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Abstract

Epidemiological studies identifying biological markers of disease state are valuable, but can be time-consuming,
expensive, and require extensive intuition and expertise. Furthermore, not all hypothesized markers will be borne out
in a study, suggesting that higher quality initial hypotheses are crucial. In this work, we propose a high-throughput
pipeline to produce a ranked list of high-quality hypothesized marker laboratory tests for diagnoses. Our pipeline
generates a large number of candidate lab-diagnosis hypotheses derived from machine learning models, filters and
ranks them according to their potential novelty using text mining, and confirms final hypotheses with logistic regression
analysis. We test our approach on a large electronic health record dataset and the PubMed corpus, and find several
promising candidate hypotheses.

Introduction

Epidemiological studies associating changes in biological markers (often measured by laboratory tests) and disease
states are an invaluable tool for better understanding disease mechanism, such as the Framingham heart study1. More-
over, many diagnostic criteria exploit such associations by testing for abnormal changes in the associated biological
marker. For example, the diagnostic criteria for Type II diabetes (a metabolic disorder that impacts how the cells
uptake glucose) includes a measurement of fasting blood glucose levels. The benefits of a well performed epidemio-
logical study are clear, but such studies can be time-consuming, expensive, and like any scientific study they require
some intuition of the link searched for. Further, not all hypothesized associations will be borne out in the data, and
thus the higher the quality of initial hypothesis, the more likely the study yields valuable medical information. In this
work, we attempt to generate a ranked set of high-quality candidate hypotheses through a combination of machine
learning, text-mining based literature searches, and traditional logistic regression analysis.

Our method identifies “novel predictive lab tests,” which we define as a previously unknown association between a
given disease state and a given biological marker (measurable by a laboratory test) that changes prior to diagnosis.
Our approach hinges on the assumption that a novel diagnostic lab test is 1) useful for predicting a given diagnosis
(via a machine learning model) and 2) not currently discussed in published medical literature on PubMed. Using these
criteria we hypothesize that given a set of candidate diagnoses, we can generate a set of high-quality novel diagnostic
lab tests in a five step procedure:

1. For each diagnosis, produce a machine learning model to predict it, and select the top k lab tests used for
prediction by their feature importance.

2. Map the clinic used name for each diagnosis and lab test to the literature used name (clinic names in our data
source commonly used names and abbreviations that may not have been found in literature).

3. Perform automated text-mining to search for literature associations between diagnoses and lab tests. This pro-
vides a pseudo knowledge-base of known diagnostic lab tests.

4. Rank novel diagnostic lab tests in a way that encourages high predictive usefulness and low literature presence.

5. Evaluate the top candidates with traditional logistic regression analysis to only retain hypotheses that are statis-
tically significant both with and without inclusion of potential confounders.



The use of Electronic Health Records (EHRs) to digitally capture patient health encounters has grown substantially in
recent years2. This has created unprecedented opportunity for secondary use of EHR data in combination with machine
learning algorithms to build predictive models for critical patient health events such as breast cancer3 or heart attack1

risk. Machine learning algorithms flexibly learn relationships in a data set without the need for hard coded rules. In this
work we first utilize a machine learning algorithm, specifically random forests4, to build predictive models of disease
for which we are interested in finding novel diagnostic lab tests. Random forests work by forming an ensemble of
multiple decision trees, each learned on a randomly bootstrapped sample of the original dataset. They are well known
for their strong predictive performance5 and resilience to applications with very large numbers of features4 (which is
true of EHR data).

While machine learning algorithms can give a quantitative prediction, or even a confidence of the prediction, one of
their common critiques is interpretability. That is, machine learning algorithms do not offer reasoning along with their
predictions. One way that data scientists can interpret machine learned models is by observing which features most
impact their predictions. The random forest algorithm has support for “feature importances”4 which provide a window
into the model by ranking the contribution of each feature to the construction of the model. In random forests, feature
importances are non-negative values for which larger values suggest a greater contribution of that feature towards
prediction. In this work, we use feature importances to discover potential novel predictive lab tests.

