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Abstract

This paper describes an algorithm to extract adaptive and quality quacdkilaexahedral meshes directly
from volumetric data. First, a bottom-up surface topology preservingetiased algorithm is applied to
select a starting octree level. Then the dual contouring method is used astextpreliminary uniform
guad/hex mesh, which is decomposed into finer quads/hexes adaptivebutitiroducing any hanging
nodes. The positions of all boundary vertices are recalculated toxapai@ the boundary surface more
accurately. Mesh adaptivity can be controlled by a feature sensitige faimction, the regions that users
are interested in, or finite element calculation results. Finally, a relaxati@dhbashnique is deployed to
improve mesh quality. Several demonstration examples are provided froitdeavariety of application
domains. Some extracted meshes have been extensively used in finite edemaations.
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1 Introduction

Unstructured quadrilateral/hexahedral mesh generatitatés many researchers’ interest because
of its important applications in finite element simulatioR®wever, it still remains a challenging
and open problem to generate adaptive and quality quad/eeRkes directly from volumetric data,
such as Computed Tomography (CT), Magnetic Resonance ImagiRt) @nd Signed Distance
Function (SDF) data.

The volumetric dat¥ is a sequence of sampled functional values on rectilinads gand can be
written asvV = {F(i, j,K)|i, j, k are indices irx,y,z coordinates in a rectilinear gridAn isosurface
or a level set corresponding to the isovatuis defined as: (a) = {(x,Y,2)|F(x,y,z) = a}, and an
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Fig. 1. Adaptive quadrilateral and hexahedral meshes of a biomolecuBhiaAa) - the quadrilateral mesh
of the molecular surface; (b) - the wireframe of the adaptive quadrilatezah of the molecular surface;
(c) - the adaptive hexahedral mesh of the interior volume; (d) - the agapxahedral mesh of the exterior
volume between the molecular surface and an outer sphere. Finer meshes@rated in the region of the
cavity, while coarser meshes are kept in other areas. The cavity is sholaered boxes.

interval volume between two isosurfacgga1), Se(az) is defined asg (a1,02) = {(x,y,2)|a1 <
F(x,y,2) < az}. In this paper, we present an approach to extract adaptivejaality quadrilat-
eral meshes for an isosurfage(a) with correct topology, and hexahedral meshes for an interva
volumelg (a1, 02) with isosurfaces as boundaries. In certain finite elementsitions, both in-
terior and exterior hexahedral meshes are required, fonpba the interior mesh of the volume
inside the solvent accessibility surface of the biomolecubuse acetylcholinesterase (MAChE)
[31] [30], and the exterior mesh between the solvent ack#isgisurface and an outer bounding
sphere. Since the most important part in the geometrictstreiof mMAChE is the cavity, we need to
generate finer mesh for it (Figure 1). Our approach can alsergée adaptive and quality interior
and exterior hexahedral meshes.

The main steps to extract adaptive and quality quadrilbéerdhexahedral meshes from volumet-
ric data are as follows:

(1) The selection of a starting octree level for uniform mgsheration with correct topology.
(2) Crack-free and adaptive quad/hex meshing without angihgmodes.
(3) Quality improvement.

In order to generate uniform quadrilateral and hexahedesh®s with correct topology, we select
a suitable starting octree level using a bottom-up surfapelogy preserving octree-based algo-
rithm. An approach provided in [15] is used to check wheth@na isosurface is topologically
equivalent to a coarse one or not. Generally correct togakguaranteed in the uniform mesh.

The dual contouring method [15] proposes an algorithm teaekta uniform quadrilateral mesh
for an isosurface by analyzing easign change edge, whose two ending points lie in different
sides of the isosurface. In the octree-based data struetach sign change edge is shared by four
octree leaves, and one minimizer point is obtained for eaghdell by minimizing a predefined



guadratic error function (QEF) [14]. The QEF is defined akfus:

QEFP] =y (ni- (x—pi))? (1)

wherep;, nj represent the position and unit normal vectors of the ietgisn point respectively.
Figure 2 shows one 2D example. The four minimizer points taosta quad, and the union of all
the generated quads provides an approximation to thisrisacsu
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Fig. 2. The quadratic error function (QEF) and the minimizer point in 2D. fBidecurve is an isocontour,
and the green point is the minimizer point calculated in Equatiorpi,.r(1) and (2, n) represent the
position and unit normal vectors of the two intersection points.

Starting from a uniform quadrilateral mesh, we use templtdeefine each quad adaptively. The
position of each vertex is recalculated by moving it towdrel isosurface along its normal direc-
tion, which is represented by trilinear interpolation ftions within octree leaf cells. The dual
contouring isosurface extraction method has been extetadediform hexahedral mesh genera-
tion [38] [39]. In this paper, predefined three dimensioeahplates are used to generate adaptive
hexahedral meshes.

