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Abstract

In healthcare, the highest risk individuals for morbidity and mortality are rarely
those with the greatest modifiable risk. By contrast, many machine learning
formulations implicitly attend to the highest risk individuals. We focus on this
problem in point processes, a popular modeling technique for the analysis of the
temporal event sequences in electronic health records (EHR) data with applications
in risk stratification and risk score systems. We show that optimization of the log-
likelihood function also gives disproportionate attention to high risk individuals
and leads to poor prediction results for low risk individuals compared to ones at
high risk. We characterize the problem and propose an adjusted log-likelihood
formulation as a new objective for point processes. We show that the proposed
formulation is a weighted sum of segmented likelihood contributions that allows
proportionate attention given data generated from a stochastic model corresponding
to a harmonic mean estimator. We demonstrate the benefits of our method in
simulations and in EHR data of patients admitted to the critical care unit for
intracerebral hemorrhage.

1 Introduction

Clinical forecasting is a central task for prognostication in populations at risk for downstream
morbidity and mortality. When followup is incomplete and right-censorship of data occurs, survival
analysis models are often preferable to binary classification for long-term prognostication due to their
ability to mitigate selection bias associated with censorship. Many models exists for the survival
analysis task, including Cox, Aalen, accelerated failure time models, random survival forests, and
so on. Point processes are a natural generalization of the survival analysis task when modeling data
in the presence of repeated outcome events, where rate modeling is not limited to conditional rate
estimation, where the condition is event-free survival.

In rate models, characterization of proportional errors in rate is often an objective of primary interest,
but its minimization is not straightforward because ground truth rates are unobserved. Indeed, the
long-standing success of the Cox proportional hazards model is a demonstration of the interpretive
value of proportional rate estimation. Despite this, the objective function specified for many survival
models do not seek to minimize proportional error in rate, including that of Cox.

We approach this problem through the formulation of the optimization objective function. Our analysis
illustrates that the standard likelihood function attends to individuals at highest risk, potentially at the
cost of modeling proportional rates in low-risk individuals poorly. This characterization provides us a
way to attempt to mitigate the mis-attention and will result in a reweighting scheme to fairly attend
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to all individuals with respect to proportional rate misspecification. Practically, this will result in a
fairness-variance trade-off, as the models will suffer from having high variance from low effective
sample sizes.

One natural solution to the above problem is to optimize for the proportional predictive error.
Accelerated failure time (AFT) models accomplish this by log transforming time so that minimizing
mean squared error in log space corresponds to minimizing multiplicative errors in the original
space. This approach works for single event analyses, but fails to extend to repeated event models.
In particular, AFT models require a specification of time t = 0 so that the log transformation is
well-defined. Time t = 0 specification is problematic in time-varying and nowcasting analysis, as
noted in (Miscouridou et al., 2018) and (Weiss, 2018), because training time t = 0 must be specified
while the modeler may want to vary test time t = 0 or model repeated events. Attempts to duplicate
training samples longitudinally by varying train time t = 0 lead to samples that violate the parametric
and or semi-parametric model assumptions and result in poor parameter estimates and poor predictive
performance. Because of this problem, it is unclear how to naturally extend such models to recurrent
event and multitask settings. In these settings, larger ranges of rates are often modeled, and this
magnifies the problem of misplaced attention.

In this work, we propose a model to minimize proportional errors in rates in settings of anytime
prediction and recurrent event modeling. Our model reweights the log likelihood according to the
inverse of the predicted rate, so that the likelihood attends to high rates and low rates proportionally
fairly. We show that as a result of our objective specification that we recover a harmonic mean risk
estimator. Because rates are expectations of events per unit time, i.e. arithmetic means, the harmonic
mean estimator underestimates the risk in face of random effects or frailty. Nonetheless, because
we do not have oracle access to the true rates, a point prediction method does not result in such
underestimation. Instead, empirically we must trade off between reweighting fairly with maintaining
adequate effective sample size for stable risk prediction. Finally we demonstrate in simulations and
in prediction of neurological deterioration among patients admitted for intracerebral hemorrhage
(ICH) that our method empirically produces informative risk assessments in low rate regimes.

