Modeling bivariate distributions in real data: Two vital components of un-
derstanding data at hand are studying the simple distributions in it and visualizing
it [27]. The study of reciprocity introduces bivariate distributions, such as the distri-
bution Pr(wij , wji) of edge weights on mutual edges, where association between two
quantitative variables needs to be explored. A vast majority of existing work focus on
univariate distributions in real data such as power-laws [8], log-normals [4], and most
recently DPLNs [21], however the study of multivariate distributions has limited focus.

In addition, visualization of multivariate data in 2D is hard and often misleading
due to issues regarding over-plotting. More importantly, mere visualization does not
provide a compact data representation as opposed to data modeling. Summarization via
aggregate functions such as the average or the median loses a lot of information and is
also not representative, especially for skewed distributions as found in real data.

Models, on the other hand, provide compact data representations by capturing the
patterns in the data, and are ideal tools for applications like data compression and
anomaly detection.

M2. A weighted approach to reciprocity: Traditional work [11] usually study reci-
procity on directed, unweighted networks as a global feature which is quantified as the
ratio of the number of mutual links pointing in both directions to the total number of
links. Defining reciprocity in such an unweighted fashion, however, prevents under-
standing the degree of reciprocity between mutual dyads. In a weighted network, even
though two nodes might have mutual links between them, the skewness and the magni-
tude of the weights associated with these links would contain more information about
how much reciprocity is really there between these nodes. For example, in a phone call
network the reciprocity between a mutual dyad where the parties make 80%-20% of
their calls respectively is certainly different than that of a mutual dyad with 50%-50%
share of their calls. In short, edge weights are crucial to study reciprocity as a property
of each dyad rather than as a global feature of the entire network and give more insight
into the level of mutuality.

In this paper, we analyze phone call and SMS records of 1.87 million mobile phone
users from a large city collected over six months. The data consists of over half a billion
phone calls and more than 60 million SMSs exchanged. Our contributions are:

1. We observe similar bivariate distributions Pr(wij , wji) of mutual edge weights in
the communication networks we study. We propose the Triple Power Law (3PL)
function to model this observed pattern and show that 3PL fits the real data with
millions of points very well. We statistically demonstrate that 3PL provides better
fits than the well-known Bivariate Pareto and Bivariate Yule distributions. We also
use 3PL to spot anomalies, such as a pair of users with low mutuality where one of
the parties makes 99% of the calls during the entire working hours, non-stop.

2. We use weighted measures of reciprocity in order to quantify the degree of recip-
rocal relations and study the correlations between reciprocity and local topological
features among user pairs. Our results suggest that mutual users with larger local
network overlap and higher degree similarity exhibit greater reciprocity.
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2 Related Work

Bivariate Distributions in Real Data: A vast majority of existing work focus on uni-
variate distributions in real data such as power-laws, Pareto distributions and so on [17].
For example, the degree distribution has been found to obey a power-law in many real
graphs such as the Internet Autonomous Systems graph [10], the WWW link graph [1],
and others [5, 7]. Additional power laws seem to govern the popularity of posts in cita-
tion networks, which drops over time, with power law exponent of -1 for paper citations
and -1.5 for blog posts [14].

A recent comprehensive study [8] on power-law distributions in empirical data
shows that while power-laws exist in many graphs, deviations from a pure power-law
are also observed. Those deviations usually appear in the form of exponential cut-offs
and log-normals. Similar deviations were also observed in [2] where the electric power-
grid graph in a specific region in California as well as airport networks were found to
exhibit power-law distributions with exponential cut-offs.

Other deviations from power-laws continue. Discrete Gaussian Exponential (DGX) [4]
was shown to provide good fits to distributions in a variety of real world data sets such
as the Internet click-stream data and usage data from a mobile phone operator. Most re-
cently, [21] studied several phone call networks and proposed a new distribution called
the Double Pareto Log-Normal (DPLN) that was used to separately model the per-user
number of call partners, number of calls and number of minutes. Other related work on
explaining and modeling the behaviour of phone network users include [6, 9, 16, 23].

While univariate distributions are used to model the distribution of a specific quan-
tity x, for example the number of calls of users, bivariate distributions are used to model
the association and co-variation between two quantitative variables x1 and x2. Associ-
ation is based on how two variables simultaneously change together, for example the
total number of calls with respect to the number of call partners of users.