The mesh adaptivity can be controlled according to variegsirements by a feature sensitive er-
ror function [38] [39], areas that users are interestedrimesults from finite element calculations.
Users can also design an error function to control the meaptatty according to their specific
requirements.

Generally, the extracted quadrilateral and hexahedrahesesan not be used for finite element
calculations directly since some elements have poor gustiée choose corresponding metrics to
measure the quality of quadrilateral and hexahedral meglsgectively, and deploy a relaxation

based technique to improve mesh quality. Several of ourrgégeemeshes have been used in finite
element simulations.

The remainder of this paper is organized as follows: Se@imviews the related work on quadri-
lateral/hexahedral mesh generation; Section 3 descrim@gd choose the starting octree level;
Sections 4 and 5 explain the detailed algorithm for extngctidaptive quadrilateral and hexahe-
dral meshes; Section 6 talks about three ways to control gehradaptivity; Section 7 discusses
the mesh quality improvement; Section 8 shows some resuitsapplications; the final section
presents our conclusions.



2 PreviousWork

As a structured method, quad/hex mapped meshing [9] gersetia¢ most desirable meshes if
opposite edges/faces of the domain to be meshed have equakersi of divisions or the same
surface mesh. However, it is always difficult to decomposearditrary geometric configuration
into mapped meshable regions. In the CUBIT project [1] at SaNditional Labs, a lot of research
has been done to automatically recognize features and gesengeometry into mapped meshable
areas or volumes.

As reviewed in [23] [35], there are indirect and direct methdor unstructured quad/hex mesh
generation. The indirect method is to generate triangelaahedral meshes first, then convert
them into quads/hexes. The direct method is to generatestheaaks directly without first going
through triangular/tetrahedral meshing.

Unstructured Quad Mesh Generation: The indirect method is to convert triangles into quads by
dividing a triangle into three quads, or combining adjagents of triangles to form quads [20].

There are three main categories for unstructured diread quesh generation: quad meshing by
decomposition, advancing front quad meshing and isoseidatraction. The decomposition tech-
nique divides the domain into simpler regions which can Iselked by templates [2] [33]. The
second category is to utilize a moving front method for difgacement of nodes and elements.
Starting with an initial placement of nodes on the boundZhy et al. [40] formed individual
elements by projecting edges towards the interior. As aqgda@UBIT [1], the paving algorithm
places elements starting from the boundary and works inQBjerent from the decomposition
and the advancing front techniques, the dual contourindgnoaefl5] extracts uniform quadrilat-
eral meshes from volumetric data to approximate isosusfatech can be an arbitrary geometry.

Unstructured Hex Mesh Generation: Eppstein [10] started from a tetrahedral mesh to decom-
pose each tetrahedron into four hexahedra. Although thikadeavoids many difficulties, it
rapidly increases the number of elements and tends to inteopoorly shaped elements.

There are five distinct methods for unstructured direchak-mesh generation: grid-based, medial
surface, plastering, whisker weaving and isosurface etxtra The grid-based approach generates
a fitted 3D grid of hex elements on the interior of the volunre] hex elements are added at the
boundaries to fill gaps [26] [28] [29]. The grid-based metiwobbust, but tends to generate poor
quality elements at the boundaries. Medial surface metlledempose the volume into map-
meshable regions, and fill the volume with hex elements usngplates [24] [25]. Plastering
places elements on boundaries first and advances towardsrites of the volume [6] [4]. Whisker
weaving first constructs the spatial twist continuum (STClwal of the hex mesh, then the hex
elements can be fitted into the volume using the STC as a gB#je Medial surface methods,
plastering and whisker weaving have successfully gergtad® meshes for some geometry, but
have not been proven to be robust and reliable for an anpig@ometric domain. Zhang et al. [38]
[39] extended the dual contouring isosurface extractiothow[15] to uniform hexahedral mesh
generation. This method is robust and reliable for an ayitgeometry, but adaptive meshes are
preferable and mesh quality needs to be improved.



Quality Improvement: As the simplest and most straight forward method, Laplasianothing
relocates the vertex position at the average of the nodesecting to it [11]. There are a variety
of other smoothing techniques based on a weighted averatiee (furrounding nodes and ele-
ments. The averaging method may invert or degrade the lo@dikg but it is simple to implement
and in wide use. Instead of relocating vertices based on astielalgorithm, people utilized an
optimization technique to improve mesh quality. The optiation algorithm measures the qual-
ity of the surrounding elements to a node and attempts tongg#iit. The algorithm is similar
to a minimax technique used to solve circuit design problEBhgOptimization-based smoothing
yields better results but it is more expensive than Laptasraoothing. Some papers [7] [12] [13]
recommended a combined Laplacian/optimization-basetbaphp.