While a researcher might consider conducting manual literature searches to validate potential novel discoveries from
a trained model, the size and exponential growth in scientific literature6, 7 make this approach infeasible. The literature
search space to validate tens or hundreds of lab tests across tens or hundreds of diagnoses is too large for an individual
to reasonably explore. We therefore use a text mining approach to search for associations between diagnoses and
lab tests. For this work, we rely on KinderMiner, a previously developed algorithm designed to filter and rank a list
of target terms by their association in the literature with a key phrase of interest8. In our particular application, a
diagnosis name is the key phrase of interest, and the names of important lab features are the target terms to be ranked
by association with the diagnosis. In contrast to the original intent of KinderMiner, which is to rank the target terms by
their positive association with the key phrase within the literature, we are looking for labs deemed useful for prediction,
but which are not already well known in the literature. Thus, we modify KinderMiner to suit our needs by instead
filtering and ranking terms by significant lack of association with the diagnosis in the literature.

In this work, we demonstrate our proposed method of identifying novel predictive lab tests by gathering a set important
diagnoses and their most predictive lab tests from machine learning models. We then use text mining to filter and
rank hypothesized predictive lab tests based on negative association within the literature. Finally, we evaluate the
top hypotheses proposed by our method and find several to be promising candidates for further investigation. In
the following sections we specifically describe the pipeline: the selection of diagnoses and labs, the construction of
predictive models, text mining based filtration and ranking, and final confirmation of the hypotheses.

Selection of Diagnoses and Lab Tests

To select the set of important diagnoses to consider, we started with the 100 most common diagnoses by patient count
in our EHR dataset. We then manually filtered out diagnoses that we considered unlikely to be diagnosed via lab
tests or that were effectively a restatement of an abnormal lab value. For example, we removed ICD-9 code 719.46
(Pain in joint; lower leg) because it is likely a result of a mechanical ailment, and we removed ICD-9 code 272 (Pure
hypercholesterolemia) because it is a diagnosis of an abnormal lab value. We also manaully curated our diagnosis
descriptions to better reflect what we would expect to find in the literature and to include synonyms. For example,
“gout; unspecified” became just “gout” and “dysthymic disorder” became “dysthymic disorder” or “dysthymia.” See
Table 1 for our final chosen list of 69 diagnoses and the search terms we used for each.

Table 1: The 69 diagnoses that we considered along with all search terms we used for each. Alias search terms are
separated by semicolons.

ICD Code Diagnosis Name Curated Search Terms
162.9 Malignant neoplasm of bronchus and lung; unspecified site malignant lung cancer
174.9 Malignant neoplasm of breast (female); unspecified site malignant breast cancer



Table 1: (continued)

ICD Code Diagnosis Name Curated Search Terms
274.9 Gout; unspecified gout

300.01 Anxiety state; unspecified anxiety; gad; generalized anxienty disorder
300.4 Dysthymic disorder dysthymic disorder; dysthymia
305.1 Tobacco use disorder tobacco use

309.28 Adjustment disorder with mixed anxiety and depressed mood adjustment disorder
314.00 Attention deficit disorder of childhood without mention of hy-

peractivity
attention deficit disorder

314.01 Attention deficit disorder of childhood with hyperactivity attention deficit hyperactivity disorder; adhd
327.23 Obstructive sleep apnea (adult) (pediatric) obstructive sleep apnea
362.51 Nonexudative senile macular degeneration of retina senile macular degeneration
366.10 Unspecified senile cataract senile cataract; senile cataracts
366.16 Nuclear sclerosis nuclear sclerosis

367.0 Hypermetropia hypermetropia; farsightedness; hyperopia; far-
sighted

367.1 Myopia myopia
367.4 Presbyopia presbyopia

372.30 Unspecified conjunctivitis conjunctivitis
379.21 Vitreous degeneration vitreous degeneration

382.9 Unspecified otitis media otitis media
388.70 Unspecified otalgia otalgia

389.9 Unspecified hearing loss hearing loss
410.71 Acute myocardial infarction; subendocardial infarction; initial

episode of care
acute myocardial infarction; heart attack;
subendocardial infarction