Unlike univariate distributions, the multivariate distributions have mostly been stud-
ied theoretically in mathematics and statistics [3]. On the other hand, analysis of espe-
cially skewed multivariate distributions in real data has attracted much less focus. Ex-
isting work includes [28], which uses the bivariate log-normal distribution to describe
the joint distributions of flood peaks and volumes, as well as flood volumes and dura-
tions. Also, [15] studies the drought in the state of Nebraska and models the duration
and severity, proportion and inter-arrival time, and duration and magnitude of drought
with bivariate Pareto distributions.
Reciprocity in Unweighted Networks: Previous studies usually consider reciprocity as
a global metric of a given directed network where reciprocity is quantified as r=L

↔

L , the
ratio of the number of mutual links L↔ pointing in both directions to the total number
of links L. By definition, r=1 for a purely bidirectional network (e.g. collaboration
networks) and r=0 for a purely unidirectional network (e.g. citation networks).

There are two issues with this definition. First, it depends on the density of the net-
work; reciprocity is larger in a network with larger link density. Second, this definition
treats the graph as unweighted, and thus fails to quantify the degree of reciprocity be-
tween mutual dyads. [11] combines this classical definition with the network density
into a single measure which tackles the first problem, however the new measure still re-
mains a global, unweighted metric and does not allow to study the degree of reciprocity.



4 Leman Akoglu, Pedro O.S. Vaz de Melo, and Christos Faloutsos

3 Data Description

In this work, we study anonymous mobile communication records of millions of users
collected over a period of six months, December 1, 2007 through May 31, 2008. The
data set contains both phone call and SMS interactions.

From the whole six months’ of activity, we build three networks, CALL-N, CALL-
D and SMS, in which nodes represent users and directed edges represent phone call
and SMS interactions between these users. CALL-N is a who-calls-whom network
with edge weights denoting (1) total number of phone calls, CALL-D is the same
who-calls-whom network with edge weights denoting (2) total duration of phone calls
(aggregated in minutes), and SMS is a who-texts-whom network with edge weights
denoting (3) total number of SMSs. Table 1 gives the data statistics. Global unweighted
reciprocity is r=0.84 for CALL, and r=0.24 for SMS.

Table 1. Data statistics. The number of nodes N , the number of directed edges E, and the total
weight W in the mutual and non-mutual CALL and SMS networks.

Network N E WN WD(min) Network N E WSMS

CALL 1,87M 49,50M 483,7M 915x106 SMS 1,87M 8,80M 60,5M
CALL(mutual) 1,75M 41,84M 468,7M 885x106 SMS(mutual) 0,58M 2,10M 46,6M

4 Proposed Model: 3PL

Given a network of users with mutual, weighted edges between them, say CALL-N,
and given two users i and j in the network, is there a relation between the number of
calls i makes to j (wij) and the number of calls j makes to i (wji)? In this section, we
want to understand the association between the weights on the reciprocal edges in hu-
man communication networks and study their distribution Pr(wij , wji) across mutual
dyads. Since we study the pair-wise joint distribution, the order of the weights do not
matter. Thus, to ease notation, we will denote the smaller of these weights as nST (for
weight from Silent-to-Talkative) and the larger as nTS , and will study Pr(nST , nTS).

Figure 1(top-row) shows the weights nTS versus nST for all the reciprocal edges in
(from left to right) CALL-N, CALL-D, and SMS. Each dot in the plots corresponds
to a pair of mutual edges. Since there could be several pairs with the same (nST , nTS)
weights, the regular scatter plot of the reciprocal edge weights would result in over-
plotting. Therefore, in order to make the densities of the regions clear, we show the
heatmap of the scatter plots where colors represent the magnitude of volume (red means
high volume and blue means low volume).

In Figure 1, we observe that most of the points are concentrated (1) around the origin
and (2) along the diagonal for all three networks. Concentration around the origin, for
example in CALL-N, suggests that the vast majority of people make only a few phone
calls with nST , nTS < 10, and much fewer people make many phone calls, which
points to skewness. In addition, concentration along the diagonal indicates that mutual
people call each other mostly in a balanced fashion with nST ≈ nTS . Notice that
similar arguments hold for CALL-D and SMS.

