A Quest for Structure: Joint Graph Structure & Semi-Supervised Inference

Leman Akoglu

Joint work with Xuan Wu and Lingxiao Zhao

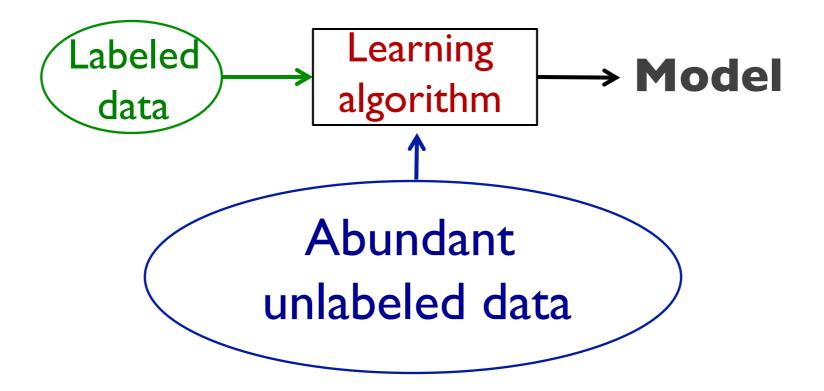
NetSci 2018 Satellite on Statistical Inference in Network Models June 11, 2018

Carnegie Mellon University

This Talk

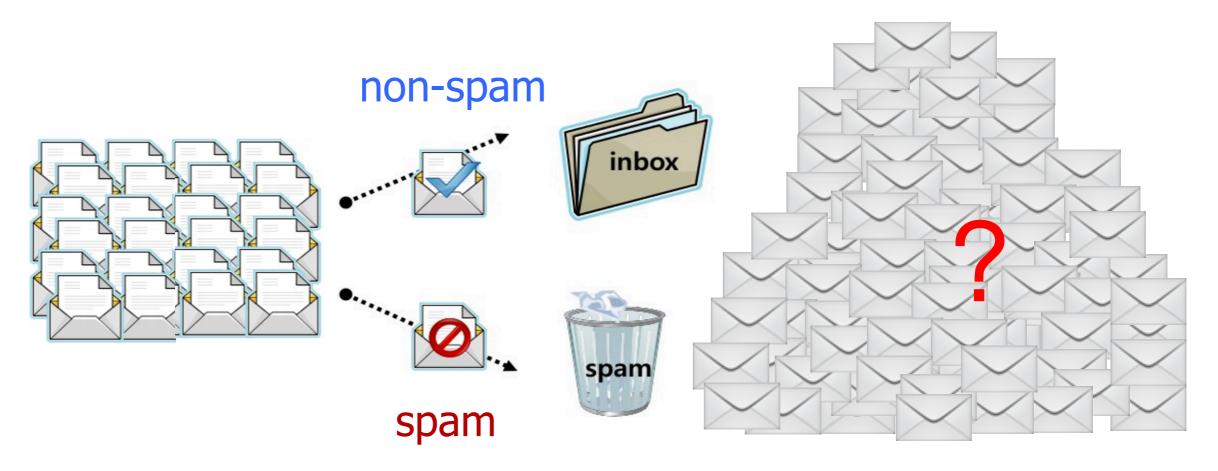
- Semi-Supervised Learning: Intro
- Graph-based SSL
 - Formulation & Solution
- The Quest for Structure

Semi-Supervised Learning: Motivation



- Labeling/annotation is expensive
 - Small amount of labeled data
 - Large amount of unlabeled data

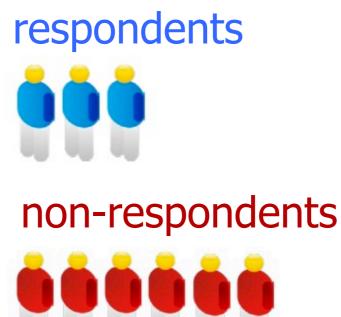
Spam filtering

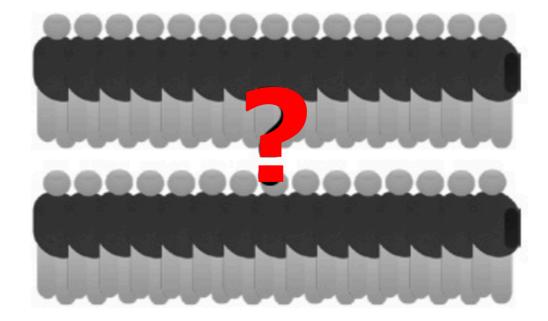


labeled data

unlabeled data

Response modeling





labeled data

unlabeled data

Image classification

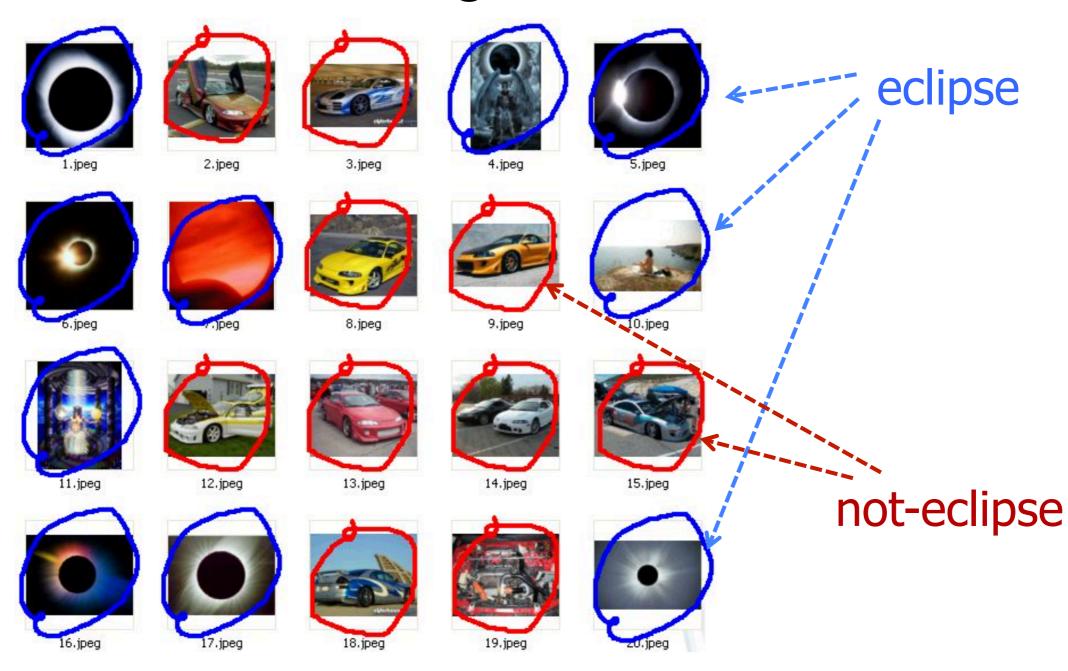
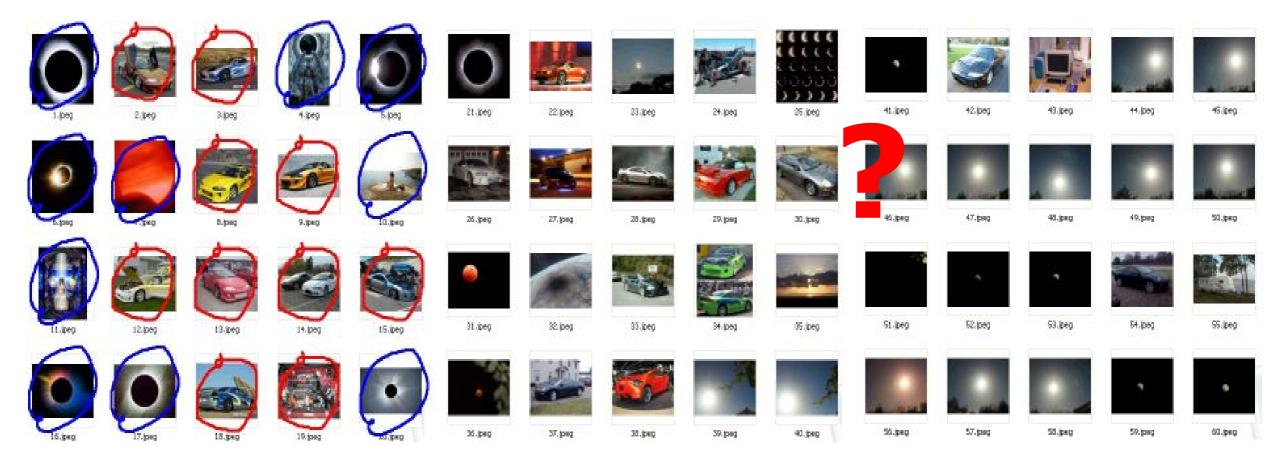


