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Conditional gradient algorithm
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Conditional gradient algorithm

Consider the problem
min
x∈C

f(x).

Conditional gradient (CG) algorithm

pick x0 ∈ C
for k = 0, 1, . . . pick θk ∈ [0, 1] and let

sk := argmin
y∈C

〈∇f(xk), y〉

xk+1 := xk + θk(sk − xk)

Introduced by Frank & Wolfe in 1956, and thus also known as the
“Frank-Wolfe Algorithm.” Very popular since around 2010.
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Intuition for CG update

x+ = x+ θ(s− x) for s = argminy∈C〈∇f(x), y〉 and θ ∈ [0, 1].

Picture from Jaggi’s paper “Revisiting Frank-Wolfe” ICML 2013.
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Conditional gradient algorithm

Technical assumptions

C ⊆ Rn is compact and convex equipped with linear oracle:

g 7→ argmin
y∈C

〈g, y〉.

f : C → R is convex and differentiable.

Main properties

CG does not use projections. It uses a linear oracle instead.

CG has nice sparsity-like properties for suitable domains and
linear oracles.

CG is affine invariant.

5 / 34



Affine invariance
Recall main problem

min
x∈C

f(x). (1)

Consider the problem obtained after an affine change of variables:

min
x̃∈C̃

f̃(x̃) (2)

where
f̃ = f ◦A and C̃ = A−1(C)⇔ C = A(C̃)

for some affine bijection A : Rn → Rn.

Suppose CG is applied to (1) and (2) starting from x ∈ C and
x̃ ∈ C̃ respectively.

Affine invariance

If x = Ax̃ then the next iterates satisfy x+ = Ax̃+ as well.
An affine change of variables does not change the algorithm.
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Affine invariance details (when A is linear)
The iterates x+ and x̃+ are respectively

x+ = x+ θ(s− x), x̃+ = x̃+ θ(s̃− x̃)

for
s = argmin

y∈C
〈∇f(x), y〉, s̃ = argmin

ỹ∈C̃
〈∇f̃(x̃), ỹ〉.

Since f̃ = f ◦A we have ∇f̃(x̃) = A∗∇f(Ax̃) and so

〈∇f̃(x̃), ỹ〉 = 〈A∗∇f(Ax̃), ỹ〉 = 〈∇f(Ax̃), Aỹ〉.

Furthermore, C = A(C̃) and x = Ax̃ imply that

As̃ = argmin
Aỹ∈A(C̃)

〈∇f(Ax̃), Aỹ〉 = argmin
y∈C

〈∇f(x), y〉 = s.

Therefore

Ax̃+ = A(x̃+ θ(s̃− x̃)) = x+ θ(s− x) = x+.
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Theme of this talk

Recall main problem
f? := min

x∈C
f(x)

and conditional gradient algorithm

sk := argmin
y∈C

〈∇f(xk), y〉

xk+1 := xk + θk(sk − xk) for θk ∈ [0, 1]

Theme of this talk

Affine invariant convergence rates for f(xk)→ f? via a growth
property of the pair (f, C).

Convergence rates range from sublinear to linear depending on the
degree of the growth property.
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Starting point

Key property

Affine-invariant finite curvature property (to be defined soon)

Theorem (Jaggi 2013)

If f has finite curvature on C then

f(xk)− f? = O
(
1

k

)
.

Main development

Generalize finite curvature to an affine-invariant r-growth property
for r ∈ [0, 1]. Then show that

f(xk)− f? = O
(

1

k
1

1−r

)
.
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Growth property and affine invariant convergence
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Bregman distance, curvature

Recall main problem
min
x∈C

f(x).

Bregman distance Df

Df (y, x) = f(y)− f(x)− 〈∇f(x), y − x〉.

Finite curvature (adapted from Clarkson 2010 and Jaggi 2013)

Say that f has finite curvature on C if there exists M <∞ such
that for x ∈ C, s = argminy∈C〈∇f(x), y〉, and θ ∈ [0, 1]

Df (x+ θ(s− x), x) ≤ Mθ2

2
.

This property holds when ∇f is Lipschitz continuous on C.
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Suboptimality gap and Wolfe gap

Recall main problem
f? := min

x∈C
f(x).

Define subopt : C → R and gap : C → R as follows

subopt(x) := f(x)− f?

gap(x) := 〈∇f(x), x− s〉

for s = argminy∈C〈∇f(x), y〉.

Key facts

For all x ∈ C we have gap(x) ≥ subopt(x).

For x ∈ C, s = argminy∈C〈∇f(x), y〉, and θ ∈ [0, 1] we have

subopt(x+θ(s−x)) = subopt(x)−θ·gap(x)+Df (x+θ(s−x), x).
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Growth property (simplified version)

Suppose r ∈ [0, 1].

