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Preamble: some motivation
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Convex optimization

Constrained format
min f(z)

where f : R" — RU {oo} and C' C R™ are convex and C' has some
“simple” structure.

Composite minimization format

min { f(z) +¢(z)}

PISIING

where f ¢ : R™ — RU {oo} are convex and 1 has some “simple”
structure.

Composite format subsumes the constrained format by taking
1 := d¢c where

0 ifzeC
(50(1‘)—{ oo ifzégC.
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Iconic algorithms for min f(x)
xeC

Let Il : R™ — C denote the orthogonal projection onto C'.

Projected subgradient method (SG)
pick gr € Of(xr) and t >0
i1 = Lo (zp — tegr)

Projected gradient descent (GD)
pick tp >0
T = Ho(zp — 66V f(21))

Conditional gradient (CG)

sk = argmin(V f(xx), s)
seC

pick 6 € [0,1]
T+l = Tk + ek(sk — xk)
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Iconic algorithms for mli&n {f(z) +9¢(z)}
:L\e n
Suppose the following proximal mapping is computable for all t > 0
) 1
g = Prox;(g) := argmin {w(y) + oy = g||2}
yeR”

Observe: if ¢ = d¢ then Prox; = Il for all £ > 0.
Proximal gradient (PG)

pick t; >0

Th41 = PI’Oth (I‘k — thf(:Ck))

Fast proximal gradient (FPG)
pick tr > 0 and B
Yk = Tk + Bk — T-1)
Tt1 = Proxy, (yr — 6V f (yk))

(Nesterov (1984), Beck-Teboulle (2009), Nesterov (2013),...)
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Convergence properties

Under suitable assumptions of smoothness and choice of stepsizes:

Algorithm ‘ Convergence rate

SG O(1/Vk)
GD, CG, PG O(1/k)
FPG O(1/k?)

Question

So many algorithms and so many convergence results.
Could all of the above be “unified”?

Answer: YES, via perturbed Fenchel duality.
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Theme

@ A generic first-order meta-algorithm satisfies a perturbed
Fenchel duality property.

@ The first-order meta-algorithm includes as special cases:
conditional gradient, proximal gradient, fast and universal
proximal gradient, proximal subgradient.

@ The perturbed Fenchel duality property yields concise
derivations of the best-known convergence rates for each of
these algorithms.
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Perturbed Fenchel Duality
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The Fenchel conjugate

Suppose f: R™ — RU{oo}. The Fenchel conjugate of f is:

f*(u) = sup {(u, z) — f(x)}.

rER™

Fenchel-Young inequality
For all z,u € R

) + f(@) 2 (u, ),
and the equality holds if and only if u € df(x).

Recall
Of(x) ={ueR": f(y) > f(x) + (u,y — x) for all y € R"}.
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Fenchel duality

Fenchel duality
The Fenchel dual of mingern {f(x) +¢(x)} is
max {—f*(u) —97(-u)}

Weak duality
For all x,u € R"

f(@) + () + f7(u) + ¢*(—u) = 0.
Thus Z,u € R™ are e-optimal if

f(@) + (@) + (@) + ¢ (-u) <e

10/37



Perturbed Fenchel duality

Gist of my story

First-order meta-algorithm generates x, ur € R™ such that

fxr) +b(ar) + [F(ur) + (¥ 4 di)" (—ur) <

for some d; > 0 and dj, : R™ — R, both converging to zero.

Observe
For all x € R™ we have

S (ur) + (b + di)" (—ur) = —f(z) — p(x) — di(x)
and thus perturbed Fenchel duality implies that

f@r) + (k) — (f(z) +¥(2)) < 6 + di().
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First-Order Meta-Algorithm
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First-order meta-algorithm

Want to solve min{ f(x) + ¢(x)}.
x
Suppose the following proximal mapping is computable for all t > 0

. 1
g — Prox¢(g) := argmin {1/)(3/) + —|ly — 9”2} .
yeRn 2t

Key ideas
o Generate two sequences sg, Yk
@ At iteration k pick gr € 9f(yx) and t; > 0 and update s via

sk = Proxy, (sp—1 — trgr)

@ Flexibility on the selection of yj.