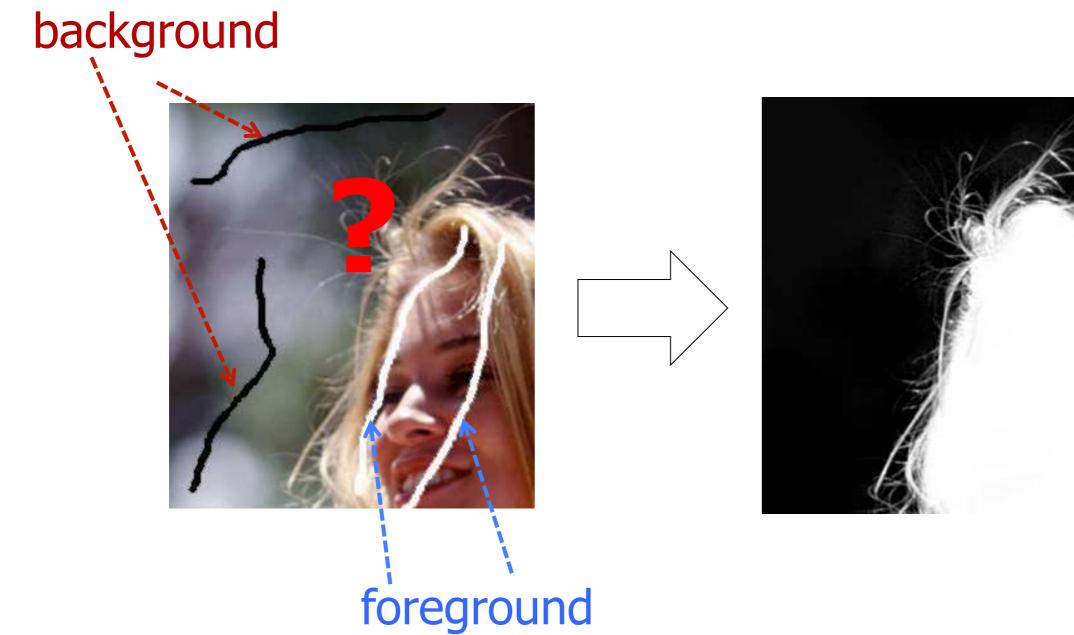
Image classification



labeled data

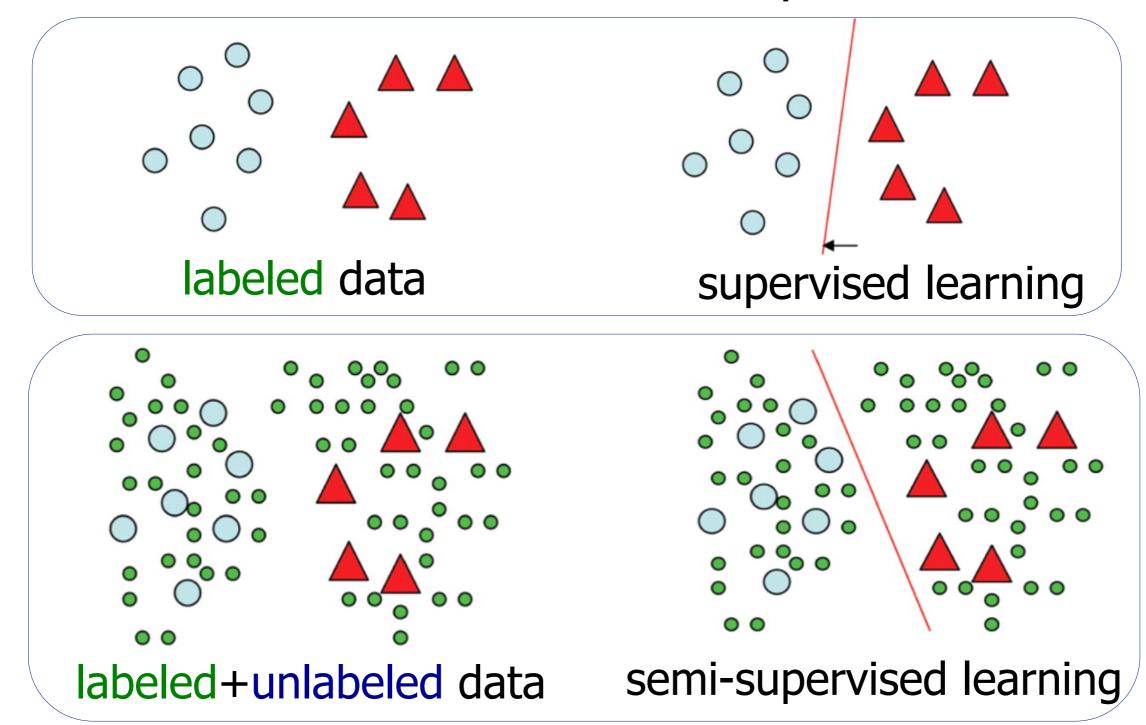
unlabeled data

Image segmentation



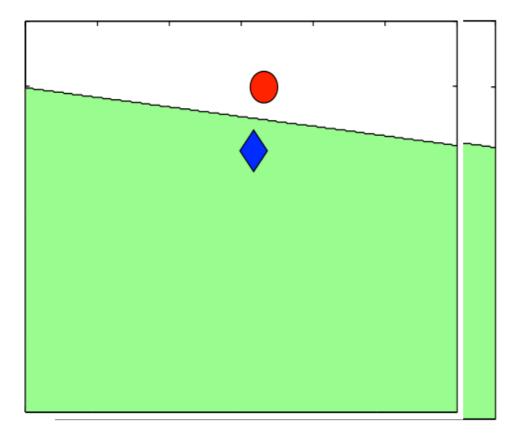
Classification with Unlabeled Data

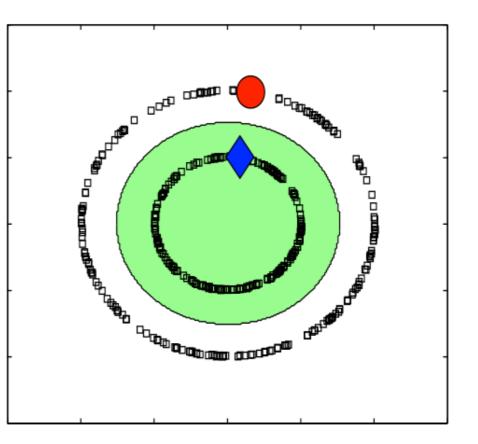
• Why should unlabeled data be helpful?



Classification with Unlabeled Data

• Why should unlabeled data be helpful?





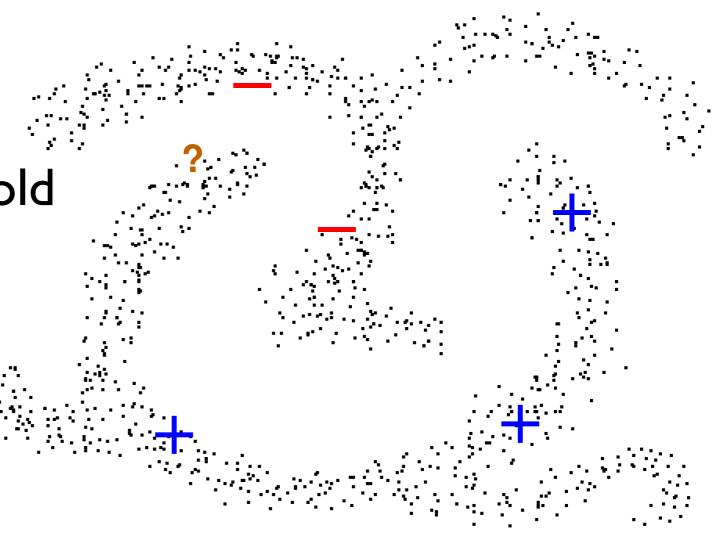
semi-supervised learning w/ labeled+unlabeled data

supervised learning w/ labeled data

[Belkin+ JMLR 2006]

Classification with Unlabeled Data

- Working assumption: there is information in data distribution
 - data form clusters
 - data fall on a manifold



Intuition: locally similar points have similar labels

 homophily (autocorrelation)