Staten et al. [32] [16] proposed algorithms to improve naalence for quadrilateral meshes. One
special case of cleanup in hexahedral meshes for the whigk&ving algorithm is presented in
[21]. Schneiders [27] proposed algorithms and a serieswpletes for quad/hex element decom-
position. A recursive subdivision algorithm was proposadtifie refinement of hex meshes [3].

3 Starting Octree L evel Selection

There are three main steps in our adaptive and quality gagehal and hexahedral mesh extraction
from volumetric data. First, we need to choose a suitablgirsgaoctree level to generate the
uniform mesh with correct topology. Then pre-defined tengslare used to refine the uniform
mesh adaptively. The positions of all boundary verticegacalculated, and the mesh adaptivity
can be controlled by an error function designed in multipkeysv Finally, the relaxation based
technique is used to improve mesh quality.

The bottom-up surface topology preserving octree-basgaokritim is used to select a starting
octree level. Suppose the volume data has the dimensi(® af1)3, so the deepest octree level
is n. For an isosurface, we first compare the surface topologgatiin and Level(n— 1). If the
surface topology is equivalent, then we continue compatiegsurface topology at Levéh — 1)
and Level(n— 2) until we find the surface topology at two neighboring levelg. Leveli and
Level (i—1) (i=n,...,1), is different from each other. Then we will seléets the starting octree
level.

We assign a sign to each grid point in the volumetric datahdffunction value at a grid point is
greater than the isovalue, then the sign is 1, otherwiselit An approach is described in [15] to
check whether a fine isocontour is topologically equivatena coarse one or not. The fine and
coarse isocontour is topologically equivalent with eadieoif and only if the sign of the middle
vertex of a coarse edge/face/cube is the same as the sigieasabne vertex of the edge/face/cube
which contains the middle vertex. Generally we guaranteectirrect topology for the boundary
surfaces by choosing a suitable starting octree level, anéct topology will be preserved in the
process of adaptive mesh refinement.



4 Quad I sosurface Extraction

Finite element calculations sometimes require quadrdhteeshes instead of triangular meshes.
It is more challenging to generate quadrilateral meshezesnot every polygon can be decom-
posed into quads directly. The uniform quadrilateral medhaetion algorithm is simpler [15],
but adaptive meshes are preferable over uniform ones. Hrerevo main problems in adaptive
guadrilateral mesh extraction.

(1) How to decompose a quad into finer quads.
(2) How to calculate the positions of vertices.

4.1 Mesh Decomposition

Indirect Method: In the dual contouring isosurface extraction method [1B]egor function is
defined to control where we should generate fine meshes, amctwile should keep coarse ones.
In the adaptive octree data structure, either a sign chatge is shared by three cells resulting
in a triangle, or it is shared by four cells and a quad is gaedrarl herefore, the isosurface is
represented by a union of quads and triangles. In order @irohn all-quad mesh, the indirect
method splits each quad into four quads and each triangighinée quads by inserting points at
the middle of edges and at the center of the element as shawgure 3. The idea of the indirect
method is simple and easy to implement, but the number ofeslésnncreases by a factor of 2 to
3 over the original mesh.

(@) (b) (c) (d)

Fig. 3. The templates to decompose a quad or a triangle into quads. Red peintsady inserted at the
middle of edges or the element center. (a) - a quad before splitting; (b)angle before splitting; (c) - a
qguad is split into four quads; (d) - a triangle is split into three quads.

Direct Method: At the selected starting octree level, the dual contoursogurface extraction
method [15] generates uniform quadrilateral meshes byaimg each sign change edge which is
shared by four leaf cells. Adaptive quadrilateral mesheshsaobtained from the uniform mesh
by using some templates. There are multiple ways to definplétes for adaptive quadrilateral
mesh construction, therefore criteria needs to be set taaeathem in order to generate meshes
with good quality. Here we define some requirements for tategt

(1) All resulting elements are quads.
(2) No hanging nodes exist.
(3) The resulting mesh approximates the object surfaceratsy.



(4) The resulting elements have good aspect ratio.
(5) The resulting mesh introduces a small number of new alsrand vertices.

Method 1
[ [ [ @
[ [ @ @O @
0 1 2a 2b 3 4
Method 2
[ [ [ [ @
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0 1 2a 2b 3 4
Method 3

Fig. 4. Three different methods to define templates for adaptive quadailasesurface extraction. In
Method 1, the quad needs to be refined; In Method 2 and 3, octree ksfjeaerating red minimizer
points need to be refined.

