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ABSTRACT
Spotting anomalies in large multi-dimensional databases is a cru-
cial task with many applications in finance, health care, secu-
rity, etc. We introduce COMPREX, a new approach for identify-
ing anomalies using pattern-based compression. Informally, our
method finds a collection of dictionaries that describe the norm of
a database succinctly, and subsequently flags those points dissimi-
lar to the norm—with high compression cost—as anomalies.

Our approach exhibits four key features: 1) it is parameter-
free; it builds dictionaries directly from data, and requires no user-
specified parameters such as distance functions or density and sim-
ilarity thresholds, 2) it is general; we show it works for a broad
range of complex databases, including graph, image and relational
databases that may contain both categorical and numerical features,
3) it is scalable; its running time grows linearly with respect to both
database size as well as number of dimensions, and 4) it is effective;
experiments on a broad range of datasets show large improvements
in both compression, as well as precision in anomaly detection,
outperforming its state-of-the-art competitors.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Data mining; E.4 [Coding and
Information Theory]: Data compaction and compression

Keywords
anomaly detection, categorical data, data encoding

1. INTRODUCTION
Detecting anomalies and irregularities in data is an important

task, and numerous applications exist where anomaly detection is
vital, e.g. detecting network intrusion, credit card fraud, insurance
claim fraud, and so on. In addition to revealing suspicious behav-
ior, anomaly detection is useful for spotting rare events such as
rare diseases in medicine, in addition to data cleaning and filter-
ing. Finding anomalies, however, is a difficult task, in particular
for complex multi-dimensional databases.

In this work, we address the problem of anomaly detection in
multi-dimensional categorical databases using pattern-based com-
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pression. Compression-based techniques have been explored mostly
in communications theory, for reduced transmission cost and in-
creased throughput and in databases, for reduced storage cost and
increased query performance. Here, we improve over recent work
that identified compression as a natural tool for spotting anoma-
lies [22]. Simply put, we define the norm by the patterns that com-
press the data well. Then, any data point that can not be compressed
well is said not to comply with the norm, and thus is abnormal.

The heart of our method, COMPREX, is to use a set of dictionar-
ies to encode a database. We exploit correlations between the fea-
tures in the database, grouping those with high information gain,
and build dictionaries (also look-up tables or code tables [25]) for
each group of strongly interacting features. Informally, these dic-
tionaries capture the data distribution in terms of patterns; the more
often a pattern occurs, the shorter its encoded length. The goal is to
find the optimal set of dictionaries that yield the minimal lossless
compression, and then spot tuples with long encoded lengths.

Dictionary based compression has been shown to be highly ef-
fective for anomaly detection in [22], which employs the KRIMP

itemset-based compressor introduced by [21]. Besides high perfor-
mance, it allows for characterization: one can easily inspect how tu-
ples are encoded, and hence why one is deemed an anomaly. In this
paper we show that our COMPREX can do better, yielding both bet-
ter compression (and relatedly, higher detection accuracy) as well
as lower running time.

The intuition behind our method achieving better compression
is that it uses multiple code tables to describe the data, whereas
KRIMP builds a single code table. As such, our method can bet-
ter exploit correlations between groups of features, as by doing
away with uncorrelated features it can locally assign codes more
effectively. Moreover, we build code tables directly from data in
a bottom-up fashion, instead of filtering very large collections of
pre-mined candidate patterns, which becomes exponentially costly
with increasing database dimension, i.e. number of features.

Furthermore, by not requiring the user to provide a collection of
candidate itemsets, nor a minimal support threshold, COMPREX is
parameter free in both theory and practice. We employ the Mini-
mum Description Length principle to automatically decide the num-
ber of feature groups, which features to group, what patterns to in-
clude in the code tables, as well as to point out anomalies. In con-
trast, most existing anomaly detection methods have several param-
eters, such as the choice of a similarity function, density or distance
thresholds, number of nearest neighbors, etc.

In a nutshell, we improve over the state of the art by encoding
data using multiple code tables, instead of one—allowing us to
better grasp strongly interacting features. Moreover, we build our
models directly from data—avoiding the expensive step of mining
and filtering large collections of candidate patterns.



Experiments show the resulting models obtain high performance
in anomaly detection, improving greatly over the state of the art
for categorical data. We further show COMPREX is very generally
applicable; after discretization it matches the state of the art for
numerical data, and correctly identifies anomalies both in translated
large graphs and image data.

2. PRELIMINARIES AND BACKGROUND
In this section, we give the preliminaries and notation, and intro-

duce basic concepts used throughout the paper.

2.1 Preliminaries
In this paper we consider categorical databases. A database D

is a bag of n tuples over a set of m categorical features F =
{f1, . . . , fm}. Each feature f ∈ F has a domain dom(f) of pos-
sible values {v1, v2, . . .}. The number of values v ∈ dom(f) is
the arity of f , i.e. arity(f) = |dom(f)| ∈ N .

The domains are distinct between features. That is, dom(fi) ∩
dom(fj) = ∅, ∀i �= j. The domain of a feature set F ⊆ F is the
Cartesian product of the domains of the individual features f ∈ F ,
i.e., dom(F ) =

∏
f∈F dom(f).

A database D is simply a collection of n tuples, where each tuple
t is a vector of length m containing a value for each feature in F .
As such, D can also be regarded as a n-by-m matrix, where the
possible values in a column i are determined by dom(fi).

An item is a feature-value pair (f = v), with f ⊆ F , and
v ∈ dom(f). A itemset is then a pair (F = v), for a set of features
F ⊆ F , and v ∈ dom(F ) is a vector of length |F |. We typically
refer to an itemset as a pattern .

A tuple t is said to contain a pattern (F = v), denoted as p(F =
v) ⊆ t (or p ⊆ t for short), if for all features f ∈ F , tf = vf
holds. The support of a pattern (F = v) is the number of tuples in
D that contain it: supp(F = v) = |{t ∈ D | (F = v) ⊆ t}|. Its
frequency is then freq(F = v) = supp(F = v)/|D|.

