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Conditional gradient algorithm
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Conditional gradient algorithm

Consider the problem

min f(x).

zeC

Conditional gradient (CG) algorithm
@ pick xg € C
e for k=0,1,... pick 0 € [0,1] and let
s = argmin(V f(zx), y)
yel
Try1 = Tk + Op(sp — 7)

Introduced by Frank & Wolfe in 1956, and thus also known as the
“Frank-Wolfe Algorithm.” Very popular since around 2010.
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Intuition for CG update
Ty =x+0(s — ) for s = argmin, .(V f(z),y) and 0 € [0,1].

C

Picture from Jaggi's paper “Revisiting Frank-Wolfe” ICML 2013.
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Conditional gradient algorithm

Technical assumptions
o C' C R"™is compact and convex equipped with linear oracle:

g — argmin(g,y).
yelC

e f:C — R is convex and differentiable.

Main properties
o CG does not use projections. It uses a linear oracle instead.

@ CG has nice sparsity-like properties for suitable domains and
linear oracles.

o CG is affine invariant.
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Affine invariance
Recall main problem

min f(z). (1)

Consider the problem obtained after an affine change of variables:
min f(Z) (2)
zeC

where ~ B 3

f=foA and C=A"Y0) & C=A(C)
for some affine bijection A : R" — R™.

Suppose CG is applied to (1) and (2) starting from z € C' and
Z € C respectively.

Affine invariance

If z = A% then the next iterates satisfy z, = A%, as well.
An affine change of variables does not change the algorithm.

6/34



Affine invariance details (when A is linear)
The iterates =1 and Z, are respectively
ry=x+0(s—x), T =T+60(5—2)

for

s = argmin(V f(x),y), 5 = argmin(Vf(Z), 7).
yeC gel

Since f = f o A we have Vf(Z) = A*Vf(AZ) and so
(VJ(#),9) = (A"V(AZ),§) = (V[ (AZ), Aj).

Furthermore, C = A(C) and x = Az imply that

As = argmin (Vf(Az), Ag) = argmin(V f(x),y) = s.

AGEA(D) yeC
Therefore
Aty =A@ +0(5—2)=x+0(s—x) =x4.
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Theme of this talk

Recall main problem

f* = min f(x)

zeC

and conditional gradient algorithm
s = argmin(V f(zx), y)
yel
Tht1 = T + Ok(sk — xk) for 6;, € [0, 1]

Theme of this talk
Affine invariant convergence rates for f(xp) — f* via a growth

property of the pair (f,C).

Convergence rates range from sublinear to linear depending on the
degree of the growth property.
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Starting point

Key property

Affine-invariant finite curvature property (to be defined soon)

Theorem (Jaggi 2013)

If f has finite curvature on C then

fa -1 =0(3).

Main development

Generalize finite curvature to an affine-invariant r-growth property
for r € [0,1]. Then show that

) = f* =0 (kl) .
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Growth property and affine invariant convergence
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Bregman distance, curvature

Recall main problem

min f(x).

zeC

Bregman distance Dy
Dy(y,z) = f(y) — f(x) = (Vf(z),y — ).

Finite curvature (adapted from Clarkson 2010 and Jaggi 2013)

Say that f has finite curvature on C' if there exists M < oo such
that for x € C, s = argmin,(V f(x),y), and 6 € [0, 1]

2
Dyl +0(s — a)2) < -

This property holds when V f is Lipschitz continuous on C.
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Suboptimality gap and Wolfe gap
Recall main problem

f* = min f(x).

zeC

Define subopt : C'— R and gap : C — R as follows

= f(x) = f*
gap(z) == (Vf(z),z - s)

subopt ()

for s = argmin, - (V f(2),y).

Key facts
For all z € C we have gap(z) > subopt(z).

Forz € C, s = argmin c(Vf(2),y), and 0 € [0,1] we have
subopt(z+60(s—z)) = subopt(x)—0-gap(z)+Ds(x+0(s—z),x).
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Growth property (simplified version)

Suppose r € [0, 1].
Say that (f, C) satisfies the r-growth property if there is M < oo
such that for = € C, s = argmin,co(V f(x),y), and 6 € [0,1]

2—r MGZ 2
D¢(x+6(s — x),z) - subopt(z)“™" < 5 gap(x)“.

