
Compressive Sensing, Lecture 3

Yesterday

• Proof of RIP property for Gaussian matrices

• Proof of signal recovery for RIP and RIPless sensing

• Convex optimization

Today

• Matrix rank minimization and nuclear norm

• Low rank plus sparse decomposition

• Transform invariant low-rank textures
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Linear matrix equations

Problem
Recover matrix X̄ ∈ Rn×n from m� n2 linear measurements

bk = 〈Ak, X̄〉, k = 1, . . . ,m b = A(X̄).

• In general this is impossible.

• Suppose we know rank(X̄) = r � n.
Could we get by with fewer than n2 measurements?

Possible approach for low-rank X̄

Take m� n2 measurements b = A(X̄) and then solve

min rank(X)
A(X) = b.
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Applications

Matrix completion (“netflix” problem)

• Preference matrix M .

• We only observe a small portion of its entries Mij .

• Fill in missing entries of M .

Sensor location

• n locations in Rd.

• We only measure a subset of pairwise distances.

• Find the locations.

Linear system identification

• Dynamical linear system

{
x(t+ 1) = Ax(t) +Bu(t)
y(t) = Cx(t) +Du(t)

• Find A,B,C,D from observations of input u(t) and output
y(t) for t = 0, 1 . . . , N .
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Norms

In compressed sensing there are three key norms: `1, `2, `∞.

Matrix norms

• Operator norm: ‖M‖ := max
‖x‖2=1

‖Mx‖2 = ‖σ(M)‖∞

• Frobenius norm: ‖M‖F :=
√∑n

i=1

∑n
j=1 |Mij |2 = ‖σ(M)‖2

• Nuclear norm ‖M‖∗ := ‖σ(M)‖1

Endow Rn×n with the inner product: 〈M,N〉 = trace(MTN).

With this inner product:

• The Frobenius norm is the Hilbert space norm.

• The nuclear norm is the dual of the operator norm.
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Rank minimization and convex relaxation

Nuclear norm heuristic for rank minimization problem (Fazel)

min rank(X)
A(X) = b

 
min ‖X‖∗

A(X) = b

Nuclear norm

‖X‖∗ :=
n∑

i=1

σi(X).

Theorem (Fazel)

The nuclear norm is the convex envelope of the rank function on
{M : ‖M‖ ≤ 1}.

Fact
Nuclear norm minimization can be cast as a semidefinite program.
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Dictionary vectors/matrices

Analogy between compressed sensing and low-rank recovery:

Parsimony concept cardinality rank
Hilbert space norm Euclidean Frobenius

Relaxed norm `1 nuclear
Dual norm `∞ operator

Convex relaxation linear programming semidefinite programming

The above can be seen in terms of the singular value map

X 7→ σ(X).
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Deterministic approach: restricted isometry

Restricted isometry property (RIP)

Given A : Rn×n → Rm and k ∈ {1, . . . ,m}, the k-isometry
constant δk is the smallest δ ≥ 0 such that

(1− δ)‖X‖2F ≤ ‖A(X)‖22 ≤ (1 + δ)‖X‖2F

for all X ∈ Rn×n with rank(X) ≤ k.

If δk < 1, we say that A satisfies the RIP with constant δk.
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Low-rank recovery and RIP property (Recht-Parrilo-Fazel)

Theorem
Assume X̄ ∈ Rn×n satisfies rank(X̄) ≤ r.

• If δ2r(A) < 1 then X̄ can be recovered (via, e.g., rank
minimization) from b = A(X̄).

• If δ4r(A) <
√

2−1 then the nuclear norm solution recovers X̄.

RIP for randomly generated matrices:

Theorem
If A is Gaussian, then A satisfies δ4r <

√
2− 1 if m ≥ Crn for

some suitable constant C.

The proofs of the above are extensions of the analogous proofs for
RIP approach to compressed sensing.
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A probabilistic approach

Probabilistic approach:

• Fix X̄ ∈ Rn×n with rank(X̄) = r � n.

• Pick random Gaussian A : Rn×n → Rm and put b = A(X̄).