Specific choices of y;: Bregman proximal (sub)gradient, fast
and universal Bregman proximal gradient.
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First-order meta-algorithm

Want to solve mxin{f(x) +Y(x)}.

First-order meta-algorithm
@ pick s_; € dom(v))
e fork=0,1,...
pick y, € dom(9f), gr € 0f(yx), and t >0
let s := Proxe, (sk—1 — tkgk)
end for

Some convenient notation

Let F:= f 4+ and for g € 0f(y) let Dy¢(x,y) denote the
following Bregman distance

Dy(z,y) = f(z) — fy) — (9,7 — y).
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Main Theorem

Let xg := s_1 and

k— k—
. Zz‘:ol tis; _ Zz‘:ol tigi d s - zo)? ot
= T, o W = o, o W) = e, e
Zi:() ti Zi:O ti 2Zi:0 ti Zi:O L
Theorem

The iterates generated by the above meta-algorithm satisfy

fog) + () + f*(ur) + (¥ + di)* (—ug)
S (6D, vy 56,0:)/0; — s — si-1]%/2)
Zf:_ol t;

<

for

D(z,y,s,0) :=F(x+6(s—z))— (1—-0)F(x)—0F(s)+0D¢(s,y).
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Convergence of Iconic First-Order Algorithms
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Proximal gradient

Want to solve min{ f(x) 4+ ¢(x)}. Suppose f is differentiable.

Proximal gradient
e pick yo € dom(2))
o for k=0,1,...
pick t > 0

let Y11 = Prox, (yx — tV f(yr))
end for

This is precisely the first-order meta-algorithm with y;, = sg_1.
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Proximal gradient

Recall F' = f + 1 and

D(z,y,s,0) =F(x+6(s—x)) — (1 —0)F(xz) — 0F(s) + 6D (s,y)
< 6D¢(s,y).

Thus Main Theorem yields

far) +P(ag) + £ (up) + (¢ + di)* (—ug)
- o (6D (@i, yiy 56,0:) /05 — |lsi — si1]?/2)
B St
- S (tiDy(si,si-1) — |lsi — si-1]2/2)
B St
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Theorem

Suppose the stepsizes satisfy D¢(s;, 5i—1) < 2%”5@ —s;_1||%. Then
for all x € R™

Tr — X 2
Fan) + vlen) — (@) + 9a)) < lzkzo'l

Proof: Main Theorem implies that
f(@g) +P(wg) + 7 (ug) + (P + dp)* (—ug) <0.
Thus for all z € R™

_ Mz —ol®

fx) + (k) — (f(z) +¢(2)) < di(z) = 23Ty
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Smoothness and O(1/k) convergence of proximal gradient

Suppose X := argmin, {f(z) + ¢(x)} # 0.

Smoothness
We say that f is L-smooth on C' if for all z,y € C

L-y—=|?

Dy(y,z) < 5
It is easy to see that f is L-smooth if Vf is L-Lipschitz.

When f is L-smooth on dom(v), we can take t; > 1/L and
recover the iconic O(1/k) convergence rate for proximal gradient:

f(@r) + Y(ex) = min{ f(2) + ¥(2)} < Ld'stégfxo)z
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Fast and universal proximal gradient

Fast and universal proximal gradient
@ pick zg := s_1 € dom(%))
e fork=0,1,...
let yr := (1 — Op)zk + Oksk—1 and pick tx > 0
let sy := Prox, (sg—1 — txV f(yx))
let xp41 = (1 - Hk)xk + 0151
end for

First-order meta-algorithm with y; = (1 — 0)zx + OrSk—1.