Observe
@ Growth property is affine invariant.

e Finite curvature (Clarkson 2010, Jaggi 2013) = 0-growth.
Indeed, O-growth follows from subopt(z)? < gap(x)? and

M6?
< :

Di(x+0(s —x),x) < 5
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Main theorem: affine invariant convergence

Consider the iterates xp, £k =0,1,... generated by CG. Let
subopt,, := subopt(zg) = f(zx) — f*
To ease notation, suppose CG chooses 6, via

O = argmin f(zy + 0(sp — xx)).
0€[0,1]

(This assumption can be relaxed. More on this matter later.)
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Main theorem: affine invariant convergence

Theorem (P. 2022)

Suppose (f,C) satisfy the r-growth property. Then
For r =1 we get linear convergence

k

1 1
bopt; < subopty (1 — - -minql, — .
suopk_suop0< 5 mm{,M}>

For r = 0 we get sublinear convergence (as in Jaggi 2013)

subopt, <

E+3

Forr € [0,1) we get

1
subopt;, = O ( i ) :
kl—r
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Sufficient conditions for r-growth
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Lipschitz continuity

Recall our main problem and introduce some notation. Let

[ i=min f(z) and X*:={z € C: f(x) = f*}.

zeC

Suppose R" is endowed with a norm || - ||.

Say that Vf is Lipschitz continuous on C' if there exists L. < oo
such that for all z,y € C

IVF(y) = V@) < Ly — =,

In this case, it readily follows that for all z,s € C and 6 € [0, 1]

L - diam(C)?

. 62
2

De(x +0(s—x),x) <

and so (f, C) satisfies the O-growth property.
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Error bound and uniform convexity

Suppose v € [0,1/2]. Say that (f,C) satisfies the y-error bound
condition if there exists K < oo such that for all z € C

lo = X" < K- (f(x) — 7).

Suppose p > 2. Say that C' C R"” is p-uniformly convex if there
exists 1 > 0 such that for all z,y € C, 6 € [0,1], and ||z|| < 1

x4 0(y — ) + %9(1 —O)|ly — x|z € C.

Remark

Lipschitz continuity, ~-error bound, and p-uniform convexity
properties are affine invariant.

The corresponding constants L, K, pi are not.
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Canonical examples

@ Suppose A € R™*" h € R™ and
1 2
fl@) = 314z - bl

Then V£ is Lipschitz continuous and (f,C') satisfies the

1/2-error bound condition for any closed convex C' C R™.

@ Suppose p >1and C = {z € R": ||z|, < 1}.
o If 1 <p < 2then C is 2-uniformly convex.
o If p > 2 then C'is p-uniformly convex.
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Sufficient conditions for r-growth

Proposition (P. 2022)
Suppose V f is Lipschitz continuous on C. Then

(a) (f,C) satisfies the r-growth property forr = 2/p if C is
p-uniformly convex and V f is bounded away from zero in C.

(b) (f,C) satisfies the r-growth property for r = 2~ /p if C' is
p-uniformly convex and the ~y-error bound holds.

(c) (f,C) satisfies the r-growth property for r = 2 if
X* C ri(C) and the ~-error bound holds.

Recall main theorem: if r-growth holds then CG iterates satisfy

1
suboptk:(’)< T )

k 1—7r
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Consequences of main theorem and proposition

Corollary (Kerdreux et al. 2021)

Suppose C' is p-uniformly convex, V f is Lipschitz continuous on
C, and V f is bounded away from zero in C'. Then the CG iterates
satisfy

1
(a) subopt, = O (kjp> ifp>2.

p—2

(b) subopt, — 0 linearly if p = 2.

Corollary (Garber-Hazan 2015, Xu-Yang 2018, Kerdreux et al. 2021)

Suppose C' is p-uniformly convex, V f is Lipschitz continuous on
C, and the y-error bound holds. Then the CG iterates satisfy

1
suboptk:(9< 5 >

kpr—2v
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Consequences of main theorem and proposition

Corollary (Guélat-Marcotte 1986 extended)

Suppose V f is Lipschitz continuous on C, the ~y-error bound
holds, and X* C ri(C'). Then the CG iterates satisfy

1
(a) subopt, = O ( ; > ifv€10,1/2).
k1-2v
(b) subopt, — 0 linearly if v =1/2.