Figure 4 shows three methods to define templates for adapia@rilateral mesh generation start-
ing from a uniform mesh with correct topology. In the unifooase, each sign change edge is
shared by four cells and four minimizer points are obtaireddnstruct a quad. In Method 1,
if the maximum error function value (for example, the feataensitive error function defined in
[38] [39]) of the four cells is greater than a threshe|dhen the four octree cells containing the
sign change edge should be subdivided, and the quad gethé@tethis edge should be refined.
This method does not consider its neighboring informateath quad is refined independently. If
a quad needs to be refined, then the resulting mesh has 5 ¢seameh4 newly inserted vertices.
In Method 2 [29] and 3, various decomposition methods areseh@ccording to the cell which
generates a quad node and also needs to be refined. Metho®2endnly different in Case (2b),
Method 2 generates less elements and vertices, but the gaditydgs worse than in Method 3.

We can use the above five template requirements to compartérde methods in Figure 4. It
is obvious that all the three methods only generate quadezitsnand no hanging nodes are
introduced. Compared with Method 1, Methods 2 and 3 inseraextdes on the quad edges as
well as inside the quad, so they can approximate the surface accurately. Comparing the worst
aspect ratio of the resulting quad elements in Method 2 ame an see that Method 3 generates
guads with better quality. The number of elements and thebeurof newly inserted vertices for
each template are listed in Figure 5. Method 3 is preferaplegtancing the five criteria.



Method Numberof 0 1 2a 2b 3 4

2 elements 1 3 7 4 8 9
vertces 0 3 8 4 10 12
3 elements 1 3 7 7 8 9
vertces 0 3 8 8 10 12

Fig. 5. The number of elements and the number of newly inserted verticeanfipiates in Methods 2 and
3 shown in Figure 4.

4.2 \ertex Position Calculation

In the process of mesh refinement, new vertices are insertetding to the pre-defined templates.
The next step is to update the positions of existing vertazes calculate the positions of newly
inserted vertices.

In Figure 6, we assume that the leaf cell can be divided intio $nibcells in the finest resolution
level, therefore the real isosurface (the red curve) isasgmted by a union of three trilinear inter-
polation functions within the subcells. For each existingimizer point, first we find the octree
leaf cell containing it in the current resolution level, themove it toward the isosurface within
this leaf cell along its normal direction. The intersectfmrint is more accurate to represent this
boundary vertex than the minimizer point. If the calculatgdrsection point lies outside this cell
unfortunately because of bad normal vectors, we will sakj old position and normal vectors.
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Fig. 6. The calculation of vertex positions. (a) - one leaf cell; (b) - thededfis subdivided into four sub-
cells, and three minimizer points are obtained; (c) - the three minimizer points aertwthe isocontour
along their normal directions. The red curve is the real isocontour. Téengcircle point represents an
existing minimizer point of this leaf cell, and blue circle points are two newly inderégtices. The arrows
are their normal vectors, the green and blue box points are the resultiigese

For those newly inserted vertices, we first calculate thesitppn and normal vectors by linear
interpolation of the four vertices of the original quad. fitvee will move them toward the isosur-
faces in the same way as we update the positions of existitige®

Figure 7 shows adaptive quadrilateral meshes of the humahdenerated from two direct meth-
ods, Method 1 and Method 3 shown in Figure 4. It is obvious thatoriginal uniform mesh is



Direct Method (1) Direct Method (3)

Fig. 7. Adaptive quad meshes generated from two direct methods. Adesguasitive error function [38]
[39] is chosen for mesh adaptivity, the isovatue 0, the error tolerance= 0.4. Method 1 generates a poor
nose, and Method 3 generates a better result.

refined adaptively, and the new vertex positions are clas#éne isosurface. Method 1 generates
a bad nose, and Method 3 approximates the isosurface mareagely than Method 1 because it

introduces extra vertices on the refined edges of each atigurad. The mesh adaptivity is con-

trolled by a feature sensitive error function [38] [39], whiis sensitive to facial features such as
the nose, the eyes, the mouth and the ears.

5 Hexahedral Mesh Extraction

The dual contouring method [15] has been extended to unifrahedral mesh generation by
analyzing each interior vertex (a grid point inside the rivés volume) shared by eight different
cells, which are either boundary cells or interior cells][@®]. A minimizer point is calculated
for each boundary cell, and the cell center is set as the nampoint for each interior cell.
Those eight minimizer points construct a hexahedron. Is gkction, we will focus on adaptive
hexahedral mesh generation.