411.1 Intermediate coronary syndrome intermediate coronary syndrome
413.9 Other and unspecified angina pectoris angina

414 Other forms of chronic ischemic heart disease chronic ischemic heart disease
424.1 Aortic valve disorders aortic valve disorder

427.31 Atrial fibrillation atrial fibrillation; afib
427.89 Other specified cardiac dysrhythmias cardiac dysrhythmia

427.9 Unspecified cardiac dysrhythmia cardiac dysrhythmias
428.0 Congestive heart failure; unspecified congestive heart failure

434.91 Unspecified cerebral artery occlusion with cerebral infarction ischemic stroke
440.9 Generalized and unspecified atherosclerosis atherosclerosis
443.9 Unspecified peripheral vascular disease peripheral vascular disease
461.9 Acute sinusitis; unspecified acute sinusitis

462 Acute pharyngitis acute pharyngitis
465.9 Acute upper respiratory infections of unspecified site acute upper respiratory infection
466.0 Acute bronchitis acute bronchitis
472.0 Chronic rhinitis chronic rhinitis
473.9 Unspecified sinusitis (chronic) chronic sinusitis
477.9 Allergic rhinitis; cause unspecified allergic rhinitis; hay fever; seasonal allergies

486 Pneumonia; organism unspecified pneumonia
490 Bronchitis; not specified as acute or chronic bronchitis

493.90 Asthma; unspecified; unspecified status asthma
496 Chronic airway obstruction; not elsewhere classified chronic airway obstruction

521.00 Unspecified dental caries dental caries; dental cavity
530.81 Esophageal reflux esophageal reflux; gerd

558.9 Other and unspecified noninfectious gastroenteritis and colitis non-infectious gastroenteritis; noninfectious
gastroenteritis; non-infectious colitis; noninfec-
tious colitis

562.10 Diverticulosis of colon (without mention of hemorrhage) colon diverticulosis
564.0 Unspecified constipation constipation
564.1 Irritable bowel syndrome irritable bowel syndrome



Table 1: (continued)

ICD Code Diagnosis Name Curated Search Terms
574.20 Calculus of gallbladder without mention of cholecystitis or ob-

struction
gallbladder calculus; gallstones; gallstone

584.9 Acute kidney failure; unspecified acute kidney failure; acute renal failure
585.3 Chronic kidney disease; Stage III (moderate) stage 3 chronic kidney disease; ckd stage 3
592.0 Calculus of kidney kidney calculus; kidney stone; nephrolithiasis
593.9 Unspecified disorder of kidney and ureter kidney disorder; ureter disorder
599.0 Urinary tract infection; site not specified urinary tract infection
600.0 Hypertrophy (benign) of prostate benign prostate hypertrophy

611.72 Lump or mass in breast breast mass; breast lump
616.10 Unspecified vaginitis and vulvovaginitis vaginitis; vulvovaginitis

625.3 Dysmenorrhea dysmenorrhea
626.2 Excessive or frequent menstruation excessive menstruation; frequent menstruation;

menorrhagia; polymenorrhea; hypermenorrhea
627.2 Symptomatic menopausal or female climacteric states symptomatic menopause; symptomatic

menopausal
692.9 Contact dermatitis and other eczema; due to unspecified cause contact dermatitis; eczema
702.0 Actinic keratosis actinic keratosis
706.1 Other acne acne
709.9 Unspecified disorder of skin and subcutaneous tissue skin disorder
723.4 Brachial neuritis or radiculitis NOS brachial neuritis
724.4 Thoracic or lumbosacral neuritis or radiculitis; unspecified thoracic neuritis; thoracic radiculitis; lum-

bosacral neuritis; lumbosacral radiculitis; tho-
racic radiculopathy; lumbosacral radiculopathy

729.1 Unspecified myalgia and myositis myalgia; myositis

To select the lab tests to consider, we assembled the union of the top 10 most important lab features (according to
our random forest models) from each of our 69 chosen diagnoses. There was substantial overlap of important features
between diagnoses, leaving us with a total of 52 different lab features from our EHR dataset. Just as with the diagnoses,
we curated the lab test names to better reflect what we would expect to find in the literature and to include synonyms.
See Table 2 for our list of 52 lab tests and the search terms we used for each.

