Attributed Networks: Social Circles, Summarization, Comparison

Leman Akoglu

Joint work with Bryan Perozzi Rashmi Raghunandan, Shruti Sridhar, Upasna Suman Aria Rezaei (Google Research NYC), (CMU), (Stony Brook University).

NetSci 2018 Satellite on Machine Learning In Network Science June 12, 2018

Carnegie Mellon University Heinz College

Attributed networks

- Social networks
 - demographics,
 lifestyles, likes, ...
- PPI networks
 - Gene encodings
- Gene interaction networks
 - ontological properties
- Web
 - page properties

Motivating question:

How can we **make sense** of node-attributed networks ?

- subgraphs
- summaries
- comparisons

Attributed networks

Research questions:

- How to characterize & measure the quality of ...
- 2 How to summarize & interactively explore ...
- 3 How to characterize differences between classes of ...
 - ... attributed subgraphs?
- 1) Scalable Anomaly Ranking of Attributed Neighborhoods SIAM SDM 2016
- 2) Discovering Communities and Anomalies in Attributed Graphs: Interactive Visual Exploration and Summarization ACM TKDD, 2018 Bryan Perozzi and Leman Akoglu
- **3)** Ties That Bind Characterizing Classes by Attributes and Social Ties Aria Rezaei, Bryan Perozzi, Leman Akoglu WWW 2017 Companion

This talk

What's a "good" subgraph anyway?

- Siven an attributed subgraph, how to quantify its quality?
 - Structure-only
 - Internal-only
 average degree
 - Boundary-onlycut edges
 - Internal + Boundary
 conductors
 - conductance
 - Structure + Attributes

Scalable Anomaly Ranking of Attributed NeighborhoodsBryan Perozzi and Leman AkogluSIAM SDM 2016.

- Given an attributed subgraph how to quantify quality?
 - Internal
 - structural density

- Given an attributed subgraph how to quantify quality?
 - Internal
 - structural density AND
 - attribute coherence

* neighborhood "focus"

- Given an attributed subgraph how to quantify quality?
 - Internal
 - structural density AND
 - attribute coherence
 - * neighborhood "focus"
 - Boundary
 - structural sparsity, OR
 - external separation
 - * "exoneration"

"exoneration": by (a) null model, (b) attributes edges expected, separable by not surprising different "focus"

(a) hub effect

(b) neighborhood overlap

Motivation:

- no good cuts in real-world graphs [Leskovec+ '08]
- social circles overlap [McAuley+ '14]

The measure of **Normality**

Given an attributed subgraph, can we find the attribute weights?

$$N(C) = \sum_{\substack{i \in C, j \in C, \\ i \neq j}} \left(A_{ij} - \frac{k_i k_j}{2m} \right) sim_{\mathbf{w}}(\mathbf{x_i}, \mathbf{x_j})$$
$$- \sum_{\substack{i \in C, b \in B \\ (i,b) \in \mathcal{E}}} \left(1 - \min(1, \frac{k_i k_b}{2m}) \right) sim_{\mathbf{w}}(\mathbf{x_i}, \mathbf{x_b})$$

$$\arg \max_{\mathbf{w}} \mathbf{w}^{T} \left[\sum_{\substack{i \in C, j \in C, \\ i \neq j}} \left(A_{ij} - \frac{k_i k_j}{2m} \right) (\mathbf{x_i} \odot \mathbf{x_j}) \right]$$

$$latent - \sum_{\substack{i \in C, b \in B \\ (i,b) \in \mathcal{E}}} \left(1 - \min(1, \frac{k_i k_b}{2m}) \right) (\mathbf{x_i} \odot \mathbf{x_b}) \right]$$

$$(2)$$

Details

Optimizing Normality

$$\begin{split} N &= I + E = \sum_{i \in C, j \in C} \left(A_{ij} - \frac{k_i k_j}{2m} \right) s(\mathbf{x_i}, \mathbf{x_j} | \mathbf{w}) \\ &- \sum_{\substack{i \in C, b \in B \\ (i,b) \in \mathcal{E}}} \left(1 - \min(1, \frac{k_i k_b}{2m}) \right) s(\mathbf{x_i}, \mathbf{x_b} | \mathbf{w}) \\ \\ \mathbf{m_{w_c}} \qquad \mathbf{w_c}^T \cdot \left[\sum_{i \in C, j \in C} \left(A_{ij} - \frac{k_i k_j}{2m} \right) s(\mathbf{x_i}, \mathbf{x_j}) \\ &- \sum_{i \in C, b \in B} \left(1 - \min(1, \frac{k_i k_b}{2m}) \right) s(\mathbf{x_i}, \mathbf{x_b}) \right] \end{split}$$

