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SUMMARY

This paper describes an approach to smooth the surface and improve the quality of
quadrilateral/hexahedral meshes with feature preserved using geometric flow. For quadrilateral surface
meshes, the surface diffusion flow is selected to remove noise by relocating vertices in the normal
direction, and the aspect ratio is improved with feature preserved by adjusting vertex positions in
the tangent direction. For hexahedral meshes, besides the surface vertex movement in the normal and
tangent directions, interior vertices are relocated to improve the aspect ratio. Our method has the
properties of noise removal, feature preservation and quality improvement of quadrilateral/hexahedral
meshes, and it is especially suitable for biomolecular meshes because the surface diffusion flow preserves
sphere accurately if the initial surface is close to a sphere. Several demonstration examples are provided
from a wide variety of application domains. Some extracted meshes have been extensively used in finite
element simulations. Copyright c© 2000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The quality of unstructured quadrilateral/hexahedral meshes plays an important role in
finite element simulations. Although a lot of efforts have been made, it still remains a
challenging problem to generate quality quad/hex meshes for complicated structures such as
the biomolecule Ribosome 30S shown in Figure 1. We have described an isosurface extraction
method to generate quad/hex meshes for arbitrary complicated structures from volumetric
data and utilized an optimization-based method to improve the mesh quality [1, 2], but the
surface needs to be smoothed and the mesh quality needs to be further improved.
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(a) (b) (c)

(d) (e)

Figure 1. The comparison of mesh quality of Thermus Thermophilus small Ribosome 30S (1J5E)
crystal subunit. The pink color shows 16S rRNA and the remaining colors are proteins. (a) the
original quadrilateral mesh (13705 vertices, 13762 quads); (b) the improved quadrilateral mesh; (c)
the improved hexahedral mesh (40294 vertices, 33313 hexes); (d) the zoom-in picture of the red box
in (a); (e) the zoom-in picture of the red box in (b). The mesh quality is measured by three quality

metrics as shown in Figure 10.

Geometric partial differential equations (GPDEs) such as Laplacian smoothing have been
extensively used in surface smoothing and mesh quality improvement. There are two main
methods in solving GPDEs, the finite element method (FEM) and the finite difference method
(FDM). Although FDM is not robust sometimes, people still prefer to choosing FDM instead
of FEM because FDM is simpler and easier to implement. Recently, a discretized format of
the Laplacian-Beltrami (LB) operator over triangular meshes was derived and used in solving
GPDEs [3] [4] [5]. In this paper, we will discretize the LB operator over quadrilateral meshes,
and discuss an approach to apply the discretizated format on surface smoothing and quality
improvement for quadrilateral or hexahedral meshes.

The main steps to smooth the surface and improve the quality of quadrilateral and
hexahedral meshes are as follows:

1. Discretizing the LB operator and denoising the surface mesh - vertex adjustment in the
normal direction with volume preservation.

Copyright c© 2000 John Wiley & Sons, Ltd. Commun. Numer. Meth. Engng 2000; 00:1–6
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2. Improving the aspect ratio of the surface mesh - vertex adjustment in the tangent
direction with feature preservation.

3. Improving the aspect ratio of the volumetric mesh - vertex adjustment inside the volume.

For quadrilateral meshes, generally only Step 1 and Step 2 are required, but all the three steps
are necessary for surface smoothing and quality improvement of hexahedral meshes.

Unavoidly the quadrilateral or hexahedral meshes may have some noise over the surface,
therefore the surface mesh needs to be smoothed. In this paper, we derive a discretized format
of the LB operator, and choose the surface diffusion flow (Equation (1)) to smooth the surface
mesh by relocating vertices along their normal directions. The surface diffusion flow is volume
preserving and also preserves a sphere accurately if the initial surface mesh is embedded and
close to a sphere, therefore it is especially suitable for surface smoothing of biomolecular meshes
since biomolecules are usually modelled as a union of hard spheres.

The aspect ratio of the surface mesh can be improved by adjusting vertices in the tangent
plane, and surface features are preserved since the movement in the tangent plane doesn’t
change the surface shape ([6], page 72). For each vertex, the mass center is calculated to find
its new position on the tangent plane. Since the vertex tangent movement is an area-weighted
relaxation method, it is also suitable for adaptive quadrilateral meshes.

Besides the movement of surface vertices, interior vertices also need to be relocated in order
to improve the aspect ratio of hexahedral meshes. The mass center is calculated as the new
position for each interior vertex.