5.1 2D Mesh Decomposition

In 2D, the uniform quadrilateral mesh can be constructedratyaing each interior grid point,
which is shared by four cells. One minimizer point is caltedefor each cell, therefore four mini-
mizer points are obtained and they construct a quad. Allehwtates defined in Figure 4 can be
used here for adaptive 2D mesh generation. Figure 8 showsaanpde of adaptive quadrilateral
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Fig. 8. Top row - an example of adaptive quad mesh generation in 2D.dfaeh point represents a min-
imizer point of a cell to be refined, and the red curve represents thesceintour. Bottom row - the
decomposition templates of Method 3 shown in Figure 4.

mesh extraction using Method 3. When we analyze each cell¢alage the minimizer point, we
compare the feature sensitive error function of this cethvai thresholc. If the error function
value of a cell is greater thag) then this cell needs to be subdivided. An interior grid pasn
shared by four cells, therefore there are a total©f216 configurations. Due to the symmetry,
there are six basic templates for the quad refinement. A umitpadrilateral mesh can be refined
adaptively by using those templates.

5.2 3D Mesh Decomposition

Indirect Method: Adaptive and quality tetrahedral meshes have been geddrata volumetric
imaging data [38] [39], therefore we can obtain hexahededims by decomposing each tetrahe-
dron into four hexahedra.

Direct Method: Not all the direct methods for adaptive 2D mesh generatianvshn Figure 4
can be extended to 3D. There are two main methods for addpkahedral mesh generation, one
is extended from the first 2D direct method and the other odelised from part of the third 2D
direct method.
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Fig. 9. Adaptive hexahedral mesh decomposition (Method 1). Left - @@inple; Middle - a small hex-
ahedron is inserted; Right - the top face of the original hexahedrousrteebe refined, 6 hex and 8 extra
vertices are generated.

Extended from the first 2D direct method in Figure 4, Methodfines each hexahedron indepen-
dently as shown in Figure 9. It first splits each hexahedrtmseven hexahedra by inserting one
small hex in its center, and each face of the original hex igained in a hex independently. If
one face needs to be refined, then the hex containing it wikfseed as shown in the right picture

of Figure 9. If there are (i = 1,...,6) faces that need to be refined for a hexahedron, then the
resulting mesh has (8- (6 —i)+ 1 = 5i 4 7) elements and(8+ 1) newly inserted vertices.

— ATTA AT
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Fig. 10. Templates of adaptive hexahedral mesh decomposition (Methacc@jding to the cells to be
refined from which red minimizer points are generated. The bottom rowstimvdetailed decomposition
format.

Method 2 is derived from part of the third 2D direct methodwshaon Figure 4. In the process of
refinement, this method considers whether the error funatédue of each cell is greater than a
thresholce or not. One hexahedron has a total of eight vertices, so trer¢® = 256) configura-
tions. Due to symmetry, there are only 22 unique templatéf [it only five templates are useful
out of them because not all the templates can be decompdsdukixahedra. Figure 10 shows the
five templates for adaptive hexahedral decomposition kegetith a detailed view [29], which
are much more complicated than the templates for 2D quéehaledecomposition. Figure 11 lists
the number of elements and the number of newly insertedcesrtor each template.

We set a sign for each leaf cell at the uniform starting odeeel indicating if this cell needs to
be refined or not. For each leaf cell, the feature sensitngg &rnction is calculated and compared
with a thresholc. If the function value is greater thanthen the sign is set to be 1, otherwise it

11



Method Numberof 0 1 2 4 8
2 elements 1 4 11 22 27

vertices 0 7 19 39 56

Fig. 11. The element number and the newly inserted vertex number of M2thdttiin refined hexahedra
shown in Figure 10.

is 0. For each hexahedron extracted from the uniform levelcheck if it belongs to one of the
templates shown in Figure 10. If not, we need to convert itlmking up the table shown in Figure
12. We keep updating the sign for each leaf cell until no slgamges, at this time all the generated
hexahedra in the uniform level are in the format of the fivegktes shown in Figure 10, then we
can construct an adaptive hexahedral mesh using the condisig templates.

and all others ——

Fig. 12. The Look-Up table for converting an arbitrary configurationrte of the five templates in Figure
10. Each green node represents the cell from which the minimizer poinh&raed needs to be refined.
The sign of the cell generating a red node is 1, otherwise the sign is O.