• Let X̂ := argminX{‖X‖∗ : A(X) = b}.

Theorem (Candès and Recht)

If m ≥ r(6n− 5r) for β > 1, then recovery is exact with
probability at least 1− 2e(1−β)n/8.
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Matrix completion

Problem
Assume M low rank and observe a subset of entries. Recover M .

• This is certainly an undetermined system of matrix equations.

• Unfortunately RIP fails in most interesting cases.

Model
Ω uniform random subset of {1, . . . , n} × {1, . . . , n}.
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When is matrix completion possible?

Bad cases
Observe that if

M = e1v
∗

then recovery is not possible from a random small set of entries.

Likewise if
M = uv∗

where u, v are sparse vectors.

Coherence

• In the above cases the rows and/or columns of M are aligned
with the basis vectors.

• Coherence is a measure of this kind of alignment.
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Incoherence

Assume M has singular value decomposition

M = UΣV ∗,

and let r = rank(M).

Coherence parameter

Smallest µ > 0 such that for i = 1, . . . , n

‖U∗ei‖22 ≤
µr

n
, ‖V ∗ei‖22 ≤

µr

n

and
|UV ∗|ij ≤

µr

n2
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Incoherence and matrix completion

Consider the nuclear norm heuristic

min ‖X‖∗
Xij = Mij , (i, j) ∈ Ω.

Theorem (Candès & Recht)

Assume rank(M) = r and Ω is a random set of size m. If

m ≥ Cµr(1 + β) log2 n

then the solution to the nuclear norm heuristic is exact with
probability at least

1− n−β.
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Theoretical limits of matrix completion

The above result is nearly optimal:

Theorem (Candès & Tao)

No method can ensure recovery with high probability if

m . µ · nr · log n.

Neat connection with random graph theory

• For successful matrix recovery, the adjacency graph defined by
entries in Ω must be connected.

• Given a bipartite graph, how many random edges should we
pick to get a single component?
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More general result
Assume {A1, . . . , An2} orthonormal basis of Rn×n and
M = UΣV ∗.

Coherence
M has coherence µ with respect to {A1, . . . , An2} if either

max
k
‖Ak‖2 ≤

µ

n

or

max
k
‖PUAk‖2 ≤

µr

n
, max

k
‖AkPV ‖2 ≤

µr

n
, max

k
|〈Ak, UV

∗〉 ≤ µr

n2
.

Theorem (Gross)

Exact recovery with probability at least 1− n−β if

m ≥ Cµr(1 + β) log2 n.
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Low rank + sparse decomposition

Separation problem

Suppose M = L0 + S0 where L0 low rank and S0 sparse.
If we observe M , could we recover L0 and S0?

Applications

• Robust PCA

• Latent variable detection

• Video surveillance

Nuclear & `1 heuristic (PCP)

min ‖L‖∗ + λ · ‖S‖1
L+ S = M.
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Recovery theorems

Low rank plus sparse separation:

• It is not possible in certain cases, e.g, if a matrix is both low
rank and sparse.

• Recovery statements depend on matrix coherence.

Theorem
Suppose M = L0 + S0 ∈ Rn×n where

rank(L0) ≤ ρrn

µ
, ‖S0‖0 ≤ ρsn2.

Then PCP succeeds with probability 1− C
n10 for λ = 1/

√
n.
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Matrix completion with corrupted data

Suppose entries of M may be both missing and corrupted.
Can we recover M?

Extended PCP

min ‖L‖∗ + λ · ‖S‖1
Lij + Sij = Mij , (i, j) ∈ Ω.

Theorem

• L0 ∈ Rn×n, rank(L0) ≤ ρrn
µ log2 n

• Ω random set of size cn2, where c ∈ (0, 1).

• Each observed entry is corrupted with probability τ ≤ τs.
Then PCP succeeds with probability 1− C

n10 for λ = 1√
cn

.
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Relationship with matrix completion

Suppose we have no corruption.

MC: recovery via

min ‖L‖∗
Lij = Mij , (i, j) ∈ Ω.