Although our relaxation-based method can not guarantee that no inverted element is
introduced for arbitrary input meshes, it works well in most cases with the properties of
noise removal, feature preservation, mesh quality improvement. Furthermore, it is especially
suitable for surface smoothing and quality improvement of biomolecular meshes. As the ‘smart’
Laplacian smoothing [7] [8], this method is applied only when the mesh quality is improved in
order to avoid inverted elements. This method can also be combined with the optimization-
based method to obtain a high quality mesh with relatively less computational cost.

The remainder of this paper is organized as follows: Section 2 reviews the previous related
work; Sections 3 discusses the detailed algorithm of the LB operator discretization, surface
smoothing and quality improvement of quadrilateral meshes; Sections 4 explains the quality
improvement of hexahedral meshes; Section 5 shows some results and applications; The final
section presents our conclusion.

2. PREVIOUS WORK

It is well-known that poor quality meshes result in poorly conditioned stiffness matrices in
finite element analysis, and affect the stability, convergence, and accuracy of finite element
solvers. Therefore, quality improvement is an important step in mesh generation.

Some quality improvement techniques of triangular and tetrahedral meshes, such as the
edge-contraction method, can not be used for quadrilateral and hexahedral meshes because we
do not want to introduce any degenerated elements. Therefore, the mesh smoothing methods
are selected to improve the quality of quad/hex meshes by adjusting the vertex positions in
the mesh while preserving its connectivity. As reviewed in [9] [10], Laplacian smoothing and
optimization are the two main quality improvement techniques.

Copyright c© 2000 John Wiley & Sons, Ltd. Commun. Numer. Meth. Engng 2000; 00:1–6
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As the simplest and most straight forward method for node-based mesh smoothing,
Laplacian smoothing relocates the vertex position at the average of the nodes connecting
to it [11]. There are a variety of smoothing techniques based on a weighted average of the
surrounding nodes and elements [12] [13] [14]. The averaging method may invert or degrade
the local quality, but it is computationally inexpensive and very easy to implement, so it is in
wide use. Winslow smoothing is more resistant to mesh folding because it requires the logical
variables are harmonic functions [15].

Instead of relocating vertices based on a heuristic algorithm, people utilized an optimization
technique to improve mesh quality. The optimization algorithm measures the quality of the
surrounding elements to a node and attempts to optimize it [16]. The algorithm is similar to a
minimax technique used to solve circuit design problems [17]. Optimization-based smoothing
yields better results but it is more expensive than Laplacian smoothing, and it is difficult to
decide the optimized iteration step length. Therefore, a combined Laplacian/optimization-
based approach [7] [8] [18] was recommended. Physically-based simulations are used to
reposition nodes [19]. Anisotropic meshes are obtained from bubble equilibrium [20] [21].

When we use the smoothing method to improve the mesh quality, it is also important
to preserve surface features. Baker [22] presented a feature extraction scheme which is
based on estimates of the local normals and principal curvatures at each mesh node. Local
parametrization was utilized to improve the surface mesh quality while preserving surface
characteristics [23], and two techniques called trapezium drawing and curvature-based mesh
improvement were discussed in [24].

Staten et al. [25] [26] proposed algorithms to improve node valence for quadrilateral meshes.
One special case of cleanup in hexahedral meshes for the whisker weaving algorithm is presented
in [27]. Schneiders [28] proposed algorithms and a series of templates for quad/hex element
decomposition. A recursive subdivision algorithm was proposed for the refinement of hex
meshes [29].

3. QUADRILATERAL MESH

Noise may exist in quadrilateral meshes, therefore we need to smooth the surface mesh. The
quality of some quadrilateral meshes may not be good enough for finite element calculations,
and the aspect ratio also needs to be improved.

There are two steps for the surface smoothing and the quality improvement of quadrilateral
meshes: (1) the discretization of Laplace-Beltrami opertor and the vertex movement along its
normal direction to remove noise, (2) the vertex movement on its tangent plane to improve
the aspect ratio while preserving surface features.

3.1. Geometric Flow

Various geometric partial differential equations (GPDEs), such as the mean curvature flow,
the surface diffusion flow and Willmore flow, have been extensively used in surface and imaging
processing [4]. Here we choose the surface diffusion flow to smooth the surface mesh,

∂x

∂t
= ∆H(x)~n(x). (1)
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where ∆ is the Laplace-Beltrami (LB) operator, H is the mean curvature and ~n(x) is the unit
normal vector at the node x. In [30], the existence and uniqueness of solutions for this flow
was discussed, and the solution converges exponentially fast to a sphere if the initial surface is
embedded and close to a sphere. It was also proved that this flow is area shrinking and volume
preserving [4].