Table 2: The 52 lab tests that we considered along with all search terms we used for each. Alias search terms are
separated by semicolons.

Lab Name Curated Search Terms
ALT (GPT) alanine aminotransferase
AST (GOT) aspartate aminotransferase test
Anion Gap anion gap
Bacteriuria Screen (Esterase) bacteriuria esterase; bacteriuria screen; bacteriuria test
Bacteriuria Screen (Nitrate) bacteriuria nitrate; bacteriuria screen; bacteriuria test
Bicarbonate (CO2) blood bicarbonate; blood co2; serum bicarbonate; serum co2
Bilirubin, Total-Neonatal neonatal bilirubin; neonatal bile
Calcium blood calcium; serum calcium
Chloride (Cl) blood chloride; serum chloride
Cholesterol cholesterol blood; serum cholesterol
Creatinine, Blood blood creatinine; serum creatinine
Culture Organism culture organism
Differential Segment Neut-Segs segmented neutrophils; segmented pmn
Direct Bilirubin direct bilirubin; conjugated bilirubin
Glom Filter Rate (GFR), Est estimated glomerular filtration rate; egfr
Glucose blood glucose; serum glucose
HDL Cholesterol high density lipoprotein; hdl cholesterol
Hematocrit (Hct) hematocrit



Table 2: (continued)

Lab Name Curated Search Terms
Hemoglobin (Hgb) hemoglobin
Low Density Lipoprotein(LDL-C) low density lipoprotein; ldl cholesterol
MCH mean corpuscular hemoglobin
MCHC mean corpuscular hemoglobin concentration
Mean Corpuscular Volume (MCV) mean corpuscular volume
Phosphorus blood phosphorus; serum phosphorus
Platelet Count (Plt) platelet count
Potassium (K) blood potassium; serum potassium
Prothrombin Time (PT)-INR prothrombin time; international normalized ratio
Rapid Strep Antigen rapid strep test
Red Blood Cell (RBC) Count red blood cell count
Red Cell Distribute Width(RDW) red cell distribution width
Sodium, Bld (Na) blood sodium; serum sodium
Thyroid Stimul Hormone-Mfld thyroid stimulating hormone
Total Cholesterol/HDL Ratio cholesterol ratio
Triglycerides triglycerides blood; triglycerides serum
Unconjugated Bilirubin unconjugated bilirubin
Urea Nitrogen,Bld urea nitrogen blood; serum urea nitrogen
Uric Acid,Bld uric acid blood; uric acid serum
Urinalysis-Coarse Gran urine coarse granular casts
Urinalysis-Color urine color
Urinalysis-Fine Gran urinary cast fine
Urinalysis-Hyaline urine hyaline
Urinalysis-RBC urine red blood cell
Urinalysis-Renal Epi renal epithelial cells urine
Urinalysis-Spec Type urinalysis specimen
Urinalysis-Specific Gravity urine specific gravity
Urinalysis-Turbidity urine turbidity
Urine Bile urine bile; urine bilirubin
Urine Blood urine blood
Urine Ketones urine ketones
Urine Urobilinogen urine urobilinogen
Urine pH urine ph
White Blood Cell Count (WBC) white blood cell count

