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In his classic work on the architecture of complexity, Simon (1981) noted
the uncanny presence of hierarchy in virtually all complex systems. He
further argued that there was a universal function to such hierarchical
forms: They are efficient and robust against disruptions that might threaten
the cybernetic goals of the system. And although formal organizational
charts are obviously hierarchical, he argued that informal organizations
also would be found to be hierarchically structured: “If we make a chart of
social interactions, of who talks to whom, the clusters of dense interaction
in the chart will identify a rather well-defined hierarchic structure. The
groupings in this structure may be defined operationally by some measure
of frequency of interaction in this sociometric matrix” (Simon, 1981,
p. 197).

This idea that informal organizations will naturally evolve into a hierar-
chical structure is intriguing and has intuitive appeal. The theme can be
found with empirical support elsewhere. For example, Michels (1915) noted
that even democratically based voluntary organizations evolve toward a

—centralized;—hierarchical -structure-as-they- grow. Guetzkow and-Simon
(1955) discovered that small groups that are allowed unlimited choice of
communication channels tend to centralize their communication flows into
a hierarchical “wheel” structure.

The normative part of Simon’s claim, that hierarchy exists because it
allows the system to operate more efficiently and survive outside distur-
bances, is also appealing. From this, we may deduce a hypothesis about the
structure of informal organizations and performance.
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Simon’s model of hierarchy raises three unresolved issues, two theoretical
and one methodological. First, as Simon admitted himself (1981, p. 213),
people do communicate outside the preferred boundaries defined by the
formal hierarchy of the organization. That is, perfectly hierarchical in-
formal organizations are rare. Nonetheless, he argued, these exceptional
communication links are relatively limited and not consequential to the
overall pattern of hierarchy in the organization.

The second theoretical problem with Simon’s model is that it flies in the
face of several normative theories of organizational structure that empha-
size the value of communication and information flows outside the normal,
hierarchical boundaries. Burns and Stalker (1961) argued that when an
organization is faced with a. dynamic environment, an organic, nonhierar-
chical, informal structure is more appropriate for organizational effective-
ness and survival. Allen (1977) demonstrated that research and development
organizations can enhance their effectiveness by promoting communication
outside the formal, hierarchical boundaries:

Increased communication between R&D projects and other elements of the
laboratory staff were in every case strongly related to project performance.
Moreover, it appears that interaction outside the project is most important.
On complex projects, the inner team cannot sustain itself and work effectively
without constantly importing new information from the outside world.
(pp. 122-123) :

And Krackhardt and Stern (1988) presented experimental evidence that
under some conditions organizations are better off if they maximize strong
cross-departmental relationships.

The third problem with Simon’s model is one of measurement and
consequent testability. Given that pure hierarchies do not exist, we must
somehow differentiate between structures as being more or less hierarchical.
Otherwise, we have no way of confirming or disconfirming his predictions.
He offered no specifics for measuring the degree of hierarchy in social
systems. In fact, systems whose elements appear to have no hierarchical
structure (systems he calls flat hierarchies), he argued, are still hierarchical
with an indefinitely large “span.”

The purpose of this chapter is to broaden Simon’s ideas of hierarchical
—structures-as-they pertain-to-informal-organizations-First, I-dispense-with—
the assertion that informal organizations are necessarily hierarchical.
Instead, I argue that this is an empirical question and an appropriate object
of research. Second, I propose that hierarchical forms will have implica-
tions for organizations, but that some of the implications may not
necessarily enhance the organization’s efficiency or ability to survive (i.e.,
they are not necessarily. functional). Finally, I specify a method for
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measuring the degree to which the informal organization is structured in a
way that Simon would call hierarchical. Because the ability to answer the
former research questions depends on this last measurement issue, I begin
with the development of measures of informal structure.

GRAPH THEORY AND MEASURES OF STRUCTURE

Graph theory (Harary, 1969) provides us with a precise language for
representing structures of all forms, including the structures Simon referred
to as hierarchical. Because I draw on graph theory in this chapter, I provide
definitions as necessary for clarity. A graph (G) is defined as a set of N
points P = {P;] and a set of unordered pairs of those points L .= (P, Pj],
these latter elements are often referred to as lines connecting those points.
In the immediate context, these points represent people in the organization,
and the pairs of points represent relationships (such as interaction, com-
munication) between those organizational members. For example, if person
i interacts with person j, then the ordered pair (P;, P) is included in set L
that defines the relationship interaction.

