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Figure 1: Adaptive tetrahedral meshes extracted from UNC Head (CT, 129×129×129). Isovalues (αin, αout) = (1000, 50) in
(a)(b), and (1000, 120) in (c)(d); error tolerance εin = 0.0001, εout = (a): 0.0001, (b): 2.856, (c): 2.627, (d): 9.999. in and out
represent inner and outer isosurface respectively. The number of elements and the extraction time are listed in Figure 4.

ABSTRACT
This paper presents an algorithm to extract adaptive and
quality 3D meshes directly from volumetric imaging data -
primarily Computed Tomography (CT) and Magnetic Res-
onance Imaging (MRI). The extracted tetrahedral and hex-
ahedral meshes are extensively used in finite element sim-
ulations. Our comprehensive approach combines bilateral
and anisotropic (feature specific) diffusion filtering, with
contour spectrum based, isosurface and interval volume se-
lection. Next, a top-down octree subdivision coupled with
the dual contouring method is used to rapidly extract adap-
tive 3D finite element meshes from volumetric imaging data.
The main contributions are extending the dual contouring
method to crack free interval volume tetrahedralization and
hexahedralization with feature sensitive adaptation. Com-
pared to other tetrahedral extraction methods from imag-
ing data, our method generates better quality adaptive 3D
meshes without hanging nodes. Our method has the prop-
erties of crack prevention and feature sensitivity.

Categories and Subject Descriptors: I.3.5 [Computa-
tion Geometry and Object Modeling]: CSG - Curve, surface,
solid and object representations
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1. INTRODUCTION
The development of finite element simulations in medicine,

molecular biology, engineering and geosciences has increased
the need for high quality finite element meshes. Although
there has been tremendous progresses in the area of surface
reconstruction and 3D geometric modeling, it still remains
a challenging process to generate 3D geometric models di-
rectly from imaging data, such as CT, MRI and signed dis-
tance function (SDF) data. The image data can be repre-
sented as V = {F (i, j, k)|i, j, k are indices of x, y, z coor-
dinates in a rectilinear grid}. V is the volume containing
function values F (i, j, k) at the indices i, j, k.
For accurate and efficient Finite Element Method (FEM)

calculations, it is important to have accurate and high qual-
ity models, minimize the number of elements and preserve
features. In this paper, we present a comprehensive ap-
proach to extract tetrahedral and hexahedral meshes di-
rectly from imaging data.

SF (c) = {(x, y, z) : F (x, y, z) = c} (1)

IF (α1, α2) = {(x, y, z) : α1 < F (x, y, z) < α2} (2)

Given volumetric imaging data and two isovalues α1, α2, the
main steps to extract tetrahedral/hexahedral meshes from
the interval volume, IF , between the two isosurfaces (Equa-
tion (1)) are as follows:

1. Volumetric Denoising
2. Contour spectrum based interval volume selection.



3. Adaptive 3D meshing with feature sensitivity.
4. Quality improvement

As a preprocessing step, the bilateral prefiltering coupled
with anisotropic diffusion method [2] is applied to volumetric
data. Accurate gradient estimation can also be obtained.
The Contour Spectrum [1] provides quantitative metrics of
a volume to help us select two suitable isovalues for the
interval volume.
In this paper, we extend the idea of dual contouring to in-

terval volume tetrahedralization and hexahedralization from
volumetric Hermite data (position and normal information).
Dual Contouring [11] analyzes those edges that have end-
points which lie on different sides of the isosurface, called
sign change edge. Each edge is shared by four (uniform case)
or three (adaptive case) cells, and one minimizer is calcu-
lated for each of them by minimizing a predefined Quadratic
Error Function (QEF) [9].