Finally, the entropy of a feature set F is defined as

H(F ) = −
∑

v∈dom(F )

freq(F = v) log freq(F = v) .

All logarithms are to base 2, and by convention, 0 log 0 = 0.

2.2 The MDL principle
The Minimum Description Length (MDL) principle [20] is a

practical version of Kolmogorov Complexity [16], and can be re-
garded as model selection based on lossless compression.

Given a set of models M, MDL identifies the best model M ∈
M as the one that minimizes

L(M) + L(D |M) ,

in which L(M) is the length in bits of the description of the model
M , and L(D | M) is the length of the description of the data
encoded by M . That is, the MDL-optimal model for a database D
encodes D most succinctly among all possible models; it provides
the best possible lossless compression.

MDL provides us a systematic approach for selecting the model
that best balances the complexity of the model and its fit to the data.
While models that are overly complex may provide an arbitrarily
good fit to the data and thus have low L(D | M), they overfit
the data, and are penalized with a relatively high L(M). Overly
simple models, on the other hand, have very low L(M), but as
they fail to identify important structure in D, their corresponding
L(D | M) tends to be relatively high. As such, the MDL-optimal
model provides the best balance between model complexity and
goodness of fit.

2.3 Dictionary based compression
To use MDL, we need to define what a model is, how to encode

the data with such a model, and how to encode a model.

2.3.1 Data encoding
As models, we will use code tables. A code table is a simple

two column table. The first column contains patterns, which are
ordered descending (1) first by length and (2) second by support.
The second column contains the code words code(p) correspond-
ing to each pattern p. An illustrative database with 6 tuples and an
example code table for the database is illustrated in Table 1.

Table 1: An illustrative database D and an example code table
CT for a set of three features, F={f1, f2, f3}.

Data Code Table

f1f2f3 p(F = v) code(p) usage(p) L(code(p))

a b x a b x 0 4 1 bit
a b x a c 10 2 2 bits
a b x x 110 1 3 bits
a b x y 111 1 3 bits
a c x
a c y

The code words in the second column of a code table CT are
not important: their lengths are. The length of a code word for a
pattern depends on the database we want to compress. Intuitively,
the more often a pattern occurs in the database, the shorter its code
should be. The usage of a pattern p ∈ CT is the number of tuples
t ∈ D which contain p in their cover, i.e. have the code of p in
their encoding.

The encoding of a tuple t, given a CT , works as follows: the
patterns in the first column are scanned in their predefined order to
find the first pattern p for which p ⊆ t. p is then said to be used
in the cover of t , and the corresponding code word for p in the
second column becomes part of the encoding of t. If t \ p �= ∅, the
encoding continues with t \ p until t is completely covered, which
yields a unique set of patterns that form the cover of t.

Given the usages of the patterns in a CT , we can compute the
lengths of the code words for the optimal prefix code [20]. Shannon
entropy gives the length for the optimal prefix code for p:

L(code(p) | CT ) = − log
( usage(p)∑
p′∈CT

usage(p′)
)
.

The number of bits to encode a tuple t is simply the sum of the
code lengths of the patterns in its cover, that is,

L(t | CT ) =
∑

p∈cover(t)

L(code(p) | CT ).

The total length in bits of the encoded database is then the sum
of the lengths of the encoded data tuples,

L(D | CT ) =
∑

t∈D

L(t | CT ).

2.3.2 Model encoding
To find the MDL-optimal compressor, we also need to deter-

mine the encoded size of the model, the code table in our case.
Clearly, the size of the second column in a given code table CT
that contains the prefix code words code(p) is trivial; it is simply
the sum of their lengths. For the size of the first column, we need
to consider all the singleton items I contained in the patterns, i.e.,
I =

⋃
f∈F dom(f).



For encoding the patterns in the left hand column we again use
an optimal prefix code. We first compute the frequency of their ap-
pearance in the first column, and then by Shannon entropy calculate
the optimal length of these codes. Specifically, the encoding of the
first column in a code table requires cH(P ) bits, where c is the total
count of singleton items in the patterns p ∈ CT , H(.) denotes the
Shannon entropy function, and P is a multinomial random variable
with the probability pi = ri

c
in which ri is the number of occur-

rences of singleton item i ∈ I in the first column (for the actual
items, one could add an ASCII table providing the matching from
the prefix codes to the original names. Since all such tables are over
I, this only adds an additive constant to the total cost). All in all,

L(CT ) =
∑

p∈CT

L(code(p) | CT ) +
∑

i∈I
−ri log(pi).

3. PROPOSED METHOD

3.1 Compression with Set of Tables: Theory
In the previous section, we showed how to encode a database

D using a single code table CT . In fact, this is the approach in-
troduced in [21] to compress transaction databases, employing fre-
quent itemset mining to generate the candidate patterns for the code
table. Here, we do not regard transaction data, but regular relational
data, where tuples are data points in a multi-dimensional categor-
ical feature space. In this space, some groups of features may be
highly correlated; and hence may be compressed well together.

As a result we can improve by using multiple code tables—as we
can then exploit correlations, and build a separate, probably smaller
CT for each highly correlated group of features instead of a single,
large CT for all, possibly uncorrelated features. As such, using
multiple, that is a set of code tables, and mining these efficiently
(bypassing the costly frequent itemset mining), are two of the main
contributions of our work.

Next, we formally introduce the concept of feature partitioning,
and give our problem statement.

DEFINITION 1. A feature partitioning P = {F1, . . . , Fk} of a
set of features F is a grouping of F , for which (1) each partition
contains one or more features: ∀Fi ∈ P : Fi �= ∅, (2) all partitions
are pairwise disjoint: ∀i �= j : Fi ∩ Fj = ∅, and (3) every feature
belongs to a partition:

⋃
Fi = F .