1.1 Related Work

The literature on the use of machine learning for survival analysis or point processes is large, and we
limit our discussion to closely-related and recent works in the space. While our method is general
for methods that optimize for the survival objective function, we devise two models that extend
previous approaches: that of (1) piano roll embeddings, an LSTM-variant (Dong et al., 2018), and
(2) wavelet reconstruction networks (Weiss, 2018). The former is meant to forecast near term future
music chords over continuous time, which can be modified to make survival predictions according to
the maximum likelihood or harmonic mean objective functions. The latter jointly trains relative-time
wavelet kernel functions and the function that combines them to represent a survival function on
absolute time, but uses the maximum likelihood survival objective. Similarly, the approach could be
used in training other recent survival and point process frameworks, including Jing and Smola (2017);
Lee et al. (2018); Weiss (2019). Several recent works have adopted alternative objective functions,
including (Avati et al., 2018) and (Chapfuwa et al., 2018). Another approach is to fuse together
binary classification predictions across time. Our method may help illustrate the effectiveness of this
approach, in that this multi-task prediction formulation attends implicitly to low-risk examples by
ignoring those examples where events have already occurred in the large time-to-event classifiers
(Yu et al., 2011). However, unlike these methods, our method provides attention to low-risk persons
and regions in the repeated event setting. Our finding that the oracle estimator is a harmonic mean
estimator suggests that, if one were to extend our model to output distributions of risk, i.e., frailty
models, for example by using a conditional variational autoencoder or generative adversarial network,
that the reweighting scheme would underestimate average risk. A rich literature on frailty models
exists, though the methods described typically use small parametric models. Finally, several other
machine learning models have leveraged the time rescaling theorem (Pillow, 2009; Gerhard and
Gerstner, 2010), but none formulating or motivated by a low-risk rate estimation.
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2 Background

Let Y be the event we want to model over time acrossN samples. Let the event times be the sequence
tin for i ∈ {1, . . . , Tn} for n = {1, . . . , N} over a period of interest [0, τn]. We are interested in
modeling the rate function:

λ(t|·) = lim
h→0

P (t < T < t+ h|T > t, ·)
h

=
f(t|·)
S(t|·)

,

where {·} varies by model and represents the information or data to use in modeling λ. The probability
density function and survival function are given by f and S. Given parameters Θ, the survival log
likelihood is given by:

LL(X|Θ) =

N∑
n=1

( Tn∑
i=1

log λn(tin|·)−
∫ τn

0

λ(t|·)dt
)

(1)

For Cox processes, the form is λ(t;x) = λ0(t)ew
T x where λ0(t) is a nuisance function, w is

the parameter vector, and x is a feature vector per example. Aalen additive models have form
λ(t;x) = λ0(t) + w(t)Tx for functions λ0(t) and wi(t) for i ∈ {1, . . . , k} for feature vector
x of length k. Hawkes processes condition on the history H(t) up until time t: λ(t|H(t)) =

λ0(t) +
∑Tn

i=1 g(t− ti)1(ti < t), where g(·) is a kernel function (usually an exponential decaying
function) and 1(·) is the indicator function.

Next we establish the relationship between rescaled time where a single Poisson process with rate 1
and our original time, where λ is defined. This comes from the time rescaling theorem.

Time rescaling theorem. Given the rate function λ, define Λ the cumulative hazard function:
Λ(t|·) =

∫ τn
0
λ(t|·)dt. For the realization of a sequence of events from λ(t|·) with times {u1, . . . , uk}

and Λ(τ |·) <∞, the sequence {Λ(u1|·), . . . ,Λ(uk|·)} is distributed according to a unit rate Poisson
process (Meyer, 1971; Ogata, 1981).