Predictive Models and Feature Importance

For each of the 69 diagnoses of interest we constructed a random forest model using case-control matched patient
EHR data from Marshfield Clinic in Wisconsin. We phenotyped cases and controls from the EHR data using the “rule
of 2” with cases having 2 or more entries of the diagnosis on their record and controls having no entries. We matched
cases and controls based on age and date of birth (within 30 days) and we truncated all data for a case-control pair
following 30 days prior to the case patient’s first entry of the diagnosis of interest. In this fashion we generated 5,000
case-control pairs (a total of 10,000 patients). Our patient data included demographics, diagnoses, labs, vitals, and
procedures. Demographic features included age, sex, and date of birth. We summarize this information in Table 3. For
all features except demographics, we extracted the features as counts in the time windows: 1-year, 3-years, 5-years,
and ever. In this manner, our features were of the form “4 influenza diagnoses in the last 3-years”, or “2 high blood
glucose labs in the last 1-year”. We used the random forest implementation from the Python package scikit-learn9

version 0.15. Each forest was trained with 500 trees and 10% of the features randomly selected at each split. We chose
these setting a priori, as our prior research has performed well with these choices. All other settings for the forest used
default parameters. We extracted feature importance values using scikit-learn’s built in functionality which uses the
standard random forest feature importance calculation method4.



Table 3: Demographic summary for the Marshfield electronic health record population.

Characteristic Women Men Total
n 565,011 (51.5%) 532,083 (48.5%) 1,097,094
Mean age, yrs 46.7 ± 25.7 44.9 ± 25.5 45.8 ± 25.6
< 18 y.o 84,917 (15.0%) 98,183 (18.5%) 183,100 (16.7%)
18-39 y.o. 157,827 (27.9%) 137,967 (25.9%) 295,794 (27.0%)
40-59 y.o. 132,280 (23.4%) 123,642 (23.2%) 255,922 (23.3%)
≥ 60 y.o. 189,987 (33.6%) 172,291 (32.4%) 362,278 (33.0%)

Text-Mining

We modify the KinderMiner algorithm for the text mining portion of this work to determine which diagnostic lab tests
are likely novel in the literature. KinderMiner filters and ranks a list of target terms by their association with a key
phrase of interest. It accomplishes this through simple string matching and document counting within a given text
corpus. For each search, the user must specify the key phrase representing a concept of interest along with the list
of target target terms to be filtered and ranked by their association with the key phrase. KinderMiner then searches a
given text corpus for article counts matching the target terms and key phrase. Specifically, it computes a contingency
table of counts for each target term. For each target term, KinderMiner computes the number of articles containing
both, either, and neither of the target term and key phrase. The result of this procedure is a list of contingency tables
of document counts, one table for each target term. KinderMiner then performs a one-sided Fisher’s exact test on each
contingency table, filtering out target terms that do not demonstrate statistically-significant co-occurrence with the key
phrase according to a specified p-value threshold. Finally, the remaining target terms are ranked by the co-occurrence
ratio, which is the number of articles in which a target term co-occurs with the key-phrase divided by the total number
of articles in which the target term appears.

In this work, we make four modifications to the original KinderMiner algorithm (see Figure 1 for a visual representa-
tion). First, while the original KinderMiner algorithm finds exact string matches for target terms and key phrases, we
extend this by breaking target terms and key phrases into their constituent tokens and matching on all tokens in any
order or location within the document. For example, in the original KinderMiner a key phrase like “stage 3 chronic

Figure 1: Visual example of our modified KinderMiner, with contingency table and disassociation Fisher’s Exact Test
(FET) analysis of the diagnosis key phrase “breast mass” and the lab target term “blood sodium.” Target terms are
filtered by significance of disassociation with the key phrase and then sorted by the inverted co-occurrence ratio.



kidney disease” would need to match that string exactly to be counted and would not match the similar phrase “chronic
kidney disease, stage 3.” Our modification breaks this key phrase into five tokens (“stage”, “3”, “chronic”, “kidney”,
and “disease”) which must all be present in the document, but which do not need to match exactly in the original
phrasing order.

Second, we extend KinderMiner to accomodate alias matching for target terms and key phrases. For example, we may
expand a target term like “blood sodium” with an alias like “serum sodium.” Similarly, we can expand a key phrase
like “breast mass” with an alias like “breast lump.” This is important for key phrases and target terms that may be
referred to in multiple ways within the literature.

Third, in contrast to the original goal of KinderMiner, we wish to identify targets that are negatively associated with
the key phrase in the literature. To accomplish this, we modify KinderMiner’s filtration step by changing the one-sided
Fisher’s exact test to the opposite side test, thereby testing for significant negative association between each target term
and key phrase.