FORMAL PROBLEM STATEMENT 1. Given a set of n data tu-
ples in D over a set of m features in F , find a partitioning P :
{F1, F2, . . . , Fk} of F and a set of associated code tables CT :
{CTF1 , CTF2 , . . . , CTFk}, such that the total compression cost
in bits given below is minimized.

L(P, CT , D) = L(P) +
∑

F∈P
L(πF (D)|CTF ) +

∑

F∈P
L(CTF ) ,

in which πFi(D) is the projection of D on feature subspace Fi.

Note that the number of features m and the number of tuples
n are fixed over all models we consider for a D, and hence are a
constant additive that we can safely ignore.

3.1.1 Partition encoding
The first term of L(P, CT , D) denotes the length of encoding

the partitioning, which consists of two parts; encoding (a) the num-
ber of partitions and (b) the features per partition.
(a) Encoding the number of partitions: First, we need to en-
code k, the number of partitions and code tables. For this, we use

the MDL-optimal encoding of an integer [12]. The cost for encod-
ing an integer value k is L0(k) = log�(k) + log(c), with c =∑

2− log(n) ≈ 2.865064,, and log�(k) = log(k) + log log(k) +
· · · sums over all positive terms. Note that as log(c) is constant for
all models, we ignore it.
(b) Encoding the features per partition: Then, for each feature
we have to describe to which partition it belongs. This we do using
m log(k) bits.

In summary, L(P) = log�(k) +m log(k).

3.1.2 Data encoding
The second term of L(P, CT , D) denotes the cost of encoding

the data with the given set of code tables. To do so, each tuple is
partitioned according to P , and encoded using the optimal codes in
the corresponding code tables following the procedure in §2.3.1.

3.1.3 Model encoding
The last term of L(P, CT , D) denotes the model cost, that is the

total length of encoding the code tables. Each code table is encoded
following the procedure described in §2.3.2.

We note that the number of feature groups k is not a parameter of
our method but rather is determined by MDL. In particular, MDL
ensures that we will not have two separate code tables for a pair of
highly correlated feature groups as it would yield lower data cost to
encode them together. On the other hand, combining feature groups
may yield larger code tables, that is higher model cost, which may
not compensate for the savings from the data cost. In other words,
we group features for which the total encoding cost L(P, CT , D)
is reduced. Basically, we employ MDL to both guide us in finding
which features to group, as well as in deciding how many groups
we should have.

Also note that compression is a type of statistical method, how-
ever, instead of having to choose a prior distribution appropriate for
the data (normal, chi-square, etc.) we use a rich model class (code
tables) to induce the distribution from the data.

3.2 Mining Set of Code Tables: Algorithm
Having defined the cost function as L(P, CT , D), we need an

algorithm to search for the best set of code tables CT for the opti-
mal vertical partitioning P of the data such that the total encoded
size L(P, CT , D) is minimized.

The search space for finding the best code table for a given set of
features, yet alone for finding the optimal partitioning of features,
however, is quite large. Finding the optimal code table for a set of
|Fi| features involves finding all the possible patterns with different
value combinations up to length |Fi| and choosing a subset of those
patterns that would yield the minimum total cost on the database
induced on Fi. Furthermore, the number of possible partitioning of
a set of m features is the well-known Bell number Bm.

While the search space is prohibitively large, it neither has a
structure nor exhibits monotonicity properties which could help us
in pruning. As a result, we resort to heuristics. Our approach builds
the set of code tables in a greedy bottom-up, iterative fashion. We
give the pseudo-code as Algorithm 1, and explain it in more detail
in the following.

COMPREX starts with a partitioning P in which each feature
belongs to its own group (1), and separate, elementary code tables
CTi for each feature fi associated with the feature sets (2).

DEFINITION 2. An elementary code table CT encodes a database
D induced on a single feature f ∈ F . The patterns p ∈ CT consist
of all length-1 unique items v1, . . . , varity(f) in dom(f). Finally,
usage(p ∈ CT ) = freq(f = v).



Typically, some features of the data will be more strongly cor-
related than others, e.g., the age of a car and its fuel efficiency, or
the weather temperature and flu outbreaks. In such cases, it will be
worthwhile to represent features for which the correlation is ‘high
enough’ together within one CT , as we can then exploit correlation
to save bits.

More formally, we know from Information Theory that given
two (sets of) random variables (in our case feature groups) Fi and
Fj , the average number of bits we can save when compressing Fi

and Fj together instead of separately, is known as their Information
Gain. That is,

IG(Fi, Fj) = H(Fi) +H(Fj)−H(Fi, Fj) ≥ 0,

In fact, the IG of two (sets of) variables is always non-negative
(zero when the variables are independent from each other), which
implies that the data cost would be the smallest if all the features
were represented by a single CT . On the other hand, our objective
function also includes the compression cost of the CT s.

Clearly, having one large CT over many (possibly uncorrelated)
features will typically require more bits in model cost than it saves
in data cost. Therefore, we can use IG to point out good merge
candidates, subsequently employing MDL to decide if the total cost
is reduced, and hence, whether to approve the merge or not.

The first step then is to compute the IG matrix for all pairs of the
current feature sets, which is a non-negative and symmetric matrix
(3). Let |Fi| denote the cardinality, i.e. the number of features in
the feature set Fi. We sort the pairs of feature sets in decreasing
order of IG-per-feature, i.e. normalized by their total cardinality,
and start outer iterations to go over these pairs as the candidate CT s
to be merged, say CTi and CTj (5). The starting cost costinit is
set to the total cost with the initial set of CT s (6). The construction
of the new CTi|j then works as follows: we put all the existing
patterns pi,1, . . . , pi,ni and pj,1, . . . , pj,nj from both CT s into the
new CT (7). Following the convention, they are sorted first by
length (from longer to shorter) and second by usage (from higher
to lower) (8). Candidate partitioning P̂ is built by dropping feature
sets Fi and Fj from P and including the concatenated set Fi|j (9).