A directed graph, or digraph (D), is defined as a set of points P = {P;}
and a set of ordered pairs of points L = (P, P;. A digraph is used to
represent relations that are potentially asymmetric, such as authority or
giving advice. For example, if i is the immediate supervisor to j, and L is
defined as the set of formal authority relationships, then L would contain
the ordered pair (P;, P;) but would not contain the ordered pair (P;, P).

Graph theory definitions are often easier to convey by example. Figure
5.1 provides an example of two graphs and one digraph. Graphs are
represented with points and lines connecting the points. Digraphs are

- represented by points and lines with arrowheads on them to indicate the
order of the pair of points being connected. The graph in Fig. 5.1c
represents a special function. It is the underlying graph of the digraph in
Fig. 5.Ib. The underlying graph of a digraph is the graph obtained by

“removing the arrows” from the digraph. That is, if digraph D contains
either the ordered pair (P,, J) or (P,, P,), then the underlying graph G will

~include the unordered-pair (P;; P D

A point and a line are incident with one another if the line contains the
point in its pair. In Fig. 5.1a, P, is incident with line (P,, P,). A walk is an
ordered sequence of alternating points and lines, starting and ending with
points, such that each line is incident with the point that precedes it and with
the point that follows it. A path is a walk with no repeating points. In Fig.
5.1c, the sequence P, (P;, Ps), Ry, (Ps, P,), P, constitutes a path from P,
to P4. One point is said to be able to reach another if there exists a path that
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FIG. 5.1. Examples of graphs and digraphs.

starts at the first point and ends at the second. All pairs of points in the
graph in Fig. 5.Ic are mutually reachable.

With a small restriction in the definition of incidence of points and lines,

—these-same-definitions-apply to digraphs-as well. Inman ordered point-line —

pair, [P;, (P;, P,)], the point and line are incident with each other if P; =
P;. In an ordered line-point pair, [(P;, P,), P], the line and point are
incident with each other if P, = P,. The definitions of paths and
reachability are identical to those in graphs. In the digraph represented in
Fig. 5.1b, a path exists from P, to P, but not from P, to P,. Therefore, P,
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can reach P, but not vice versa. In fact, P, cannot reach any other point,
but each other point can reach P,.

A connected graph is a graph in which each point can reach every other
point. Figure 5.1c is connected; Fig. 5.1a is not. A subgraph (S) of graph (G)
is a graph whose points and lines are also in G. A component (C) of graph
(G) is a connected subgraph of G with two characteristics: (a) All the lines
in G incident to every point in C are included in C, and (b) there is no point
in G not included in C that, in G, can reach a point included in C. Figure
5.1c has one only component; Fig. 5.1a has two components.

A connected digraph is a digraph in which each point can reach every
other point in the underlying graph of the digraph. Each point in the
digraph of Fig. 5.1b is reachable from every other point in the underlying
graph Fig. 5.1c. Thus, the digraph in Fig. 5.1b is connected. A component
(C) of a digraph (D) is a connected subgraph of D with the following
characteristics: (a) All the lines in D incident to every point in C are included
in C, and (b) there is no point in D not included in C that, in the underlying
graph of D, can reach a point included in C. The digraph in Fig. 5.lb has
one component only.

With these tools and definitions developed so far, it is possible to
represent the informal structure of any organization. But to fully explore
Simon’s notions of hierarchical structure, it will be necessary to develop
some additional operations. From these, one can determine the extent to
which an informal structure approximates a pure hierarchical structure.