Fourth, we also change how KinderMiner ranks the final filtered set of associations. KinderMiner typically ranks
results by the co-occurrence ratio, the proportion of articles in which both the key phrase and target term occur over all
articles in which the target term occurs. This is useful because it gives a rough estimate of the magnitude of association
between the key phrase and the target term. In this work, we instead use the inverted co-occurrence ratio because it
gives a rough estimate of the disassociation. When computing this ratio, we also add a pseudo-count of one to each of
the article counts for when the key phrase and term co-occur, and when the target term appears without the key phrase.
We add these pseudo-counts because it is not rare to find a significant disassociation when there are zero articles in
which the term and key phrase co-occur.

As part of the filtration step, KinderMiner requires a p-value threshold for the Fisher’s exact test. While the original
paper used 0.00001 in all cases, we loosen that threshold to 0.05 for our work. Because there are already few candidate
lab-diagnosis pairs that appear unexpectedly disassociated in the literature, we care more about getting sufficient
candidate discoveries than filtering out false positives.

KinderMiner also requires a text corpus to search. We constructed our text corpus from the National Library of
Medicine’s MEDLINE/PubMed publicly available citation records10. We downloaded the annual baselines in XML
format, parsed, and then ingested them into an Elasticsearch index (version 2.4.6). Our initial ingest of the 2017
annual baseline was performed in June and July 2017, and we updated to the 2018 baseline in November 2017. The
dataset contains 27,947,480 citation records, with the abstracts indexed by Elasticsearch using two analysis chains.
The default analysis that we use for all of the searches in our work is Elasticsearch’s standard analyzer, which applies
a grammar-based tokenizer and lowercase filter to the text. We then use the Elasticsearch Query Domain Specific
Language to construct each of our queries in JSON. Altogether, a search for the key phrase “breast mass” (with alias
“breast lump”) and target term “blood sodium” (with alias “serum sodium”) would be equivalent to the following:

((‘‘breast’’ AND ‘‘mass’’) OR (‘‘breast’’ AND ‘‘lump’’)) AND ((‘‘blood’’ AND

‘‘sodium’’) OR (‘‘serum’’ AND ‘‘sodium’’))

Hypothesis Ranking and Evaluation

Once we have gathered a set of hypothesized lab-diagnosis pairs to consider, we must rank them to help prioritize the
best candidates for further investigation. Recall that we initially rank lab-diagnosis pairs by the inverted co-occurrence
ratio. While this provides a lab test ranking for a particular diagnosis, we have several hypotheses from different
diagnoses and we want to identify the most promising hypotheses overall. To do this, we construct a combined rank
score defined as the product of a literature score and a feature score. For the literature score, we simply use the inverted
co-occurence ratio, which takes on large values when a lab is infrequently mentioned with a diagnosis. For the feature
score, we use the feature importance of the lab value in the diagnosis model multiplied by the number of features in
that diagnosis model (as to not bias models with small numbers of features). The product of the literature score and
feature score thus gives a combined estimate of the novelty and the diagnostic importance of the lab.

With all the lab-diagnosis pairs ranked, we consider the top 20 hypotheses in more detail. To confirm each candidate,



we perform logistic regression analyses on the same dataset that was used to train the random forest. First, for each
hypothesis, we perform a logistic regression with the diagnosis as the response variable and the laboratory test as the
sole covariate. We use this to calculate the odds ratio of the lab in question. Second, we assess the odds ratio of the
lab test in the presence of potential confounders. Finally, we perform manual literature search for important findings
and decide if each is in fact novel.

Table 4: Summary and logistic regression odds ratios for the top 20 hypotheses. We compute the odds ratio of the lab
test for a given hypothesis in two ways: as the sole covariate, “Odds”, and including potential confounders, “Adjusted
Odds”. For both odds ratio calculations, we present the 95% confidence interval and bold 4 of the top 20 hypotheses
whose 95% confidence intervals exclude 1.0 both before and after including confounders.