Similarly, we build a temporary code table set ĈT by dropping the
candidate tables CTi and CTj and adding the new ĈT i|j (10).

Next, we find all the unique rows of the database induced on Fi|j
(11). These patterns of length (|Fi|+|Fj |) are sorted in decreasing
order of their occurrence in the database and constitute the candi-
dates to be inserted into the new CT . Let pi|j,1, . . . , pi|j,ni|j de-
note these patterns of the combined feature set Fi|j in their sorted
order of frequency. In our inner iterations (12), we insert these one-
by-one (13), update (i.e. decrease) the usages of the existing over-
lapping patterns (14), remove those patterns whose usage drops to
zero (15), recompute the code word lengths with updated usages
(16) and compute the total cost after each insertion. If total cost is
reduced, we store the candidate partitioning P̂ and associated set
of code tables ĈT (18), otherwise we continue insertions (from 12)
with the next candidate patterns for possible future cost reduction.

In the outer iterations, if total cost is reduced the IG between the
new feature set Fi|j and the rest are computed (22). Otherwise the

merge is rejected and the candidates P̂ and ĈT are discarded (24).
Next the algorithm continues to search for future merges, and the
search terminates when there are no more pairs of feature sets that
can be merged for reduced cost. The resulting set of feature sets
and their corresponding set of code tables constitute our solution.

Note that the data from which we induce code tables may include
outliers. As by MDL we only allow patterns in our code tables that
help compression, we are not prone to include spurious patterns.
See [22] for a more complete discussion.

Algorithm 1 COMPREX

Input: Database D with n tuples and m (categorical) features
Output: A heuristic solution to Problem Statement 1: a feature

partitioning P : {F1, . . . , Fk}, associated set of code tables
CT : {CT1, . . . , CTk}, and total encoded size L(P, CT , D)

1: P ← {F1, . . . , Fm}, Fi = {fi}, 1 ≤ i ≤ m
2: CT ← {CT1, . . . , CTm}, where each CTi is elementary
3: Compute IG between ∀(Fi, Fj) ∈ P , i > j
4: repeat
5: for each (Fi, Fj) ∈ P in decreasing normalized IG do
6: Compute costinit ← L(P, CT , D)

7: Put patterns p ∈ CTi and p ∈ CTj into a new ĈT i|j
8: Sort p ∈ ĈT i|j , (1) by length and (2) by usage

9: P̂ ← P\(Fi ∪ Fj) ∪ Fi|j
10: ĈT ← CT \(CTi ∪ CTj) ∪ ĈT i|j
11: Find unique rows (candidate patterns) pi|j in DFi|j
12: for each unique row pi|j,x in decreasing frequency do
13: Insert pi|j,x to new ĈT i|j
14: Decrease usages of overlapping patterns p ∈ ĈT i|j

and p ∈ cover(pi|j,x) by freq(pi|j,x)
15: Remove patterns p ∈ ĈT i|j with usage(p)=0

16: Recompute L(code(p ∈ ĈT i|j)) with new usages

17: if L(P̂, ĈT , D) < L(P, CT , D) then
18: P ← P̂ and CT ← ĈT
19: end if
20: end for
21: if L(P, CT , D) < costinit then
22: Compute IG between Fi|j and ∀Fx ∈ P, Fx �= Fi|j
23: else
24: Discard P̂ and ĈT
25: end if
26: end for
27: until convergence, i.e. no more merges

3.3 Computational Speedup and Complexity
In Algorithm 1, computationally most demanding steps are (1)

finding all the unique rows in the database under a particular feature
subspace when two feature sets are to be merged (11) and (2) after
each insertion of a new pattern to the code table, finding the existing
overlapping patterns the usages of which to be decreased (14).

With a naive implementation, step (1) is performed on the fly
scanning the entire database once and possibly using many linear
scans and comparisons over the unique rows found so far in the pro-
cess. Furthermore, step (2) requires a linear scan over the current
patterns in the new code table ĈT i|j for each new insertion. The
total computational complexity of these linear searches depends
on the database, however, with the outer and inner iteration levels
(Lines 5 and 12, respectively), those may become computationally
infeasible for very large databases.

We improve with a simple design choice. Instead of an integer
vector of usage per pattern in CT , we have a sparse matrix C for
patterns versus data points, the binary entries cji indicating whether
data tuple i contains pattern j in its cover. Note that the row sum
of the C matrix gives the usages of the patterns. In such a setting,
step (1) (mining for candidate patterns) works as follows: Let Fi

and Fj denote the feature sets to be merged. Let Ci denote the
ni × n patterns versus data tuples matrix for code table CTi and
similarly Cj denote the nj × n matrix for CTj , in which ni and
nj respectively denote the number of patterns each table has. We
obtain the usages for the new candidate patterns (merged unique



rows) under the merged feature subspace Fi|j by multiplying Ci

and CT
j into a ni × nj matrix U , which takes O(ninnj).

Next, we sort the merged patterns in decreasing order by their
usage Ux,y and insert them to ĈT i|j one-by-one. Note that we
exploit the existing patterns in the code tables to be merged, rather
than finding all the unique rows of the database. This way, we
quickly identify good frequent candidates and consider only ninj

of them. Since ni, nj  n, we practically reduce the number of
inner iterations (12) to a constant.

From here, step (2) (insertions) works as follows: Let Ux,y de-
note the highest usage associated with the merged pattern pi(x)|pj(y).
The insertion of pi(x)|pj(y) into the code table simply means the
addition of a new row to the Ci|j matrix (Ci|j is obtained by con-
catenating the rows of Ci and Cj and reordering its rows (1) by
length and (2) by usage of the patterns it initially contains). The
new row is then the dot product (i.e. logical AND) of row x in
Ci and the row y in Cj (data tuples which contain both pi(x) and
pj(y) in their cover). Moreover, we decrease the usages of the
merged patterns pi(x) and pj(y) by subtracting the new row from
both of their corresponding rows. All these updates are O(n).