QEF [x] =
∑

i

(ni · (x− pi))
2 (3)

where pi, ni represent the position and unit normal vectors
of the intersection point respectively. For each sign change
edge, a quad or a triangle is constructed by connecting the
minimizers. These quads and triangles provide an approxi-
mation of the isosurface.
Each sign change edge belongs to a boundary cell. In

our tetrahedral mesh extracting process, we give a system-
atic way to tetrahedralize the volume in the boundary cell.
For uniform grids, it is easy to deal with the interior cells.
We only need to decompose each cell into five tetrahedra
in a certain way. For the adaptive case, it is more compli-
cated. In order to avoid introducing hanging nodes, which
are strictly prohibited in finite element meshes, we design
an algorithm to tetrahedralize the interior cell depending
on the resolution levels of all its neighbors. As a byproduct,
the uniform hexahedral mesh extraction algorithm is sim-
pler. We analyze each interior vertex (a grid point inside
the interval volume) which is shared by eight cells.
In Dual Contouring, QEF is used for isosurface extraction

and sharp features can be preserved. But how to identify
features such as sharp edges and facial features (like nose,
eyes, mouth and ears)? This paper adopts a different er-
ror function to identify those features sensitively. The edge
contraction method is used to improve the mesh quality.
The remainder of this paper is organized as the following:

Section 2 summarizes the previous work; Section 3 intro-
duces the outline of our comprehensive 3D mesh extracting
method. Section 4 explains the detailed algorithm of how to
extract tetrahedra and hexahedra from the interval volume;
Section 5 talks about the feature sensitive error function.
Section 6 uses the edge contraction method to improve the
mesh quality. Section 7 shows some results by applying our
algorithm, and presents our conclusion.

2. PREVIOUS WORK
In the last twenty years, the techniques of CT and MRI

have developed rapidly. Computer visualization, and en-
gineering calculation (FEM) require certain kinds of mesh
extracted from these scanned volume data.

Multiresolution Isosurface Extraction The predomi-
nant algorithm for isosurface extraction from volume data

is Marching Cubes (MC) [14], which computes a local tri-
angulation within each cube to approximate the isosurface
by using a case table of edge intersections. Furthermore,
the asymptotic decider was proposed to avoid ambiguities
existing in MC [17] [13]. For efficient isosurface extraction,
[3] starts from seed cells and traces the rest of the isosurface
components by contour propagation.
When the adjacent cubes have different resolution levels,

the cracking problem will happen. To keep the face compat-
ibility, the gravity center of the coarser triangle is inserted,
and a fan of triangles are used to approximate the isosurface
[21]. A surface wave-front propagation technique [22] is used
to generate multiresolution meshes with good aspect ratio.
By combining SurfaceNets [10] and the extended Marching
Cubes algorithm [12], octree based Dual Contouring [11] can
generate adaptive multiresolution isosurfaces with good as-
pect ratio and preserve sharp features.

Quality and Feature Preserving Isosurface MC can
not detect sharp features of the extracted isosurface, and
severe alias artifacts appear. The enhanced distance field
representation and the extended MC algorithm [12] were in-
troduced to extract feature sensitive isosurfaces from volume
data. The grid snapping method reduces the number of ele-
ments in an approximated isocontour and also improves the
aspect ratio of the elements [16]. [4] studied how to gen-
erate triangular meshes with bounded aspect ratios from a
planar point set. [15] proposed an algorithm to triangulate
a d-dimensional region with a bounded aspect ratio.

Quality Meshing MC is extended to extract tetrahedral
meshes between two isosurfaces directly from volume data
[8]. A different and systematic algorithm, Marching Tetra-
hedra (MT), was proposed for interval volume tetrahedral-
ization [18]. A multiresolution 3D meshes [23] can be gener-
ated by combining recursive subdivision and edge-bisection
methods. Poor quality tetrahedra called slivers are notori-
ously common in 3D Delaunay triangulations. Sliver exu-
dation [7] is used to eliminate those slivers. A deterministic
algorithm [6] was presented for generating a weighted Delau-
nay mesh with no poor quality tetrahedra including slivers.
Shewchuk [20] provides some valuable conclusions on quality
measures for FEM.

3. OVERVIEW
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Figure 2: Overview for 3D mesh extraction

Our comprehensive 3D meshing method is displayed in
Figure 2. We first use the anisotropic diffusion method cou-
pled with bilateral prefiltering to remove noise from imag-
ing data. Depending on the application, suitable isosurfaces
are selected for the interval volume by using the contour
spectrum and the contour tree. We then begin to extract
3D meshes from the interval volume, and a feature sensi-
tive error function is adopted to reduce the number of ele-
ments while preserving features. Finally, the edge contrac-
tion method is used to improve the mesh quality.



