Compressive Sensing, Lecture 3

Yesterday

e Proof of RIP property for Gaussian matrices
e Proof of signal recovery for RIP and RIPless sensing

e Convex optimization

Today

e Matrix rank minimization and nuclear norm
e Low rank plus sparse decomposition

e Transform invariant low-rank textures
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Linear matrix equations

Problem
Recover matrix X € R™ ™ from m < n? linear measurements

bk:<Ak,X>, kZl,...,me:A(X).

e In general this is impossible.

e Suppose we know rank(X) = r < n.

Could we get by with fewer than n? measurements?

Possible approach for low-rank X
Take m < n? measurements b = A(X) and then solve

min rank(X)
A(X) =b.



Applications

Matrix completion (“netflix” problem)

e Preference matrix M.
e We only observe a small portion of its entries M;;.

e Fill in missing entries of M.

Sensor location

e 1 locations in R
e We only measure a subset of pairwise distances.

e Find the locations.

Linear system identification

z(t+1) = Az(t) + Bu(t)

y(t) = Cx(t) + Du(t)

e Find A, B,C, D from observations of input u(t) and output
y(t) fort =0,1...,N.

e Dynamical linear system {
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Norms

In compressed sensing there are three key norms: /1, 0o, {.

Matrix norms

e Operator norm: ||[M|| := max ||[Mz|2 = |o(M)] e

[lell2=1
e Frobenius norm: | M||p := \/Z?:l Y01 | Mg |? = [lo(M))]|2
e Nuclear norm | M ||, := ||o(M)]1

Endow R™ ™ with the inner product: (M, N) = trace(MTN).

With this inner product:
e The Frobenius norm is the Hilbert space norm.

e The nuclear norm is the dual of the operator norm.



Rank minimization and convex relaxation

Nuclear norm heuristic for rank minimization problem (Fazel)

min rank(X) _, in [1X]«
AX)=b AX)=b

Nuclear norm

1X[L =3 0i(X).
=1

Theorem (Fazel)

The nuclear norm is the convex envelope of the rank function on
{M - [|M] <13

Fact

Nuclear norm minimization can be cast as a semidefinite program.
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Dictionary vectors/matrices

Analogy between compressed sensing and low-rank recovery:

Parsimony concept cardinality rank
Hilbert space norm Euclidean Frobenius
Relaxed norm /1 nuclear
Dual norm loo operator
Convex relaxation | linear programming | semidefinite programming

The above can be seen in terms of the singular value map

X — o(X).
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Deterministic approach: restricted isometry

Restricted isometry property (RIP)
Given A : R™"™ — R™ and k € {1,...,m}, the k-isometry
constant ¢, is the smallest § > 0 such that

L= )IXNE < [AX)IE < 1+ o) X]E

for all X € R™*™ with rank(X) < k.
If 6 < 1, we say that A satisfies the RIP with constant dy.
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Low-rank recovery and RIP property (Recht-Parrilo-Fazel)

Theorem
Assume X € R™*" satisfies rank(X) < r.

o If 55,(A) <1 then X can be recovered (via, e.g., rank
minimization) from b = A(X).
o Ifdg(A) < /2 —1 then the nuclear norm solution recovers X .

RIP for randomly generated matrices:
Theorem

If A is Gaussian, then A satisfies 64, < v/2 — 1 if m > C'rn for
some suitable constant C'.

The proofs of the above are extensions of the analogous proofs for
RIP approach to compressed sensing.
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A probabilistic approach

Probabilistic approach:
e Fix X € R™™" with rank(X) =r < n.

e Pick random Gaussian A : R®*" — R™ and put b = A(X).

o Let X := argminy{|| X : A(X) = b}.

Theorem (Candes and Recht)

If m > r(6n — 5r) for 3 > 1, then recovery is exact with
probability at least 1 — 2e(1=5)n/8,
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Matrix completion

Problem
Assume M low rank and observe a subset of entries. Recover M.

e This is certainly an undetermined system of matrix equations.

e Unfortunately RIP fails in most interesting cases.