In applying geometric flows on surface smoothing and quality improvement over
quadrilateral meshes, it is important to derive a discretized format of the LB operator.
Discretized schemes of the LB operator over triangular meshes have been derived and utilized
in solving GPDEs [3] [4] [5].

A quad can be subdivided into triangles, hence the discretization schemes of the LB operator
over triangular meshes could be easily used for quadrilateral meshes. However, since the
subdivision of each quad into triangles is not unique (there are two ways), the resulting
discretization scheme is therefore not unique. Additionally in the discretization scheme, the
element area needs to be calculated. If we choose to split each quad into two triangles and
calculate the area of a quad as the summation of the area of two triangles, then the area
calculated from the two different subdivisions could be very different because four vertices of a
quad may not be coplanar. Therefore, a unique discretized format of the LB operator directly
over quad meshes is required.

3.2. Discretized Laplace-Beltrami Operator

Here we will derive a discretized format for the LB operator over quadrilateral meshes. The
basic idea of our scheme is to use the bilinear interpolation to derive the discretized format
and to calculate the area of a quad. The discretization scheme is thus uniquely defined.

z

x

y
0 u

v

1

1

P4P3

P1 P2
P1 P2

P3 P4

Figure 2. A quad [p1p2p4p3] is mapped into a bilinear parametric surface.

Area Calculation: Let [p1p2p4p3] be a quad in R
3, then we can define a bilinear parametric

surface S that interpolates four vertices of the quad as shown in Figure 2:

S(u, v) = (1 − u)(1 − v)p1 + u(1 − v)p2

+ (1 − u)vp3 + uvp4. (2)

The tangents of the surface are

Su(u, v) = (1 − v)(p2 − p1) + v(p4 − p3), (3)

Sv(u, v) = (1 − u)(p3 − p1) + u(p4 − p2). (4)

Copyright c© 2000 John Wiley & Sons, Ltd. Commun. Numer. Meth. Engng 2000; 00:1–6
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Let ∇ denote the gradient operator about the (x, y, z) coordinates of the vertex P1, then we
have

∇Su(u, v) = −(1 − v), (5)

∇Sv(u, v) = −(1 − u). (6)

Let A denote the area of the surface S(u, v) for (u, v) ∈ [0, 1]2, then we have

A =

∫ 1

0

∫ 1

0

√

‖ Su × Sv ‖2dudv

=

∫ 1

0

∫ 1

0

√

‖ Su ‖2‖ Sv ‖2 −(Su, Sv)2dudv. (7)

It may not be easy to obtain the explicit form for integrals in calculating the area, numerical
integration quadrature could be used. Here we use the following four-point Gaussian quadrature
rule to compute the integral

∫ 1

0

∫ 1

0

f(u, v)dudv ≈ f(q1) + f(q2) + f(q3) + f(q4)

4
, (8)

where

q− =
1

2
−

√
3

6
, q+ =

1

2
+

√
3

6
,

q1 = (q−, q−), q2 = (q+, q−),

q3 = (q−, q+), q4 = (q+, q+).

The integration rule in Equation (8) is of O(h4), where h is the radius of the circumscribing
circle.

Discretized LB Operator: The derivation of the discretized format of the LB operator is
based on a formula in differential geometry [3]:

lim
diam(R)→0

2∇A

A
= ~H(p), (9)

where A is the area of a region R over the surface around the surface point p, diam(R) denotes

the diameter of the region R, and ~H(p) is the mean curvature normal.
From Equation (7), we have

∇A =

∫ 1

0

∫ 1

0

∇
√

‖ Su ‖2‖ Sv ‖2 −(Su, Sv)2dudv

=

∫ 1

0

∫ 1

0

Su(Sv, (v − 1)Sv − (u − 1)Su))
√

‖ Su ‖2‖ Sv ‖2 −(Su, Sv)2
dudv

+

∫ 1

0

∫ 1

0

Sv(Su, (u − 1)Su − (v − 1)Sv)
√

‖ Su ‖2‖ Sv ‖2 −(Su, Sv)2
dudv

= α21(p2 − p1) + α43(p4 − p3)

+ α31(p3 − p1) + α42(p4 − p2), (10)
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where