Each hexahedron is constructed by eight minimizer pointschivare calculated from leaf cells in
the uniform octree level. The error function of the cell gaxtimg a minimizer point is either greater
than the threshold or < ¢, therefore there are a total df 2 256 configurations for a hexahedron.
Figure 12 shows the Look-Up table for converting an arbjtc@mfiguration to the five templates
shown in Figure 10. The green node means the error functithreafell generating this minimizer
point is greater than the thresha@dThe red node means the sign of the cell generating this node
is set to be 1, otherwise the sign is 0.
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Fig. 13. Adaptive hexahedral meshes from Method 1 (left) and Methpidjt2t) for the human head. Top
row shows the boundary isosurfaces, it is obvious that Method 1 gsea poorly-shaped nose as was
shown in Figure 7. Bottom row shows cross sections, the right part wfeglts are removed.

In the process of adaptive hexahedral mesh generation, @ktoensert extra vertices and detect
if they lie on the boundary or not. If a vertex lies on a bouydaglge or a boundary face, then
it is a boundary vertex. Otherwise it lies interior to theemvial volume. There is a special case,
of which we need to be careful. It occurs in cases where axéyteg on an edge whose two
end points are on the boundary, or lying on a face whose fountgare on the boundary, may
not be on the boundary. For those extra vertices lying ingidanterval volume, we choose the
linear interpolation of the eight vertices of the originakiahedron. For those existing and newly
inserted vertices lying on the boundary isosurface, wedostpute their positions from the linear
interpolation, then move them toward the isosurface as wierdadaptive quadrilateral isosurface
extraction.

Figure 13 compares adaptive hexahedral meshes of the huzadrgkenerated from Method 1 and
Method 2. It is obvious that Method 2 constructs a better tiose Method 1 because it introduces
extra vertices on edges of refined hexes resulting in a mangrate approximation, and Method
2 tends to generate meshes with better quality than Methddhd extracted surface mesh from
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Method 2 is a little different from the result of the third rhetl shown in Figure 7, since only
templates 0, 1, 2and 4 of the third method in Figure 4 are adopted, while tetapld and 3
are not used. Since we still use QEF (Equation 1) for comgutimimizing vertices, we can also
preserve sharp edges and corners (Figure 14).

Fig. 14. Sharp features are preserved. From left to right: an adagtiad mesh of a mechanical part, an
adaptive hex mesh of a mechanical part, an adaptive quad mesh ofskfamtl an adaptive hex mesh of a
fandisk.

6 Mesh Adaptivity

In order to generate accurate meshes with the minimal nuwibelements and vertices, it is
important to choose a good error metric to decide where weldhgenerate a finer mesh and
where a coarser mesh should be kept. There are three maintevagatrol the mesh adapitivity.

Users can also design an error function based on their spesifilirements.

e Feature sensitive error function
e Areas that users are interested in
e Finite element calculation results

The feature sensitive error function [38] [39] is definedlas difference of trilinear interpolation
functions between coarse and fine octree levels normaligéebgradient magnitude. It is sensi-
tive to areas of large geometric features since it direci#asures the surface difference between
coarse and fine levels, for example, the facial featurese(r®ges, mouth and ears) in the head
model as shown in Figure 13 and 18.

Sometimes, people are interested in some special areas taskeir physical or biological ap-

plications. For example, there is a cavity in the structdréne biomolecule called mouse acetyl-
cholinesterase (MAChE) [31] [30]. A finer mesh is requireduacbthe cavity area while a coarse
mesh needs to be kept in other regions. In this situationetier function should be defined by
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regions. Figure 1 shows the adaptive quadrilateral andheslkal meshes for the biomolecule
MAChHE, and it is obvious that the mesh adaptivity is contcbbig regions.

In finite element simulations, we first need to construct medio represent the analyzed geo-
metric domain, then solve ordinary/partial differentiglations over it using the finite element

method. For accurate and efficient finite element analysigptive meshes are preferable. The
mesh adaptivity can be controlled directly by finite elemsaititions to balance the error of finite

element solutions over each element. Figure 21 shows qualdes®f a bubble model. The mesh
adaptivity is controlled by its deformation obtained frame ffinite element analysis.

7 Quality Improvement

Quality improvement is a necessary step for finite elemerghngeneration. First we need to
choose corresponding quality metrics to measure the gudlguadrilateral and hexahedral meshes.
Here we select the scaled Jacobian, the condition numbbedfcobian matrix and Oddy metric
[22] as our metrics [17][18][19].