Even though heatmaps reveal similar patterns in all the three networks, mere visual-
ization does not provide compact representations for our data. One way to go around this
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(a) CALL-N (b) CALL-D (c) SMS

Fig. 1. (top-row) Scatter plot heatmaps: total weight nST (Silent to Talkative) vs the reverse, nTS ,
in log scales. Visualization by scatter plots suffers from over-plotting. Heatmaps color-code dense
regions but do not have compact representations or formulas. Figures are best viewed in color;
red points represent denser regions. The counts are in log2 scale. (bottom-row) Aggregation by
average: summarization and data aggregation, e.g. averaging, loses a lot of information.

issue is to do data summarization. For example, Figure 1(bottom-row) shows how nTS
changes with nST on average. The least square fit of the data points in log-log scales
then provides a mathematical representation of the data. Data summarization by means
of an aggregate function such as the average, however, loses a lot of information about
the actual distribution: in our example, the slope of the least square fit in CALL-N is
close to 1, which suggests that nTS is equal to nST on average, and does not provide
any information for the deviations. This issue arises mostly because aggregation by the
average is not a good representative, especially for skewed distributions.

Given our observation that the distribution of reciprocal edge weights (nST , nTS)
follows a similar pattern across all three networks, how can we model the observed
distributions? Since neither visualization nor aggregation qualify for compact data rep-
resentation, we propose to formulate the distributions with the following bivariate func-
tional form Pr(nST , nTS), which we call the Triple Power-Law (3PL) function.

Proposed Model 1 (Triple Power-Law (3PL)) In human communication networks, the
distribution Pr(nST , nTS) of mutual edge weights nST and nTS (nST being the smaller)
follows a Triple Power-Law in the following form

Pr(nST , nTS ;α, β, γ) ∝
n−αST n

−β
TS(nTS − nST + 1)−γ

Z(α, β, γ)
, α > 0, β > 0, γ > 0, and

nTS ≥ nST > 0, Z(α, β, γ) =
∑M
nST=1

∑M
nTS=nST

n−αST n
−β
TS(nTS − nST + 1)−γ .

where Z is the normalization constant and M is a very large integer.

Next we elaborate on the intuition behind the exponents α, β and γ.
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Intuition behind the β exponent: 3PL is the 2D extension of the “rich-get-richer”
phenomenon; people who make many phone calls will continue making even more, and
even longer ones, leading to skewed, power-law-like distributions. The β exponent is
the skewness of the main component, the number nTS of phone-calls from ’talkative’ to
’silent’. High β means more skewed distribution; β=0 is roughly uniform distribution.
As we show in Figure 1, there are many people who make only a few (and short) phone
calls and only a few people who make many (and long) phone calls. Visually, the vast
majority of people who make only a few phone calls are represented with the high
density (dark red) regions around the origin in all three networks.
Intuition behind the α exponent: Similarly, this indicates the skewness for nST , the
number of silent-to-talkative phone-calls. High value of α means high skewness, while
α close to zero means uniformity. Notice that α ≈ 0 for our real phone-call datasets
(see Figure 2).
Intuition behind the γ exponent: It captures the skewness in asymmetry. High γ
means that large asymmetries are improbable. This is the case in all our real datasets.
For example, in addition to the origin in Figure 1(a), the regions along the diagonal
also have high densities. These regions correspond to mutual pairs with about equal
interaction in both directions. This suggests that humans tend to reciprocate their com-
munications. 3PL also captures this observation; notice that the probability is higher for
nTS close to nST and drops for larger inequality (nTS − nST ) as a power-law with
exponent γ.

4.1 Comparison of 3PL to Competing Models

In this section, we compare our model with two well-known parametric distributions
for skewed bivariate data, the Bivariate Pareto [13] and the Bivariate Yule [25]. Their
functional forms are given as two alternative competitor models as follows.

Competitor Model 1 (Bivariate Pareto)

fX1,X2(x1, x2) = k(k + 1)(ab)k+1(ax1 + bx2 + ab)−k−2, x1, x2, a, b, k > 0.