α21 =

∫ 1

0

∫ 1

0

(1 − v)(Sv, (v − 1)Sv − (u − 1)Su))
√

‖ Su ‖2‖ Sv ‖2 −(Su, Sv)2
dudv

α43 =

∫ 1

0

∫ 1

0

v(Sv, (v − 1)Sv − (u − 1)Su))
√

‖ Su ‖2‖ Sv ‖2 −(Su, Sv)2
dudv

α31 =

∫ 1

0

∫ 1

0

(1 − u)(Su, (u − 1)Su − (v − 1)Sv)
√

‖ Su ‖2‖ Sv ‖2 −(Su, Sv)2
dudv

α42 =

∫ 1

0

∫ 1

0

u(Su, (u − 1)Su − (v − 1)Sv)
√

‖ Su ‖2‖ Sv ‖2 −(Su, Sv)2
dudv

∇A could be written as

∇A = α1p1 + α2p2 + α3p3 + α4p4 (11)

with

α1 = −α21 − α31, α2 = −α21 + α42,

α3 = α31 − α43, α4 = α43 + α42. (12)

Here we still use the four-point Gaussian quadrature rule in Equation (8) to compute the

integrals in the αij . It follows from Equation (12) that
∑4

i=1 αi = 0, we have

∇A = α2(p2 − p1) + α3(p3 − p1) + α4(p4 − p1). (13)

P2j

P2j+1

P2j−1

Pi

Figure 3. A neighboring quad [pip2j−1p2jp2j+1] around the vertex pi.

Now let pi be a vertex with valence n, and p2j (1 ≤ j ≤ n) be one of its neighbors on the
quadrilateral mesh, then we can define three coefficients α2, α3, α4 as in (13). Now we denote
these coefficients as αi

j , βi
j and γi

j for the quad [pip2j−1p2jp2j+1] as shown in Figure 3. By
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using Equation (13), the discrete mean curvature normal can be defined as

~H(pi) ≈ 2

A(pi)

n
∑

j=1

[αi
j(p2j−1 − pi)

+ βi
j(p2j+1 − pi) + γi

j+1(p2j − pi)] (14)

=
2n
∑

k=1

wi
k(pk − pi)

where ~H(pi) denotes the mean curvature normal, A(pi) is the total area of the quads around
pi, and

wi
2j =

2γi
j

A(pi)
, wi

2j−1 =
2(αi

j + βi
j−1)

A(pi)
, wi

2j+1 =
2(αi

j+1 + βi
j)

A(pi)
.

Using the relation ∆x = 2H(pi) ([31], page 151), we obtain

∆f(pi) ≈ 2

2n
∑

k=1

wi
k(f(pk) − f(pi)). (15)

Therefore,

∆H(pi)~n(pi) ≈ 2
2n
∑

k=1

wi
k(H(pk) − H(pi))~n(pi)

= 2

2n
∑

k=1

wi
k

[

~n(pi)~n(pk)T ~H(pk) − ~H(pi)
]

, (16)

where ~H(pk) and ~H(pi) are further discretized by (14). Note that ~n(pi)~n(pk)T is a 3×3 matrix.
Figure 4 shows one example of the molecule consisting of three amino acids (ASN, THR

and TYR) with 49 atoms. The molecular surface was bumpy as shown in Figure 4(a) since
there are some noise existing in the input volumetric data, the surface becomes smooth after
the vertex normal movement as shown in Figure 4(b).

3.3. Tangent Movement

In order to improve the aspect ratio of the surface mesh, we need to add a tangent movement
in Equation (1), hence the flow becomes

∂x

∂t
= ∆H(x)~n(x) + v(x)~T (x), (17)

where v(x) is the velocity in the tangent direction ~T (x). First we calculate the mass center
m(x) for each vertex on the surface, then project the vector m(x)− x onto the tangent plane.

v(x)~T (x) can be approximated by [m(x) − x] − ~n(x)T [m(x) − x]~n(x) as shown in Figure 5.
Mass Center: A mass center p of a region S is defined by finding p ∈ S, such that

∫

S

‖ y − p ‖2 dσ = min. (18)

Copyright c© 2000 John Wiley & Sons, Ltd. Commun. Numer. Meth. Engng 2000; 00:1–6
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(a) (b)

(c) (d)

Figure 4. Surface smoothing and quality improvement of the molecule consisting of three amino acids
(ASN, THR and TYR) with 49 atoms (45534 vertices, 45538 quads). (a) and (c) - the original mesh;

(b) and (d) - after surface smoothing and quality improvement.
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n(x)

n(x) n(x)[m(x)−x]

n(x) n(x)[m(x)−x]

x

m(x)−x

[m(x)−x]−

T

T

Figure 5. The tangent movement at the vertex x over a surface. The blue curve represents a surface,
and the red arrow is the resulting tangent movement vector.