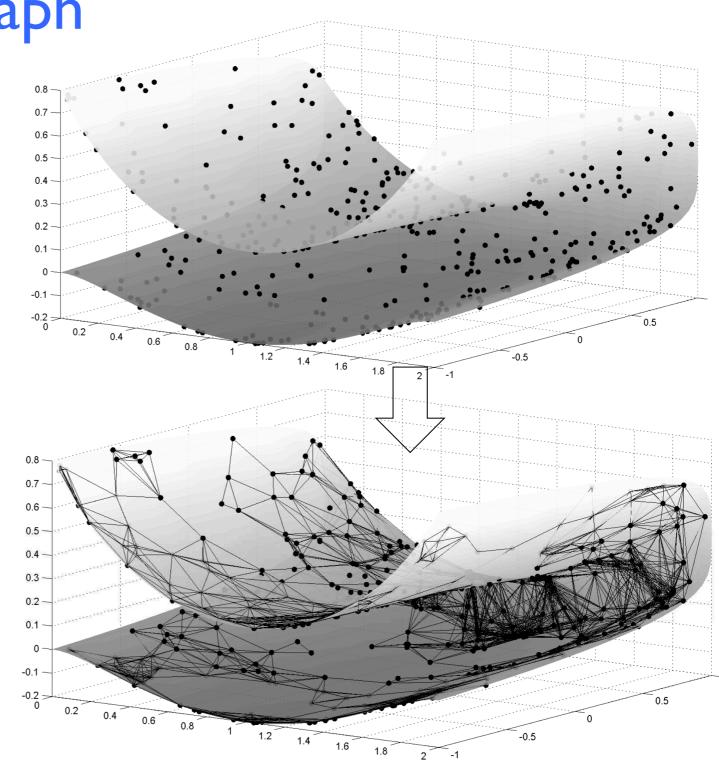
This Talk

- Semi-supervised learning: Intro
 - Graph-based SSL
 - Formulation & Solution
- The Quest for Structure

Graph-based SSL

- Approach: use a graph
 - to approximate the data manifold

 by connecting similar points

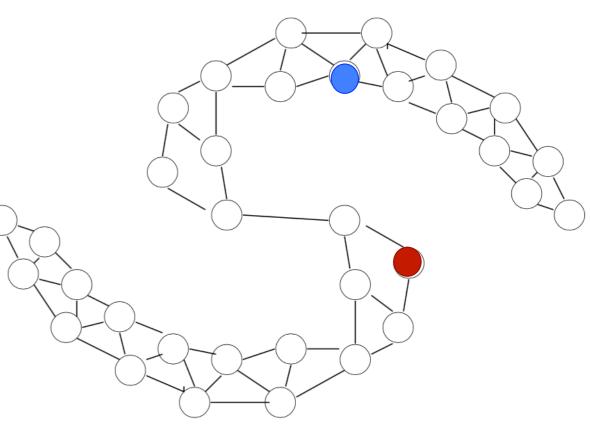


Graph-based SSL: The Problem

- Given
 - a graph with adjacency W
 - set L of labeled nodes
 - set U of unlabeled nodes

 $T = L \cup U$

• Assign binary labels to $u \in U$ $y_u \in \{-1, 1\}$



Graph-based SSL: Formulations

[Zhu, Ghahramani, Lafferty 2002]

$$\begin{vmatrix} \arg\min \\ f \in \mathbb{R}^n, f_L = Y_L \end{vmatrix} \sum_{i,j \in T}^n w_{ij} (f_i - f_j)^2$$

[Belkin and Niyogi 2003]

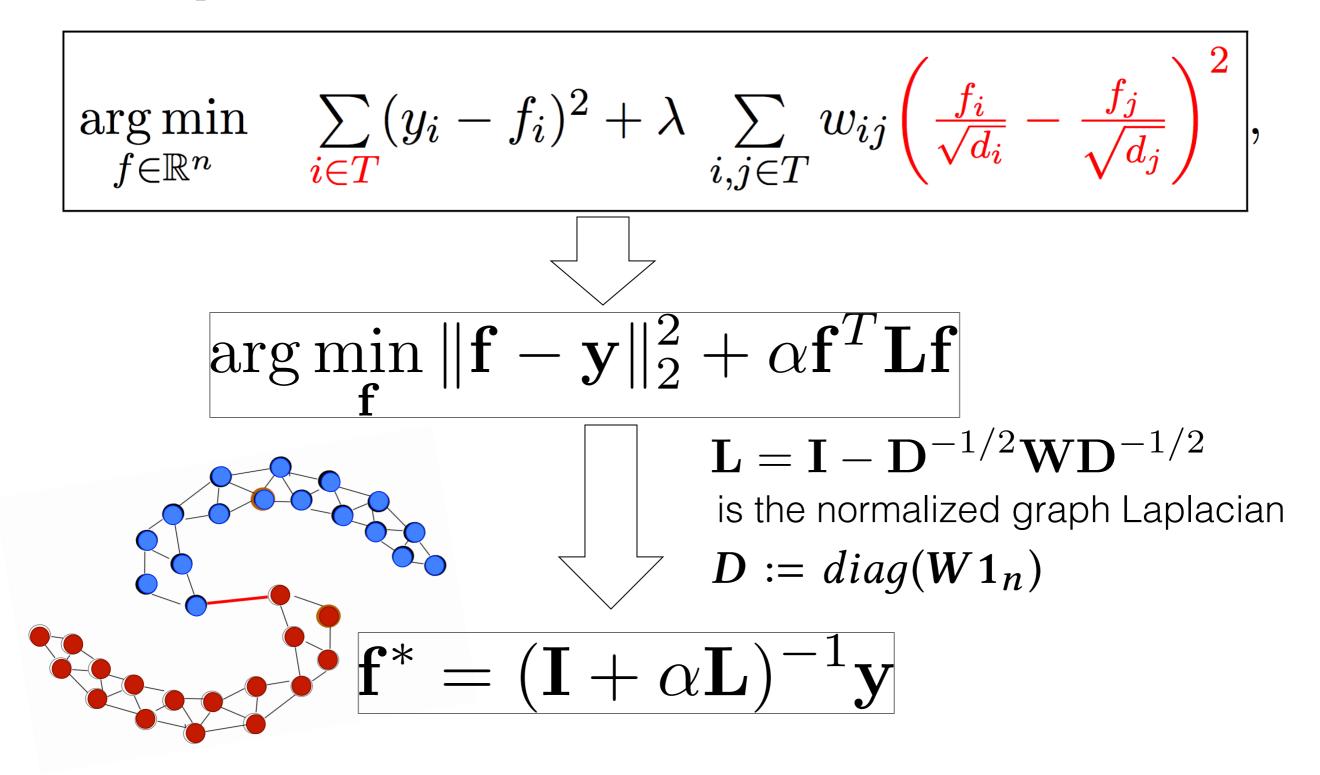
$$\underset{f \in \mathbb{R}^n}{\operatorname{arg\,min}} \quad \sum_{i \in L} (y_i - f_i)^2 + \lambda \sum_{i,j \in T} w_{ij} (f_i - f_j)^2 \, |.$$

[Zhou, Bousquet, Lal, Weston and Schoelkopf 2003]

$$\underset{f \in \mathbb{R}^n}{\operatorname{arg\,min}} \quad \sum_{i \in T} (y_i - f_i)^2 + \lambda \sum_{i,j \in T} w_{ij} \left(\frac{f_i}{\sqrt{d_i}} - \frac{f_j}{\sqrt{d_j}} \right)^2,$$

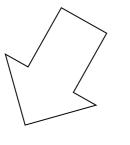
where $y_i = 0$ if $i \in U$.

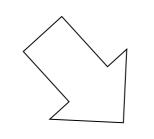
Graph-based SSL: Solution



Graph-based Multi-class SSL:

$$\arg \min_{F \in \mathbb{R}^{n \times c}} tr((F - Y)^T (F - Y) + \alpha F^T LF) \quad \begin{array}{l} \text{Objective} \\ \text{function} \end{array}$$





$$\mathbf{F}^* = (\mathbf{I} + \alpha \mathbf{L})^{-1} \mathbf{Y}$$

Closed-form solution

 $F^{(t+1)} \leftarrow \mu P F^{(t)} + (1-\mu) Y$

Iterative solution

$$\boldsymbol{P} = \boldsymbol{D}^{-1/2} \boldsymbol{W} \boldsymbol{D}^{-1/2}$$
$$\boldsymbol{\mu} = \frac{\alpha}{1+\alpha}$$

This Talk

- Semi-supervised learning: Intro
- Graph-based SSL
 - Formulation & Solution
- What graph should one use?
- The Quest for Structure

Graph Construction Matters

 Choice of the similarity measure has considerable effect on clustering and outlier detection.

Influence of Graph Construction on Graph-based Clustering Measures. Markus Maier, Ulrike von Luxburg, and Matthias Hein. NIPS 2008.

