Quantifying Reciprocity in Large Weighted Communication Networks PAKDD 2012

Leman Akoglu Pedro Vaz de Melo Christos Faloutsos

Questions we answer:

If T calls S n_{TS} times, what can we say about how many times S calls T?

How can we quantify reciprocity between T and S?

Does reciprocity depend on local topology? –e.g. degree similarity?

Why study reciprocity?

Reciprocity-based features are good for:

- trust prediction [Nguyen+ 2010]
- spam detection
- network engagement/churn
- propagation (rumor, ideas, viruses)
- link-persistence
 [Cesar-Hidalgo 2008]

Contributions –part 1

Previous Work	This paper
 Node/triadic topology degree dist., centrality, network value, influence clustering coef., triangle closures, communities 	Dyadic relations

Univariate: Pr(x)

X

Bivariate: $Pr(x_1, x_2)$

Leman Akoglu (CMU)

Contributions –part 2

Previous Wo	rk	This pa	per
Unweighted		Weighte	ed 🥌
Global	$r = \frac{L^{\leftrightarrow}}{L}$	Local	$\frac{2\sqrt{w_{ij}w_{ji}}}{(w_{ij}+w_{ji})}$?
r=1 e.g. col r=0 e.g. cita	laborations ations	Relation networl	ns to local k topology

Carnegie Mellon

Data

- Phone call and SMS networks
 - ~2 million customers
 - 1/2 billion phone calls
 - 60 million SMS interactions
 - Dec. 2007 to May 2008

edge-weights:

#SMS, #Calls, Duration

Data statistics

Network	N	E	W_N	$W_D(min)$
CALL	1,87M	49,50M	483,7M	915×10^{6}
CALL(mutual)	1,75M	41,84M	468,7M	$885 x 10^{6}$

Network	N	E	W_{SMS}
SMS	1,87M	8,80M	60,5M
SMS(mutual)	0,58M	2,10M	46,6M

CALL: r=0.84 SMS: r=0.24

SMS-mutual shrinks (total weight ~remains)

Observed bivariate patterns

 How can we model Prob(n_{ST}, n_{TS})? : Bivariate! 2D- Gaussian? Pareto? Yule? ...

Observed bivariate patterns

Leman Akoglu (CMU)

Carnegie Mellon

Our 3PL Model

In human communication networks, distribution $Pr(n_{ST}, n_{TS})$ of mutual edge weights follows a Triple Power Law (3PL)

$$\Pr(n_{ST}, n_{TS}) \propto \boxed{\frac{n_{ST}^{-\beta}(n_{TS} - n_{ST} + 1)^{-\gamma}}{Z(\alpha, \beta, \gamma)}}$$

 $\alpha > 0, \beta > 0$ capture `rich-get-richer' $\gamma > 0$ captures skewness in asymmetry

Competing Models

Competitor 1: Bivariate Pareto

$$f_{X_1,X_2}(x_1,x_2) = k(k+1)(ab)^{k+1}(ax_1+bx_2+ab)^{-k-2}$$
$$a,b,k > 0$$

Competitor 2: Bivariate Yule

$$f_{X_1,X_2}(x_1,x_2) = \frac{\rho_{(2)}(x_1+x_2)!}{(\rho+1)_{(x_1+x_2+2)}}$$

3PL vs Competing Models

3PL vs Competing Models

3PL Goodness of fit

$$\hat{u}_i = \hat{F}(x_{1,i}, x_{2,i})$$

If F is correct CDF, \hat{u}_i is uniformly distributed.

Carnegie Mellon

3PL at work: Anomalies

20

2) Reciprocity and Local Network Topology

Weighted metrics

Local network overlap

Assortativity

Weighted metrics

1) balance factor0: non-mutual1: fully mutual

Ratio
$$r = \frac{\min(w_{ij}, w_{ji})}{\max(w_{ij}, w_{ji})} \in [0, 1]$$

Coherence
$$c = \frac{2\sqrt{w_{ij}w_{ji}}}{(w_{ij}+w_{ji})} \in [0,1]$$

Entropy $e = -p_{ij} \log_2(p_{ij}) - p_{ji} \log_2(p_{ji}) \in [0, 1]$

2) volume factor $r_w = \frac{\min(w_{ij}, w_{ji})}{\max(w_{ij}, w_{ji})} \log(w_{ij} + w_{ji})$

2) Reciprocity and Local Network Topology

Weighted metrics

Assortativity

Reciprocity and network overlap

Is there a relation between reciprocity and local network overlap (= #common neigh.s)?

Larger network overlap \rightarrow Higher reciprocity (i.e. more common friends)

Carnegie Mellon

Leman Akoglu (CMU)

2) Reciprocity and Local Network Topology

Assortativity

Reciprocity and assortativity

Is there a relation between reciprocity and degree assortativity (=similarity)?

Leman Akoglu (CMU)

Carnegie Mellon

Discussion

- Our findings conform to:
- Clusters [Watts-Strogatz'98]
 - High degree similarity
 - High local network overlap
 - Reciprocity expected
- Hubs [Barabasi+'99]
 - Low degree similarity
 - Low local network overlap
 - Reciprocity not expected

Summary of contributions

- Patterns in dyad reciprocity
 - Mostly few/short calls & SMSs
 - Mostly reciprocal behavior
- New 3PL model for reciprocity
 - Good fit to >20M points
 - Better than competitors

$$\propto \boxed{\frac{n_{ST}^{-\alpha} n_{TS}^{-\beta} (n_{TS} - n_{ST} + 1)^{-\gamma}}{Z(\alpha, \beta, \gamma)}}$$

- Study of local, weighted reciprocity
 - Higher for larger overlap and degree similarity

Carnegie Mellon

Leman Akoglu (CMU)

Future directions

- Better models for reciprocity
- Evolution of reciprocal behavior
- Caller prediction using reciprocal features
 - degree of reciprocity
 - inter-arrival time
 - avg. time passed since last call
 - #calls since last call
 - etc.

Thank you!

<u>lakoglu@cs.cmu.edu</u> http://www.cs.cmu.edu/~lakoglu

Carnegie Mellon