Since noise influences the accuracy of the extracted meshes,
it is important to remove it before the mesh extracting pro-
cess. We use the anisotropic diffusion method [2] to smooth
noise. In order to obtain more accurate computation of cur-
vature and gradient for the anisotropic diffusion tensor, the
bilateral prefiltering combining the domain and range filter-
ing together is chosen instead of Gaussian filtering because
it can preserve features such as edges and corners.
Mesh extraction from imaging data requires selecting suit-

able boundary isosurfaces. We use a user interface called
Contour Spectrum [1], to find isosurfaces of interest. The
Contour Spectrum computes quantitative properties such as
surface area, volume, and gradient integral of contours, and
helps to choose suitable isosurfaces by showing the related
spectrum in a 2D plane. A contour tree [5] can be used to
capture the topological information on each isosurface and
help choose isosurfaces with desirable topology.

4. 3D MESH EXTRACTION
In this section, our goal is to tetrahedralize or hexahedral-

ize the interval volume between two isosurfaces by using an
octree-based data structure. First, we discuss triangulation
in 2D problems, then we extend it to 3D tetrahedralization.
A hexahedral mesh generation algorithm is presented at the
end of this section. Here are definitions used in the algo-
rithm description.

Sign Change Edge A sign change edge is an edge whose
one vertex lies inside the interval volume (we call it the
interior vertex of this sign change edge), while the other
vertex lies outside.

Interior Edge in Boundary Cell In a boundary cell,
those edges with both vertices lying inside the interval vol-
ume are called interior edges.

Interior Cell Different from the boundary cell, all the eight
vertices of an interior cell lie inside the interval volume.

Interior Face in Boundary Cell In the boundary cell,
those faces with all four vertices lying inside the interval
volume are called interior faces.

Hanging Node A hanging node is one that is attached to
the corner of one triangle but does not attach to the corners
of the adjacent triangles (e.g. T-Vertex).

4.1 Uniform Tetrahedral Extraction
For isosurface extraction, we only need to analyze bound-

ary cells – those cells that contain sign change edges. There
are four neighbor cubes which share the same sign change
edge. Dual Contouring generates one minimal vertex for
each neighbor cube by minimizing the QEF, then connects
them to generate a quad. By marching all sign change edges,
the isosurface is obtained. For tetrahedral mesh extraction,
cells inside the interval volume should also be set as leaves
besides boundary cells.

4.1.1 Uniform 2D Triangulation
Figure 3(1) is a uniform triangulation example of the area

interior to the isocontour in two dimensions. There are three
different cases which need to be dealt with separately.

1. Sign change edge - find the QEF minimizers of two
cells which share the edge. The two minimizers and the
interior vertex of the edge construct a triangle (blue).

(h)

(d) (e) (f)

(2)

(1)

(3)

(c)

(g)

(b)

(a)

�������

Figure 3: (1) - Uniform Triangulation, the red curve repre-
sents the isocontour. (2) - Sign Change Edge Passed Across
by Two Isosurfaces, Left (2D) : the cyan and blue curves rep-
resent the two isocontours; Right (3D): the cyan and blue
quads approximate the two isosurfaces. The red edges are
sign change edges. (3) - Case Table of Uniform Tetrahedral-
ization - the red vertex means it lies interior to the interval
volume. In (1)(2)(3), green points represent minimizers.

2. Interior edge in boundary cell - find the QEF minimizer
of the boundary cell. Then the minimizer and this
interior edge construct a triangle (yellow).

3. Interior cell - decompose each interior cell into two
triangles (pink).

4.1.2 Uniform 3D Tetrahedralization
Compared to 2D triangulation, three dimensional tetra-

hedral meshing is more complicated.

1. Sign change edge – decompose the quad into two tri-
angles, then each triangle and the interior vertex of
this edge construct a tetrahedron. In Figure 3(3a),
the red line represents the sign change edge, and two
blue tetrahedra are constructed.