Details of the proof can be found in (Brown et al., 2002). The implication of the theorem is that
if we could model the conditional intensity correctly, the intervals between rescaled times follow
exponential distribution with rate 1.

As an illustration, maximizing the equation 1 and log-likelihood in the rescaled time having Poisson
process with rate 1 yield the same conditional intensity assuming a piecewise constant functional
form where the intensity values are locally constant. Any intensity function could be approximated as
piecewise constant by assigning constant intensity values to infinitesimal time intervals. The simplest
case that demonstrates the equivalence of the two maximization problems would be a constant
intensity λ with one sample. Let’s assume n events occurred during time τ for the sample. We get
the estimator of λ, λ̂ as follows:

λ̂1 = argmax
λ

LL(X|λ) = argmax
λ

n∑
i

log λ−
∫ τ

0

λdt = argmax
λ

n log λ− λτ =
n

τ
(2)

λ̂2 = argmax
λ

log

(
e−λτ (λτ)n

n!

)
= argmax

λ
−λτ + n log λ− log(n!) =

n

τ
(3)

Equation 2 computes the the estimator λ̂1 with the log-likelihood, while equation 3 computes the
the estimator λ̂2 with the log-likelihood in the rescaled time. In the bottom line, we get the same
estimator λ̂ = λ̂1 = λ̂2 with both equations. This can be extended to smooth functions under
regularity conditions by considering the upper limit as the step size goes to zero.

3 Method

From the time rescaling theorem, it is straightforward to observe that the relative contributions to
the likelihood of each time interval is proportional to the rate within that interval, i.e., if we care
about each individual’s risk in a time unit equally, then we could consider decreasing the likelihood
contributions in proportion to the rate. In other words, our procedure will seek to nullify, partially
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Algorithm 1: Harmonic Mean Point Processes

Result: ALL-trained model
Temporal network F : X 7→ [0,∞) ;
Attention coefficient γ, stability factor ε ;
while training do

λ̂(t′j,k−1) = F (Xj) piecewise on [t′j,k−1, t
′
j,k) ∀k ∈ K

;
Copy then detach λ̂(t′j,k−1) ∀j, k ;
ALLj,k = LLj,k/

(
λ̂(t′j,k−1)log10 γ + ε

)
;

ALL.sum().backward();
optimizer.step();

end

Figure 1: Rescaled time illustrating a unit of λ = 1 has three times less likelihood weight than one
unit of λ = 3, evidenced by its proportion of the length of the y-axis (left). Pseudocode for HMPPs
(right).

or fully, the proportional factor of likelihood attention given to higher rates. We call this approach
optimization of the adjusted log likelihood, which is illustrated in Figure 1.

ALL(X|Θ) =

N∑
n=1

( Tn∑
i=1

log λ(tin|Θ)

λ∗(tin)
−
∫ τn

0

λ(t|Θ)

λ∗(t)
dt
)

(4)

where λ∗(t) is the ground truth intensity at time t. By assuming λ(t) and λ∗(t) are piecewise constant,
we can view the adjusted log-likelihood as the weighted sum of log-likelihood contributions. Suppose
we divide the time interval (0, τj ] into K sub-intervals where K is a significantly large number so
that λ∗(t) is constant within any sub-interval. That is, with 0 = t′j,0 < t′j,1 < · · · < t′j,K = τj ,
λ∗(t) is constant for t ∈ (t′j,k−1, t

′
j,k] and all k = 1, . . . ,K. Then,

ALL(X|Θ) =

m∑
j=1

[∫ τj

0

log λ(t|Θ)

λ∗(t)
dN(t)−

∫ τj

0

λ(t|Θ)

λ∗(t)
dt

]
(5)

=

m∑
j=1

K∑
k=1

[∫ t′j,k

t′j,k−1

log λ(t|Θ)

λ∗(t)
dN(t)−

∫ t′j,k

t′j,k−1

λ(t|Θ)

λ∗(t)
dt

]
(6)