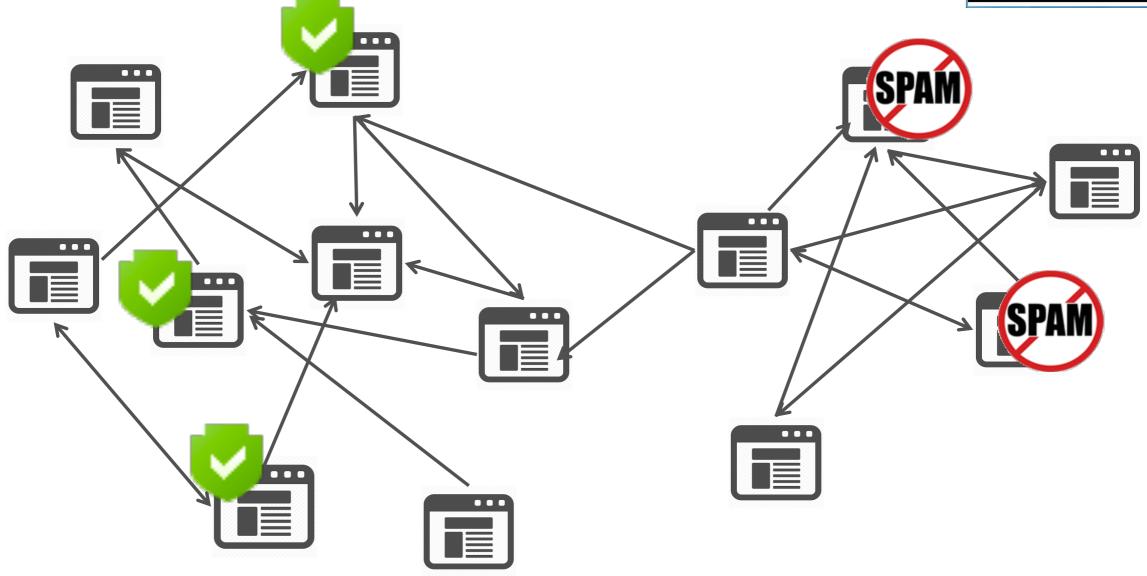
• SSL is no exception!

"SSL algorithms are strongly affected by the graph sparsification parameter value and the choice of the adjacency graph construction and weighted matrix generation methods."

Influence of Graph Construction on Semi-supervised Learning. Celso Andre R. de Sousa, Solange O. Rezende, Gustavo E. A. P. A. Batista. ECML/PKDD 2013.

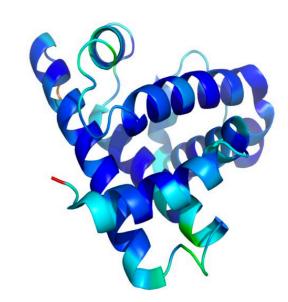
Graph-based SSL: examples

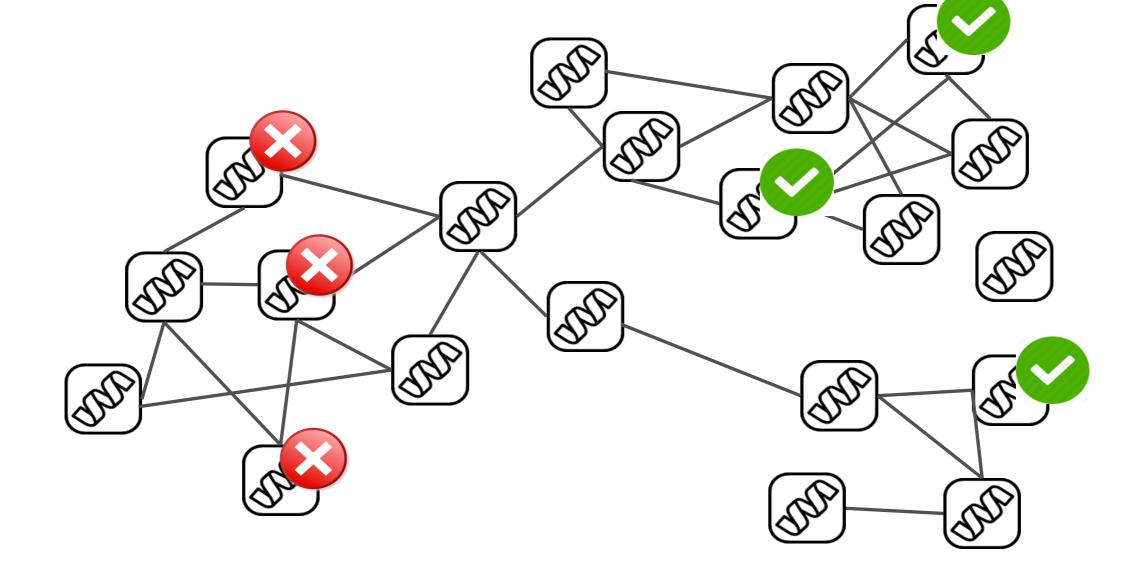
- Sometimes data is naturally a graph ...
 - Graph: Web hyperlinks
 - Task: Spam page detection



Graph-based SSL: examples

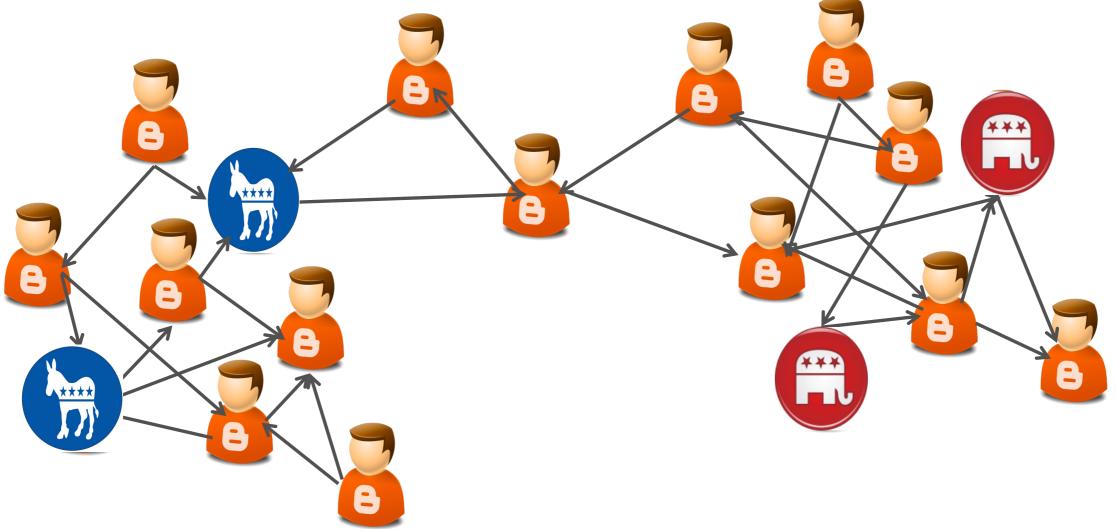
- Sometimes data is naturally a graph ...
 - Graph: Protein interactions
 - Task: Protein function prediction





Graph-based SSL: examples

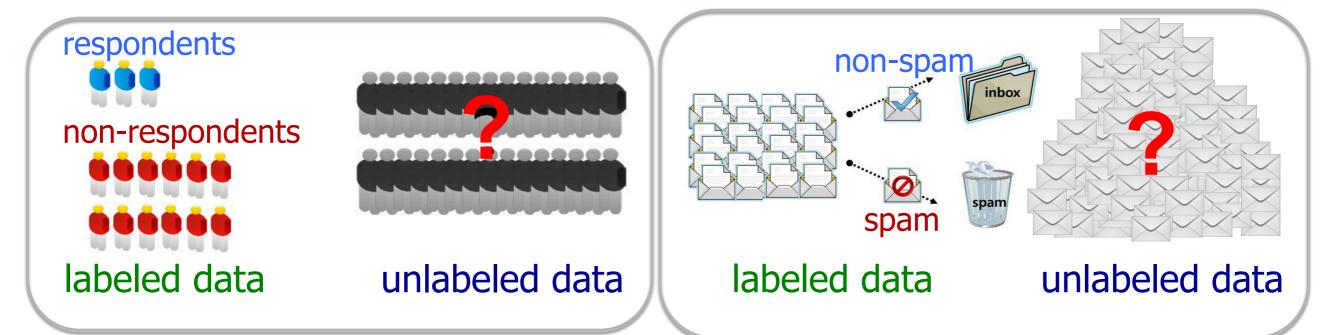
- Sometimes data is naturally a graph ...
 - Graph: Political blog citations
 - Task: Polarity prediction



[Adamic+ 2005]

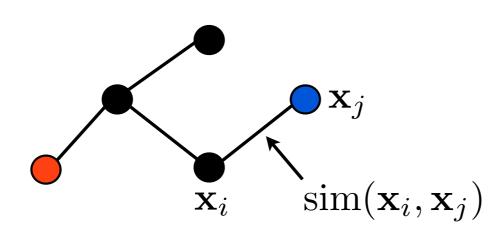
Graph-based SSL

• In others we get vector (point-cloud) data ...