PURE HIERARCHICAL STRUCTURES: THE OUTTREE

The first task before us is to establish a pure structure as a standard against
which other structures can be compared. For the purposes of this analysis,
the ideal candidate for such a structure is, in graph theory terms, the
outtree. Before a formal definition is presented, an intuition of what
constitutes an outtree is provided for the reader in Fig. 5.2, which contains
four examples. First, it should be noted that outtrees are digraphs. Second,
. every point, with the exception of the one point at the “top” of the outtree,
has exactly one arrow pointing to it, although the points may have several
—arrows-emanating-from-them. If these arrows represented authority rela-
tionships, then we might interpret this statement as noting that each point
has one and only one “boss,” but each point may have any number of
subordinates. In fact, it should be immediately apparent to the reader that
each of these figures could be examples of organizational charts—the
archetypical formal hierarchy, as Simon termed it (1981, p. 197).
There are several reasons that the outtree serves as a reference base for
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FIG. 5.2. Examples of outtrees.

the study of informal structures. First, all of Simon’s hierarchical systems
can be represented as an outtree.! Second, as mentioned earlier, they
correspond to our intuition of the archetypical hierarchy, the formal
organization. Third, they preserve several fundamental principles of classic
organizational structure, including unity of command, unambiguous chain

of command, and thé scalar principle;

But this graph theory concept provides more than an archetype. It
provides a basis for describing observed organizational structures and
measuring their deviance from this archetype. To pursue this, it is first

'It is worth noting at this point that most of Simon’s hierarchical systems are represented by
an inclusion relation, rather than the type of interpersonal relations used throughout this
chapter.
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necessary to formally define an outtree using more graph theory. There are
many ways to so define an outtree (e.g., Wilson, 1979, p. 45). For reasons
that become clear shortly, I use the following four conditions of a digraph
as a definition of an outtree. These conditions are both necessary and
sufficient for the digraph to be an outtree:

1. The digraph is connected.

2. The digraph is graph hierarchic.

3. The digraph is graph efficient.

4. Every pair of points in the digraph has a least upper bound.

If a graph violates any of these four conditions, then it is not an outtree.
Moreover, we can count the number of violations in each of the dimensions
to give us a measure of distance from the archetypal structure. Because
these violations are based on independent criteria, the picture of the
structure described by each dimension differs considerably. Figure 5.3
displays some examples of these differences. In the center of the figure is an
outtree. Each of the other four figures surrounding the outtree represents
an extreme case where one (and only one) of each of the four conditions is
violated to the maximum extent possible. It is useful to refer to this figure
as each.of the four dimensions is defined next.

Each of the four measures of degree of structure is based on the number
of outtree violations that exist in any particular structural arrangement. As
such, each condition becomes a dimension of structure, continuously
varying in value from 0 to 1. That a graph has a value of 1.0 on all four
dimensions is equivalent to stating that a graph is an outtree. Also, each of
the four dimensions has different implications for the organization. Each of
these dimensions and its implications for the organization is next described
in turn.

1. Connectedness. The definition of connectedness was already pro-
vided earlier: A digraph is connected if each point can reach every other
point in the underlying graph. To say that a digraph is disconnected implies
that there are at least two components in the digraph. The degree to which
the digraph is disconnected is a function of the number of violations of the

——connectedness condition. A violation is defined as a point being unable to
reach another point in the underlying graph. If we divide the number of
violations by the maximum number of possible violations (i.e., in the case
where no point can reach any other point), we have a continuum repre-
senting the degree to which the graph is disconnected. Subtracting this ratio
from 1 gives us the degree of connectedness in the structure. The degree of
connectedness is then defined as:
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FIG. 5.3. The four dimensions of structure.

Connectedness =

- IN{N—I 21

where V is the number of pairs of points that are not mutually reachable,
and the maximum number of violations is the total number of pairs of

points = N (N — 1)/2.

The degree of connectedness in a set of social relations is the simplest of
the measures. At one end of the spectrum, an outtree is completely
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- connected. A disconnected graph represents a division in the social system.
The more people are separated from each other, the more difficult it is to
organize them through the network. At the extreme, no one is connected to
anyone (connectedness = 0); everyone is an independent actor.

If the task facing the organization is routine, and the environment does
not change, then connectedness may not be essential to the performance of
the organization in its task. But if the organization has many exceptions
that require consultation, a set of established communication and advice
relations that incorporates all actors, at least indirectly, would be essential.
Also, lack of connectedness may be a reflection of a major political
division, such that one side does not talk to the other side(s).