 $(i,b) \in \mathcal{E}$

Details

1

2

3

 $\max_{\mathbf{w}_{\mathbf{C}}} \quad \mathbf{w}_{\mathbf{C}}^{T} \cdot (\hat{\mathbf{x}}_{I} + \hat{\mathbf{x}}_{E})$

s.t. $\|\mathbf{w}_{\mathbf{C}}\|_{p} = 1, \ \mathbf{w}_{\mathbf{C}}(f) \ge 0, \ \forall f = 1 \dots d$

Optimizing Normality

$$\begin{split} \max_{\mathbf{w}_{\mathbf{C}}} & \mathbf{w}_{\mathbf{C}}^{T} \cdot (\hat{\mathbf{x}}_{I} + \hat{\mathbf{x}}_{E}) \\ \mathbf{x} \\ \mathbf{s.t.} & \|\mathbf{w}_{\mathbf{C}}\|_{p} = 1, \ \mathbf{w}_{\mathbf{C}}(f) \geq 0, \ \forall f = 1 \dots d \end{split}$$

p = 1: $w_C(f) = 1$ one attribute f with largest **x**

$$p=2$$
: $\mathbf{w_C}(f) = rac{\mathbf{x}(f)}{\sqrt{\sum_{\mathbf{x}(i)>0} \mathbf{x}(i)^2}}$ all f with positive \mathbf{x}

Normality becomes $N = \mathbf{w_C}^T \cdot \mathbf{x} = \|\mathbf{x}_+\|_2$

Linear in number of attributes!

when $p = 1, N \in [-1, 1]$ $N \in [-1, ||\mathbf{x}_+||_2|$ when p = 2. Carnegie Mellon

Anomaly detection: Perturbed data

Normality vs Conductance, DBLP

DBLP

Attribute distribution, DBLP

DBLP

Summary

A new quality measure for attributed subgraphs

normality considers: internal + boundary structure + attributes subgraph **focus**

"exoneration"

Automatic inference of focus via normality maximization unsupervised linear in #attributes

Paper, code, data

<u>http://www.perozzi.net/projects/amen/</u>

Bryan Perozzi

Overview

- » About Me
- » Research Interests
- » Selected Publications
- » Honors and Awards
- » Press Coverage

Publications

- » Conference & Journal
- » Workshop & Poster

Projects

» Anomaly Detection Attributed Graphs

Anomaly Ranking of Attributed Neighborhoods

Bryan Perozzi, Leman Akoglu May 9, 2016

Awards: Best Paper Runner-up, SDM'16!

Overview

Given a graph with node attributes, what neighborhoods are anomalous? To answer this question, one needs a quality score that utilizes both structure and attributes. Popular existing measures either quantify the structure only and ignore the attributes (e.g., **Scalable Anomaly Ranking of Attributed Neighborhoods** Bryan Perozzi and Leman Akoglu SIAM SDM 2016.

This talk

Attributed (sub)graphs* Subgraphs [SIAM SDM'16] Summarization [ACM TKDD'18] Comparisons [WWW '17] * social circles, communities, egonetworks, ...

urnegie Mellon

urnegie Mellon

Extracting Social Circles

a GRASP (Greedy Randomized Adaptive Search Procedure) approach [Feo & Resende '95]

Algorithm 1 EXTRACTATTRIBUTEDSOCIALCIRCLES

Input: $G = (\mathcal{V}, \mathcal{E}, \mathcal{A})$, node attribute vectors $\mathbf{x}_{u \in \mathcal{V}}$, T_{max}, α **Output:** set of extracted communities \mathcal{C}

- 1: $\mathcal{C} := \emptyset$
- 2: for each $u \in \mathcal{V}$ do

3: **for**
$$t = 1 : T_{max}$$
 do

4:
$$S := \text{CONSTRUCTION}(u, G, \alpha)$$

5:
$$\mathcal{C} := \mathcal{C} \cup \text{LOCALSEARCH}(S, G)$$

- 6: end for
- 7: end for
- 8: return C

note: one focus attribute per circle

urnegie Mellon

Summarization Social circles: what size, quality and focus? Attempt: visual summary 0.7687 size \propto #nodes 2 ... 0.6756 color: 'focus' 0.7204 0.6012 0.5616 text: normality 0.5374 0.7200 10 ... 0.3569 0.5565 17 ... 0.6678 0.4688 0.6091 2 ... 0.8275 0.6754 20 ... 0.2752 0.3989 30 ... 0.8207 0.8873 125 circles! ---does not reflect overlap between circles!