=

m∑
j=1

K∑
k=1

1

λ∗(t′j,k)

[∫ t′j,k

t′j,k−1

log λ(t|Θ)dN(t)−
∫ t′j,k

t′j,k−1

λ(t|Θ)dt

]
(7)

is the sum of log-likelihood contributions in time intervals (t′j,k−1, t
′
j,k] weighted by the reciprocal

of the ground truth intensity at t′j,k for every j and k. The similarity is apparent when it is compared
to the similar form of standard log-likelihood:

LL(X|Θ) =

m∑
j=1

[∫ τj

0

log λ(t|Θ)dN(t)−
∫ τj

0

λ(t|Θ)dt

]
(8)

=

m∑
j=1

K∑
k=1

[∫ t′j,k

t′j,k−1

log λ(t|Θ)dN(t)−
∫ t′j,k

t′j,k−1

λ(t|Θ)dt

]
(9)

Therefore, we can weight each interval’s log likelihood by the inverse of the oracle rate to get the
adjusted log likelihood.
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3.1 Oracle approximation

Without access to λ∗, however, we must resort to approximation of the reweighting. One choice
for λ∗ is our current estimate λ̂. However, this could lead to unstable weightings because a single
example could dominate the weight distribution. To address this fairness-variance tradeoff, we
introduce the attention coefficient γ and stability factor ε to help stabilize the weights. Pseudocode
in Figure 1 (right) illustrates the training procedure and the stabilization modification. We call our
method harmonic mean point processes (HMPP) because if the oracle is known and doubly stochastic
(frail), then the estimates we get from the training procedure are harmonic mean estimates of the
rate distribution. Note that in practice when we use an approximation, the denominator must be
copied and detached from the computation graph so that the graph of which λ is a part is not further
connected by the current model’s predictions λ̂.

Figure 2 demonstrates the reweighting achieved with different choices of attention coefficient γ and
stability factor ε. To achieve equal rescaled-time weighting, γ must be set to 10, corresponding to
10-fold increased weight per 10-fold decrease in risk: the blue horizontal line. However, the number
of effective samples may become very small, shown by the number of effective samples (per 1) for
several common distributions. To avoid this, γ and or ε can be chosen to flatten the reweighting
distribution. In practice the predicted distribution is implicit and potentially unstable, and using
domain knowledge to set ε near to the lowest rate expected to be found will mitigate the instability
while still attending to the low risk individuals.

4 Experimental Setup

We test our method in two simulations, where we have access to ground truth rates, and in application
to a health setting, where we illustrate important factors and effects of our approach. In all cases, we
are comparing our objective versus the standard variant, and call the models Harmonic Mean Point
Processes (HMPP, ours) and Maximum Likelihood Point Processes (MLPP, comparison). We use this
labeling across multiple models and domains which we describe next.

4.1 Simulations

To test our ability to accurately determine the rates of low risk individuals, we developed a singly-
and a doubly- stochastic univariate model with rates varying by 4-6 orders of magnitude (104 to
106 fold variation in rates). In each case, events are sampled for 10 units of time according to a
sample-specific fixed rate λ∗, where λ∗ is drawn from a truncated, base 10 exponential between
10−2 to 102. For the singly-stochastic model, we sample events according to an exponential with
rate λ∗, and for the doubly-stochastic model, we sample events according to an exponential with
rate λ∗10u for u ∼ Uniform(−2, 0). Then, a time-stamped sequence is produced, containing tuples
of (id, time, event, value) features, with the first tuple containing (id, 0, rate, λ∗). Thus the recurrent
networks can learn from the value, or it can draw from the timing of previous events in the sequence.
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Figure 2: Rescaled-space weight based on relative predicted weight, attention coefficient γ
(MLPP : γ = 1), and attention stability factor ε (left). Effective sample size per example under
distributional assumption of rates (right).
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While these simulations are simple, it will demonstrate the point that recurrent networks without the
use of the adjusted log likelihood produce substantial overestimates for a large fraction of low-risk
samples. We sample 10,000 training and test examples for each simulation. We use an embedding
LSTM architecture for the simulations (Dong et al., 2018) and provide details in the Appendix.