2. Graph Hierarchy.> The graph hierarchy condition states that in a
digraph D, for each pair of points where one (P,) can reach another (P,)), the
second (P;) cannot reach the first (P,). For example, in a formal organiza-
tional chart, a high-level employee can “reach” through the chain of
command her subordinate’s subordinate. If the formal organization is
working properly, this lower level employee cannot simultaneously “reach”
(i.e., cannot be the boss of a boss of) the higher level employee.

To measure the degree of hierarchy of digraph D, a new digraph D, must
be created. D, is defined as the reachability digraph of D. Each point in D
exists in D,; moreover, the line (P;, P)) exists in D, if and only if P; can reach
P;in D. If D is graph hierarchic, then D, will have no symmetric lines in it.
That is, if the line (P, P)) exists in D, then the line (P;, P,) does not. A
violation to this condition exists every time a symmetric line exists in D,.
The degree.of hierarchy, then, is defined as:

Graph hierarchy = 1 — [F/fa%/]

where V is the number of unordered pairs of points in D, that are
symmetrically linked (that is, where P; is linked to P; and P; is linked to P),
and MaxV is the number of unordered pairs of points in D, where P; is
linked to P; or P; is linked to P,.
Graph hierarchy exists to the extent that the relations are strictly ordered.
_For_example, hierarchy occurs if relations are determined by status,

prestige, or formal authority. Informal relations, such as advice relations,
can be ordered, but are not necessarily so. An outtree (such as the
organizational chart) is perfectly hierarchical. At the other extreme, if there

2The term hierarchy is used differently here than by Simon. Nothing in Simon’s work
specifies asymmetry of relations. However, the term’s use in this chapter corresponds more
closely to the common use of the word. From here on, I will use the term hierarchy to refer to
graph hierarchy rather than Simon’s definition.
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is no status in a system, then no graph hierarchy is hkely to emerge in the
informal relations.

A mechanistic organization is likely to be very status ridden (Shrader,
Lincoln, & Hoffman, 1989). Members are likely to go up the organization
for advice. To the extent that this is true, a mechanistic organization will be
characterized by a high degree of hierarchy in advice relations. In an
organic organization, on the other hand, status is more diffuse, and project
leaders may not hesitate to seek advice from subordinates or someone from
a different group in the organization. In such an environment, advice
relations might not be hierarchically arranged at all.

3. Graph Efficiency. One of the conditions of an outtree is that the
underlying graph is connected and contains exactly N—1 lines. Fewer lines
than that and the digraph disconnects into components. More lines than
that creates multiple paths and cycles between points. In a sense, these
multiple paths are redundant in graph-theory terms, and they disrupt the
stoic, bare-bones nature of the pure outtree structure.

The technical definition of the graph efficiency condition is: In the
underlying graph (G,, G, etc.) of each component (D,, D,, etc.) of digraph
D, there are exactly N,~1 links, where N, is the number of nodes in the
corresponding component D,. Because fewer than N,-—1 links is not
possible (because that would break the component into subcomponents),
violations occur to the extent that more than this minimum number of links
is present. The degree of graph efficiency is defined as:

V

MaxV
where V is the number of links in excess of N,—1, summed over all
components, and MaxV is the maximum number of links in excess of N, — 1
possible, summed over all components.

Links are not without costs in a social system. They take time and
resources to maintain. Thus, the concept of graph efficiency characterizes
how dense the network is beyond that barely needed to keep the social
group even indirectly connected to one another.

Graph inefficiency should not be confused with social inefficiency or

__eggnamumfﬁmmcy.luaythai_a_gwms—graph—mefﬁcwat—sxmgly—
implies it has more than the N—1 links required to remain connected. In
fact, in a high-tech, organic organization faced with a dynamic and
unpredictable environment, graph inefficiencies may be called for to
facilitate the quick cross-fertilization of innovative ideas (Shrader et al.,
1989). Thus, graph efficiency reflects the cost of a dense network; it avoids
answering the question about the benefits of such a network.

Nonetheless, some conjectures could be made about the relationship

Graph efficiency = 1 — [
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between graph efficiency and organizational efficiency. An organization
that is so bare bones in its informal structure that it is perfectly graph
efficient is also fragile. It is vulnerable to the arbitrary deletion of a link or
point (for example, through attrition). Some redundancies. (graph ineffi-
ciencies) in the informal network also help to short-circuit long communi-
cation paths and thus that may slow down information flow. Thus, very
high values of graph efficiency are likely to be associated with less than
optimal organizational performance.