Summarization

- Want a summary (a few circles):
 - high normality
 - well-"cover" the graph
 - diverse in 'focus'

Summarization

- surface formed by various parameter combinations $(\alpha, \beta, 1-\alpha-\beta)$ (blue dots)
 - green) square around the "knee": a good trade-off between quality, coverage, and diversity

urnegie Mellon

Interactive Visual Exploration & Summarization

Circle embedding

Interaction: Filtering

Q1) Summarization by visual exploration. *Does interactive visualization help users construct effective summaries, as compared to strawman baselines?*

Q2) How close do the summaries by users **without guidance** get to the algorithm results (in terms of normality, coverage, diversity, and overall objective value)?

Q4) Efficiency. How long does it take per user on average to construct (i) a summary without guidance, and (ii) alternative summary with guidance?

Summary

- An end-to-end system for sensemaking of node-attributed networks
- **Interactive Visual Analysis** 3) Input graph **1.)** Circle extraction based on normality **2.**) **Summarization** wrt - quality, - coverage, and Social circle extraction - diversity 2 Summarization **3.** Interactive interface for - exploration. **Discovering Communities and Anomalies in Attributed Graphs: Interactive Visual Exploration and Summarization** Bryan Perozzi and Leman Akoglu

ACM TKDD, 2018

This talk

Attributed (sub)graphs* Subgraphs [SIAM SDM'16] Summarization [ACM TKDD'18] Comparisons [WWW '17] * social circles, communities, egonetworks, ...

 Comparing attributed (sub)graphs
 Motivating question:
 Given a collection of attributed subgraphs from different classes,
 how can we discover the attributes that characterize their differences?

Hypothesis: subgraphs from different classes exhibit *different* focus attributes

Characterization Problem: Formal Given

- p attributed subgraphs $g_1^+, g_2^+, \ldots, g_p^+$ from class 1, \mathcal{S}^+
- *n* attributed subgraphs $g_1^-, g_2^-, \ldots, g_n^-$ from class 2, \mathcal{S}^- from graph G, and attribute vector $\mathbf{a} \in \mathbb{R}^d$ for each node;

Find

- a partitioning of attributes to classes as A^+ and A^- , where $A^+ \cup A^- = A$ and $A^+ \cap A^- = \emptyset$,
- focus attributes $A_i^+ \subseteq A^+$ (and respective weights \mathbf{w}_i^+) for each subgraph g_i^+ , $\forall i$, and
- focus attributes $A_j^- \subseteq A^-$ (and respective weights \mathbf{w}_j^-) for each subgraph g_j^- , $\forall j$;

such that

• total quality Q of all subgraphs is maximized, where $Q = \sum_{i=1}^{p} q(g_i^+|A^+) + \sum_{j=1}^{n} q(g_j^-|A^-);$

Rank attributes within A^+ and A^- .

Reminder: Normality

Normality as subgraph quality q:

$$N = w_c^T \cdot (\widehat{x_I} + \widehat{x_X})$$

$$\operatorname{Max} \mathbf{N} \quad \text{s.t.} ||w_c||_p = 1, w_c(a) \ge 0, \forall a = 1, \dots, d$$

 $L_1 \text{ norm} \quad w_c(a) = 1, \text{ one attribute with largest } \mathbf{x}$ $L_2 \text{ norm} \quad w_c(a) = \frac{x(a)}{\sqrt{\sum_{x(i)>0} x(i)^2}}, \text{ all attributes with positive } \mathbf{x}$

Splitting attributes by class: intuition

Class A

Common Focus Attributes

Class B

Common Focus Attributes

Splitting attributes by class: intuition

- We don't want attributes that are:
 - Relevant or irrelevant to **both** classes

Highly relevant to both. Not distinguishing.

Irrelevant to both. Not Interesting.

Splitting attributes by class: intuition

- We want attributes that are:
 - Relevant to one class & irrelevant to other(s)

A good attribute for class B

A good attribute for class A

Setting up the objective

Given a subset of attributes S, normality of subgraph g is

$$N(g|S) = \sqrt{\sum_{a \in S} x(a)^2} = ||x[S]||_2$$

2-norm of *x* induced on the attribute subspace

attribute weight vector of g

Details.