4.2 Application: obtundation in intracerebral hemorrhage

We also apply our method to real data of neurological decline during critical care admissions for
intracerebral hemorrhage (ICH). We provide a brief description to motivate the problem and describe
the experimental setup for this application.

Intracerebral hemorrhage is a life-threatening extravasation of blood outside the vessel wall due to a
tear or rupture that results in a hematoma or accumulation of blood, which then presses upon the soft
tissue of the brain causing neuronal damage. Mortality rates are 40% at 1 month post diagnosis. In
these individuals, frequent monitoring of neurological status is essential. The Glasgow Coma Score
(GCS) is a score based on physical exam that provides an indicator for progression and recovery.
For ICH, GCS is a primary indicator in several ways. First, mortality stratification is conducted,
e.g. a hematoma larger than 60cm2 and a GCS score below 8/15 has a 1-month mortality rate of
90%. Similarly, decreasing GCS is a primary risk factor for poor long-term prognosis. Second, some
protocols use GCS below 8 as a threshold for intracranial pressure monitoring and intubation. As a
result, the rate of GCS testing in this population is high on average.

For many individuals, however decreasing GCS is unlikely to occur. Reasons for this could include:
a trajectory of neurological recovery, strong sedation has been given, or the patient is being held
for additional non-neurological reasons. In these individuals, while a decreasing GCS may be
less frequent, a decreasing GCS may be more significant. A decreasing GCS is also relatively
underweighted by learning algorithms that optimize for “easier” GCS predictions such as after
sedative administration. Modeling clinical risks from electronic health records (EHRs) may support
clinicians predicting decreasing GCS scores. We used data from MIMIC III v1.4 (Johnson et al.,
2016), an EHR housing critical care data on 40,000 individuals. Of those, 1,010 had a primary
diagnosis of ICH and were considered as members of our cohort. Chart, laboratory, medications,
vitals, procedures, and demographics tables were extracted as time-varying features for nowcasting
GCS decreases. GCS scores were recorded in the chart table in two versions depending on the vendor,
one by the component scores Eyes, Verbal, and Motor, and the other as an aggregate score. We
defined a decrease in GCS to be a decrease of any score not a result of intubation, or a first GCS
below 8 (an obtunded state indicative of poor outcomes). GCS readings inside the critical care unit
were considered only. Per individual, events within the first ICH encounter only were used. Figure 3
depicts the study characteristics and approach.

We use wavelet reconstruction networks (WRNs) with the objective function modification to accom-
modate the adjusted log likelihood. The details of the architecture are provided elsewhere (Weiss,
2018), but we provide a brief description. WRNs take as inputs the same 4-tuples as above but instead
of embedding events and values in bins for a recurrent architecture, they follow a Hawkes process ap-
proach where each event induces a function (a wavelet reconstruction) over time, and these functions
are reduced from many to produce a single non-negative rate function. WRNs have performed well in
health settings and hold the advantage that, unlike recurrent and dilated convolutional architectures,
the time bins need not be pre-specified.

We investigate the performance of the algorithms using inspection of calibration and variable impor-
tance plots. Notably, two common evaluation measures are not appropriate here, including: (1) log
likelihood, which attends to high risk individuals and is therefore not central for low-risk prediction
and (2) concordance (c-) statistic, which is not well defined for recurrent event processes. Instead,
we argue that calibration plots both enable visualization of discrimination through risk stratification
(order and magnitude) as well as calibration through predicted-versus-expected rate comparisons. We
construct calibration plots using the ordering given by the algorithm predictions, which illustrates
discriminative ability in the algorithms ability to stratify groups across the spectrum of risk (an alter-
native is to order by ground truth rates where the specific expressed goal of assessment is calibration).
In applications to real data, we cannot access ground truth, so we order by and use equal quantiles
with respect to the predictions.
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Feature n=1,010