All in all, the inner loop (starting in 12) goes over ninj(≈constant)
number of candidate patterns and each insertion takesO(n). There-
fore, the inner loop takes O(n).

Next, we consider the outer loop (starting in 5), which tries to
merge pairs of code tables. In the worst case we get O(m2) trials
when all merges are discarded. As a result the worst case complex-
ity of COMPREX becomes O(m2n). In practice, however, many
features are correlated and we obtain a merge at almost every step,
yielding about linear complexity in both data size and dimension.

3.4 COMPREX at Work: Anomaly Detection
Compression based techniques are naturally suited for anomaly

and rare instance detection. Next we describe how we exploit our
dictionary based compression framework for this task.

In a given code table, the patterns with short code words, that is
those that have high usage, represent the patterns in the data that
can effectively compress the majority of the data points. In other
words, they capture the trends summarizing the norm in the data.
On the other hand, the patterns with longer code words are rarely
used and thus encode the sparse regions in the data. Consequently,
the data tuples in a database can be scored by their encoding cost
for anomalousness.

More formally, given a set of code tables CT1, . . . , CTk found
by COMPREX, each data tuple t ∈ D can be encoded by one or
more code words from each CTi, i = {1, . . . , k}. The correspond-
ing patterns constitute the cover of t as discussed in §2.3.1. The
encoding cost of t is then considered as its anomalousness score;
the higher the compression cost, the more likely it is “to arouse
suspicion that it was generated by a different mechanism” [13].

score(t) = L(t|CT ) =
∑

F∈P
L(πF (t)|CTF )

=
∑

F∈P

∑

p∈cover(πF (t))

L(code(p)|CTF )

Having computed the compression costs, one can sort them and
report the top k data points with the highest scores as possible
anomalies. An alternative way [22] is to determine a decision thresh-
old θ and flag those points with a compression cost greater than θ
as anomalies. One can use the Cantelli’s Inequality [11] which pro-
vides a well-founded way to determine a good value for the thresh-
old θ for a given confidence level, that is, an upper bound for the

false positive rate. For generality, in our experiments we show the
accuracy at all decision thresholds.

4. EMPIRICAL STUDY
In our study, we explored the general applicability of COMPREX

by considering rich data. We experimented with many (publicly
available) datasets1 from diverse domains, as shown in Tables 2
and 3. Other datasets we used include graph and satellite image
datasets, which we will discuss in §4.2.3 and §4.2.4, respectively.
The source code of COMPREX is available for research purposes2.

We evaluated our method with respect to four criteria: (1) com-
pression cost in bits, (2) running time, (3) detection accuracy, and
(4) scalability. We also compared our results with two state of
the art methods, KRIMP [25] and LOF [4] (note that KRIMP was
shown [22] to outperform single-class classification methods, like
NNDD and SVDD, for the anomaly detection task; therefore for
reasons of space we only compare to the winner). KRIMP is also
a compression based anomaly detection method, but uses a single
code table to encode a dataset. It performs the costly frequent item-
set mining as a pre-processing step to generate candidate patterns
for the code table. LOF is a density-based outlier detection method
that computes the local-outlier-factor of data points with respect to
their nearest neighbors. Neither LOF nor KRIMP are parameter-
free, they respectively require the minimum support threshold and
the number of neighbors to be considered. COMPREX, in contrast,
automatically determines the number of necessary code tables, as
well as which patterns to include, and as such has no parameters.

4.1 Compression cost and Running time
One goal of our study is to develop a fast method that would

model the norm of the data and hence give low compression cost
in bits. In this section, we use both COMPREX and KRIMP for
compressing our datasets and show the total cost in bits and the
corresponding running times in Figure 1 (a) and (b), respectively.
Note that the results for our largest datasets Enron, Connect-4, and
Covertype are given with broken y-axes with values in millions for
cost and thousands for time.

We note that COMPREX achieves very nice compression rates,
outperforming KRIMP for all of the datasets, and providing up to
96% savings in bits (47% on average).

With respect to running time, we notice that for most of the
(smaller) datasets, our running time is only slightly higher than
that of KRIMP but still remains under 16 seconds. Even though
for small datasets the run time of KRIMP is negligible, for datasets
especially with large number of features, its running time increases
significantly. The computationally most demanding part of KRIMP

is the frequent itemset mining, making it less feasible for large
and high dimensional categorical datasets. For example, for the
Connect-4 dataset with 42 features and the Chess (king,rook vs.
king,pawn) datasets with 36 features, KRIMP cannot finish within
reasonable time due to very large candidate sets.

To alleviate this problem, KRIMP accepts a minsup parameter,
which is the minimum number of occurrences of an itemset in the
database to be considered as frequent. The higher the minsup is
set, the fewer the extracted itemsets are. However, high minsup
comes with a trade-off; the higher the minsup, the smaller the num-
ber of candidates, the smaller the search space and the worse the
final code table approximates the optimal code table. In contrast,

1http://archive.ics.uci.edu/ml/datasets.html
2http://dl.dropbox.com/u/17337370/CompreX_
12_tbox.tar.gz
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Figure 1: (left) Compression cost (in bits) when encoded by COMPREX vs. KRIMP. (right) Run time (in seconds) of COMPREX vs.
KRIMP. For large datasets, extremely many frequent itemsets negatively affect the runtime for KRIMP.

our method does not require any sorts of parameters and frequent
itemset mining.

In our experiments, we find closed frequent itemsets with minsup
set to 5000 and 500 for the Connect-4 and Chess (kr-kp) datasets,
respectively. Even then, the running time of our method remains
lower than that of KRIMP (see Fig. 1). On the other hand, the time
required for frequent itemset mining also depends on the dataset
characteristics. For example, we observe in Figure 1 that the run-
ning time of KRIMP on the (larger) Mushroom dataset is much
smaller than that on the (smaller) Spect-heart dataset, with both
having the same number of (22) features.