Observe: the sequence ¥, can also be written as

O (1 — 6_1)

0 () — xp—1)

Y = g +
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Convergence of fast proximal gradient

Theorem

Suppose t; is such thatt; - ’D(SL‘@, Yiy Siy 91)/01 < ||Sz — 81;1”2/2.
Then for all x € R™

Iz — wol|?

fzr) +Y(zr) — f(z) —¥(x) < s

Proof: Again Main Theorem implies that

f(@g) +P(wg) + 7 (ug) + (P + dp)* (—ux) <0.
Thus for all z € R™

Hﬂc—fvoH2

f@r) + () = (f(2) + ¢ (@) < di(z) = TR
=0 "
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Smoothness and O(1/k?) convergence
Recall that f is L-smooth on C' if for all z,y € C

Ly — x|

—

Fast proximal gradient: when f is L-smooth on dom(v)) we have

Dy(y,x) <

L-0|lsi — s
5 .
Thus we can take t; such that ¢;60; > 1/L. This implies that

1 0 2 \?
k=1, < L( > :
Zi:o t; te_q k+1

Recover iconic O(1/k?) convergence for fast proximal gradient:

D(Q?i, Yiy Sis QZ) S

2L - dist(X, 70)?
(k+1)2
Nesterov (1984), Beck-Teboulle (2009), Nesterov (2013), ...

fxy) +¢(xy) —min{f(z) +(x)} <
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Convergence of universal proximal gradient

Smoothness-like condition
Suppose v € [0,1] and M > 0 are such that for all z,y € C

M|z —y|["*”
D < .
fly) < 1+ v

Observe
Smothness-like holds if V f is v-Holder continuous.
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Convergence of universal proximal gradient

Theorem
Let € > 0 be fixed. Suppose the smoothness-like condition holds
on dom(v)) and t; is the largest such that

ti . D(mi,yi,si,ei)/@- S Hsz — 31‘—1H2/2 + tiG.

Then for all x € R™

T |z — 20|12
flar) +o(zr) — (f(x) +¥(x)) < M 1J%Hgfl:oﬂ e

€ 14+v k 1+v

Proof: Main Theorem implies that
[l — @o]|?
flag) + ) — flo) (@) < =7 -
2550 t
To finish: the smoothness-like condition yiglds
1 /= < 2M T+

— - — 1 143v *
Zf:ol t; t—1 €Tt kite

Recover O(1/k2") universal convergence by Nesterov (2015).
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First-Order Meta-Algorithm (non-Euclidean)
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First-order meta-algorithm (non-Euclidean)
Want to solve mwln{f(x) +¢(x)}.

Key ingredient
Let h: R" — RU{oco} be a convex and differentiable reference
function. Let Dj, denote the Bregman distance

Dp(y,z) = h(y) — h(z) — (Vh(z),y — z).

Key assumption
The following proximal mapping is computable for all £ > 0:

(g,5-) — arg;nin {(g, s) +(s)+ %Dh(s, 3_)} )

Example
h(z) = ||z[|3/2 ~ Dn(y,z) = [ly — z[l5/2.
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First-order meta-algorithm (non-Euclidean)

Want to solve mwln{f(x) +¢(x)}

First-order meta-algorithm (non-Euclidean)
@ pick s_; € dom(v))
o for k=0,1,...
pick yi € dom(9f), g € Of (yr), and t >0
pick s3, € argmin, {(gk, s) +b(s) + iDh(s, sk_l)}
end for
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Why consider non-Euclidean algorithms?

@ The Bregman proximal template provides a lot more flexibility.

@ The additional freedom to choose h can facilitate the
computation of the proximal mapping. For instance for
x € Ay :={x €R} :|z||; =1} the mapping

g — argmin{(g,y) + Dn(y,z)}
yeAnfl

is easily computable for h(z) = Y7 | x;log(z;).
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Main Theorem again
Let
s S g _ Dy(s,s-1) , U
T = g, W = e, o ) = e, =
Zi:() ti Zz‘:O ti Zi:O ti Zi:O ti

Theorem

The iterates generated by the above meta-algorithm satisfy

fxr) + (k) + [ (ug) + (P + di)* (—ug)
Sy (tD(4,yi, 5i,0:) /0; — Dp(si,5i-1))
Zi’:ol t;

<

for

D(z,y,s,0) :=F(x+6(s—z))— (1-0)F(x)—0F(s)+0D¢(s,y).
(Recall that F' = f 4 1.)
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Some special cases of first-order meta-algorithm

Bregman proximal gradient

Obtained by taking yr = sx—1. Get O(1/k) convergence if the
following relative L-smoothness assumption holds:

Dy(z,y) < L - Dp(z,y).