Age 72 [59, 81]
Gender

Female 466 (0.46)
Male 544 (0.54)

Ventricular shunt 152 (0.15)
GCS 10 [7, 14]
Decreased GCS, count 3,119
Decreased GCS, rate 1 event / 1.5 days

All critical care encounters 
(n ~ 40,000)

Primary admission diagnosis:
intracerebral hemorrhage

(n = 1,010) 

Four column extraction: 
ID, TIME, EVENT, VALUE

Filter features up to first ICU
discharge

HMPP modelMLPP model

Calibration plots, 
Variable importances 

Train / tune / test sets 
(n = 505 / 101 / 404)

Figure 3: Characteristics of the ICH study population (median, [IQR] or count (%)) and flowchart of
the ICH analysis.

Figure 4: Calibration plots comparing HMPP and MLPP in simulation, singly stochastic (left) and
doubly stochastic (right) processes. HMPP predicts groups of individuals with rates an order of
magnitude smaller. For fixed effects this comes from improved calibration; for random effects, this
comes from discrimination between the low-low and low risk individuals.

Finally we use variable importance plots to illustrate which variables are central to the algorithm’s
predictions. Since permutation-based variable importance is not available for recurrent event models,
we use regularization-based variable importance, which ranks features in importance based on the size
of the loss suffered due to regularization on that variable. This typically requires a standardization
step for each variable, however, WRNs use wavelet mappings on the value and time distributions
that effectively standardize each variable automatically. Variable importance is of interest for our use
case in that it can highlight the interesting finding that variables identified as important in high-risk
prediction may be a very different set than those important in low-risk prediction.

We conduct training for 50 epochs using the Adam optimizer with a learning rate of 10−3 and a
batch size of 8. The reweighting at each training step also makes across-step ALL comparisons not
meaningful. Therefore, when choosing early stopping points, we use the tune set log likelihood. We
also used the tune set performance in our search over the following hyperparameters: γ ∈ {10, 2}
(ICH only), ε ∈ {0, 10−2} (ICH only), L1 regularization (LASSO) coefficient in {10−2, 10−3, 10−4},
and L2 regularization (ridge) coefficient in {0, 10−2}. Our implementation is in PyTorch v1.0.

5 Results

Figure 4 demonstrates the benefit of our method in simulations. In the singly-stochastic model (left
figure), both the HMPP and MLPP approaches discriminate risk across the spectrum, illustrated by
the (approximately) monotonic curves. However, the MLPP method never predicts hazards lower
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HMPP MLPP MLPP (HMPP par.)

IV solution Nasogastric fluid Foley catheter
Orogastric fluid Functional fibrinogen Osmolality:blood
Osmolality: blood Urine white blood cell count Temperature
Vancomycin level: blood Osmolality: blood Functional fibrinogen
IV dextrose in water: D5W IV drip labetalol IV phenytoin
Total cholesterol Vancomycin level: blood Phenytoin: blood
Lymphocyte count: csf Urine red blood cells IV normal saline
Urine sodium Basophil count:blood IV sterile water added
IV normal saline Urine ketones PO metoprolol

Figure 5: (Left) Calibration plots for HMPP and MLPP for GCS score decrease prediction. Lower
rate groups are identified in HMPP, at the cost of higher variability in predictions. (Right) Top 10
variable importances for HMPP (left), MLPP (right), and MLPP with HMPP regularization parameter
settings (bottom). Note the minimal overlap in the lists, and also note the smaller losses in HMPP,
illustrative of earlier stopping during HMPP training.

than 0.2 for any group, despite many of those groups having empirical rates near 0.01. By contrast,
the HMPP method straightens the low-risk tail and makes more accurate prediction in low risk
individuals. At the same time, risk predictions for high risk individuals are similar in quality. In this
case, the range of predicted risks from HMPP was half an order of magnitude larger than MLPP.