For our largest datasets (in terms of size and number of features)
in Figure 1, notice that the running time of KRIMP is quite large
(about 20 mins) for Enron and Connect-4, and (45 mins) for Cover-
type. Moreover, its compression cost is still higher than that our
method provides. Therefore, we conclude that our method becomes
more advantageous especially for large datasets.

4.2 Detection accuracy
Besides achieving high compression rate, we would also (if not

more) want our method to be effective in spotting anomalies. In
this section, we experiment with various types of data including
relational, graph and image databases.

For measuring detection performance, we use two-class datasets.
The number of data points from one class is significantly smaller
than that from the other class. We call these classes as minority
and the majority classes, respectively. The data points from the
minority class are considered to be the “anomalies”. The underly-
ing assumption is that different classes have different distributions
–some classes may be more similar than others, just like with real
anomaly(-classes). Examples to the classes include poisonous vs.
edible in Mushroom data, unaccountable vs. very good in Car data,
and win vs. loss in Connect-4 data.

As a measure of accuracy, we use average precision; the aver-
age of the precision values obtained across recall levels. We plot
the detection precision, that is the ratio of the number of true pos-
itives to the total number of predicted positives, against the recall
(=detection rate), that is the fraction of total true anomalies that
are detected. A point on the plot is obtained by setting a threshold
compression cost—any record with a cost larger than that threshold
is flagged as an anomaly. The corresponding precision and recall
are then calculated. By varying the threshold, we obtain the curve
for the entire range of recalls. The average precision then approxi-
mates the area under the precision-recall curve.

4.2.1 COMPREX on categorical data
Figure 2 shows the precision-recall plots of COMPREX and KRIMP

on several of our categorical datasets. Here, a higher curve denotes
better performance, since it corresponds to a higher precision for
a given recall. The average precision values are also given in Ta-
ble 2, for all the categorical datasets. Notice that for most datasets
COMPREX achieves higher accuracy than KRIMP. This is obvious
especially for the Car, Chess, Led and Nursery datasets. We notice
that the performance of the methods also depends on the detection
task. For example, both methods perform well on the Mushroom
dataset, for which the poisonous ones exhibit quite different fea-
tures than the edible ones. However, the accuracies of both meth-
ods drop for the Connect-4 dataset for which the detection task, i.e.
which player is going to win the game given the 8-ply positions, is
much harder.

Table 2: Average precision (normalized area under precision-
recall curve) for categoric datasets, comparing COMPREX and
KRIMP. Further, we give dataset size, number of features and
partitions, minsup for KRIMP (star denotes closed itemsets).

Dataset |D| |F| |P| min
sup

Cp’X Kr’p

Car evaluation 1275 6 6 1 0.99 0.06
Chess (k) 4580 6 4 1 0.67 0.01
Dermatology 132 12 12 1 0.45 0.37
Solar flare 0–1 1312 10 6 1 0.19 0.15
Solar flare 0–2 1211 10 6 1 0.11 0.10
Led display 370 7 7 1 0.99 0.31
Nursery 4648 8 6 1 1.00 0.52
Chess (kp) W-L 1689 36 18 500∗ 0.14 0.06
Chess (kp) L-W 1547 36 18 500∗ 0.03 0.03
Letter rec. A–B 809 16 11 1∗ 0.17 0.18
Letter rec. P–R 823 16 11 1∗ 0.57 0.34
Mushroom 4258 22 5 1∗ 1.00 0.93
Digit rec. 0–1 1163 16 12 10 0.75 0.63
Digit rec. 1–7 1163 16 9 20 0.51 0.34
Spect–heart 267 22 16 1∗ 0.12 0.12
Connect–4 44k 42 11 5k∗ 0.02 0.01
Covertype 286k 44 6 280k∗ 0.46 0.27

average 0.48 0.26

4.2.2 COMPREX on numerical data
While COMPREX is designed to work with categorical datasets,

it can also be used to detect anomalies in datasets with numeri-
cal features. For that, we first convert the continuous numerical
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Figure 2: Performance of COMPREX vs KRIMP on two-class categorical datasets. Given are precision vs. recall for various thresholds
to flag tuples as anomalous. Note that COMPREX outperforms KRIMP for most detection tasks.
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Figure 3: Performance of COMPREX vs KRIMP on the two-class numerical transaction dataset Shuttle. Notice that COMPREX
outperforms KRIMP consistently for various discretization methods used.

features to discretized nominal features. There exist various tech-
niques to this end. In our study, we consider several: linear, loga-
rithmic, SAX [17], and MDL-based [14] binning. Linear binning
involves dividing the value range of each feature into equal sized
intervals. Logarithmic binning first sorts the feature values and as-
signs the lower b-fraction to the first bin, the next b-fraction of the
rest to the second bin, and so on, until all the values are assigned
to a bin. SAX has proved to be an effective symbolic represen-
tation, especially for time series data. MDL-based binning esti-
mates variable-width histograms with optimal bin count automati-
cally, for a given data precision.

We experiment with these various discretization methods under
various parameter settings. In Figure 3, we show the accuracy of
COMPREX versus KRIMP on the Shuttle dataset, using logarithmic
binning with b=0.5, linear binning with 5 and 10 bins, SAX with
3 bins, and MDL-based binning with precision 0.01. Results are
similar for many other settings and for the rest of the numerical
datasets, which we omit for brevity. Notice that regardless of the
discretization used, COMPREX performs consistently better than
its competitor KRIMP.

To this end, we also compare our method with LOF on several
numerical datasets. LOF is a widely used outlier detection method
based on local density estimation. While it is quite powerful when
applied to numeric data, it cannot be directly applied to categori-
cal datasets. In this comparison, both methods require the careful
choice of a parameter; number of nearest neighbors k for LOF, and
a binning method and its corresponding parameter for COMPREX.

