Graph-Based Anomaly Detection: Problems, Algorithms and Applications

Leman Akoglu

Carnegie Mellon University enz

Anomaly: That stands out https://en.wikipedia.org/wiki/August_Landmesser

Anomaly Detection: Many Use-cases

Formalizing Anomaly Detection

• Concrete problem settings exist. e.g./esp. for point-cloud data

• Real-world... A bit more complex.

Formalizing Anomaly Detection

Given <DATA>, Find <ANOMALIES>

e.g. (accounting) Given millions of transactions, find abnormalities

We heard you work on anomaly detection.

Yes, I am very excited. Tell me more.

We have lots of data, and want to find anomalies.

OK, wait, tell me what your REAL PROBLEMS are. Why do you want to detect anomalies? What do you consider to be an anomaly?

Formalizing Anomaly Detection

Tell me what your REAL PROBLEMS are.

We want to find errors, inefficiencies, malfeasance... We want to save \$\$\$. We also want YOU to find all unknown anomalies.

Hmm... OK...?

Graph-based Anomaly Detection

• Often, underlying data is unmistakably relational:

user-business reviews

employer-employee

account transactions

physician-patient-provider

Graph-based Anomaly Detection

Several surveys and tutorials:

[Survey] Graph-based Anomaly Detection and Description: A Survey. [Akoglu+] Data Mining and Knowledge Discovery (DAMI), May 2015.

[Tutorial] Fraud Detection through Graph-Based User Behavior Modeling. [Beutel+] ACM CCS 2015.

[Tutorial] Social Media Anomaly Detection: Challenges and Solutions. [Liu & Chawla] ACM SIGKDD 2015.

[Survey] False Information on Web and Social Media: A Survey. [Kumar & Shah] arXiv:1804.08559

Challenges

Problem: Given <Data>, Find <Anomalies> s.t. <Constraints>

- I. < Data> : Graph heterogeneity (node/edge labels, attributes, multiedges, edge weights, edge timestamps, etc.) How or whether to "fold" meta-data into a graph
- 2. <Anomalies> : Definition/Formalization of anomalies (e.g., group anomalies vs. anomalous groups) Heterogeneity exacerbates the issue
- 3. <Constraints> : System/Application requirements e.g., distributed/ streaming/massive data, attribution (who), explainability (why)

Outline

- Anomaly Detection: Motivation, Formalism, Challenges
- Graph-based Anomaly Detection
 - General-purpose (single graph) Global – anomalous nodes Local – group anomalies Collective – anomalous groups
 - Specialized (graph database)
- Recent Trend: Deep Anomaly Detection

Anomalous nodes (global) **Problem Sketch:** 9

plain, weighted, directed

Anomalous nodes (global): OddBall

Problem Setting:

- For each node
 - Extract ego-net (I-hop neighborhood)
 - Extract ego-net features
- Find patterns ("laws")
- Detect outliers (distance to patterns)

OddBall: Spotting Anomalies in Weighted Graphs. [Akoglu+] PAKDD 2010.

Anomalous nodes (global): OddBall

Carnegie Mellon

contests", etc.

telemarketer, spammer, port scanner, "popularity

Anomalous nodes (global): OddBall

L. Akoglu

Outline

- Anomaly Detection: Motivation, Formalism, Challenges
- Graph-based Anomaly Detection
 - General-purpose (single graph) Global – anomalous nodes Local – group anomalies Collective – anomalous groups
 - Specialized (graph database)
- Recent Trend: Deep Anomaly Detection

Group anomalies (local)

Problem Sketch:

(left) community "focuses" on {degree, location} (right) "focuses" on work.

cluster extraction & (cluster) outlier detection

L. Akoglu

• Focus estimation

nodes

attributes

S and D (intermixed)

Clusters & Local outliers

Clusters & Local outliers

(Local) clustering obj.: conductance $\phi^{(w)}$ weighted by focus

 $\phi^{(w)}(C,G) = \frac{W_{cut}(C)}{WVol(C)}$

Focused Outlier node with many (but) weak ties

Liberal Cluster in Political Blogs Graph

Outline

- Anomaly Detection: Motivation, Formalism, Challenges
- Graph-based Anomaly Detection
 - General-purpose (single graph) Global – anomalous nodes Local – group anomalies Collective – anomalous groups
 - Specialized (graph database)
- Recent Trend: Deep Anomaly Detection

 Problem Sketch: Given a node-attributed subgraph, how to define "normality"?