S is a piece of surface in R
3, and S consists of quads around vertex x. Then we have

∑

(
pi + p2j−1 + p2j + p2j+1

4
− pi)Aj = 0, (19)

Aj is the area of the quad [pip2j−1p2jp2j+1] calculated from Equation (7) using the integration
rule in Equation (8). Then we can obtain

m(pi) =
n

∑

j=1

(
pi + p2j−1 + p2j + p2j+1

4
Aj)/A

i
total, (20)

where Ai
total is the total of quad areas around pi. The area of a quad can be calculated using

Equation (7).
In Figure 4, the vertex tangent movement is used to improve the aspect ratio of the

quadrilateral mesh of the molecule consisting of three amino acids. Compared with Figure
4(c), it is obvious that the quadrilateral mesh becomes more regular and the aspect ratio is
better as shown in Figure 4(d).

3.4. Temporal Discretization

In the temporal space, ∂x
∂t is approximated by a semi-implicit Euler scheme

xn+1

i
−xn

i

τ , where τ

is the time step length. xn
i is the approximating solution at t = nτ , xn+1

i is the approximating
solution at t = (n + 1)τ , and x0

i serves as the initial value at xi.
The spatial and temporal discretization leads to a linear system, and an approximating

solution is obtained by solving it using a conjugate gradient iterative method with diagonal
preconditioning.

3.5. Discussion

Vertex Normal Movement: The surface diffusion flow can preserve volume. Furthermore,
it also preserves a sphere accurately if the initial mesh in embedded and close to a sphere.
Suppose a molecular surface could be modelled by a union of hard spheres, so it is desirable to
use the surface diffusion flow to evolve the molecular surface. Figure 4 shows one example, the
molecular surface becomes more smooth and features are preserved after surface denoising.

Vertex Tangent Movement: If the surface mesh has no noise, we can only apply the
tangent movement ∂x

∂t = v(x)~T (x) to improve the aspect ratio of the mesh while ignoring the
vertex normal movement. Our tangent movement has two properties:

Copyright c© 2000 John Wiley & Sons, Ltd. Commun. Numer. Meth. Engng 2000; 00:1–6
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(a) (b) (c)

Figure 6. The quality of a quadrilateral mesh of a human head model is improved (2912 vertices, 2912
quads) after 100 iterations with the time step length 0.01. (a) The original mesh; (b) Each vertex is
relocated to its mass center, some facial features are removed; (c) Only tangent movement is applied.

(a) (b)

Figure 7. The quality of an adaptive quadrilateral mesh of a biomolecule mAChE is improved (26720
vertices, 26752 quads). (a) the original mesh; (b) after quality improvement.

• The tangent movement doesn’t change the surface shape ([6], page 72). Figure 6 shows
the comparison of the human head model before and after the quality improvement.
In Figure 6(b), each vertex is relocated to its mass center, so both normal movement
and tangent movement are applied. After some iterations, the facial features, such as
the nose, eyes, mouth and ears, are removed. In Figure 6(c), the vertex movement is
restricted on the tangent plane, therefore facial features are preserved.

• The tangent movement is an area-weighted averaging method, which is also suitable for
adaptive quad meshes as shown in Figure 7 and 8. In Figure 7, there is a cavity in the

Copyright c© 2000 John Wiley & Sons, Ltd. Commun. Numer. Meth. Engng 2000; 00:1–6
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(a) (b) (c)

Figure 8. Adaptive quadrilateral/hexadedral meshes of the human head. (a) the original quad mesh
(1828 vertices, 1826 quads); (b) the improved quad mesh; (c) the improved hex mesh (4129 vertices,

3201 hexes), the right part of elements are removed to shown one cross section.

structure of biomolecule mouse acetylcholinesterase (mAChE), and denser meshes are
generated around the cavity while coarser meshes are kept in all other regions. In Figure
8, finer meshes are generated in the region of facial features of the human head.

From Figure 6, 7 and 8, we can observe that after tangent movement, the quadrilateral meshes
become more regular and the aspect ratio of the meshes is improved, as well as surface features
are preserved.

4. HEXAHEDRAL MESH

There are three steps for surface smoothing and quality improvement of hexahedral meshes,
(1) surface vertex normal movement, (2) surface vertex tangent movement and (3) interior
vertex relocation.

