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 If T calls S nTS times, what can we say 
about how many times S calls T? 
 
 
 

 How can we quantify reciprocity between  
   T and S? 

 
 Does reciprocity depend on local topology?  
 –e.g. degree similarity? 
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nTS 
nST   S  T 
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Reciprocity-based features are good for: 

 trust prediction [Nguyen+ 2010] 

 spam detection 

 network engagement/churn 

 propagation (rumor, ideas, viruses) 

 link-persistence                                  
[Cesar-Hidalgo 2008] 

 



Previous Work This paper 

Node/triadic topology 
• degree dist., centrality,    
  network value, influence 
• clustering coef., triangle    
  closures, communities 

Dyadic relations 

Univariate: 
Pr(x) 

Bivariate:  
Pr(x1, x2) 

x1 
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Previous Work This paper 

Unweighted Weighted                                                               

Global Local                    ? 

r=1    e.g. collaborations 
r=0    e.g. citations 

Relations to local 
network topology 
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 Phone call and SMS networks 

 ~2 million customers 

 ½ billion phone calls 

 60 million SMS interactions 

 Dec. 2007 to May 2008 

 

 edge-weights:  

 #SMS , #Calls , Duration 
 



 
 
 
 
 
 
 

 CALL: r=0.84    SMS: r=0.24  
 

 SMS-mutual shrinks (total weight ~remains) 
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1) Bivariate Pattern of Reciprocity 

Observed patterns 

Our 3PL Model 

Competing Models 

Goodness of fit 

3PL at work: anomalies 
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 How can we model Prob(nST, nTS)? : 
Bivariate! 2D- Gaussian? Pareto? Yule? … 

nST (Silent-to-Talkative) 

nTS 
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CALL-N CALL-D SMS 
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1) Bivariate Pattern of Reciprocity 

Observed patterns 

Our 3PL Model 

Competing Models 

Goodness of fit 

3PL at work: anomalies 
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In human communication networks,  
distribution                    of mutual edge  
weights follows a Triple Power Law (3PL) 
 
 
 
 
        capture `rich-get-richer’ 
     captures skewness in asymmetry 
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1) Bivariate Pattern of Reciprocity 

Observed patterns 

Our 3PL Model 

Competing Models 

Goodness of fit 

3PL at work: anomalies 
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 Competitor 1: Bivariate Pareto 
 
 
 
 

 Competitor 2: Bivariate Yule 
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normalized 
log-likelihood  
ratio 
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nTS 

nTS 

nST nST 

real 3PL 

Pareto Yule 

Higher 

likelihood 
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1) Bivariate Pattern of Reciprocity 

Observed patterns 

Our 3PL Model 

Competing Models 

Goodness of fit 

3PL at work: anomalies 
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 If F is correct CDF,     is uniformly distributed. 

CALL-N CALL-D SMS 
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1) Bivariate Pattern of Reciprocity 

Observed patterns 

Our 3PL Model 

Competing Models 

Goodness of fit 

3PL at work: anomalies 
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2) Reciprocity and Local Network Topology 

Weighted metrics 

Local network overlap 

Assortativity 
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1) balance factor       0: non-mutual                               
                               1: fully mutual 
 
 
 
 
 

2) volume factor 
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2) Reciprocity and Local Network Topology 

Weighted metrics 

Local network overlap 

Assortativity 
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Is there a relation between reciprocity and  
local network overlap (= #common neigh.s)? 
 
 
 
 
 
 
 
 
Larger network overlap  Higher reciprocity  
(i.e. more common friends) 

CALL-N CALL-D SMS 
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2) Reciprocity and Local Network Topology 

Weighted metrics 

Local network overlap 

Assortativity 
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Average 

reciprocity 

Is there a relation between reciprocity and  
degree assortativity (=similarity)?  
 
 
 
 
 
 
 
 

Larger degree similarity  Higher reciprocity 

(i.e. similar #contacts) 



Our findings conform to: 
 Clusters [Watts-Strogatz’98] 

 High degree similarity 

 High local network overlap 

 Reciprocity expected 

 Hubs [Barabasi+’99] 

 Low degree similarity 

 Low local network overlap 

 Reciprocity not expected 
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 Patterns in dyad reciprocity 
▪ Mostly few/short calls & SMSs 
▪ Mostly reciprocal behavior 

 

 New 3PL model for reciprocity 
▪ Good fit to >20M points 
▪ Better than competitors 

 

 Study of local, weighted reciprocity 
▪ Higher for larger overlap and degree similarity 
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 nTS 
nST   S  T  



 Better models for reciprocity 
 Evolution of reciprocal behavior 
 Caller prediction using reciprocal features 

 degree of reciprocity 

 inter-arrival time 

 avg. time passed since last call 

 #calls since last call 

 etc. 
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lakoglu@cs.cmu.edu 

http://www.cs.cmu.edu/~lakoglu 
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real 3PL 