Competitor Model 2 (Bivariate Yule)

fX1,X2
(x1, x2) =

ρ(2)(x1 + x2)!

(ρ+ 1)(x1+x2+2)
, x1, x2, ρ > 0;α(β) = Γ (α+β)/Γ (α), α > 0, β ∈ R.

We use maximum likelihood estimation to fit the parameters of each model for
each of our three networks. In Figure 2, we report the best-fit parameters as well as
the corresponding data log likelihood scores (the higher, the better). Notice that for
CALL-N and CALL-D the 3PL achieves higher data likelihood than both Bivariate
Pareto and Bivariate Yule. On the other hand, for SMS, the data likelihood scores of all
three models are about the same; with Bivariate Pareto giving a slightly higher score.

The simple sign of the difference between the log likelihoods (log likelihood ratio
R), however, does not on its own show conclusively that one distribution is better than
the other as it is subject to statistical fluctuation. If its true value over many indepen-
dent data sets drawn from the same distribution is close to zero, then the fluctuations
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can easily change its sign and thus the results of the comparison cannot be trusted. In
order to make a firm judgement in favor of 3PL, we need to show that the difference
between the log likelihoods is sufficiently large and that it could not be the result of a
chance fluctuation. To do so, we need to know the standard deviation σ onR, which we
estimate from our data using the method proposed in [24].

Fig. 2. Maximum likelihood parameters estimated
for 3PL, Bivariate Pareto and the Bivariate Yule and
data log-likelihoods obtained with the best-fit pa-
rameters. We also give the normalized log likelihood
ratios z and the corresponding p-values. A positive
(and large) z value indicates that 3PL is favored over
the alternative. A small p-value confirms the signif-
icance of the result. Notice that 3PL provides sig-
nificantly better fits to CALL and is as good as its
competitors for SMS.

CALL-N CALL-D SMS
Triple Power Law (3PL)

α 1e-06 1e-06 0.8120
β 2.0703 1.8670 1.5896
γ 0.8204 0.9650 0.3005
Loglikelihood -7.55e+07 -8.88e+07 -5.41e+06

Bivariate Pareto
k 0.7407 0.7657 0.7862
a 0.2119 0.5723 0.7097
b 10e+05 1.25e+04 0.7553
Loglikelihood -7.77e+07 -9.26e+07 -5.39e+06
z 803.73 975.75 -41.06
p 0 0 0

Bivariate Yule
ρ 1.11e-16 5.55e-17 1e-06
Loglikelihood -8.59e+07 -10.00e+07 -5.41e+06
z 2.14e+03 1.93e+03 1.49
p 0 0 0.03

In Figure 2, we report the
normalized log likelihood ra-
tio denoted by z = R/

√
2nσ,

where n is the total number of
data points (number of mutual
edge pairs in our case). A pos-
itive z value indicates that the
3PL model is truly favored over
the alternative. We also show
the corresponding p-value, p =
erfc(z), where erfc is the com-
plementary Gaussian error func-
tion. It gives an estimate of the
probability that we measured a
given value of R when the true
value of R is close to zero (and
thus cannot be trusted). There-
fore, a small p value shows that
the value ofR is unlikely to be a
chance result and its sign can be
trusted.

Notice that the magnitude of
z for CALL-N and CALL-D is
quite large, which makes the p-
value zero and shows that 3PL is
a significantly better fit for those
data sets. On the other hand, z
is relatively much smaller for
SMS, therefore we conclude
that 3PL provides as good of a
fit as its competitors for this data

set. Note that the number of mutual edge pairs n in SMS (≈1 million) is much smaller
compared to that of the call networks (≈21 million) (Table 1). It is worth emphasizing
that difference, because the bivariate pattern of reciprocity might reveal itself better in
larger data sets, and it would be interesting to see whether 3PL provides a better fit for
SMS when more data samples become available.