In Figure 4, we show the accuracy of LOF versus COMPREX
with their best parameter choices on our numerical two-class datasets.

Table 3: Average precision for the numerical datasets, compar-
ing COMPREX, KRIMP and LOF. Further, dataset size, number
of features and partitions, minsup used for KRIMP.

Dataset |D| |F| |P| min
sup

Cp’X Kr’p LOF

Shuttle 3416 9 5 1 1.00 0.22 0.83
Pageblocks 4941 10 6 1 0.46 0.37 0.23
Yeast 468 8 8 1 0.49 0.17 0.48
Abalone 703 7 3 1 0.42 0.15 0.24

average 0.59 0.23 0.45

Table 3 gives the corresponding average precision scores for all
three methods. Notice that COMPREX achieves comparable or bet-
ter performance than LOF, even though it operates on discretized
data which loses some information due to this process, and thus is
not as optimized as LOF for numeric data. This shows that COM-
PREX can also be applied to datasets with numerical or with a hy-
brid of both categorical and numerical features.

4.2.3 COMPREX on graph data
Given data points and their features in numerical or categorical

space, our method can also be applied to other complex data, in-
cluding graphs. To this end, we study the Enron graph3, in which
nodes represent individuals and the edges represent email interac-
tions. In our setting the nodes correspond to the data points, and
the features to the ego-net features we extract from each node. The

3http://www.cs.cmu.edu/~enron/
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Figure 4: Performance of LOF vs COMPREX with the best choice of parameters on the numerical transaction datasets. Notice that
COMPREX achieves comparable or better performance than LOF even after discretization.

ego-net of a node (ego) is defined as the subgraph of the node, its
neighbors, and all the links between them. We extract 14 numerical
ego-net features, such as the number of edges, total weight, ego-net
degree (number of edges connecting the ego-net to the rest of the
graph), in- and out-degree, etc. We refer the reader to [2] for more
on ego-net features. Features are discretized into 10 linear bins.

In Table 4, we show the top 5 email addresses with the highest
compression cost found by COMPREX. The dataset does not con-
tain any ground truth anomalies, therefore we provide anecdotal
evidence for the discovered “anomalies”. Our first observation is
the significantly high compression cost of the listed points—103 to
107 bits given a global average of 6.72 bits (median is 4.27). This
is due to the rare and high number of patterns used in their cover.
Notice that each of them are covered with 7 patterns compared to
a global average of 2.05 (median is 2). Moreover, the usages of
the cover patterns is quite small—thus longer code words and high
total compress-cost. Further inspection justifies our results: for ex-
ample, ‘sally.beck’ (employee chief operating officer) contains the
highest number of (31k) edges in its ego-net and the highest ego-
net degree (of 85k), implying that she is highly connected to the
rest of the graph as opposed to many other nodes in the graph.

Table 4: Top-5 anomalies for Enron, with one regular-joe
example. Given are, email address, compression cost, size of
cover, and average usages of the cover patterns; high usages
correspond to short codes. Average cost is 6.72 bits, average
number of covering patterns is 2.05.

name@enron.com cost (bits) |cover| avg usage±std
of cover patterns

sally.beck 107.28 7 3.7 ± 5.4
jeff.dasovich 107.11 7 3.4 ± 3.9
outlook.team 106.70 7 4.8 ± 6.3
david.forster 105.11 7 4.1 ± 5.2
kenneth.lay 103.24 7 5.8 ± 7.5

.

.

.
.
.
.

.

.

.
.
.
.

robert.badeer 1.53 2 52k ± 4.3k

4.2.4 COMPREX on image data
Next, for our image datasets4 for which class labels also do not

exist, we provide an anecdotal and visual study. The image datasets
are the satellite images of four major cities from around the world
as shown in Figure 5. Each image is split into 25x25 rectangle tiles,
for which we extracted 15 numerical features, and subsequently
discretized into 10 linear bins. The first three features denote the
mean RGB values for each tile and the rest denote Gabor features.

4http://geoeye.com/CorpSite/gallery/

In Figure 5, top tiles with high compression cost are highlighted
in red. We observe that COMPREX effectively spots interesting and
rare regions. For example, the districts of Roman Catholic Church
in Vatican and the Washington Memorial in Washington D.C. that
distinctively stand out in the images are captured in top anomalies.
In Forbidden city, COMPREX spots the three lakes (Beihai, Zhong-
hai, Nanhai), the Jingshan Park on its right, as well as the Tianan-
men Square on the south. Finally, in London COMPREX marks the
part of Thames river, the Buckingham Palace as well as several rare
plain fields in the city.

(a) Holy see, Vatican (b) Washington D.C., USA

(c) Forbidden city, Beijing (d) London, UK

Figure 5: “Anomalous” tiles—with high compression cost—
on the image datasets are highlighted with red borders (figures
best viewed in color). Notice that COMPREX successfully spots
qualitatively distinct regions that stand out in the images.

4.3 Scalability
KRIMP falling short on large datasets arises the question of scala-

bility, which is maybe even more important than the issue of speed.
Therefore, in Figure 6, we also show the running time of both meth-
ods for growing dataset and feature sizes on Enron and Connect-4.

We observe that the running time of KRIMP grows significantly
with the increasing size in both cases. The difference is evident
especially for growing feature size. This is due to frequent itemset
mining scaling exponentially with respect to number of features.
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Figure 7: Scatter plots of compression cost versus running time of COMPREX and KRIMP. Notice that COMPREX achieves lower cost
at any given time, which KRIMP cannot catch up with even when let to run for longer.

On the other hand, the increase in running time for our method
follows a linear trend indicating that COMPREX scales better with
increasing database size and dimension.