PCP: recovery via

min ‖L‖∗ + λ · ‖S‖1
Lij + Sij = Mij , (i, j) ∈ Ω.

Under suitable conditions both yield the same answer.

The second one is a robust version of the first one.

19 / 22



Transform invariant low-rank textures (TILT)

Zhang-Ganesh-Liang-Ma

Suppose a low rank matrix is both corrupted and misaligned.
Can we recover it?

Model

M ◦ τ = L0 + S0

L0: low rank, S0: sparse, τ : parametric deformation.

Problem
Given M , can we find the above decomposition?

Approach

Find L, S, τ that solves

min ‖L‖∗ + λ · ‖S‖1
L+ S = M ◦ τ.
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Examples

red windows indicate the original input 3

(a) Input (r = 35) (b) Input (r = 15) (c) Input (r = 53) (d) Input (r = 13)

(e) Output (r = 14) (f) Output (r = 8) (g) Output (r = 19) (h) Output (r = 6)

Fig. 1 Low-rank Textures Automatically Rectified by Our Method. From left to right: a butterfly; a face; a tablet of Chinese
characters; and the Leaning Tower of Pisa. Top: red windows denote the original input, green windows denote the deformed texture

returned by our method; Bottom: textures in the green window rectified for display. We notice that the rank of the image matrix,

denoted by r, is much lower for the rectified textures.

examples). In some sense, many conventional features
mentioned above such as edges, corners, symmetric pat-
terns can all be considered as special instances of such
low-rank textures (see Figure 2). Clearly, an image of
such a texture may be deformed by the camera projec-
tion and undergoes certain domain transformation (say
affine or projective). The transformed texture, viewed
as a matrix, in general is no longer low-rank in the im-
age domain. Nevertheless, by utilizing advanced convex
optimization tools from matrix rank minimization, we
will show how to simultaneously recover such a low-rank
texture from its deformed image and the associated de-
formation.

Our method directly uses raw pixel values of the im-
age (window) and there is no need for any pre-extraction
of low-level, local features such as corners, edges, SIFT,
and DoG features. The proposed solution and algorithm
are inherently robust to gross errors caused by corrup-
tion, occlusion, or cluttered background as long as they
affect a small fraction of the image pixels. Furthermore,
our method applies to any image region where there
are sufficient low-rank textures, regardless of the size
of their spatial support. Thus, we are able to rectify
not only small local patches around an edge or a corner
but also large global symmetric regions such as an en-
tire facade of a building. We believe that this is a very
powerful new tool that allows people to accurately ex-
tract rich structural and geometric information about
the 3D scene from its 2D images, that are truly invari-
ant of image domain transformations.

Organization of this paper: The remainder of this pa-
per is organized as follows: Section 2 gives a rigorous
definition of “low-rank textures” as well as formulates
the mathematical problem associated with extracting
such textures. Section 3 gives an efficient and effective
algorithm for solving the problem. We provide exten-
sive experimental results to verify the efficacy of the
proposed algorithm as well as the usefulness of the ex-
tracted low-rank textures in Section 4. In Section 5, we
discuss some potential extensions and variations to the
basic formulation.

2 Transform Invariant Low-rank Textures

2.1 Definition of Low-rank Textures

In this paper, we consider a 2D texture as a func-
tion I0(x, y), defined on R2. We say that I0 is a low-
rank texture if the family of one-dimensional functions
{I0(x, y0) | y0 ∈ R} span a finite low-dimensional linear
subspace i.e.,

r
.= dim

(
span{I0(x, y0) | y0 ∈ R}

)
≤ k (1)

for some small positive integer k. If r is finite, then we
refer to I0 as a rank-r texture. Figure 2 shows some
ideal low-rank textures: a vertical or horizontal edge
(or slope) can be considered as a rank-1 texture; and a
corner can be considered as a rank-2 texture. To a large
extent, the notion of low-rank texture unifies many of
the conventional local features. By this definition, it is
easy to see that images of regular symmetric patterns

green windows indicate texture found
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