Next, we demonstrate also visually that 3PL provides a better fit to the real data
than its competitors. To this end, having estimated the model parameters for all three
models, we generated synthetic data sets with the same number of samples as in each
of our networks. We show the corresponding plots for CALL-N in Figure 3 (a) for real
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data, and synthetic data generated by (b) 3PL, (c) Bivariate Pareto, and (d) Bivariate
Yule. We notice that the simulated data distribution from 3PL looks more realistic than
its two competitors. Similar results for CALL-D and SMS are omitted for brevity.
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(a) CALL-N (real data) (b) 3PL (synthetic) (c) Biv. Pareto (synthetic) (d) Biv. Yule (synthetic)

Fig. 3. Contour-maps for the scatter plot nTS versus nST in CALL-N (a) for real data, and
synthetic data simulated from (b) 3PL, (c) Bivariate Pareto and (d) Bivariate Yule functions using
the best-fit parameters. Notice that synthetic data generated by 3PL looks more similar to the real
data than its competitors also visually. Counts are in log2 scale. Figures are best viewed in color.

4.2 Goodness of Fit

The likelihood ratio test is used to compare two models to determine which one provides
a better fit to a given data. However, as we mentioned in the previous section, it cannot
directly show when both competing models are poor fits to the data; it can only tell
which is the least bad. Therefore, in addition to showing that 3PL provides a better (or
as good) fit than its two competitors, we also need to demonstrate that it indeed provides
a good fit itself.

A general class of tests for goodness of fit work by transforming the data points
(x1,i, x2,i) according to a cumulative distribution function (CDF)F as ui = F (x1,i, x2,i)
for ∀i, 1 ≤ i ≤ n. One can show that if F is the correct CDF for the data, ui should be
uniformly distributed (derivation follows from basic probability theory). That is, if the
CDF F̂ estimated from our model is approximately correct, the empirical CDF of the
ûi = F̂ (x1,i, x2,i) should be approximately a straight line from (0, 0) to (1, 1).
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Fig. 4. Distribution of ûi = F̂ (x1,i, x2,i) for all data
points i according to cumulative distribution func-
tion (CDF) F̂ estimated from our 3PL model. An
approximately uniform distribution of ûi shows that
3PL provides a good fit to real data.

For each of our three data
sets, we generate synthetic data
drawn from our 3PL function
with the corresponding esti-
mated best-fit parameters. Then,
we compute ûi = F̂ (x1,i, x2,i)
for all the data points in each of
the data sets, where F̂ is the esti-
mated CDF from each synthetic
data. In Figure 4, we show the
CDF of ûi as well as the CDF
for a perfect uniform distribu-
tion. Notice that the distribution

of ûi is almost uniform for CALL-N and CALL-D, and quite close to the uniform for
SMS. This corroborates our case that our model provides a good approximate to the
correct CDF of our data sets, and thus indeed provides a good fit.
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4.3 3PL at work

There exist at least three levels at which we can make use of parametric statistical mod-
els for real data: (1) as data summary: compact mathematical representation, data re-
duction; (2) as simulators: generative tools for synthetic data; (3) in anomaly detection:
probability density estimation.
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Fig. 5. (a) Least likely 100 points by 3PL (shown
with triangles). (b) Local neighborhood of one mu-
tual pair detected as an outlier (marked with circles).
Edge thickness is proportional to edge weight.

In Figure 5(a), we show top
100 pairs in CALL-D with low-
est 3PL likelihood (marked with
triangles). Figure 5(b) shows the
local neighborhood of one of
the pairs, say A and B (marked
with circles in (a)). We notice
low mutuality; A initiated 99%
of the calls in return to less
than 2 hours total duration of
calls B made. Further inspection
revealed constant daily activity
by A, including weekends, with
about 7 hours call duration per
day on average, starting at around 9am in the morning until around 5-8pm in the
evening. It is also surprising that all these calls are addressed to the same contact,
B. While for privacy reasons, we cannot fully tell the scenario behind this behavior,
this proves to be an interesting case for the service operator to further look into. Other
interesting anomalous observations are omitted for brevity.

5 Reciprocity and Local Network Topology

Given that person i calls person j wij times and person j calls person i wji times, what
is the degree of reciprocity between them? In this section, we discuss several weighted
metrics that quantify reciprocity between a given mutual pair. Later, we study the rela-
tionship between reciprocity among mutual pairs and their topological similarity.