Assumex € 0% is the position vector of a vertex in a quad or a hex, and 03 fori=1,...,m
are its neighboring vertices, where= 2 for a quad andn = 3 for a hex. Edge vectors are defined
asg =X —xwithi=1,...,m, and the Jacobian matrix = [e, ..., em]. The determinant of the
Jacobian matrix is calledhcobian, or scaled Jacobian if edge vectors are normalized. An element
is said to benverted if one of its Jacobianst 0. We use thd-robenius norm as a matrix norm,
1J] = (tr(JTJ)¥2). The condition number of the Jacobian matrix is defined@ = |J|[J1,
where|J71| = %(‘J). Therefore, the three quality metrics for a verteih a quad or a hex are
defined as follows:

Jacobian(x) = det(J) (2)

K(X) = %|J_1||J| 3)
(137317 — 2131

Odd = m 4

y(X) de(0)? (4)

wherem = 2 for quadrilateral meshes and= 3 for hexahedral meshes.

In the process of mesh quality improvement, our goal is tooseninverted elements and improve
the worst condition number of the Jacobian matrix. Firstaheraging method is used to remove
inverted elements. We calculate the scaled Jacobian fortexven each element, and relocate
this vertex by the average of all its neighbors if the Jaaolsanegative. Then we calculate the
condition number of the Jacobian matrix for a vertex in eaddwdgpr hex, and find the vertex with

the maximum value. We compute the new position for this weut@ng the conjugated gradient
method with the condition number (Equation 3) as objective.
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Type DataSet MeshSize Scaled Jacobian  Condition Number Oddy Metric  ertéadv
(Vertex, Elent) (best,aver.,worst)  (best,aver.,worst) (best,aver.,worst) Elem
quad Bubblé (208, 206) (1.0,0.92, 0.36) (1.0,1.12,2.77) (0.0, 0.61, 13.37) 0
Bubble? - (1.0,0.94,0.62) (1.0, 1.07, 1.60) (0.0, 0.34, 3.13) 0
Head (714, 712) (1.0,0.92,0.06)  (1.0,1.13,17.41) (0.0, 0.98, 604.24) 0
Head - (1.0,0.92,0.37)  (1.0,1.10,2.73) (0.0, 0.48, 12.93) 0
mAChE! (19998, 20013)  (1.0,0.90,0.04)  (1.0,1.17,27.63) (0.0, 1.29, 13P4.6 O
MAChE2 - (1.0,0.90,0.16)  (1.0,1.15,6.26) (0.0, 0.87, 76.28) 0
hex Head (1210, 812)  (1.0,0.85,1.9e-3) (1.0,2.62,519.74) (0.0, 12.88,8)95¢ 1
Head - (1.0,0.85,0.02)  (1.0,1.98,46.34) (0.0, 5.03, 638.83) 0
mAChE!  (81233,70966) (1.0,0.94,5.2e-5) (1.0,2.07, 1.92e4) (0.0, 18.38¢6) 5
MAChE2 - (1.0,0.94,0.01) (1.0, 1.40,74.73) (0.0, 2.37,1379.81) 0

Fig. 15. The comparison of the three quality criteria (the scaled Jacob&ngtitition number and Oddy
metric) before/after the quality improvement for quadrilateral meshes dfiepbead and mAChE. DATA
— before quality improvement; DATA- after quality improvement.

Statistics of the condition number Statistics of the condition number
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Fig. 16. The histogram of the condition number for quadrilateral (left) lm@xhhedral (right) meshes of
MAChHE and the human head.

If the relocated vertex is an interior node, then we replaeelocation of this vertex with the

calculated new position. If this vertex lies on the boundémgn we calculate its new position
and move it toward the isosurface along its normal directide keep reducing the maximum
condition number for quad or hex meshes until we arrive argtheeshold. In this way, we can
improve the worst condition number of the Jacobian matisxyall as improving the other two

metrics, the scaled Jacobian and Oddy metric. Howeverpibssible to produce an invalid mesh
containing inverted elements. We choose a ‘smart’ smogthethod [12], which relocates the
point only if the mesh quality is improved.

Figure 15 shows the improvement of the worst values of thiedckacobian, the condition number
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Number of Elements (Extraction Time (unit : ms))

(@) (b) (©) (d)

DataSet Type Dimension

Bubble SDF 68 206 (172) 1478 (329) 1854 (344) -
Head  SDF 68 1942 (594) 812 (375) 4049 (750) 17905 (3267)
Knee  SDF 68 4058 (735) 1386 (453) 7111 (797) 36207 (1516)
Skull CT 129 - - 20416 (9893) 10827 (9205)
Skin CT 129 20999 (9955) 61244 (14565) - -
mAChE  Given 259 20013 (6080) - 70966 (11690) 38939 (7955)

Fig. 17. Data Sets and Test Results. The CT data sets are re-sampledttotfieiloctree representation.
Rendering results for each case are shown in Figure 21, 18, 19d20 &kull and Skin are extracted from
the UNC Head model.

and Oddy metric. The histograms of the condition numberyfd.6) show the overall quality of
quad and hex meshes for the human head model and a biomoead@BE. By Comparing the
three quality metrics before and after quality improvemer can see that the worst parameters
are improved significantly.