Graph-fased/fsglwe construct a graph:

by connecting "similar" points



Carnegie Mellon

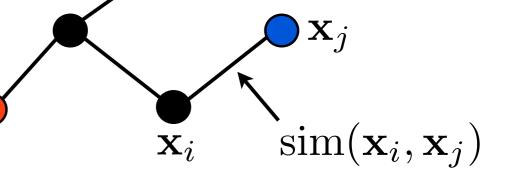
1.4 1.6

Graph Dased OOL

Graph Construction for SSL

Most typically:

 Connecting "similar" points by e.g. RBF (Gaussian) kernel



$$\mathcal{K}(\boldsymbol{x}_i, \boldsymbol{x}_j) = \exp(-\|\boldsymbol{x}_i - \boldsymbol{x}_j\|/(2\sigma^2))$$

- Sparsification
 - ϵ -neighborhood: node pairs within distance ϵ connected,
 - kNN: each node is connected to its k nearest neighbors
- Hyperparameters (σ , ε) or (σ , k) chosen by grid search based on cross validation error

Graph Construction for SSL

Unsupervised

- Locally Linear Embedding [Roweis&Soul Science 2000]
- b-matching [Jebara+ *ICML* 2009]
- Low-Rank Representation [Liu+ ICML 2010]
- Anchor Graph Regularization
 [Wang+ TKDE 2016]
- \rightarrow no use of labels, not graph <u>learning</u>
- Supervised
 - Distance metric learning [Dhillon+ ACL 2010]
 - Multiple kernel learning [Li+ *IJCAI* 2016]
 - Constrained self-representation [Zhuang+, Image Proc. 2017]

ightarrow not task-driven and/or scalable

Carnegie Mellon

. . .

This Talk

- Semi-supervised learning: Intro
- Graph-based SSL
 - Formulation & Solution
- What graph should one use?
 The Quest for Structure

Graph Construction for SSL

• A more flexible graph family:

$$\mathcal{K}: \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}, \ W_{ij} = \mathcal{K}(x_i, x_j)$$

• dimension-specific kernel bandwidth

$$\mathcal{K}(\boldsymbol{x}_i, \boldsymbol{x}_j) = \exp\left(-\sum_{m=1}^d \frac{(\boldsymbol{x}_{im} - \boldsymbol{x}_{jm})^2}{\sigma_m^2}\right)$$

$$W_{ij} = \exp\left(-(\mathbf{x}_i - \mathbf{x}_j)^T A (\mathbf{x}_i - \mathbf{x}_j)\right)$$
$$A := diag(\mathbf{a})$$
$$A_{mm} = a_m = 1/\sigma_m^2$$

Joint Graph Structure & SSL Inference: Problem Statement

• Given

$$\mathcal{D} := \{(x_1, y_1), \dots, (x_l, y_l), x_{l+1}, \dots, x_{l+u}\}, y_i \in \mathbb{N}_c$$

- Infer
 - A := diag(a) : bandwidths per dimension

k : for sparse kNN graph construction
 to align the graph structure with the underlying
 (hidden) data manifold and the given SSL task.

labels for unlabeled points

This Talk

- Semi-supervised learning: Intro
- Graph-based SSL
 - Formulation & Solution
 - What graph should one use?
- The Quest for Structure
 - Problem Statement
 - Gradient-based sequential search
 - + Adaptive parallel search

Joint Graph Structure & SSL Inference:

Gradient-based iterative hyperparameter search:

- 1: Initialize k and a (vector containing a_m 's); t := 02: repeat
- 3: Compute $F^{(t)}$ using kNN graph on current a_m 's 4: Compute gradient $\frac{\partial g}{\partial a_m}$ based on $F^{(t)}$ for each a_m

5: Update
$$a_m$$
's by $a^{(t+1)} := a^{(t)} - \gamma \frac{\mathrm{d}g}{\mathrm{d}a}; \quad t := t+1$

6: **until** a_m 's have converged

Validation Loss $g(\cdot)$ & Gradient Updates

- Subset of labels designated as validation set $\mathcal{V} \subset \mathcal{L}$
- One could use validation error:

$$g_A(\mathcal{V}) = \sum_{\upsilon \in \mathcal{V}} (1 - F_{\upsilon c_{\upsilon}})$$

- and others: $-\log F_{\upsilon c_{\upsilon}}, (1 F_{\upsilon c_{\upsilon}})^{x}, x^{-F_{\upsilon c_{\upsilon}}}$
- To make the most of (small) validation set, a pairwise learning-to-rank objective:

$$g_{A}(\mathcal{V}) = \sum_{c'=1}^{c} \sum_{\substack{(v,v'): v \in \mathcal{V}_{c'}, \\ v' \in \mathcal{V} \setminus \mathcal{V}_{c'}}} -\log \sigma(F_{vc'} - F_{v'c'})$$

Validation Loss $g(\cdot)$ & Gradient Updates

• Pairwise learning-to-rank objective:

$$g_{A}(\mathcal{V}) = \sum_{c'=1}^{c} \sum_{\substack{(v,v'): v \in \mathcal{V}_{c'}, \\ v' \in \mathcal{V} \setminus \mathcal{V}_{c'}}} -\log \sigma(F_{vc'} - F_{v'c'})$$

- Gradient formulas omitted for brevity, we show
 - Computational complexity · Memory complexity

 $O(n[kctd + dk^2 + \log n])$

O(knd)