Another advantage of our method is that it can work as an any-
time algorithm. Since it is a bottom-up approach which seeks for
lower total cost over iterations via more merges, the compression
procedure can be stopped at any point given the availability of time.
The same goal can be achieved for KRIMP by tuning the minsup
parameter; the higher the minsup, the lower the running time.

To compare the methods, we show the compression costs achieved
at various durations in Figure 7. Notice that for any given run-time
duration, COMPREX achieves lower compression cost than its com-
petitor. Moreover, even KRIMP is allowed to run for longer, it still
cannot reach as low of a cost as COMPREX can in much less time.

5. RELATED WORK
Our contributions are two-fold: finding descriptive pattern sets,

and anomaly detection in categoric data.

5.1 Data Description
COMPREX builds upon the KRIMP algorithm by Siebes et al. [21,

25], and likewise employs the MDL principle [12] to define the best
set of patterns as those that compress the data best. KRIMP heuris-
tically approximates the optimum by considering a collection of
itemsets in a fixed order, greedily selecting itemsets that contribute
to better compression. The code tables KRIMP discovers have been
shown to characterize data distributions very well, providing com-
petitive performance on a variety of tasks [22, 25].

Unlike KRIMP, COMPREX can detect and exploit independent
groups of attributes by using sets of code tables. Whereas KRIMP

requires the user to provide a set of candidate itemsets (or a minimal
support threshold to mine these), COMPREX is parameter-free in

both theory and practice. Furthermore, as the expensive mining
and sorting steps are avoided, COMPREX can be used as an any-
time algorithm. However, while KRIMP is defined for transaction
data in general, we restrict ourselves to categorical data.

The PACK algorithm [24] also follows a bottom-up MDL ap-
proach, using a decision tree per attribute to encode binary data
0/1 symmetrically. By translating these trees into downward-closed
families of itemsets, patterns can be extracted. Although good com-
pression results are obtained, by the downward-closed requirement
typically large groups of itemsets are returned, hindering usability.

Further examples of pattern set mining methods that describe
data include Tiling [9], Noisy Tiling [15], and Boolean matrix fac-
torization [19]. As these do not define a score for individual rows,
it is not trivial to apply them for anomaly detection.

Attribute clustering [18] is related in that it can be regarded as a
crude form of COMPREX. With the goal of only providing a high-
level summarization of the data, instead of a detailed characteri-
zation, the authors employ MDL to find the optimal grouping of
binary attributes. These groups are described using crude code ta-
bles, consisting of all attribute-value combinations in the data; un-
like in our setting where code tables can consist of itemsets of dif-
ferent lengths, providing better characterization of the local struc-
ture. Unlike COMPREX, it can only describe shown attribute-value
combinations, and not trivially generalize, nor can it meaningfully
capture structure local within the regarded attribute group.

Recently, [23] proposed the SLIM algorithm for mining a single
code table directly from binary data. The code tables are shown to
perform on par with KRIMP for classification and anomaly detec-
tion. Here, we consider multiple code tables, obtaining much better
anomaly detection results than KRIMP. Moreover, by focusing on
categorical data, COMPREX can search more efficiently, returning
its code tables in only a fraction of the times reported in [23].



5.2 Anomaly Detection
Identifying outliers in multi-dimensional real-valued data has been

studied extensively. Examples of proposals to this end include [1, 3,
4, 7, 10]. These typically exploit the (continuous) ordered domains
of the attributes to define meaningful distance functions between
tuples, which cannot be straightforwardly applied on nominal (cat-
egorical) data. Furthermore, most of these methods require several
parameters to be specified by the user. For example, [4] and [10]
take the number of nearest neighbors k to be compared to as input.
They also require a distance metric for finding the k-nns of the
data points, which often suffers from the curse of dimensionality
in high dimensions. Lastly, these methods do not build a model,
and thus cannot provide anomaly characterization. Model-based
approaches like COMPREX, on the other hand, capture the norm of
the data and can pindown the deviations from it, providing better
interpretability for the claimed anomalies.

While most work on outlier detection has focused on numeri-
cal datasets, there also exist some work on anomaly detection for
discrete data. [6] surveys methods for finding the anomalous se-
quences in a given set of sequences. The main disadvantage of the
methods therein (kernel-,window-based, etc.) is that their perfor-
mance is highly reliant on the choice of their parameters (similarity
measure, window size, etc.). Proposals for anomaly detection in
categorical data include [5, 8, 26] and recently [22]. [5] learns a
structure and the parameters of a Bayesian network, and uses the
log-likelihood values as the anomalousness score of each record.
[8, 26] address the problem of finding anomaly patterns. They
build a Bayes net that represents the baseline distribution, and then
score the rules with unusual proportions compared to the baseline.
They restrict their method to work with only one and two compo-
nent rules due to high computation required. COMPREX is most
related to [22], which employs KRIMP [21] as its compressor for
anomaly detection. The key differences are that KRIMP finds a
single code table, performs costly frequent itemset mining for can-
didate generation, and requires a minimum support parameter.

6. CONCLUSIONS
The contributions of this work are two-fold: (1) we achieve fast

characterization of data by mining subspace code-tables, i.e. pat-
terns sets, and (2) we apply our descriptive patterns to reliable
anomaly detection in categorical data.

We introduce a novel, parameter-free method, COMPREX, that
builds a data compression model using multiple dictionaries for
encoding, and reports the data points with high encoding cost as
anomalous. Our method proves effective for both tasks: It pro-
vides higher compression rates at lower run times especially for
large datasets, and it is capable of spotting rare instances effec-
tively, with detection accuracy often higher than its state-of-the-art
competitors. Experiments on diverse datasets show that COMPREX
successfully generalizes to a broad range of datasets including im-
age, graph, and relational databases with both categorical and nu-
merical features. Finally our method is scalable, with running time
growing linearly with increasing database size and dimension.

Future work can generalize our method to time-evolving data for
detecting anomalies over time, where the challenge is to efficiently
update the code tables to effectively capture the trending patterns.
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