Key ICD-9 Diagnosis Lab Test Odds Adjusted Odds
A 702.0 Actinic Keratosis Glucose 1.4 [1.3, 1.5] 0.67 [0.6, 0.74]
B 702.0 Actinic Keratosis Creatinine, Blood 1.4 [1.2, 1.6] 0.78 [0.67, 0.9]
C 367.4 Presbyopia Glucose 2.0 [1.8, 2.1] 0.95 [0.84, 1.1]
D 600.0 Benign Prostate Hypertrophy LDL Cholesterol 1.6 [1.5, 1.8] 0.89 [0.79, 1.0]
E 702.0 Actinic Keratosis Sodium, Bld (Na) 1.6 [1.2, 2.1] 0.85 [0.61, 1.2]
F 162.9 Malignant Lung Cancer LDL Cholesterol 1.1 [1.0, 1.2] 0.84 [0.76, 0.93]
G 461.9 Acute Sinusitis HDL Cholesterol 1.9 [1.6, 2.2] 1.4 [1.2, 1.7]
H 461.9 Acute Sinusitis LDL Cholesterol 1.8 [1.5, 2.2] 1.2 [1.0, 1.5]
I 472.0 Chronic Rhinitis Glucose 2.1 [1.8, 2.5] 1.4 [1.2, 1.7]
J 162.9 Malignant Lung Cancer HDL Cholesterol 1.0 [0.94, 1.1] 0.72 [0.65, 0.8]
K 496 Chronic Airway Obstruction LDL Cholesterol 1.1 [1.0, 1.3] 0.74 [0.66, 0.82]
L 521.00 Dental caries LDL Cholesterol 0.95 [0.85, 1.1] 0.87 [0.78, 0.97]
M 461.9 Acute Sinusitis Hemoglobin (Hgb) 2.1 [1.6, 2.6] 0.97 [0.75, 1.3]
N 473.9 Chronic Sinusitis Hemoglobin (Hgb) 2.6 [2.1, 3.3] 1.2 [0.93, 1.6]
O 367.0 Hypermetropia Hemoglobin (Hgb) 1.7 [1.4, 2.0] 0.77 [0.62, 0.96]
P 461.9 Acute Sinusitis Cholesterol 2.1 [1.8, 2.4] 1.4 [1.2, 1.6]
Q 496 Chronic Airway Obstruction Triglycerides 1.3 [1.1, 1.5] 0.81 [0.7, 0.94]
R 530.81 Esophageal Reflux-Gerd WBC Count 1.9 [1.7, 2.2] 0.93 [0.79, 1.1]
S 162.9 Malignant Lung Cancer Cholesterol 1.1 [1.0, 1.2] 0.8 [0.71, 0.89]
T 466.0 Acute Bronchitis Cholesterol 2.1 [1.8, 2.3] 1.3 [1.1, 1.5]

Figure 2: The odds ratios and confidence intervals of all 20 lab-diagnosis hypotheses. Includes odds ratios for both
with (right, red) and without (left, blue) covariates.

To select potential confounders for a given diagnosis, we perform L1-regularized logistic regression on a feature set
containing demographics, laboratory tests, and the top-level, whole integer ICD-9 codes. Moreover, our features for
laboratory tests and demographics are binary features capturing if the patient did or did not have an entry of a particular
health event in the last one year. We perform the L1-regularized logistic regression with scikit-learn9 and choose the



minimum number of covariates greater than or equal to five by slowly increasing the regularization parameter. Note
that as the cases and controls for this data were already age and sex matched we do not see these as discovered
confounders. We then use these five (or more) selected features as confounders in logistic regression analysis (with
R version 3.3.1) where we compute the odds ratio (and 95% confidence interval) of the lab in question both with an
without the identified confounders. If the lab in question has an odds ratio that both maintains the same sign in both
evaluations, and if the 95% confidence interval for both odds ratios exclude 1.0 (no change in odds), then we consider
the hypothesis to be validated by the logistic regression analysis.