k: #NNs, c: #classes, t: #power method iterations,

linear in dimensionality,
 log-linear in sample size

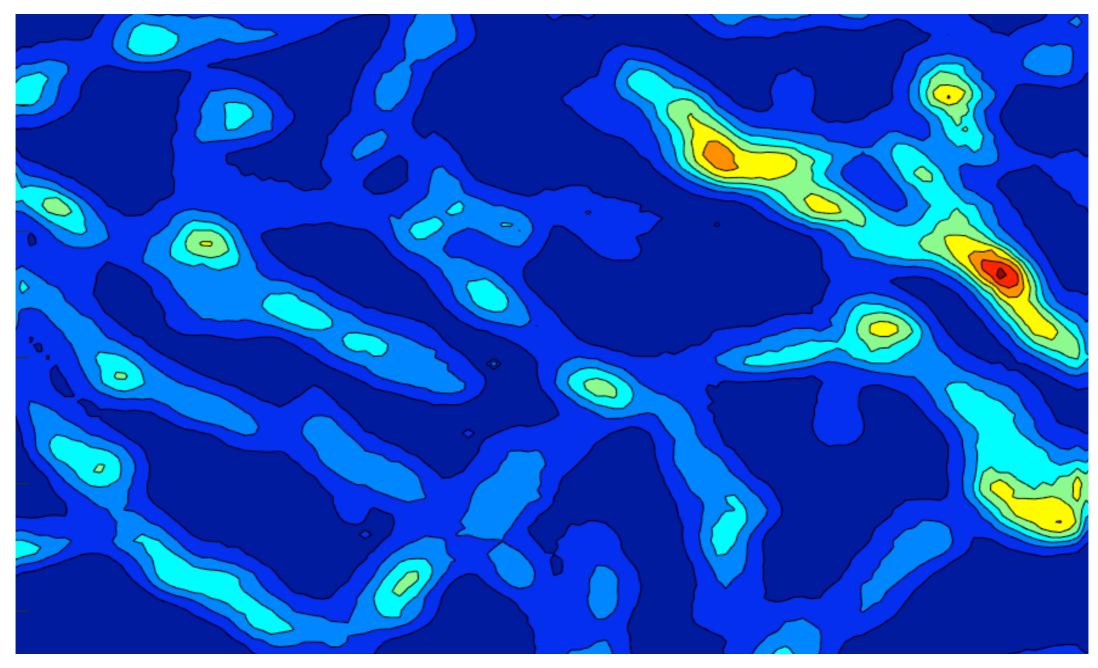
 linear in both dimensionality & size

Large Search Space

Carnegie Mellon

• Flexible family of graphs to choose from

 \rightarrow Numerous hyperparameters \rightarrow Huge search space

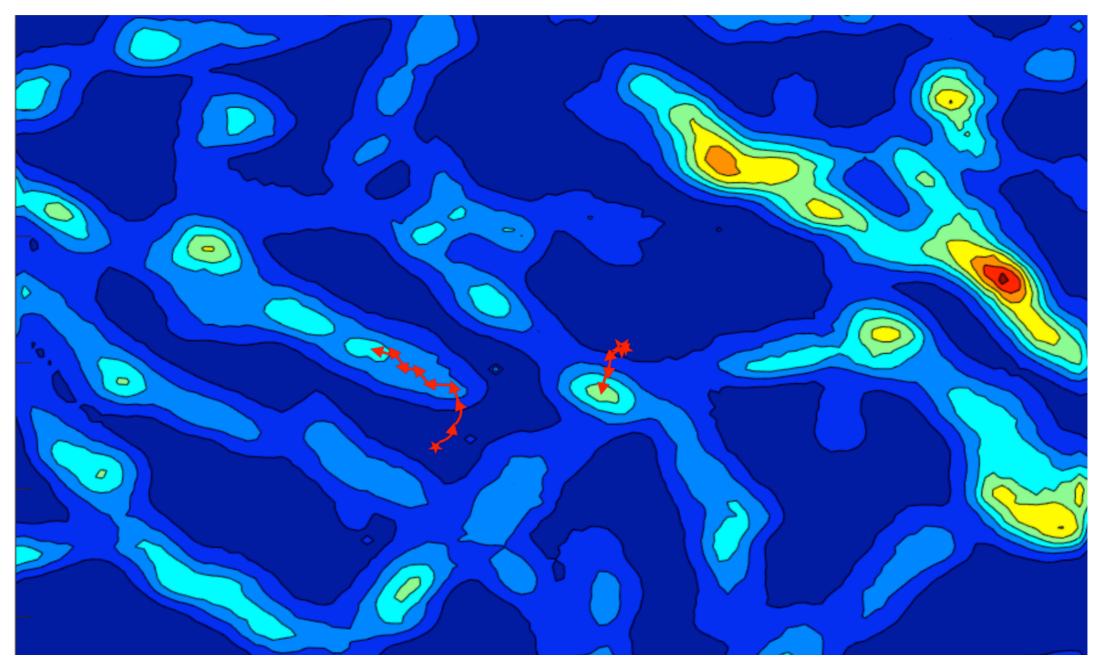


validation error in 2-d search space, red: lower error

Large Search Space

Carnegie Mellon

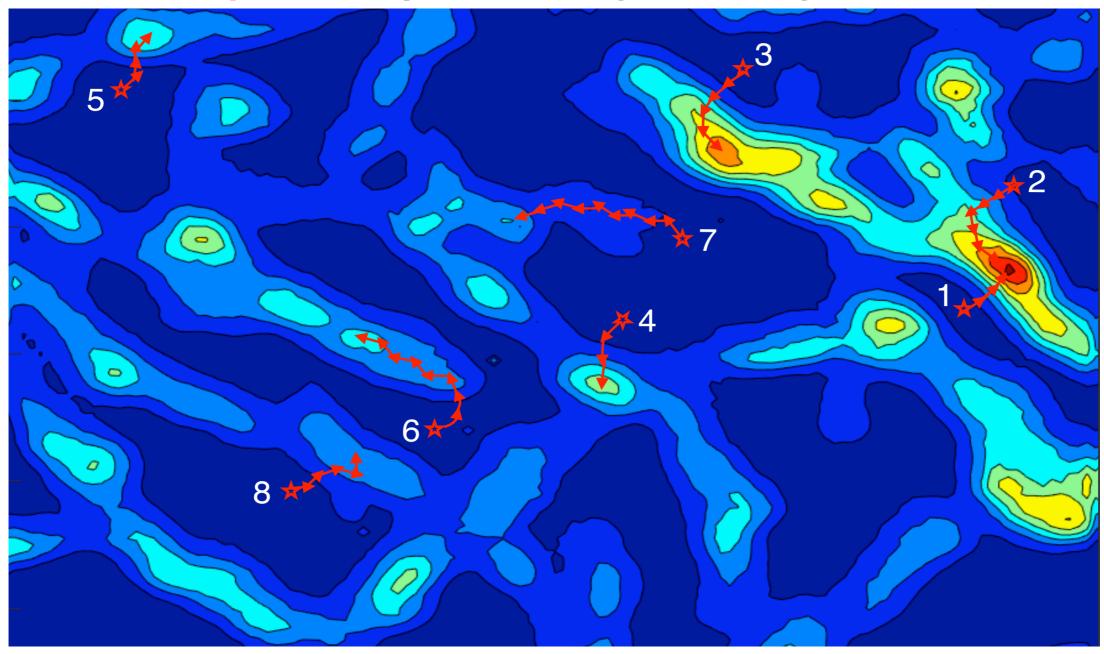
→ Numerous hyperparameters → Huge search space → Most often the search is not satisfactory



validation error in 2-d search space, red: lower error

Search Space: Research Questions

- Can we perform more #searches in given time?
- Can we quit "unpromising" configurations early?



Carnegie Mellon

validation error in 2-d search space, red: lower error

This Talk

- Semi-supervised learning: Intro
- Graph-based SSL
 - Formulation & Solution
 - What graph should one use?
- The Quest for Structure
 - Problem Statement
 - Gradient-based sequential search
- + Adaptive parallel search

Resource-adaptive search

• A simple & effective idea – Successive Halving: [Jamieson & Talwalkar, AISTATS 2016]

(for hyperparameter tuning for iterative machine learning algorithms)

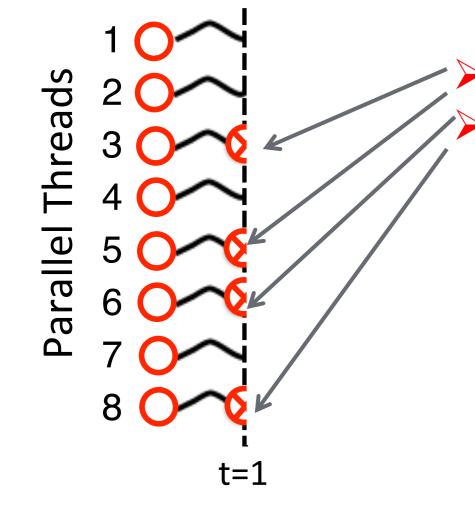
- I. pick a set of (hyperparameter) configurations
- 2. run for a fixed amount of time (i.e. iterations)
- 3. evaluate configurations (metric of interest)
- 4. keep the **best half** (terminate the worst half)
- 5. repeat 2. 4. until one configuration remains

Parallel resource-adaptive search

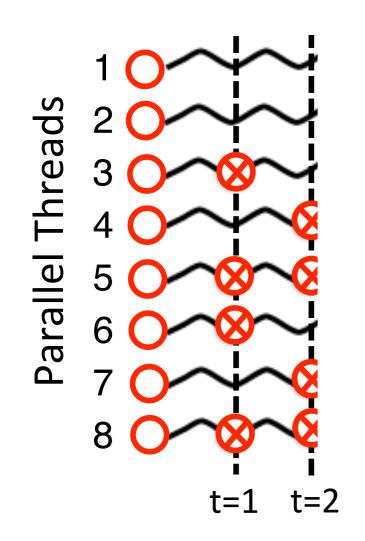
- A simple & effective idea Successive Halving: [Jamieson & Talwalkar, AISTATS 2016] (for hyperparameter tuning for iterative ML algo.s)
 SH is originally proposed for 0th-order optimization (i.e. can be used for derivative-free functions);
 - \rightarrow we use Ist-order optimization via gradient, not only SSL inference but also gradient is iterative
 - SH runs rounds in succession

 → we parallelize the configurations and
 fully utilize idle (terminated) threads
 by restarting new configurations

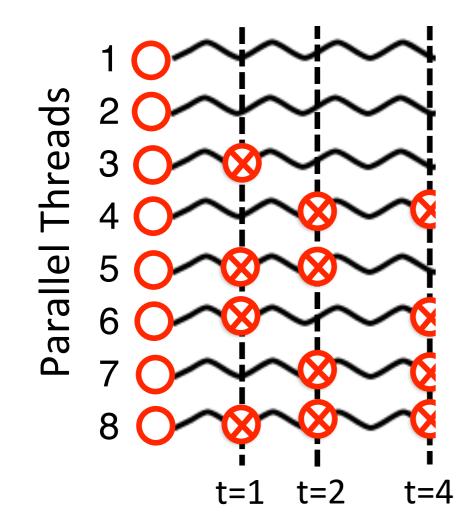
t=B=16



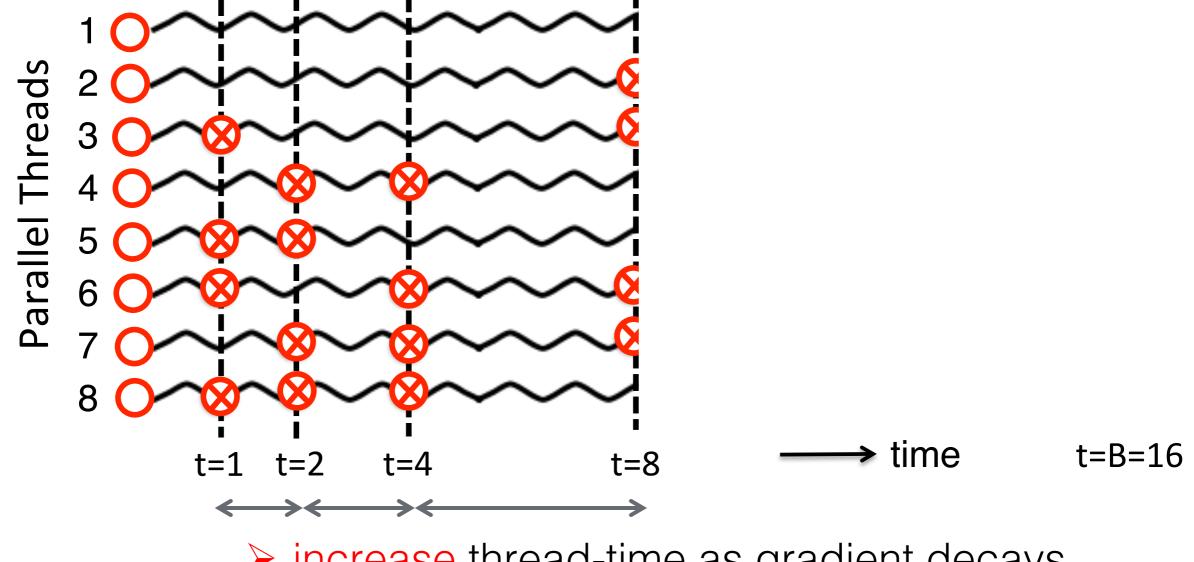
worst half (w.r.t. validation error)
 terminate and restart new configs