4.1. Boundary Vertex Movement

The dual contouring hexahedral meshing method [2] [1] provides a boundary sign for each
vertex and each face of a hexahedron, indicating if it lies on the boundary surface or not. For
example, a vertex or a face is on the surface if its boundary sign is 1, while lies inside the
volume if its boundary sign is 0.

The boundary sign for each vertex/face can also be decided by checking the connectivity
information of the input hexahedral mesh. If a face is shared by two elements, then this face
is not on the boundary; if a face belongs to only one hex, then this face lies on the boundary
surface, whose four vertices are also on the boundary surface.

We can use the boundary sign to find the neighboring vertices/faces for a given vertex.

Copyright c© 2000 John Wiley & Sons, Ltd. Commun. Numer. Meth. Engng 2000; 00:1–6
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For each boundary vertex, we first find all its neighboring vertices and faces lying on the
boundary surface by using the boundary sign, then relocate it to its new position calculated
from Equation (17). There is a special situation that we need to be careful, a face/edge, whose
four/two vertices are on the boundary, may not be a boundary face.

4.2. Interior Vertex Movement

For each interior vertex, we intend to relocate it to the mass center of all its surrounding
hexahedra. There are different methods to calculate the volume for a hexahedron. Some people
divide a hex into five or six tetrahedra, then the volume of the hex is the summation of the
volume of these five or six tetrahedra. This method is not unique since there are various
dividing formats. Here we use an trilinear parametric function to calculate the volume of a
hex.

P4

P2P1

w

P8

P6

P3

P5

P7

v

u

Figure 9. The trilinear parametric volume V of a hexahedron [p1p2 . . . p8].

Volume Calculation: Let [p1p2 . . . p8] be a hex in R
3, then we define the trilinear

parametric volume V (u, v, w) that interpolates eight vertices of the hex as shown in Figure 9:

V (u, v, w) = (1 − u)(1 − v)(1 − w)p1

+ u(1 − v)(1 − w)p2 + (1 − u)v(1 − w)p3

+ uv(1 − w)p4 + (1 − u)(1 − v)wp5

+ u(1 − v)wp6 + (1 − u)vwp7

+ uvwp8. (21)

The tangents of the volume are

Vu(u, v, w) = (1 − v)(1 − w)(p2 − p1) + v(1 − w)(p4 − p3)

+ (1 − v)w(p6 − p5) + vw(p8 − p7),

Vv(u, v, w) = (1 − u)(1 − w)(p3 − p1) + u(1 − w)(p4 − p2)

+ (1 − u)w(p7 − p5) + uw(p8 − p6),

Vw(u, v, w) = (1 − u)(1 − v)(p5 − p1) + u(1 − v)(p6 − p2)

+ (1 − u)v(p7 − p3) + uv(p8 − p4).
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Let V denote the volume of V (u, v, w) for (u, v, w) ∈ [0, 1]3, then we have

V =

∫ 1

0

∫ 1

0

∫ 1

0

√

V̄ dudvdw (22)

where

V̄ = ‖ (Vu × Vv) · Vw ‖2 (23)

Numerical integration quadrature could be used. Here we choose the following eight-point
Gaussian quadrature rule to compute the integral

∫ 1

0

∫ 1

0

∫ 1

0

f(u, v, w)dudvdw ≈
∑8

j=1 f(qj)

8
, (24)

where

q− =
1

2
−

√
3

6
, q+ =

1

2
+

√
3

6
,

q1 = (q−, q−, q−), q2 = (q+, q−, q−),

q3 = (q−, q+, q−), q4 = (q+, q+, q−),

q5 = (q−, q−, q+), q6 = (q+, q−, q+),

q7 = (q−, q+, q+), q8 = (q+, q+, q+).

The integration rule in Equation (24) is of O(h4), where h is the radius of the circumscribing
sphere.

Mass Center: A mass center p of a region V is defined by finding p ∈ V , such that
∫

V

‖ y − p ‖2 dσ = min. (25)

V is a piece of volume in R
3, and V consists of hexahedra around vertex x. Then we have

∑

(
1

8

8
∑

j=1

pj − pi)Vj = 0, (26)

Vj is the volume of the hex [p1p2 . . . p8] calculated from the trilinear function, then we can
obtain

m(pi) =
∑

j∈N(i)

(
1

8

8
∑

j=1

pjVj)/V i
total, (27)

where N(i) is the index set of the one ring neighbors of pi, and V i
total is the total of hex volume

around pi.