Problem Setting:

- Given a subgraph in a node-attributed graph
- Identify (subgraph) "focus" such that
 - Internal nodes are structurally dense & coherent in focus
 - External nodes are structurally sparse or not-surprising, or different in **focus**

Scalable Anomaly Ranking of Attributed Neighborhoods. [Perozzi & Akoglu] SIAM SDM, 2016.

- Internal nodes are structurally dense & coherent in focus
- External nodes are structurally sparse or not-surprising, or different in focus

Estimating Normality:

nality:

$$N = I + E = \sum_{i \in C, j \in C} (A_{ij} - \frac{k_i k_j}{2m}) s(\mathbf{x}_i)$$

$$- \sum_{\substack{i \in C, b \in B \\ (i,b) \in \mathcal{E}}} (1 - \min(1, \frac{k_i k_b}{2m}))$$

$$\max_{\mathbf{w}_{\mathbf{C}}} \mathbf{w}_{\mathbf{C}}^T \cdot \left[\sum_{\substack{i \in C, j \in C \\ (i,b) \in \mathcal{E}}} (A_{ij} - \frac{k_i k_j}{2m}) s(\mathbf{x}_i) - \sum_{\substack{i \in C, b \in B \\ (i,b) \in \mathcal{E}}} (1 - \min(1, \frac{k_i k_b}{2m})) \right]$$

$$\max_{\mathbf{w}_{\mathbf{C}}} \mathbf{w}_{\mathbf{C}}^T \cdot \left(\hat{\mathbf{x}}_I + \hat{\mathbf{x}}_E \right)$$

s.t.
$$\|\mathbf{w}_{\mathbf{C}}\|_p = 1, \ \mathbf{w}_{\mathbf{C}}(f) \ge$$

L. Akoglu

Twitter $_{2} = 2.17$ $L_{1} = 0.724, L_{2} = 1.10$

Citeseer $L_1 = L_2 = -0.956$

$Google+L_1 = L_2 = -0.873$

Anomalous groups in malice detection

- In other contexts, "too dense"ly connected groups may be indicative of malice/fraud
- 9/11 hijackers were densely linked via
 - kinship

 - school/training travel/financial records
 - meetings

. . .

L. Akoglu

Anomalous groups in malice detection

• **Opinion fraud**: Groups of users promoting/demoting businesses

	Review Ranking					
	AP			AUC		
	Y'Chi	Y'NYC	Y'Zip	Y'Chi	Y'NYC	Y'Zip
Random	0.1327	0.1028	0.1321	0.5000	0.5000	0.5000
FRAUDEAGLE	0.1067	0.1122	0.1524	0.3735	0.5063	0.5326
WANG ET AL.	0.1518	0.1255	0.1803	0.5062	0.5415	0.5982
Prior	0.2241	0.1789	0.2352	0.6707	0.6705	0.6838
SpEagle	0.3236	0.2460	0.3319	0.7887	0.7695	0.7942

Opinion Fraud Detection in Online Reviews using Network Effects. [Akoglu+] ICWSM, 2013 Collective Opinion Spam Detection: Bridg User Ranking (YelpChi) Discovering Opinion Spammer Groups by BIRDNEST: Bayesian Inference for Rating 0.8 Collective Opinion Spam Detection using

6.0 () 00 00

Anomalous groups in malice detection

• Social securities tax fraud: Groups of resources transferred between "shadow" companies

GOTCHA! Network-based Fraud Detection for Social Security Fraud. [Van Vlasselaer+] Management Science, 63 (9), 2016

Outline

- Anomaly Detection: Motivation, Formalism, Challenges
- Graph-based Anomaly Detection
 - General-purpose (single graph) Global – anomalous nodes Local – group anomalies Collective – anomalous groups
 - Specialized (graph database)
- Recent Trend: Deep Anomaly Detection

Anomalous graphs (System security)

Advanced Persistent Threat

Problem Setting :

time	pid	event	arg/data
100	10639	fork	NULL
200	10640	execve	/bin/sh
300	10650	read	STDIN
400	10640	fstat	Øxbfc5598
500	10660	sock_wr	0.0.0.0
•••	•••	•••	•••

• Given a stream of event logs Find anomalous system events

Anomalous graphs (System security)

Advanced Persistent Threat

Problem Setting :

- Given a stream of event logs **Find** anomalous system events

Requirements :

- Real-time detection
- Low-latency
- Low computational overhead
- Low memory usage ullet

- Given <DATA>, Find <ANOMALIES> s.t. <CONSTRAINTS>

Anomalous graphs (System security)

 Each event associated with a logical flow (tag)

time	pid	event	arg/data	tag
100	10639	fork	NULL	1
200	10640	execve	/bin/sh	1
300	10650	read	STDIN	2
400	10640	fstat	0xbfc5598	1
500	10660	sock_wr	0.0.0.0	2
•••		•••	•••	•••

 Events from different flows may interleave

Fast Memory-Efficient Anomaly Detection in Streaming Heterogeneous Graphs. [Manzoor+] ACM SIGKDD, 2016.