 \longrightarrow time t=B=16

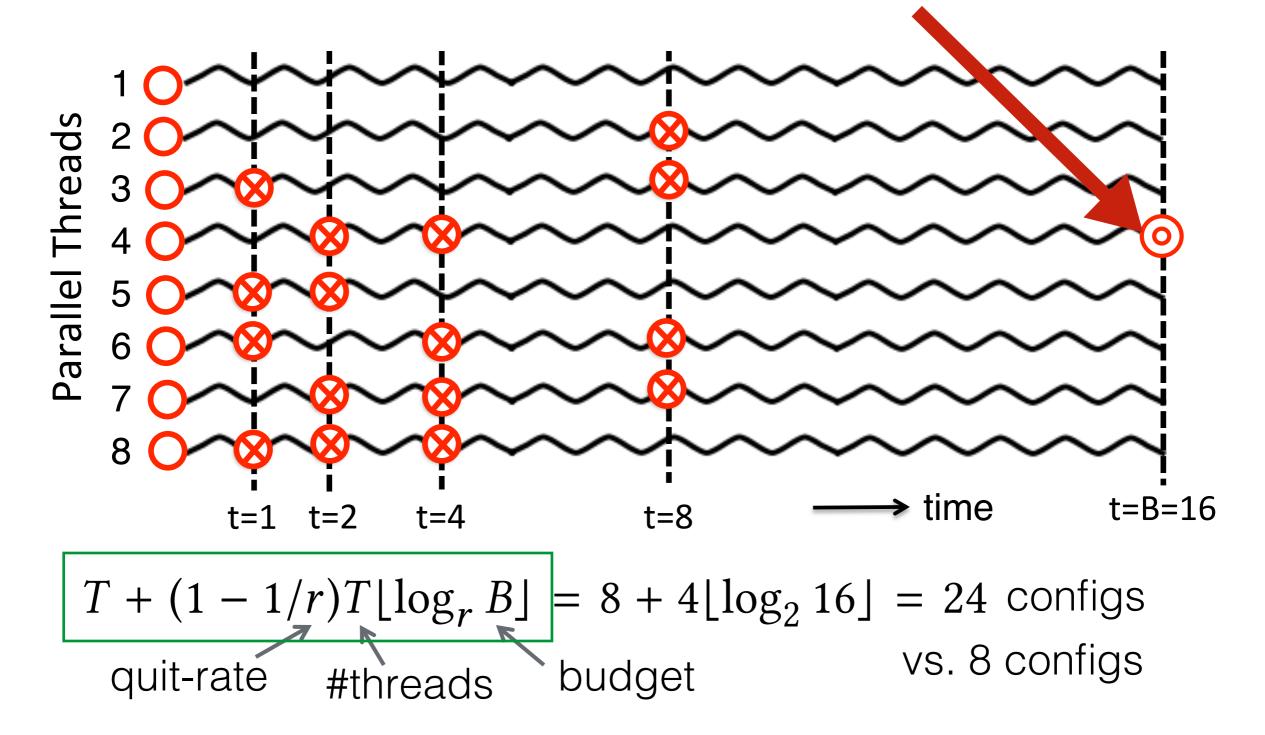


 \longrightarrow time t=B=16

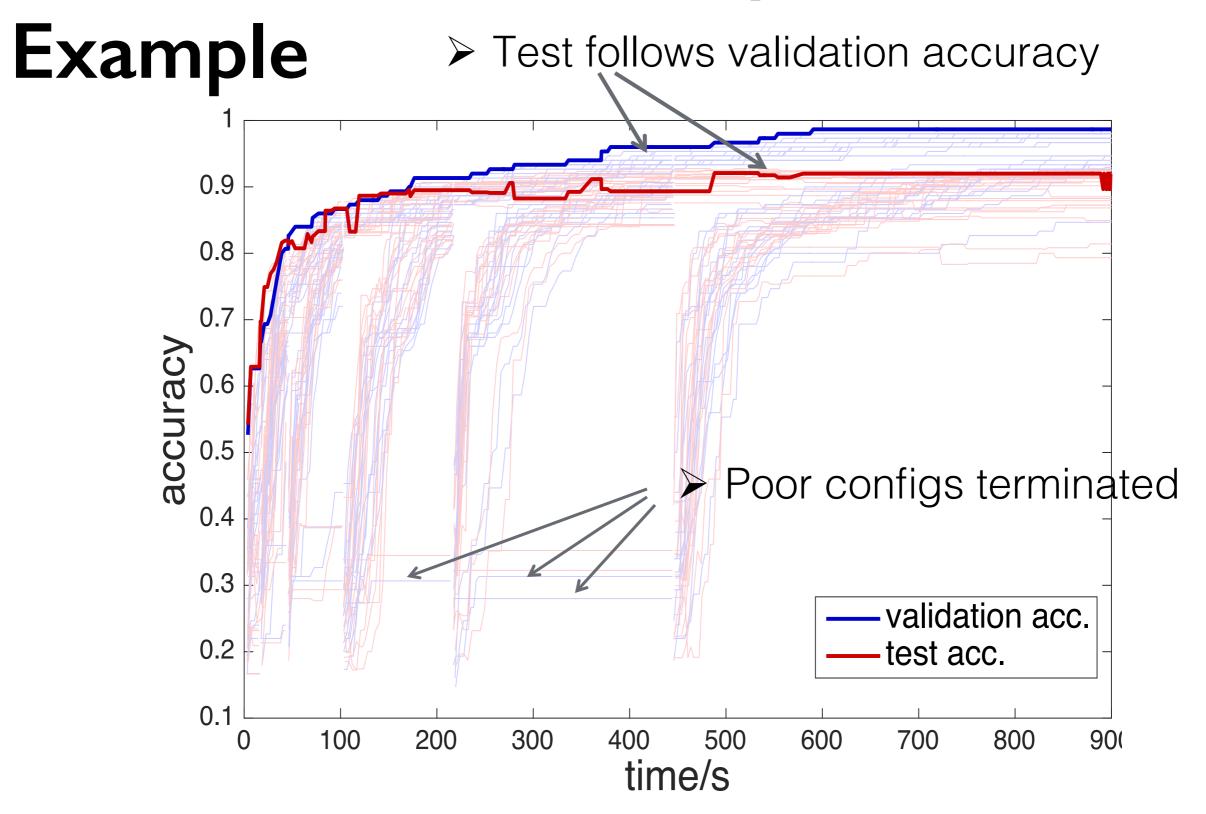


 \succ increase thread-time as gradient decays

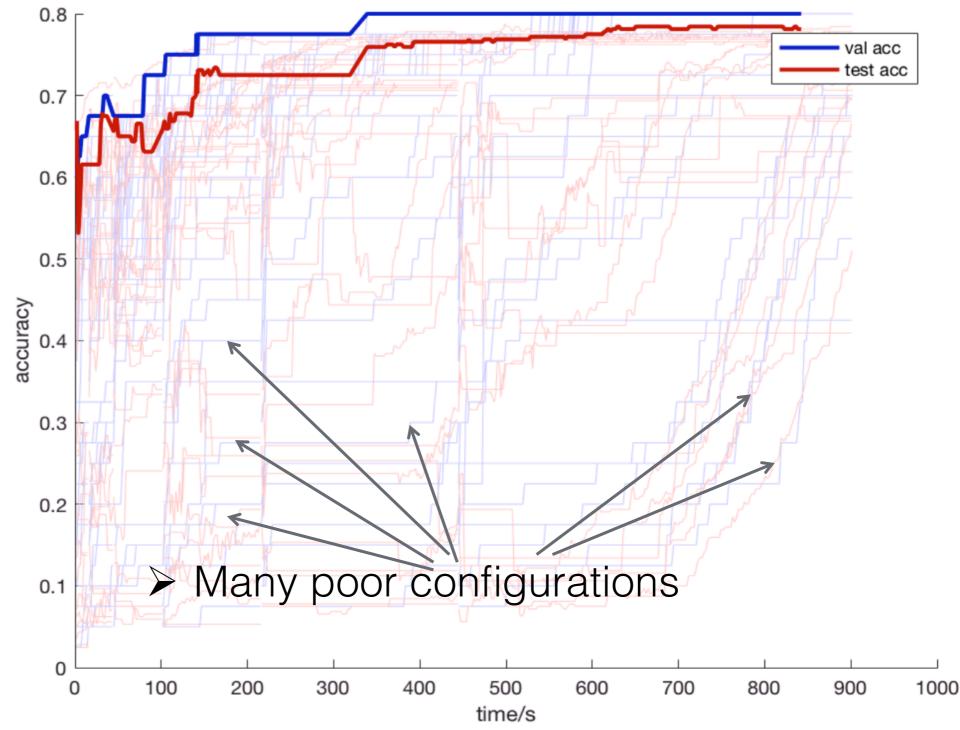
Parallel resource-adaptive search: Pictorially ≻ return best result at budget time