Say that (f, C) satisfies the r-growth property if there is M <∞
such that for x ∈ C, s = argminy∈C〈∇f(x), y〉, and θ ∈ [0, 1]

Df (x+ θ(s− x), x) · subopt(x)2−r ≤ Mθ2

2
· gap(x)2.

Observe

Growth property is affine invariant.

Finite curvature (Clarkson 2010, Jaggi 2013) ⇒ 0-growth.
Indeed, 0-growth follows from subopt(x)2 ≤ gap(x)2 and

Df (x+ θ(s− x), x) ≤ Mθ2

2
.
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Main theorem: affine invariant convergence

Consider the iterates xk, k = 0, 1, . . . generated by CG. Let

suboptk := subopt(xk) = f(xk)− f?.

To ease notation, suppose CG chooses θk via

θk := argmin
θ∈[0,1]

f(xk + θ(sk − xk)).

(This assumption can be relaxed. More on this matter later.)
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Main theorem: affine invariant convergence

Theorem (P. 2022)

Suppose (f, C) satisfy the r-growth property. Then
For r = 1 we get linear convergence

suboptk ≤ subopt0

(
1− 1

2
·min

{
1,

1

M

})k
.

For r = 0 we get sublinear convergence (as in Jaggi 2013)

suboptk ≤
2M

k + 3
.

For r ∈ [0, 1) we get

suboptk = O
(

1

k
1

1−r

)
.
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Sufficient conditions for r-growth
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Lipschitz continuity

Recall our main problem and introduce some notation. Let

f? := min
x∈C

f(x) and X? := {x ∈ C : f(x) = f?}.

Suppose Rn is endowed with a norm ‖ · ‖.

Say that ∇f is Lipschitz continuous on C if there exists L <∞
such that for all x, y ∈ C

‖∇f(y)−∇f(x)‖∗ ≤ L‖y − x‖.

In this case, it readily follows that for all x, s ∈ C and θ ∈ [0, 1]

Df (x+ θ(s− x), x) ≤ L · diam(C)2

2
· θ2

and so (f, C) satisfies the 0-growth property.
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Error bound and uniform convexity

Suppose γ ∈ [0, 1/2]. Say that (f, C) satisfies the γ-error bound
condition if there exists K <∞ such that for all x ∈ C

‖x−X?‖ ≤ K · (f(x)− f?)γ .

Suppose p ≥ 2. Say that C ⊆ Rn is p-uniformly convex if there
exists µ > 0 such that for all x, y ∈ C, θ ∈ [0, 1], and ‖z‖ ≤ 1

x+ θ(y − x) + µ

p
θ(1− θ)‖y − x‖pz ∈ C.

Remark

Lipschitz continuity, γ-error bound, and p-uniform convexity
properties are affine invariant.

The corresponding constants L,K, µ are not.
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Canonical examples

Suppose A ∈ Rm×n, b ∈ Rm and

f(x) =
1

2
‖Ax− b‖22.

Then ∇f is Lipschitz continuous and (f, C) satisfies the
1/2-error bound condition for any closed convex C ⊆ Rn.

Suppose p > 1 and C = {x ∈ Rn : ‖x‖p ≤ 1}.
If 1 < p ≤ 2 then C is 2-uniformly convex.
If p > 2 then C is p-uniformly convex.
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Sufficient conditions for r-growth

Proposition (P. 2022)

Suppose ∇f is Lipschitz continuous on C. Then

(a) (f, C) satisfies the r-growth property for r = 2/p if C is
p-uniformly convex and ∇f is bounded away from zero in C.

(b) (f, C) satisfies the r-growth property for r = 2γ/p if C is
p-uniformly convex and the γ-error bound holds.

(c) (f, C) satisfies the r-growth property for r = 2γ if
X? ⊆ ri(C) and the γ-error bound holds.

Recall main theorem: if r-growth holds then CG iterates satisfy

suboptk = O
(

1

k
1

1−r

)
.
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Consequences of main theorem and proposition

Corollary (Kerdreux et al. 2021)

Suppose C is p-uniformly convex, ∇f is Lipschitz continuous on
C, and ∇f is bounded away from zero in C. Then the CG iterates
satisfy

(a) suboptk = O
(

1

k
p
p−2

)
if p > 2.

(b) suboptk → 0 linearly if p = 2.

Corollary (Garber-Hazan 2015, Xu-Yang 2018, Kerdreux et al. 2021)

Suppose C is p-uniformly convex, ∇f is Lipschitz continuous on
C, and the γ-error bound holds. Then the CG iterates satisfy

suboptk = O
(

1

k
p

p−2γ

)
.
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Consequences of main theorem and proposition

Corollary (Guélat-Marcotte 1986 extended)

Suppose ∇f is Lipschitz continuous on C, the γ-error bound
holds, and X? ⊆ ri(C). Then the CG iterates satisfy

(a) suboptk = O
(

1

k
1

1−2γ

)
if γ ∈ [0, 1/2).