The same Euler scheme is used here for temporal discretization, and the linear system is
solved using the conjugate gradient iterative method.
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Type DataSet MeshSize Scaled Jacobian Condition Number Oddy Metric Inverted
(Vertex♯, Elem♯) (best,aver.,worst) (best,aver.,worst) (best,aver.,worst) Elem♯

quad Head1 (2912, 2912) (1.0, 0.92, 0.02) (1.0, 1.13, 64.40) (0.0, 1.74, 8345.37) 0

Head2 - (1.0, 0.93, 0.16) (1.0, 1.11, 6.33) (0.0, 0.63, 78.22) 0

Head3 - (1.0, 0.96, 0.47) (1.0, 1.05, 2.12) (0.0, 0.22, 6.96) 0

Ribosome 30S1 (13705, 13762) (1.0, 0.90, 0.03) (1.0, 1.17, 36.90) (0.0, 1.38, 2721.19) 0

Ribosome 30S2 - (1.0, 0.90, 0.03) (1.0, 1.17, 34.60) (0.0, 1.37, 2392.51) 0

Ribosome 30S3 - (1.0, 0.93, 0.06) (1.0, 1.08, 16.14) (0.0, 0.38, 519.22) 0

Vhmale1 (76975, 77708) (1.0, 0.92, 0.01) (1.0, 1.15, 97.91) (0.0, 2.49, 19172.46) 0

Vhmale2 - (1.0, 0.95, 0.02) (1.0, 1.07, 48.29) (0.0, 0.71, 4662.72) 0

Vhmale3 - (1.0, 0.95, 0.04) (1.0, 1.05, 24.83) (0.0, 0.54, 1230.85) 0

hex Head1 (8128, 6587) (1.0, 0.91, 1.7e-4) (1.0, 2.99, 6077.33) (0.0, 29.52, 1.80e5) 2

Head2 - (1.0, 0.91, 0.005) (1.0, 1.96, 193.49) (0.0, 6.34, 5852.23) 0

Head3 - (1.0, 0.92, 0.007) (1.0, 1.80, 147.80) (0.0, 4.50, 1481.69) 0

Ribosome 30S1 (40292, 33313) (1.0, 0.91, 2.4e-5) (1.0, 2.63, 4.26e4) (0.0, 34.15, 2.27e6) 5

Ribosome 30S2 - (1.0, 0.91, 0.004) (1.0, 1.74, 263.91) (0.0, 4.97, 8017.39) 0

Ribosome 30S3 - (1.0, 0.92, 0.004) (1.0, 1.59, 237.36) (0.0, 3.42, 5133.25) 0

Figure 10. The comparison of the three quality criteria (the scaled Jacobian, the condition number
and Oddy metric) before/after the quality improvement for quad/hex meshes of the human head
(Figure 12) and Ribosome 30S (Figure 1). DATA1 – before quality improvement; DATA2 – after
quality improvement using the optimization scheme in [1]; DATA3 – after quality improvement using

the combined geometric flow/optimization-based approach.

5. RESULTS AND APPLICATIONS

There are many different ways to define the aspect ratio for a quad or a hex to measure
the mesh quality. Here we choose the scaled Jacobian, the condition number of the Jacobian
matrix and Oddy metric [32] as our metrics [33][34][35].

Assume x ∈ R
3 is the position vector of a vertex in a quad or a hex, and xi ∈ R

3 for
i = 1, . . . ,m are its neighboring vertices, where m = 2 for a quad and m = 3 for a hex. Edge
vectors are defined as ei = xi−x with i = 1, . . . ,m, and the Jacobian matrix is J = [e1, ..., em].
The determinant of the Jacobian matrix is called Jacobian, or scaled Jacobian if edge vectors
are normalized. An element is said to be inverted if one of its Jacobians ≤ 0. We use the
Frobenius norm as a matrix norm, |J | = (tr(JT J)1/2). The condition number of the Jacobian

matrix is defined as κ(J) = |J ||J−1|, where |J−1| = |J|
det(J) . Therefore, the three quality metrics

for a vertex x in a quad or a hex are defined as follows:

Jacobian(x) = det(J) (28)

κ(x) =
1

m
|J−1||J | (29)

Oddy(x) =
(|JT J |2 − 1

m |J |4)
det(J)

4
m

(30)

where m = 2 for quadrilateral meshes and m = 3 for hexahedral meshes.
In [1], an optimization approach was used to improve the quality of quad/hex meshes.

