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Computer Tomography (CT) and in particular super fast, 64 and 256 detector CT has rapidly advanced over
recent years, such that high resolution cardiac imaging has become a reality. In this paper, we provide a solution
to the problem of automatically constructing three dimensional (3D) finite-element mesh models (FEM) of the
human heart directly from high resolution CT. Our overall computational pipeline from 3D imaging to FEM
models has five main steps, namely, (i) discrete voxel segmentation of the CT (ii) discrete topological noise
filtering to remove non-regularized, and small geometric measure artifacts (iii) a reconstruction of the inner and
outer surface boundaries of the human heart and its chambers (iv) computation of the medial axis of the heart
boundaries and a volumetric decomposition of the heart into tubular, planar and chunky regions, (v) a flexible
match and fit of each of the decomposed volumetric regions using segmented anatomical volumetric templates
obtained from a 3D model heart.

1 INTRODUCTION
Computer aided diagnosis and treatment of cardiovas-
cular disease, in particular atherosclerosis, left ven-
tricular hypertrophy, valvular dysfunction, increas-
ingly rely on faithful patient specific heart FEM (fi-
nite element mesh) models that can be used in full-
cycle simulation of pulsatile blood flow through the
heart. An emerging methodology to construct spa-
tially realistic human heart models is via super fast,
64 and 256 detector (high resolution) Computer To-
mographic (CT) imaging (Toshiba Medical Systems -
64 Slice CT 2006).

Volume rendering of one such CT64 dataset is
shown in Figure 2. Although state-of-the-art, the
imaging is only the first step of a significant com-
putational sequence of image and geometry process-
ing steps, that are necessary for generating a robust
and spatially realistic FEM model. In this paper, we
present such a computational pipeline (see Figure 1)
that processes the imaging data, and additionally uses

an anatomically correct template heart 3D model,
to construct an anatomically correct patient specific
FEM model.
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Figure 1: The Computational Pipeline

Our overall computational pipeline from 3D imag-
ing to FEM models has five main steps, namely, (i)
discrete voxel segmentation of the CT (ii) discrete
topological noise filtering to remove non-regularized,
and small geometric measure artifacts (iii) a recon-
struction of the inner and outer surface boundaries
of the human heart and its chambers (iv) computa-
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tion of the medial axis of the heart boundaries and
a volumetric decomposition of the heart into tubular,
planar and chunky regions, (v) a flexible match and
fit of each of the decomposed volumetric regions us-
ing segmented anatomical volumetric templates ob-
tained from a 3D model heart. The pipeline has two
major components. One path works on the imaging
data, filters the noise, segments the main components
of the heart and builds an initial surface mesh. As dis-
cussed in Section 2, this initial model is not always
correct because of missing information and topologi-
cal inconsistency. To circumvent that, we create a seg-
mented 3D map from the template heart model and
annotate it properly that helps build a correspondence
with the initial and possibly incomplete model cre-
ated from the imaging data. Further we match and fit
the patient specific model with the segmented 3D map
and inherit the information encoded there to fill up the
gap of the missing information as well as remove the
noisy spurious components that could not be avoided
due to ambiguity in the imaging data. Figure 6 (a)
shows the template model used in this paper.

Section 2 discusses the steps necessary to build the
initial heart model from the imaging data. Section 3
discusses the steps necessary to build the template
segmented 3D map. Finally, in Section 4, we discuss
the tasks that are needed to accomplish to finally ob-
tain the patient specific model of heart.

Figure 2: Left subfigure shows the volume rendering
of a subvolume of the input CT imaging data. Right
subfigure shows a portion of the cross-section of the
input. One full slice is shown in the two leftmost sub-
figures in Figure 3.

2 PATIENT SPECIFIC DATA PROCESSING
In this section, we discuss the issues that need to
be tackled in order to process the imaging data ef-
fectively. In the following subsections, we discuss
the four main steps, namely Segmentation or Clas-
sification, Regularization, Reconstruction and Prun-
ing. Additionally, in each of these subsections, we
show the results of each of these steps on an
imaging dataset. The dataset is courtesy Dr. Char-

lie Walvaert of Austin Heart Hospital. The imag-
ing dataset is of dimension 512 × 512 × 432 and
the spacing in x, y, z directions are respectively
0.390625mm,0.390625mm,0.3mm.