5.1 Weighted reciprocity metrics

Three metrics we considered in this work to quantify the “similarity” or “balance”
of weights wij and wji are (1) Ratio r =

min(wij ,wji)
max(wij ,wji)

∈ [0, 1], (2) Coherence c =
2
√
wijwji

(wij+wji)
∈ [0, 1] (geometric mean divided by the arithmetic mean of the edge weights),

and (3)Entropy e = −pij log2(pij)− pji log2(pji) ∈ [0, 1], where pij =
wij

(wij+wji)
and

pji = 1− pij . All these metrics are equal to 0 for the (non-mutual) pairs where one of
the edge weights is 0, and equal to 1 when the edge weights are equal. Although these
metrics are good at capturing the balance of the edge weights, they fail to capture the
volume of the weights. For example, human would score (wji=100, wij=100) higher
than (wji=1, wij=1), whereas all the metrics above would treat them as equal.
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Therefore, we propose to multiply these metrics by the logarithm of the total weight,
such that the reciprocity score consists of both a “balance” as well as a “volume” term.
In the rest of this section, we use the weighted ratio rw =

min(wij ,wji)
max(wij ,wji)

log(wij + wji)

as the reciprocity measure in our experiments. The results are similar for the other
weighted metrics, cw and ew.

5.2 Reciprocity and Network Overlap

Here, we want to understand whether there is a relation between the local network
overlap (local density) and reciprocity between mutual pairs. Local network overlap of
two nodes is simply the number of common neighbors they have in the network.

In Figure 6, we show the cumulative distribution of reciprocity separately for dif-
ferent ranges of overlap. The figures suggest that people with more common contacts
tend to exhibit higher reciprocity, both in their SMS and phone call interactions.
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Fig. 6. Complementary cumulative distribution of reciprocity for different ranges of local network
overlap (number of Common Neighbors). Notice that the more the number of common contacts,
the higher the reciprocity.

5.3 Reciprocity and Degree Similarity

Fig. 7. Average reciprocity among dyads
with degrees (di, dj) in CALL-N.

Next, we investigate the relation between
the degree similarity (degree assortativity)
and reciprocity. In Figure 7, we show the
heatmap for the average reciprocity among
pairs with respective degrees di and dj
for CALL-N (similar figures for other net-
works are omitted for brevity). The heatmap
plot suggests that two people with more
similar number of contacts exhibit larger
reciprocity; notice the increase in reci-
procity with increasing dj for fixed di (from
bottom to diagonal, towards degree similar-
ity) and then the drop from diagonal to the
right, towards degree dissimilarity.
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6 Conclusions

In this paper, we analyze more than 0.5 billion phone call and 60 million SMS records of
millions of mobile phone users over six months; and study reciprocity; the distribution
and strength of mutual relations in weighted human communication networks. Our main
contributions and findings are the following:

– Patterns in joint pdf Pr(wij,wji): We find that the joint distribution Pr(wij , wji)
of the weights on mutual edges in mobile communication networks of users follow
a bivariate pattern for all three types of weights; number of phone calls, duration
of phone calls and number of SMSs. More specifically, the data points concentrate
(1) around the origin as well as (2) along the diagonal in the scatter plot of wij
versus wji. Observation (1) suggests a power-law like distribution in the amount
of interactions; e.g., many people with few calls and only a few people with many
calls. Observation (2) indicates that human communications are mostly reciprocal.

– New model (3PL) for the joint pdf Pr(wij,wji): We propose the Triple Power
Law (3PL) bivariate function to model this joint distribution. Our goodness of fit
tests show that 3PL can model the observed distributions with more than 20 million
mutual edge pairs quite well. We statistically demonstrate that it provides better
fits than two other well-known bivariate distributions for skewed data, the Bivariate
Pareto and the Bivariate Yule.

– 3PL at work: 3PL provides a compact as well as a sparse data representation with
only three parameters. We also show how to exploit 3PL to detect anomalies. Our
case studies successfully reveal suspicious mutual interactions that agree with hu-
man intuition.

– Weighted reciprocity: Lastly, we take a weighted network approach and use weighted
metrics to quantify the degree of reciprocity in human interactions. We observe that
reciprocity is higher (1) for mutual pairs with larger local network overlap, that is,
people with more common friends; and (2) for mutual pairs with larger degree-
similarity, that is, people with similar number of contacts.
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