• Each event as a directed edge :

! Many, simultaneously-growing node&edge-labeled graphs ! Universe of labels unknown

 Double-entry Bookkeeping example journal entry:

GL_Account_ Number	CA_FS_Caption	Cr/Db	GL_Reporting _Amount
40020000 (Revenue)	Gross Sales (GSL)	С	-7250
40020001 (Revenue)	Gross Sales (GSL)	С	-2500
20830000 (Liabilities)	Sales Tax Payables (STP)	С	-794.63
10390000 (Assets)	Accounts Receivable (ARV)	D	10544.63

- **Problem Setting :**
- **Find** anomalies

Given millions of journal entries

(entry errors, misconduct, etc.)

Given <DATA>, Find <ANOMALIES> s.t. <CONSTRAINTS>

 Double-entry Bookkeeping example journal entry:

GL_Account_ Number	CA_FS_Caption	Cr/Db	GL_Reporting _Amount
40020000 (Revenue)	Gross Sales (GSL)	C	-7250
40020001 (Revenue)	Gross Sales (GSL)	С	-2500
20830000 (Liabilities)	Sales Tax Payables (STP)	С	-794.63
10390000 (Assets)	Accounts Receivable (ARV)	D	10544.63

Problem Setting :

- Given millions of journal entries
- **Find** anomalies (entry errors, misconduct, etc.)
- Given <DATA>, Find <ANOMALIES> st <CONSTRAINTS>

Requirements :

Anomaly Detection in Large Labeled Multi-Graph Databases. [Nguyen+] arXiv:2010.03600, 2020.

- Explainability (audit)

• Transaction graphs:

GL_Account_ Number	CA_FS_Caption	Cr/Db	GL_Reporting _Amount
40060000 (Revenue)	Gross Sales (GSL)	С	-1575.00
10415000 (Assets)	Accounts Receivable (ARV)	D	1575.00

GL_Account_ Number	CA_FS_Caption	Cr/Db	GL_Reporting _Amount
40020000 (Revenue)	Gross Sales (GSL)	С	-7250
40020001 (Revenue)	Gross Sales (GSL)	С	-2500
20830000 (Liabilities)	Sales Tax Payables (STP)	С	-794.63
10390000 (Assets)	Accounts Receivable (ARV)	D	10544.63

Transaction graph of journals over 10-day window:

Anomaly detection via data description/encoding

U

Anomaly detection via data description/encoding

U

Anomaly detection via data description/encoding

AP 0.772 0.733 0.555 0.429 0.380 0.097

AP 0.359 0.192 0.555 0.092 0.030 0.074

Path injections

Type perturbations

Outline

- Anomaly Detection: Motivation, Formalism, Challenges
- Graph-based Anomaly Detection
 - General-purpose (single graph) Global – anomalous nodes Local – group anomaly Collective – anomalous groups
 - Graph-level anomalies

Recent Trend: Deep Anomaly Detection

Deep Anomaly Detection

- Representation learning: transformative for applications in NLP/translation, recommender systems, etc.
- Why not automatically learn data representations for anomaly detection?

Deep Learning for Anomaly Detection: A Survey. [Chalapathy & Chawla] Jan. 2019 Deep Learning for Anomaly Detection: A Review. [Pang+] July 2020 A Unifying Review of Deep and Shallow Anomaly Detection. [Ruff+] Sep. 2020

• Ideas easily transfer to graph data

Deep Anomaly Detection Graph Embedding

Deep Anomaly Detection Graph Embedding

Can seamlessly handle various types of graphs: labeled, attributed, multi-edges, weights

Can do **end-to-end** learning (one-class, reconstruction)

Hyper-parameter tuning

Unsupervised model selection – likely a critical future direction

Carnegie Mellon

becomes key for success!

Embeddings capture general suitable for anomaly detection

prevalent patterns, may not be

Graph-based Anomaly Detection Code, Data, Papers, Slides www.cs.cmu.edu/~lakoglu/ http://www.andrew.cmu.edu/user/lakoglu/pubs.html#code