On the other hand, extremely dense informal networks that would
characterize very low efficiency scores are likely to be overburdened with
networking. Employees cannot be expected to relate to everyone else in the
organization. People would spend all their time interacting and have little
left over for getting their work done. Thus, we expect a curvilinear
relationship between graph efficiency and organizational effectiveness, with
the optimum graph efficiency value to lie between 0 and 1.

4. Least Upper Boundedness. In order for a pair of actors to have a
least upper bound (LUB), they each must have access to a common third
person in the organization to whom they both can “appeal” (through the
network). This third person (called an upper bound) must be someone to
whom they both defer (either directly or indirectly) in the network. A given
pair of actors may have many upper bounds. In such cases, a least upper
bound is a member of that set of upper bounds who in turn can appeal to
or defer to the remaining upper bounds. In a formal organization chart, the
LUB of two employees is the closest boss who has formal authority over
both of them. '

The technical definition of the least upper bound condition is given as
follows: Within each component (D,, D,, etc.) of digraph D, each pair of
points (P; and P;) has at least one least upper bound (LUB). An upper
bound for a pair of points (P; and P)) is a third point (P,) from which there
is a path to each of the pair; a least upper bound is an upper bound (P,) that
is included in at least one directed path from each other upper bound (P,
P,,, . . .) to each of the pair (P;, P;). Violations to this condition occur

-_whenever a (P;, P) pair of points in D, has no LUB. The degree of

LUBedness is defined as:
| %
LUB=1-| ——
[MaxV]

where Vis the number of pairs of points that have no LUB in each component
summed across all components, and MaxV is the maximum number of pairs
of points that could possibly have no LUB. It should be noted that point k&
may be equal to point / or j. That is, two points (P, and P)) that are connected
always have as a LUB one of the two points (P; or P; or both). Because a
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~ component C, must have at least N,—1 lines, every component has by
definition at least NV, — 1 pairs of points that do have LUBs. Therefore, the
maximum number of violations for a component of a digraph is:

MaxV = (N, — 1) (N, — 2)
2 .

This is the most complex measure of the four measures of structure. It
has interesting implications for structures, however. First, it is the only
condition of the four that is sensitive to the direction of the arrows in the
digraph. It is possible to change the LUB score from 0.0 to 1.0 (or vice
versa) simply by changing the direction of all of the arrows in a digraph.
Thus, the meaning of the direction of a relationship becomes important

- here. It is assumed that all relationships are defined in a way that suggests
that an arrow from P, to P; implies that P; defers to P, or that P, has more
status than P;.

The LUB cond.ition preserves the unity-of-command principle in formal
organizations. It also ensures that there is only one “chief executive” at the
top. Violations of the condition are an indication that there may be too
many informal cooks spoiling the pot. For example, in Fig. 5.3, the digraph
in the lower right corner has a LUB score of 0, indicating that the number
of violations is at a maximum. If the relationship represented by the arrows
happened to be authority, the lower point in the digraph would be subject
to the orders of five different “top dogs.”

It has been suggested elsewhere (Doreian, 1971; Friedell, 1967) that a
LUB condition in an informal network is an indication of how differences
or conflict might be managed within the organization. If a LUB exists for
a pair of actors, then that LUB person has a potential position for settling
or dealing with the conflict. When relatively few of the pairs of actors have
a LUB, then conflict would be predicted to be difficult to resolve in the
organization.

BEHAVIOR OF THE FOUR DIMENSIONS IN RANDOM
DIGRAPHS

“~Thus far, four “measures of structure have ~been proposed alongwith—
tentative relationships to organizational phenomena. We are left with the
empirical question, what do organizations look like in the real world? But
before that question is pursued, there is another empirical question worth
exploring: How do these measures behave in structures that are truly
random rather than ordered, as the word structure implies? The answer to
this question provides the empiricist with a type of null hypothesis against
which he or she can compare real-world observations.
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To study this question, random structures were generated. Two param-
eters were manipulated in these random digraphs, the number of points in
the digraph (= N) and the probability that any two points are connected to
each other with a line (= P). Four different sized digraphs were created: N
= §, 10, 20, and 50. The value of P, which virtually determines the number
of lines in the digraph, varied from .01 to .10 in increments of .01, and then
from .15 to .9 in increments of .05. For each combination of N and P, 500
digraphs were generated, for a total of 52,000 digraphs. For each digraph
generated, the degree of connectedness, graph hierarchy, graph efficiency,
and least-upper-boundedness was calculated.