Setting up the objective

Quality of an attribute split is:

$$\max_{A^{+} \subseteq A, A^{-} \subseteq A} \frac{1}{p} \sum_{i \in S^{+}} \left\| |x_{i}[A^{+}]| \right\|_{2} + \frac{1}{n} \sum_{j \in S^{-}} \left\| |x_{j}[A^{-}]| \right\|_{2}$$

Such that $A^{+} \cap A^{-} = \emptyset$

p = number of subgraphs in class + n = number of subgraphs in class -

Setting up the objective

Quality of an attribute split is:

$$\max_{A^+ \subseteq A, A^- \subseteq A} \frac{1}{p} \sum_{i \in S^+} \left| |x_i[A^+]| \right|_2 + \frac{1}{n} \sum_{j \in S^-} \left| |x_j[A^-]| \right|_2$$

Such that $A^+ \cap A^- = \emptyset$

Rank attributes by

p = number of subgraphs in class + n = number of subgraphs in class -

Submodular Welfare Problem

Definition:

Given **d** items and **m** players having a **monotone** and **submodular** utility function (w_i) over subsets of items. Partition the d items into m **disjoint sets** (I_1, I_2, \dots, I_m) in order to maximize: $\sum_{i=1}^m w_i(I_i)$

Our quality function N(g|S) is a monotone and submodular set function.

$$w_c(I_c) = N(\mathcal{S}^{(c)}|A^{(c)}) = \frac{1}{n^{(c)}} \sum_{k \in \mathcal{S}^{(c)}} \|\mathbf{x}_k[A^{(c)}]\|_2$$

Details

Attribute splitting as SWP

- SWP is NP-hard
- First approx. factor is ½ [Lehmann+, 2001]
- Improved to (1 − 1/e) [Vondrák+, 2008]
- No better approximation unless
 - P = NP [Khot+, 2008]
 - Using exponentially-many value queries [Mirrokni+, 2008]

\rightarrow [Vondrák+, 2008] is optimal approximation

Experiments

Datasets

- Congress Co-sponsorship Network
- Amazon Co-purchase Network
- DBLP Co-authorship Network
- Baseline (LASSO): L1-Regularized Logistic Regression
 - Positive weights are assigned to class A
 - Negative weights are assigned to class B

Congress Co-sponsorship

- Bills in Congress
 - each bill has a set of sponsors & policy area tag
- Attributed Graph:
 - Nodes: congressmen
 - Edges: co-sponsoring a bill
 - Attributes: *policy areas* of bills they sponsored[:]
 - National Security and Armed Forces
 - Environmental Protection
 - Foreign Affairs

Classes: party affiliation of congressmen

Liberal and Conservative Ideals

on **social** programs

Republicans focus mostly on *governance* and *finance*

Focus Over Time

13 consecutive congress two-year cycles:

Amazon.com Co-purchases

Attributed Graph:

- Nodes: Amazon videos
- Edges: being co-purchased together

Attributes:

- Product genre (Drama, Comedy, etc.)
- Audience age range (e.g., 10-12 years)
- Creators (e.g. Warner Video)
- • • •

Classes: Animation vs. Classic

Classes: Under 13 vs. Over 13

- Regularized linear classifiers (e.g. LASSO) can find
 - a sparse attribute subspace
 - coefficients for ranking
- How is our work different?

Classifiers focus on *confidence* while we focus on *support*

Confidence \longrightarrow Prob. of belonging to class *c* if *a* is observed

$$Cfd(c,a) = \Pr(c|a) = \frac{\#(c,a)}{\#(a)}$$

Support Portion of nodes in class *c* exhibiting *a*

$$Sup(c,a) = \frac{\#(c,a)}{\#(c)}$$

Class *Relative* Confidence

$$CC(c^+, a) = \Pr(c^+|a) - \Pr(c^-|a)$$

Classifiers focus on *confidence* while we focus on *support*

Slides, code, data <u>http://www3.cs.stonybrook.edu/</u> ~arezaei/project/amen_char.html

Characterizing Class Differences in Attributed Graphs

Aria Rezaei, Bryan Perozzi, Leman Akoglu

Overview

Ties That Bind - Characterizing Classes by Attributes and Social Ties. *Aria Rezaei, Bryan Perozzi, Leman Akoglu.* WWW 2017 Companion

Slides

This talk

- Attributed (sub)graphs*
 - Subgraphs [SIAM SDM'16]
 - Summarization [ACM TKDD'18]
- Comparisons [WWW '17]
 Image: provide the second second

References, Links to Code&Data:

- Scalable Anomaly Ranking of Attributed Neighborhoods.
 Bryan Perozzi and Leman Akoglu. SIAM SDM 2016
 https://github.com/phanein/amen
- Discovering Communities and Anomalies in Attributed Graphs: Interactive Visual Exploration and Summarization.
 Bryan Perozzi and Leman Akoglu. ACM TKDD, 2018 https://www.dropbox.com/home/Public/iSCAN
- Ties That Bind Characterizing Classes by Attributes and Social Ties. Aria Rezaei, Bryan Perozzi, Leman Akoglu. WWW 2017 Companion https://github.com/rezaeiaria/AmenChar

Contact: <u>lakoglu@andrew.cmu.edu</u> www.andrew.cmu.edu/~lakoglu