2. Interior edge in boundary cell – find the QEF mini-
mizers of the boundary cell and its boundary neighbor
cells, then two adjacent minimizers and the interior
edge construct a tetrahedron. In Figure 3(3b)(3c), the
red cube edge represents the interior edge. (b) gives
four minimizers to construct four edges, each of which
construct a tetrahedron with the interior edge, so to-
tally four tetrahedra are constructed. While (3c) as-
sumes the cell below this boundary cell is interior to
the interval volume, so there is no minimizer for it.
Therefore we obtain three minimizers, and only two
tetrahedra are constructed.

3. Interior face in boundary cell – find the QEF mini-
mizer of the boundary cell, then the interior face and
the minimizer construct a pyramid, which can be de-
composed into two tetrahedra (Figure 3(3f)). Fig-
ure 3(3d)(3e)(3f) give a sequence how to generate tetra-
hedra when there is only one interior face in the bound-
ary cell. (3d) analyzes four sign change edges, (3e)
deals with four interior edges and (3f) fills the gap.

4. Interior cell – decompose the interior cube into five
tetrahedra. There are two different decomposition ways
(Figure 3(3g)(3h)). For two adjacent cells, we choose a
different decomposition method to avoid the diagonal
choosing conflict problem.

If two isosurfaces pass across the same sign change edge,



we can split the cell into eight cubes in the octree data struc-
ture, then analyze each small cubes separately. In another
approach, we need to analyze the sign change edge twice
(Figure 3(2)) and fill gaps in the boundary cell. In 2D, two
minimizers are obtained for the inner isosurface, and simi-
larly two minimizers are calculated for the outer isosurface.
They construct a quad, which can be decomposed into two
triangles. For 3D, a hexahedron is built between the two
surfaces for the sign change edge. The hexahedron can be
split into five tetrahedra. Two different isosurfaces can not
intersect with each other since one point can not have two
isovalues. However, the two quads approximating the two
isosurfaces may intersect because of bad gradient vectors.
This can be solved by splitting the cell into eight cubes.

4.2 Adaptive Tetrahedral Extraction
Uniform tetrahedralization usually gives an over-sampled

mesh. Adaptive tetrahedral meshing is a good and effective
way to reduce the number of elements while preserving the
accuracy requirement.
First, we split the volume data by using the octree data

structure to obtain denser cells along the boundary, and
coarser cells inside the interval volume. The QEF value is
calculated for each octree cell, and a much more efficient
octree is built by comparing the QEF value with a given
error tolerance ε and using the bottom-up algorithm. Leaves
of the octree have different resolution levels. The next step
is to analyze each leaf.
Each leaf cell may have neighbors at different levels. An

edge in a leaf cell may be divided into several edges in its
neighbor cells. Therefore it is important to decide which
edge should be analyzed. The Dual Contouring method pro-
vides a good rule to follow – we always choose the minimal
edges. Minimal edges are those edges of leaf cubes that do
not properly contain an edge of a neighboring leaf.
Similar to uniform tetrahedral mesh extraction, we need

to analyze the sign change edge, the interior edge and the in-
terior face in the boundary cell, and the interior cell. When
we analyze boundary cells, only minimal edges and mini-
mal faces are analyzed. Compared to the uniform case, the
only difference is in how to decompose the interior cell into
tetrahedra without hanging nodes.

4.2.1 Adaptive 2D Triangulation

Figure 5: Left: Adaptive Triangulation. The red curve rep-
resents the isocontour, green points represent minimizers.
Right: Case Table for Decomposing the Interior Cell into
Triangles. Red points and red lines mean its neighbors have
level (κ+1); green points and green lines mean its neighbors
have a higher level than (κ+1).

Figure 5(left) gives an example of how to triangulate the
interior area of an isocontour. Similarly, we need to analyze
the following problems:

1. Sign change edge – if the edge is minimal, deal with it
as in the uniform case (blue triangles).

2. Interior edge in boundary cell – if the edge is minimal,
analyze it as in the uniform case (yellow triangles).

3. Interior cell – Figure 5 (right) lists all the cases of how
to decompose the interior cell into triangles. In order
to obtain triangles with good aspect ratio, we restrict
the neighboring level difference to be ≤ 2.