Parallel resource-adaptive search:



Parallel resource-adaptive search:Example> Test accuracy improves by time



This Talk

- Semi-supervised learning: Intro
- Graph-based SSL
 - Formulation & Solution
 - What graph should one use?
- The Quest for Structure
 - PG-Learn: parallel graph search with
 adaptive resource allocation
 - Experiments

Multi-class classification datasets

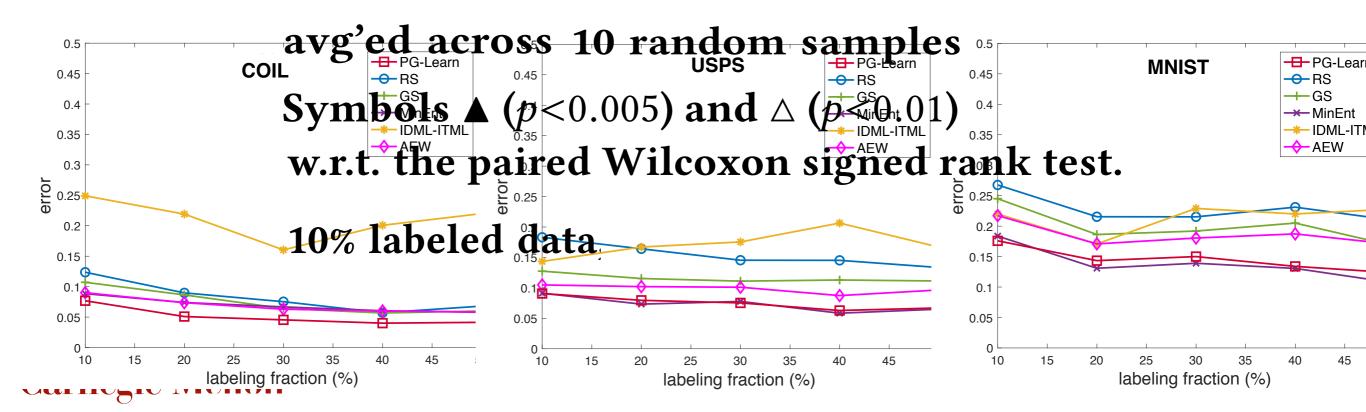
Name	#pts n	#dim d	#cls c	description
COIL	1500	241	6	objects with various shapes
USPS	1000	256	10	handwritten digits
MNIST	1000	784	10	handwritten digits
UMIST	575	644	20	faces (diff. race/gender/etc.)
YALE	320	1024	5	faces (diff. illuminations)

Graph Construction Baselines

- (1) *Grid* search (GS): *k*-NN graph with RBF kernel where *k* and **strawmen** are chosen via grid search,
- (2) $Rand_d$ search (RS): *k*-NN with RBF kernel where *k* and different bandwidths $a_{1,1}$ are randomly chosen,
- (3) *MinEnt*: gradient-based based tuning of $a_{1:d}$'s as proposed by Zhu et al. (generalized to multi-class),
- (4) *AEW*: **self-representation** ing by Karasuyama et al. that estimates $a_{1\cdot A}$'s through local linear reconstruction, and
- (5) *IDML*: **metric learning** ing scheme combined with distance metric learning by Dhillon et al.

Single-thread results

Dataset	PG-Lrn	MinEnt	IDML	AEW	Grid	Rand _d
COIL	0.9232	0.9116	0.7508▲	0.9100▲	0.8929▲	0.8764▲
USPS	0.9066	0.9088	0.8565▲	0.8951	0.8732	0.8169
MNIST	0.8241	0.8163	$0.7801^{ riangle}$	0.7828	0.7550	0.7324
UMIST	0.9321	0.8954	0.8973 [△]	0.8975	0.8859	0.8704
YALE	0.8234	$0.7648^{ riangle}$	0.7331	0.7386▲	0.6576▲	0.6797▲



Single-thread results increasing labeling %

Labeled	PG-L	MinEnt	IDML	AEW	Grid	Rand _d
10% acc.	0.8819	0.8594▲	0.8036▲	0.8448	0.8129	0.7952▲
rank	1.20	2.20	4.40	2.80	4.80	5.60
20% acc.	0.8900	0.8504	0.8118	0.8462▲	0.8099	0.8088
rank	1.42	2.83	4.17	2.92	4.83	4.83
30% acc.	0.9085	0.8636▲	0.8551	0.8613	0.8454	0.8386
rank	1.33	3.67	3.83	3.17	4.00	5.00
40% acc.	0.9153	0.8617▲	0.8323	0.8552▲	0.8381	0.8303
rank	1.67	3.67	3.50	3.67	4.00	4.50
50% acc.	0.9251	$0.8700^{ riangle}$	0.8647	0.8635	0.8556	0.8459
rank	1.50	3.17	3.83	3.67	4.00	4.83

Symbols \blacktriangle (*p*<0.005) and \triangle (*p*<0.01) w.r.t. the paired Wilcoxon signed rank test.

Parallel results with noisy features

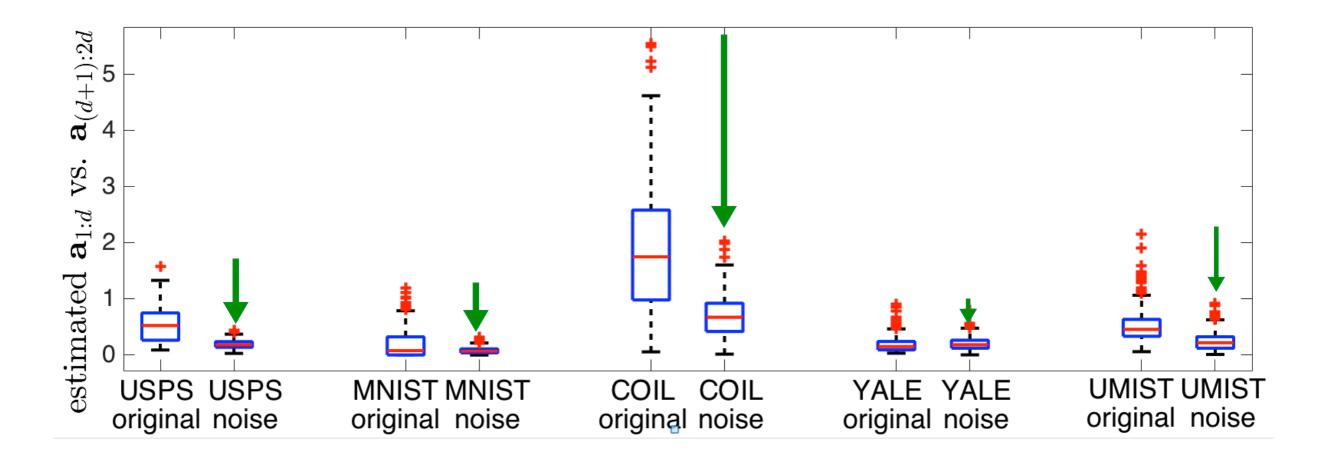
Double the feature space by adding 100% new columns with Normal(0,1) noise

Dataset	PG-Lrn	MinEnt	Grid	Rand _d
COIL	0.9044	0.8197	0.6311▲	0.6954▲
USPS	0.9154	$0.8779^{ riangle}$	0.8746	0.7619
MNIST	0.8634	0.8006	0.7932	0.6668
UMIST	0.8789	0.7756	0.7124▲	0.6405
YALE	0.6859	0.5671	0.5925▲	0.5298▲

> IDML failed to learn metric due to degeneracy

AEW authors' implementation threw out-of-memory errors

Parallel results with noisy features investigating learned feature weights



PG-Learn estimates lower weights for noisy columns

Code, Data, Slides

PG-Learn https://bit.ly/2IZmPCs

lakoglu@andrew.cmu.edu

Thanks!

NSF CAREER 1452425, DARPA FA8650-15-C-7561