Results and Discussion

In Table 4 we present, in rank order, the top 20 hypotheses found between labs and diagnoses. In Figure 2 we plot the
odds ratios of all 20 hypotheses both with and without potential confounders. We find that four of the 20 hypotheses
passed the secondary logistic regression analysis and maintained an odds ratio 95% confidence interval above 1.0
both with and without potential confounders. In all hypotheses except one, hypothesis L, we see that the inclusion of
confounders either diminishes or even reverses the trend found without confounders. For the four bolded hypotheses
that passed our logistic regression analysis, we present in Table 5 the covariates selected by the L1-regularized logistic
regression.

Table 5: Covariates included as potential confounders for the 3 diagnoses included in the 4 hypotheses that passed the
regression analysis. A minimum of 5 covariates were identified for each diagnosis, with Chronic Rhinitis including a
6th covariate as there was no L1 penalty that achieved 5.

Confounder Acute Sinusitis Chronic Rhinitis Acute Bronchitis
1 V72: Examination 461: Acute Sinusitus V72: Examination
2 Lab: Hemoglobin 473: Chronic Sinusitis Lab: MCHC
3 786: Respiratory Symptoms V72: Examination Lab: Hemoglobin
4 465: Acute URI 465: Acute URI 786: Respiratory Symptoms
5 462: Acute Pharyngitis 493: Asthma 465: Acute URI
6 786: Respiratory Symptoms

The four hypotheses that met our odds ratio criteria for further consideration effectively represented three distinct
hypothoses: cholesterol for acute sinusitis, cholesterol for acute bronchitis, and blood glucose for chronic rhinitis.
While we expected to find few hits by design, we manually searched PubMed for articles related to these findings.

First, manual literature search for an association between cholesterol and acute sinusitis did not turn up direct asso-
ciations. It did, however, turn up several hits for cholesterol granuloma of the maxillary sinus, which describes cysts
containing cholesterol crystals and other fluids surrounded by fibrous tissue11. Symptoms are vague, and there are only
two noted specific symptoms: clear golden yellow antral washout fluid, and washout containing cholesterol crystals.
A family history of hypercholesterolemia was noted in one study12. This tangential association between cholesterol
and sinus ailments within the literature, suggests to us that this discovered hypothesis is a promising lead for further
investigation.

Second, literature search for an association between cholesterol and chronic bronchitis turned up two relevant studies.
One study notes that low plasma lipid levels, particularly HDL cholesterol, is indicative of bacterial infection, and
that low total cholesterol is predictive of adverse outcomes in patients with lower respiratory infections13. Another
study suggests that lipid levels in airway mucus may be diagnostic for infection14. While the presence of these studies
suggests prior awareness of an association, the literature is limited and can be viewed as confirmatory of our approach.

Third, literature search for an association between blood glucose and chronic rhinitis turned up one study. The study
suggests that some antihistamine medications may affect blood glucose levels15. If true, this indicates that our hypoth-
esis may instead be a confounded result of patients with chronic rhinitis having abnormal blood glucose as a result of
antihistamine prescription, rather than blood glucose being predictive of rhinitis. Given the limited literature, however,
the hypothesis may still warrant further investigation.



Conclusion

In this work, we propose a high-throughput pipeline for generating high-quality hypotheses for novel lab tests to
predict diagnoses. We test our pipeline on a large electronic health record dataset and the PubMed corpus and, after
manual evaluation, find several promising hypotheses in the top candidates.

One limitation of this work is the current need for manual mapping of diagnosis and lab terms to curated search terms.
We expect that future work incorporating standardized naming and coding schemes in EHR datasets may obviate this
need or that the process may be automated more completely in the future. This would facilitate higher throughput
of diagnostic lab discovery by allowing us to run our pipeline on all diagnoses and all laboratory tests rather than a
subset.

Our pipeline leverages the latent knowledge and patterns present in electronic health record data and the PubMed
corpus to identify potentially interesting epidemiological findings. However, our proposed method does not eliminate
the need for experimental design and further investigation of findings. On the contrary, it augments this process, and
we argue that it represents a valuable addition by assisting with the prioritization of experiments when identifying
biomarkers of disease.
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