Compared to the uniform case, the triangulation of interior
cells is more complicated (Figure 5). All neighbors of an
interior cell need to be checked because the neighbor cells
are used to decide if there are any middle points on the
shared edge. Suppose the resolution level of this cell is κ,
we group into five cases according to the number of edges
whose level is greater than κ. The ith group means there
are number i edges whose level is greater than κ, where i =
0, . . . , 4. For each subdivided edge, it may be subdivided
more than once, or the neighbor cell may have a higher level
than (κ+1). So we need to search all the middle points on
this edge. A top-down or a bottom-up algorithm can be
used here to find the resolution level of its neighbors, and
find out all the middle points on the edge. If all the four
edges have already been subdivided, then we can use the
recursion method to march each of the four smaller cells
with the same algorithm. In this way, hanging nodes are
removed effectively.

4.2.2 Adaptive 3D Tetrahedralization
For 3D adaptive tetrahedralization, we use the same algo-

rithm with the uniform case to analyze the boundary cell.

1. Sign change edge – if the edge is minimal, deal with it
as in the uniform case.

2. Interior edge in the boundary cell – if the edge is min-
imal, deal with it as in the uniform case.

3. Interior face in boundary cell – identify all middle
points on the four edges, and decompose the face into
triangles as in the adaptive 2D case, then calculate the
minimizer of this cell, each triangle and this minimizer
construct a tetrahedron.

4. Interior cell – decompose each face of the cube into
triangles, just as how to deal with the interior cell for
the adaptive 2D triangulation (Figure 5), then insert
a Steiner point at the cell center. Each triangle and
the Steiner point construct a tetrahedron.

Figure 6: Left - hexahedralization of the volume between
the human head and a sphere boundary; Right - an adaptive
tetrahedral mesh.



Data Set Type Resolution
Number of Tetrahedra (Extraction Time (unit : ms) )

(a) (b) (c) (d)

UNC Head (Skin) CT 129× 129× 129 935124 (17406) 545269 (10468) – –
UNC Head (Skull) CT 129× 129× 129 – – 579834 (10203) 166271 (3063)

Poly CT 257× 257× 257 276388 (5640) 63325 (1672) 14204 (672) –
Knee SDF 65× 65× 65 70768 (1360) 94586 (1782) 93330 (1750) 72366 (1406)

Figure 4: Data Sets and Test Results. The CT data sets are re-sampled to fit into the octree representation (Figure 1, 9).

By using the above algorithm, we extract tetrahedral meshes
from volumetric imaging data successfully. Figure 6 (right)
gives one example.

4.3 Hexahedral Extraction
Finite element calculations sometimes require hexahedral

meshes instead of tetrahedral meshes. Each hexahedron has
eight points. In the tetrahedralization process we deal with
edges shared by at most four cells. This means that we can
not get eight minimizers for each edge. But, each vertex is
shared by eight cells, and we can calculate a minimizer for
each of them. These eight minimizers can then be used to
construct a hexahedron. Figure 6 (left) shows an example
used to solve electromagnetic scattering simulations.

5. ERROR METRIC
For efficiency and accuracy during calculations, finite el-

ement applications require the number of elements to be as
small as possible, while preserving necessary features. For
a given precision requirement, the uniform mesh is always
over-sampled with unnecessary small elements. Adaptive
meshes are therefore preferable.
For the adaptive mesh, an error function and an error

tolerance ε are required, which set the criteria to identify
where we should select higher level (denser mesh) and where
lower level (coarser mesh) should be chosen. In order to
minimize the number of elements while preserving features,
it is important to have a feature sensitive error function.
The Dual Contouring algorithm can preserve sharp fea-

tures by using the QEF error function. Examples show that
it is not sensitive to some features, for example, facial fea-
tures, like the nose, eyes, mouth and ears of the human head
model in Figure 7. Here we choose the Euclidean distance
error (EDerror) function to identify features.
For level (i), the eight vertices’ function values are given,

and a trilinear function is defined in Equation (4), from
which the function values of 12 edge middle points, 6 face
middle points and 1 center point can be obtained. For level
(i+1), the function values of all vertices are given. The error
function is defined in Equation (5).

f
i(x, y, z) = f000(1− x)(1− y)(1− z) + f011(1− x)yz

+ f001(1− x)(1− y)z + f101x(1− y)z

+ f010(1− x)y(1− z) + f110xy(1− z) (4)