Remark

In all cases the constants in the O(-) bounds are at least as sharp
as previous ones.
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Canonical examples again

Consider the problem
min f(z)

where f(z) = 3||Az — b||3 for some A € R™*", b € R™,

and C = {z € R": ||z||, < 1} for some p > 1.

Then the CG iterates satisfy

@ subopt; — 0 linearly when argmin f(z) ¢ C and 1 <p <2
zeR™

@ subopt;, = O(l/kﬁ) when argmin f(z) € C and p > 2
z€R™

@ subopt; = (’)(l/kﬁ) when argmin f(z) € rbd(C)
TER™

e subopt;, — 0 linearly when argmin f(x) € ri(C).
r€R™
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A simple numerical experiment
Consider the problem

min f(z)

where f(z) = 3|lz —bl|3 and C = {z € R" : ||z||s < 1}.

Typical convergence rate of subopt, — 0
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Dotted line: subopto/kv%, dashed line: subopto/kzpj%2
Left plot: b & C, right plot: b € rbd(C).
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Conditional gradient with other stepsizes
(joint work with Wirth and Pokutta, ZIB)
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Recall main problem

mip f(z)

and conditional gradient algorithm
sk := argmin(V f(z), y)
yeC
g1 = T + Op(sk — xy) for O € [0, 1]
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Stepsize via line-search

Exact line-search

Main theorem holds provided the stepsize 6. is chosen via

Or = argmin f (ay, + (s — 1))
0€l0,1]

= aorg[mi]n{(l — O)gap(zi) + Dy(zp + 0(sp — zi), xk) }-
€lo.1

Approximate line-search (Armijo-like)

Main theorem also holds (with larger constants) if 6y, is chosen so
that p- 0 < 0 < 0 where 0 is the largest 6 € [0, 1] such that

(1 —0)gap(zi) + Dy(xp + 0(sk — x), k) < (1 —c- )gap(xy)

for ¢,p € (0,1) with ¢+ p > 1.
For ¢ =1/2,p =1 get the main theorem.
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Open-loop stepsizes

Wirth-Kerdreux-Pokutta 2022:

As an alternative to line-search, use pre-determined stepsizes, like
O, = k+2 or more generally 6 = k+e for £ € N.

Theorem (Wirth, Pokutta, P. 2023)

Suppose (f,C) satisfy the strong r-growth property and 0;, = kL

+0
for £ € N. Then for all e € (0,1) the CG iterates satisfy
1 1
bopt, =0 | —+ — | .
subopt,, (k:}:: + k£>

Remark

Stepsize 0, = 25 yields O (72) convergence if r € (1/2,1].
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Strong growth property

Suppose r € [0, 1].

Recall r-growth property

There is M < oo such that for 2 € C, s = argmin, - (V f(2),y),
and 0 € [0,1]

2
Dy(z +6(s — x)) - subopt(z)* ™" < ?0 - gap(z)?.

Strong r-growth property

There is M < oo such that for z € C,s = argmin, c(V f(7),9),
and 6 € [0, 1]

D¢(x+60(s—x)) < Mo

- gap(z)".
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Numerical experiments with 6, = 4/(k + 4)

Consider the problem

min f(x)

zeC

where f(z) = 3llz —bl|3 and C = {x € R" : ||z[|, < 1}.

Convergence rate when b &€ C

>_.
5]
L

Optimality measure
—
=1
L

—
o
4

107"

— S$=63
—— o
- ot
O(iii)
—A— gap
—&— primaldual,
©— subopt;

)

0 10? 10° 100 10
Number of iterations

(b) ¢5-ball, r =2/3.

Optimality measure

1076

A gap:
—&— primaldual,

S=290
o)
ot
o

subopt,

.

012 10

100 10°

Number of iterations

(c) €7-ball, r = 2/7.

30/34



Numerical experiments

Convergence rate when
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A more interesting experiment with 0, = 4/(k + 4)

Collaborative filtering (Mehta et al. 2007)
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Conclusions
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Conclusions

Conditional gradient method for Hliél f(z).
re

o Affine invariant convergence rates via a growth property.

@ Sublinear to linear range of convergence rates depending on
the degree of the growth property.

@ Similar results for open-loop step-sizes 0 = £/(k + ¢).

@ Similar developments for conditional gradient variants, e.g.,
away steps, blended pairwise steps, in-face steps, etc.
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