8 Resultsand Applications

We have developed an interactive program for adaptive aatitgguadrilateral/hexahedral mesh
extraction and rendering from volumetric data, and pluggedo our LBIE-Mesh software (Level
Set Boundary and Interior-Exterior Mesher), which can gateeadaptive and quality 2D (trian-
gular/quadrilateral) and 3D (tetrahedral/hexahedrallhmee from volume data. The algorithm of
tetrahedral mesh generation is described in [38] [39]. imdbftware, error tolerances and isoval-
ues can be changed interactively. Our results were commtedPC equipped with a Pentium Il
800MHz processor and 1GB main memory.

Our algorithm has been used to generate quadrilateral axahbdral meshes for some signed
distance function data such as the bubble (Figure 21), theahthead (Figure 18) and the knee
model (Figure 19). We have also extracted meshes for theasidrthe skull from a CT scanned

data (the UNChead, Figure 20), and tested the algorithm onddecular data (mMAChE, Figure 1).

Figure 17 shows the information for each dataset and reJuitsresults consist of the number of
elements, the extraction time and images with respect terdiit isovalues and error tolerances.
Extraction time includes octree traversal, QEF computadiod mesh extraction.

Figure 21 shows the extracted quadrilateral meshes for bléutvhich has been used in the
simulation of drop deformation using the finite element rodthFirst, we generate a uniform
guad mesh for the original state of the bubble. Then we gdefalement solutions such as the
deformation from finite element analysis, and use the erfrtieodeformation over each element
to control the mesh adaptivity. Finally we can provide anpdiste and quality quad mesh to limit
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(@) (b) (c) (d)

Fig. 18. Quadrilateral and hexahedral meshes of the human headn(@gaptive quadrilateral mesh; (b) -
the uniform hexahedral mesh at a chosen starting level; (c) - an aglaggvior hexahedral mesh controlled
by the feature sensitive error function; (d) - an adaptive extericatmestral mesh controlled by the feature
sensitive error function.

(d)

Fig. 19. Quadrilateral and hexahedral meshes of the knee. (a) -agmivedquadrilateral mesh; (b) - the
uniform hexahedral mesh at a chosen starting level; (c) - an adamtivenbsh controlled by the feature
sensitive error function; (d) - all the hexahedral elements in (b) direeck

the maximum error of finite element solutions within a thiadh

Some physically-based simulations need both interior atetier hexahedral meshes. For exam-
ple, when people are analyzing the electromagnetic scajtever the human head, hex meshes
of the volume interior to the head surface and hex meshes@xte the head surface but inside
an outer sphere are needed at the same time. Figure 18 stewstthcted interior and exterior
meshes for a head model. The facial features such as nose neyeth and ears are kept, and fine
meshes are generated in those regions. Figure 1 shows ae&tdraple of interior and exterior
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Fig. 20. Quadrilateral and hexahedral meshes are extracted fronseg@ied volumetric data (UNC head).
(a) - the quadrilateral mesh of the skin; (b) - the hexahedral mesh ofolnene inside the skin; (c) - the
guadrilateral mesh of the skull isosurface; (d) - the hexahedral nfeékk ekull.

Fig. 21. Quadrilateral meshes of a bubble model. (a) - the uniform mesthatsan starting level; (b) - an
adaptive mesh controlled by finite element solutions (deformation); (c) - & geserated by refining all
the elements in (a).

hexahedral meshes, the biomolecule mMAChE. The mesh adgpsivdontrolled by regions, fine
meshes are generated in the area of cavity.

9 Conclusions

We have presented an algorithm to extract adaptive andtgugliadrilateral and hexahedral
meshes directly from volumetric data. First, a bottom-uiesae topology preserving octree-based
algorithm is used to select a starting octree level, at whielextract uniform meshes with correct
topology using the dual contouring isosurface extracti@thod [15] [38] [39]. Then we extended
it to adaptive quadrilateral and hexahedral mesh genaraimg some predefined templates with-
out introducing any hanging nodes. The position of each dannvertex is recalculated to ap-
proximate the isosurface more accurately. The mesh adgman be controlled in three ways, the
feature sensitive error function [38] [39], the areas tls#ra are interested in and finite element
solutions. Users can also design their own error functiarotdrol the mesh adaptivity according
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to their specific requirements. Finally, three various fyahetrics are selected to measure the
mesh quality, and the relaxation based technique is usedpdmwe it. The resulting meshes are
extensively used for efficient and accurate finite elemelttutations. Some of them have been
used successfully.
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