Model

Q uniform random subset of {1,...,n} x {1,...,n}.
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When is matrix completion possible?

Bad cases
Observe that if
M = ev*

then recovery is not possible from a random small set of entries.
Likewise if
M = uv*

where u, v are sparse vectors.

Coherence

e In the above cases the rows and/or columns of M are aligned
with the basis vectors.

e Coherence is a measure of this kind of alignment.
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Incoherence

Assume M has singular value decomposition
M =UXV™,
and let r = rank(M).

Coherence parameter
Smallest p > 0 such that fori =1,...,n

T T
j07eills < & Vel < &

and ur
UV7]i < 75
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Incoherence and matrix completion

Consider the nuclear norm heuristic
min || X

Xij = M;j, (i,j) € Q.

Theorem (Candés & Recht)
Assume rank(M) = r and Q) is a random set of size m. If

m > Cur(1+ 6)log’n

then the solution to the nuclear norm heuristic is exact with
probability at least
1—n".
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Theoretical limits of matrix completion

The above result is nearly optimal:

Theorem (Candes & Tao)

No method can ensure recovery with high probability if

m < p-nr-logn.

Neat connection with random graph theory

e For successful matrix recovery, the adjacency graph defined by
entries in 2 must be connected.

e Given a bipartite graph, how many random edges should we
pick to get a single component?
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More general result
Assume {A1,..., A,2} orthonormal basis of R"*"™ and
M =UXV*.

Coherence
M has coherence p with respect to {Ay,..., A2} if either

max [| 42 < &
k n

or

wr

2 Hr 2 ur *
o [P A2 < 7 s AP < 7 e (A, 0V < 22

Theorem (Gross)
Exact recovery with probability at least 1 — n=" if

m > Cur(1+ 3)log?n.
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Low rank -+ sparse decomposition

Separation problem

Suppose M = Lg + Sy where Ly low rank and Sy sparse.

If we observe M, could we recover Ly and Sj?

Applications
e Robust PCA

e Latent variable detection

e Video surveillance

Nuclear & ¢ heuristic (PCP)

min [ Ll + - [|S])y
L+S=M.
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Recovery theorems

Low rank plus sparse separation:

e |t is not possible in certain cases, e.g, if a matrix is both low
rank and sparse.

e Recovery statements depend on matrix coherence.

Theorem
Suppose M = Lo + Sy € R™™"™ where

prn
"

rank(Lo) < =—, [[Sollo < psn®.

Then PCP succeeds with probability 1 — % for A\ =1/\/n.
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Matrix completion with corrupted data

Suppose entries of M may be both missing and corrupted.
Can we recover M7

Extended PCP

min || L[}« + A - [|S]h
Lij + Sij = Mija (’L,]) e Q.
Theorem
o Ly € R™"™  rank(Lg) < —£=5

= plogn
e Q random set of size cn?, where ¢ € (0,1).

e Each observed entry is corrupted with probability T < 5.

Then PCP succeeds with probability 1 — n—cfo for A = \/%
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Relationship with matrix completion

Suppose we have no corruption.

MC: recovery via

min 2]l
Lij = My;, (i,5) € Q.

PCP: recovery via

min |||l + A+ |15
Ll'j + Sij = Mija (Z,]) € Q.

Under suitable conditions both yield the same answer.

The second one is a robust version of the first one.
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Transform invariant low-rank textures (TILT)

Zhang-Ganesh-Liang-Ma

Suppose a low rank matrix is both corrupted and misaligned.
Can we recover it?

Model

Mot =Lo+ S
Lg: low rank, Sy: sparse, 7: parametric deformation.

Problem
Given M, can we find the above decomposition?

Approach
Find L, .S, T that solves

min  |[Lfl« + A+ [|S]h
L+S=MorT.
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Examples

red windows indicate the original input
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