The goal is to remove all the inverted elements and improve the worst condition number
of the Jacobian matrix. Here we combine our surface smoothing and quality improvement
schemes with the optimization-based approach. We use the geometric flow to improve the
quality of quad/hex meshes overall and only use the optimization-based smoothing when
necessary. Figure 10 shows the comparison of the three quality criteria before and after quality
improvement. We can observe that the aspect ratio is improved using the combined approach.
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(a) (b) (c)

(d) (e)

Figure 11. The comparison of mesh quality of Haloarcula Marismortui large Ribosome 50S (1JJ2)
crystal subunit. The light yellow and the pink color show 5S and 23S rRNA respectively, the remaining
colors are proteins. (a) the original quad mesh (17278 vertices, 17328 quads); (b) the improved quad
mesh; (c) the improved hex mesh (57144 vertices, 48405 hexes); (d) the zoom-in picture of the red

box in (a); (e) the zoom-in picture of the red box in (b).

We have applied our surface smoothing and quality improvement technique on some
biomolecular meshes. In Figure 4, the surface of a molecule consisting of three amino acids
is denoised, the surface quadrilateral mesh becomes more regular and the aspect ratio is
improved. The comparison of the quality of quad/hex meshes of Ribosome 30S/50S are shown
in Figure 1, Figure 11 and Figure 10. The surface diffusion flow preserves a sphere accurately
when the initial mesh is embedded and close to a sphere and the tangent movement of boundary
vertices doesn’t change the shape, therefore features on the molecular surface are preserved.
Our quality improvement scheme also works for adaptive meshes as shown in Figure 7.

From Figure 6 and 8, we can observe that the mesh, especially the surface mesh, becomes
more regular and facial features of the human head are preserved as well as the aspect ratio
is improved (Figure 10). The interior and exterior hexahedral meshes of the human head as
shown in Figure 12 have been used in the electromagnetic scattering simulations [36]. Figure
13 shows the quality improvement of hexahedral meshes, as well as the surface quadrilateral
meshes, of the human knee and the Venus model. Figure 14 and Figure 10 show the comparison
of quadrilateral meshes of the visual human (male), which are generated from a CT data.
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(a) (b) (c)

Figure 12. The comparison of mesh quality of the interior and exterior hexahedral meshes. (a) the
original interior hex mesh (8128 vertices, 6587 hexes); (b) the improved interior hex mesh; (c) the
improved exterior hex mesh (16521 vertices, 13552 hexes). The mesh quality is measured by three

quality metrics as shown in Figure 10.

(a) (b) (c) (d)

Figure 13. The comparison of mesh quality of the human knee and the Venus model. (a) the original
hex mesh of the knee (2103 vertices, 1341 hexes); (b) the improved hex mesh of the knee; (c) the

original hex mesh of Venus (2983 vertices, 2135 hexes); (d) the improved hex mesh of Venus.

6. CONCLUSIONS

We have presented an approach to smooth the surface and improve the quality of
quadrilateral and hexahedral meshes. The surface diffusion flow is selected to denoise surface
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Figure 14. The comparison of mesh quality of the visual human (male). (a) the original quad mesh
(76975 vertices, 77708 quads); (b) the improved quad mesh; (c) the zoom-in picture of the red box in

(a); (d) the zoom-in picture of the red box in (b).
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meshes by adjusting each boundary vertex along its normal direction. The surface diffusion
flow is volume preserving, and also preserves a sphere accurately when the input mesh is
embedded and close to a sphere, therefore it is especially suitable for surface smoothing of
biomolecular meshes because biomolecules are usually modelled as a union of hard spheres.
The vertex tangent movement doesn’t change the surface shape, therefore surface features can
be preserved. The interior vertices of hex meshes are relocated to their mass centers in order
to improve the aspect ratio. In a summary, our approach has the properties of noise removal,
feature preservation and mesh quality improvement. The resulting meshes are extensively used
for efficient and accurate finite element calculations.

We have developed an interactive program for surface smoothing and quality improvement
of quadrilateral/hexahedral meshes with geometric flow, and plugged it into our LBIE-Mesh
software (Level Set Boundary and Interior-Exterior Mesher), which can generate adaptive
and quality 2D (triangular/ quadrilateral) and 3D (tetrahedral/hexahedral) meshes from
volumetric data. The algorithm of tetrahedral mesh generation is described in [2], and the
algorithm of quadrilateral/hexahedral mesh generation is described in [1]. Our results were
computed on a PC equipped with a Pentium III 800MHz processor and 1GB main memory.
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