+ f100x(1− y)(1− z) + f111xyz

EDerror =
∑ |f i+1 − f i|

|∇f i|
(5)

The two error functions are compared in Figure 7. It
is obvious that the EDerror can also preserve sharp edges,
and is more sensitive to the areas where nose, eyes, mouth
and ears are located on the human head model. That is
because EDerror is the Eucliean distance which measures

Figure 7: Sharp edge features (left); Facial features: QEF
(middle, 2952 triangles) and EDerror (right, 2734 triangles).
Better feature adaptation (eyes, nose, mouth and ears) is
shown in the right picture.

error in a better way [19] than QEF. Furthermore, QEF
only measures function value at a minimizer point for each
cell, while EDerror compares function value at all vertices
and edge/face middle points.

6. QUALITY IMPROVEMENT

Figure 8: Quality Improvement - Left: no edge contraction,
circles mark triangles with bad aspect ratio; Right: poor
quality triangles disappear after iterative edge contraction.

The above 3D mesh extraction algorithm can tetrahedral-
ize the interval volume, and the extracted meshes have bet-
ter quality than meshes from other methods such as MC
and MT. However, it can not guarantee that all the ele-
ments have good quality. For example, sliver triangles or
tetrahedra exist. In order to measure tetrahedra’s quality,
three quality parameters are borrowed from the ABAQUS
document (a FEM software).

• Tetrahedral Quality Measure = volume of tetrahedron
/ volume of equilateral tetrahedron with same circum-
sphere radius (> 0.02)

• Min/Max Angles – with minimum angle α > 10◦ and
maximum angle β < 160◦.

• Right-hand-side principle

In the process of improving the mesh quality, edge con-
traction is a direct method to eliminate sliver tetrahedra.
For each tetrahedron, first calculate the three quality pa-
rameters. If the tetrahedron’s orientation is Left-hand-side,



swap any two vertices’ index number. If Tetrahedral Quality
Measure ≤ 0.02 or Min Angle ≤ 10◦ or Max Angle ≥ 160◦,
contract the shortest edge. Be careful not to merge vertices
on surfaces to vertices inside the interval volume. Figure 8
shows an example.

7. RESULTS AND CONCLUSION

Figure 9: Upper row: Knee (SDF) – error tolerances εin =
εout = 0.0001; isovalues αout = -0.02838, αin are listed below
each picture. Bottom row: Heart Valve (Poly, CT) – isovalues
(αin, αout) = (1000, 75); error tolerances εin = 0.0001, εout

are listed below each picture.

We developed an interactive program for 3D mesh extrac-
tion and rendering from a volume. In the program, the
error tolerance and the isovalues can be changed interac-
tively. The results were computed on a PC equipped with a
Pentium III 800 MHz processor and 1 GB main memory.
Figure 4, 9 provide information about data sets and test

results. As a preprocessing, we calculate min/max values
for each octree cell to visit only cells contributing to mesh
extraction and to compute QEF values only in those cells
at run time. Extraction time in the table includes octree
traversal, QEF computation and actual mesh extraction,
given isovalues and error tolerance values for inner and outer
surfaces as run time parameters. If we fix isovalues, and
change error tolerance interactively, the computed QEF is
reused and thus the whole extraction process is accelerated.
To extract 3D meshes from the surface data, we com-

puted SDF from the surface and performed mesh extraction
(Figure 9 (knee)). The results from CT data are shown in
Figure 1 and 9 (heart valve). The number of elements is
controlled by changing error tolerance. In Figure 9 (upper
row), the sequence of images are generated by changing the
isovalue of the inner isosurface. The topology of the inner
isosurface can change arbitrarily.
We have presented an algorithm to extract adaptive and

high quality 3D meshes directly from volumetric imaging
data. By extending the dual contouring method [11], our
method can generate 3D meshes with good properties such
as no hanging nodes, sharp feature preservation and good
aspect ratio. Using an error metric which is normalized by
the function gradient, the resolution of the extracted mesh
is adapted to the features sensitively. The resulting meshes
are useful for efficient and accurate FEM calculations.
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