This O(1/k) convergence result was established by Bauschke et al.
(2016) and by Lu et al. (2018).

Fast and universal Bregman proximal gradient
1+3v

Obtained by taking yr = (1 — 0x)x + Oxsp—1. Get O(1/k™=2 )
convergence if the following smoothness-like property holds:

14+v

M -0 . Dp(s,s_)"2

_ _ <
D(1—0)z + s, (1 — )z + 0s_) < —

Related triangle-scaling property by Hanzely et al (2018).

Two more special cases: conditional gradient and proximal subgradient. ,
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Conditional gradient
Want to solve mxln{f(x) +Y(x)}.

Conditional gradient
@ pick zg € dom(f)
e fork=0,1,...
let gx := V f(zk)
pick sx € argmin, {{(gk, s) + ¥ (s)} and 6 € [0, 1]
let xpyq 1= (1 - Gk)xk + 0151
end for

This is the first-order meta-algorithm for
123
k
i=1ti

S_1=1xg, Y = Tk, h =0, and t; such that 0, =

(Mild assumption: 6y =1, and 6 € (0,1) for k > 1.)
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Conditional gradient
For the conditional gradient algorithm the Main Theorem yields

Zf:ol tiD(x4, 54, 05)/6;

fg) +¥(ar) + [ (ur) + 9" (—ug) < ST

for

D(x,s,0) = Ds(x +6(s — x),x)
TPz +0(s —x)) — (1= 0)¢(x) — 6Y(s).

Curvature condition (cf. Jaggi's curvature)

For v > 0 there exists M > 0 such that for all z,s € dom(v) and
6 € [0,1]

Mel—i—u

1+v

This holds in particular when dom(v)) bounded and V f is v-Holder
continuous.

D(z,s,0) <

33/37



Theorem

If the above curvature condition holds and 6;, = k-ﬁiu then

Fan) + ) + £ (wg) + 9" (—w) < M (zﬁﬁ) '

Proof: Main Theorem implies that
flar) +o(@r) + f(ur) + 9" (—u) < CGgapy,
where CGgap, = D(zo, S0, 1) and
CGgapyy1 = (1 — 0;)CGgapy, + D(x, s, 0r), k=1,2,....

Curvature condition and induction show that

14+v v
CG <M[|[——- | .
3Pk = <k+1+y>

O

The above generalizes the O(1/k) convergence of conditional gradient.
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Sublinear to linear spectrum of convergence rates
Define the duality gap function

gap(z,u) := f(z) + ¢ (2) + [*(u) + ¢ (—u).

Curvature-like condition

For v > 0 and r € [0, 1] there exists M > 1 such that for
z € dom(¢), g := Vf(x), s = argmin,{(g,y) +¥(y)} and
6 €0,1]

M91+1/
14+v
Previous curvature condition corresponds to special case r = 0.
Special case v = 1,r = 1 holds when V f is Lipschitz continuous
and ) is strongly continuous.

D(J},S,Q) < -gap(x,g)r.

Line-search procedure
Choose 6}, € [0,1] in the conditional gradient algorithm via

0r = argmin{(1 — 0)gap(zk, gx) + D(xk, sk, 0)}.
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Sublinear to linear spectrum of convergence rates
Consider the “best duality gap”: gapy := Bnin gap(xg, gk)-

=U,1,...,

Theorem

Suppose the curvature-like condition holds for some v > 0,7 € [0,1] and
the conditional gradient algorithm chooses 6, € [0, 1] via above
line-search procedure.

If r =1 then gap,, — 0 linearly:

k
12
a < 1—7 a .
& pk_( (z/+1)Mi> 8aPo

Ifr €10,1) then for k < ko := argmin{i : gap; < 1}

k
1%
gapy, < (1 - 1/+1> gapy,

and for k > kg

r—1 1—1r r—1
gap; < (gapko” + W(k - ko)) :
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Conclusions

Consider the problem m]iRn {f(z) +¢(z)} where f,1) convex.
reR™

@ Perturbed Fenchel duality: first-order meta-algorithm
generates iterates that satisfy

J(og) +(x) + [ (ur) + (Y 4 di)" (—ug) < 0

@ Convergence of most popular first-order methods readily
follows.
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