(b) suboptk → 0 linearly if γ = 1/2.

Remark

In all cases the constants in the O(·) bounds are at least as sharp
as previous ones.
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Canonical examples again

Consider the problem
min
x∈C

f(x)

where f(x) = 1
2‖Ax− b‖

2
2 for some A ∈ Rm×n, b ∈ Rm,

and C = {x ∈ Rn : ‖x‖p ≤ 1} for some p > 1.

Then the CG iterates satisfy

suboptk → 0 linearly when argmin
x∈Rn

f(x) 6∈ C and 1 < p ≤ 2

suboptk = O(1/k
p
p−2 ) when argmin

x∈Rn
f(x) 6∈ C and p > 2

suboptk = O(1/k
p
p−1 ) when argmin

x∈Rn
f(x) ∈ rbd(C)

suboptk → 0 linearly when argmin
x∈Rn

f(x) ∈ ri(C).

23 / 34



A simple numerical experiment
Consider the problem

min
x∈C

f(x)

where f(x) = 1
2‖x− b‖

2
2 and C = {x ∈ Rn : ‖x‖4 ≤ 1}.

Typical convergence rate of suboptk → 0

Dotted line: subopt0/k
p
p−1 , dashed line: subopt0/k

p
p−2

Left plot: b 6∈ C, right plot: b ∈ rbd(C).
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Conditional gradient with other stepsizes
(joint work with Wirth and Pokutta, ZIB)
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Recall main problem
min
x∈C

f(x)

and conditional gradient algorithm

sk := argmin
y∈C

〈∇f(xk), y〉

xk+1 := xk + θk(sk − xk) for θk ∈ [0, 1]
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Stepsize via line-search

Exact line-search

Main theorem holds provided the stepsize θk is chosen via

θk := argmin
θ∈[0,1]

f(xk + θ(sk − xk))

= argmin
θ∈[0,1]

{(1− θ)gap(xk) +Df (xk + θ(sk − xk), xk)}.

Approximate line-search (Armijo-like)

Main theorem also holds (with larger constants) if θk is chosen so
that ρ · θ̂ ≤ θk ≤ θ̂ where θ̂ is the largest θ ∈ [0, 1] such that

(1− θ)gap(xk) +Df (xk + θ(sk − xk), xk) ≤ (1− c · θ)gap(xk)

for c, ρ ∈ (0, 1) with c+ ρ > 1.

For c = 1/2, ρ = 1 get the main theorem.
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Open-loop stepsizes

Wirth-Kerdreux-Pokutta 2022:

As an alternative to line-search, use pre-determined stepsizes, like
θk =

2
k+2 or more generally θk =

`
k+` for ` ∈ N.

Theorem (Wirth, Pokutta, P. 2023)

Suppose (f, C) satisfy the strong r-growth property and θk =
`

k+`
for ` ∈ N. Then for all ε ∈ (0, 1) the CG iterates satisfy

suboptk = O
(

1

k
1−ε
1−r

+
1

k`

)
.

Remark

Stepsize θk =
2

k+2 yields O
(

1
k2

)
convergence if r ∈ (1/2, 1].
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Strong growth property

Suppose r ∈ [0, 1].

Recall r-growth property

There is M <∞ such that for x ∈ C, s = argminy∈C〈∇f(x), y〉,
and θ ∈ [0, 1]

Df (x+ θ(s− x)) · subopt(x)2−r ≤ Mθ2

2
· gap(x)2.

Strong r-growth property

There is M <∞ such that for x ∈ C, s = argminy∈C〈∇f(x), y〉,
and θ ∈ [0, 1]

Df (x+ θ(s− x)) ≤ Mθ2

2
· gap(x)r.
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Numerical experiments with θk = 4/(k + 4)

Consider the problem
min
x∈C

f(x)

where f(x) = 1
2‖x− b‖

2
2 and C = {x ∈ Rn : ‖x‖p ≤ 1}.

Convergence rate when b 6∈ C
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Numerical experiments with θk = 4/(k + 4)

Convergence rate when b ∈ rbd(C)

31 / 34



A more interesting experiment with θk = 4/(k + 4)

Collaborative filtering (Mehta et al. 2007)

min
X∈Rm×n, ‖X‖nuc≤β

∑
(i,j)∈I

Hρ(Aij −Xij)
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Conclusions
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Conclusions

Conditional gradient method for min
x∈C

f(x).

Affine invariant convergence rates via a growth property.

Sublinear to linear range of convergence rates depending on
the degree of the growth property.

Similar results for open-loop step-sizes θk = `/(k + `).

Similar developments for conditional gradient variants, e.g.,
away steps, blended pairwise steps, in-face steps, etc.
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