The results of these simulations are depicted in the Appendlx In each
graph the mean value, the 95th percentile value, and the 5th percentile value
of one of the four structure measures are plotted as a function of P for the
given N,

These plots provide ranges of values one would expect if the lines of the
digraphs were randomly drawn. Two general conclusions are evident from
these simulations. First, the range of probable structure values for a given
P is greatly reduced as NN increases. Second, the relationship between P and
each of the specific measures is very strong in random graphs when N is
large (= 50).

The fact that P, and by implication the density of the relations, is so
closely correlated with these graph values in large digraphs is not a surprise.
For example, perfect connectedness is impossible until the digraph has at
least N—1 lines. Beyond that, it is expected that the more lines there are the
easier it would be to randomly create a connected digraph. And graph
efficiency is easily construed as a surrogate for density; thus, the near linear
relationship between P and efficiency when N = 50 is no surprise.

Two points are worth underscoring in relation to these simulation results.
First, just because values of these structural dimensions in random digraphs
seem heavily constrained by P and N does not mean that real-world
digraphs cannot be found outside these values. For example, the digraph in
the lower left corner of Fig. 5.3 (with a graph efficiency of 0) is a kind of
structure that has P = .5 and a hierarchy of 1.0. This structural pattern
---could-exist-for any. N-size. If the graph were size N = 10, the simulation _
results indicate that the graph hierarchy of 1.0 would be incredible, if not
virtually impossible. Of course, this case is quite possible in the real world,
where status often aligns such deference relations just as a magnet aligns
free-floating iron particles in its field. Observing such a structure, we would
conclude that there was such a force aligning these relations, because we
would never expect to see such a structure by chance. These simulation
results, then provide a reference point for comparison as real-world data are

collected.
" The second point is a cautionary note. These four structural measures are
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~ sensitive to densities. And densities in relations are very sensitive to how the
relation is measured. We often collect such data by asking employees
directly whom they talk to, whom they go to for advice, whom they seek out
in the case of problems, and so forth. Sometimes we modify these questions
with temporal ranges, such as “. . . at least every day,” “. . . at least once
a week.” Such modifications can greatly affect densities. Even when the
same question is consistently asked, the researcher can affect the density of
the relation by insisting on various levels of confirmation of the relation
(¢.8., both actors must agree that P; goes to P; for advice before the P;, P;
line is drawn). These simulations suggest that researchers wishing to make
cross-organizational comparisons along these four dimensions must pay
particular attention to how the method of data collection could affect the
variance in density among the organizations studied.

CONCLUSION

In this chapter I have argued that graph theory provides a rich descriptive
language for assessing organizational structure. With few exceptions (e.g.,
Mackenzie, 1986; Shrader et al., 1989), little research has taken advantage
of this natural link between mathematics and organizational theory.

But not only does graph theory describe, it permits us to measure the
degree of structure in organizations in more precise terms than is ordinarily
done in field research. Moreover, by dividing the ultimate structure, the
outtree, . into its four constituent parts, different qualities of lack of
structure can be measured. It is suggested that these four dimensions ar
each related to different organizational phenomena: ‘

1. Connectedness is associated with the ease with which the organiza-
tion can deal with and implement change.

2. Graph hierarchy is associated with the degree to which the organi-
zation is dominated by status in its informal relations.

3. Graph efficiency has a curvilinear relationship to organizational
effectiveness.

4. Least-upper-boundedness is associated with organizational con-

fhict.

Empirical evidence in support of these conjectures awaits us. In due
course, I expect these predictions to be modified, conditioned, and perhaps
even discarded and replaced with more accurate theories. In the meantime,
using these graph-theoretic concepts to build on Simon’s original idea of
hierarchy should allow us to better grasp the role of organizational structure
as an independent variable in organizational theory.
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