For the doubly-stochastic model where the formulation includes frailty, the performance of HMPP
and MLPP diverges further. In particular, Figure 4 right shows that in the face of random effects that
vary the rate ranges by 100-fold, MLPP focuses on the high end of the random effect distribution
and HMPP the low end. HMPP identifies groups of individuals with empirical rates an order of
magnitude smaller. It also identifies groups at larger rates, but appears to underestimate the rates for
these individuals. This could be due to overfitting of the training data leading to erroneously low
predictions on the test set. Nonetheless, HMPP detects low risk individuals in this setting whereas
MLPP does not acknowledge their low rates, instead limiting all predictions to greater than 0.1.

In the ICH study, the hyperparameters chosen were an elastic net formulation L1 and L2: 10−2 with
γ = 10 and ε = 0.01, suggesting the model is constrained by limited sample size. In this case, the
HMPP and MLPP models produce similar predictions as shown in Figure 5, with MLPP making
more conservative predictions and with small empirical risk differences, and HMPP making more
variable predictions with larger empirical risk differences. Discriminatively, the C statistic among the
lowest quartile was 0.68 (0.62-0.74, bootstrap CI 95%) and 0.66 (0.60, 0.72) for HMPP and MLPP
respectively. Thus, while HMPP does identify lower risk groups, the small sample size limits the
interpretation.

Even in this small data setting where the low-risk group is not newly identified by the method, we
can look at the variable importance plots to demonstrate a marked difference in result. Figure 5
(right) shows HMPP and MLPP variable importances for the top 10 features. Two features overlap,
osmolality and vancomycin levels. For the rest, the HMPP model is concerned with lab tests and
intravenous solution choices and quantities while the MLPP model is concerned about urine and
clotting lab tests. It could be that the need for stability in the form of increased regularization and
early stopping could be necessary for the HMPP model, so we additionally computed the variable
importances for the MLPP model with the same regularization settings, the top ten variables are also
shown, which share no increased overlap with the fair model. This illustrates that the factors that
influence proportional risk across the risk spectrum may differ substantially from those obtained from
simple likelihood optimization which attends to high risk.

6 Conclusion

Our work demonstrates a new tool to make risk predictions in low-risk populations, when the
population being studied possesses members with risk varying across orders of magnitude. We
provide a formulation that exhibits how to attend equally across risk, and provide an algorithm
and guidance to trade off fair attention with variance from reweighting. Importantly, our method
detects individuals an order of magnitude lower than predictions made by optimization with the
log likelihood and deep network–the combination of two popular approaches. We further illustrate
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implications of attending to low-risk individuals in the variable importances reported under each
optimization. This difference may have important applications in suggesting risk factors that are
stratum-specific, which can provide guidance in personalized decision making. Future work will
include explicit characterization of the proportionate attention-variance tradeoff which could provide
alternative approximations to the oracle rate with desirable properties.
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A Architecture

The architecture is given in Figure A.1. The idea is to use a LSTM (piano roll) embedding architecture,
where any number of events with or without values can first be embedded as line and point embeddings
respectively, and then the embedded signals are captured in a group embedding and passed into
LSTM time steps. This architecture facilitates flexible parsing of long format data typical of marked
point processes, such as that of digital orchestral music, or that of medical event streams. Categorical
events are treated as multiple point events, and point events are embedded as points. Real-valued
events are embedded based on their value, and so the event’s value domain corresponds to a line
embedded as a 1-dimensional manifold. These embedded vectors are then further embedded as a
group based on their timestamps, and fed into an LSTM that outputs non-negative rate predictions.
We use times steps of unit length with 10 steps in total.

Line embedding L: L(vi)

X = {ei, vi, ti}

ALL; adjusted LL Y = {ei = y, ti}, τ

Categorical/point Real

ti

Point embedding P

ti

{P,L}

LSTM

Piano roll embedding

Mode embeddings

Figure A.1: LSTM embedding architecture used for simulations.
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