2.1 Image Segmentation
Segmentation is a way to dissect the features of in-
terest from their surroundings. In case of the heart
dataset, we aim to extract the four chambers auto-
matically. To this end, we have developed a compu-
tational procedure based on the fast marching method
(Sethian 1996; Malladi and Sethian 1998; Sethian
1999). In this method, a contour is initialized from
a pre-chosen seed point, and the contour is allowed
to grow until a certain stopping condition is reached.
The traditional fast marching method is designed for
single object segmentation. In order to segment multi-
ple objects, like the chambers in the heart data, a seed
for each of the components must be chosen. When
contours from different seed points, they should stop
each other on their boundaries. This multi-seeded fast
marching method (Yu and Bajaj 2005; Sifakis and
Tziritas 2001) simultaneously segment all the compo-
nents and hence is extremely useful to separate multi-
ple features that are too close to segment sequentially.

Figure 3: Top row shows the slice of the input image,
the result after contrast enhancement and anisotropic
filtering, seed selection for segmentation and finally
the result of segmentation process on that single slice.
The second row shows the overall segmentation of the
imaging data into four subvolumes. The dissociation
is enhanced by coloring it differently. The subfigures
show the exploded view of the individual subvolumes.

Since the given patient-specific heart data is very
noisy and has a low contrast, it is always useful to
filter the noise and enhance the contrast before we
segment the features of interest. We have developed
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a fast and adaptive method for contrast enhancement
(Yu and Bajaj 2004), which was applied to the given
heart data. Additionally, an anisotropic noise reduc-
tion approach (Perona and Malik 1990; Bajaj, Wu,
and Xu 2003) was employed to smooth out the noise
as seen in the original data. Compared to the isotropic
(e.g., Gaussian) filtering methods, the anisotropic ap-
proaches can preserve sharp features much better
while the noise is reduced. Figure 3 shows the result
of image segmentation on the imaging data.

2.2 Regularization
This step is optionally employed to remove the arti-
facts of the voxel-based classification. The level-set
based segmentation can involuntarily produce vox-
els which are, although connected, can be thought
of as dangling components. Such spurious subset of
voxels pose problem in reconstructing a surface out
of the boundary voxels. Therefore a careful selec-
tion/removal of a subset of voxels output by the seg-
mentation step is crucial. The result of this step is a set
of boundary voxels whose centers lie on the surface
of the segmented boundary with all dangling compo-
nents removed. In our experiments, we have not en-
countered such cases with the dataset that we dealt
with. Nevertheless, this step should optionally be in-
cluded in the pipeline for curation of the segmented
region boundaries.

2.3 Reconstruction

Figure 4: Reconstruction of four segmented bound-
aries of the patient specific heart. With each surface
mesh the corresponding pointset is shown in the same
color.

From the regularized voxel centers, we reconstruct
the surface that faithfully depict the surface triangle
mesh of the boundary in question. There are number
of reconstruction technique available for this purpose
(Bajaj, Bernardini, and Xu 1995; Amenta and Bern

1999). For our purpose we use the TightCocone algo-
rithm by (Dey and Goswami 2003). Sometimes, the
noise present in the data is a major challenge to deal
with and to circumvent that problem we employ the
version of that algorithm that deals with noisy point
cloud - RobustCocone (Dey and Goswami 2004).

This step results in the surface meshes which are
good candidates for further fitting operation. The re-
constructed surfaces of the components for the dataset
is shown in Figure 4. As apparent from the pictures,
the reconstructed surface contains several portions
which are noisy and also some blood vessels which
should not be used for matching the patient specific
data with the template atlas. In the next subsection we
describe that step.

2.4 Pruning

Figure 5: Result of pruning: The green portions in
each of the four extracted components contains reli-
able information that can be used to match the patient
specific data with the template model. The missing
or spurious portions of each component are drawn in
white.

The quality of the imaging data is the main bot-
tleneck in the modeling procedure and therefore it
is necessary to clean-up the data before building the
correspondence with the template atlas. The goal of
this step is to identify the portions of the patient heart
data which are missing and also the spurious compo-
nents erroneously classified in the segmentation pro-
cess because of weak intensity variation. We employ
the geometry segmentation approach on the regular-
ized pointset to achieve this goal. The segmentation
approach, as described in (Dey, Giesen, and Goswami
2003), relies on a parameter which determines if two
adjacent maxima should be clustered together and
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form a bigger segment. Choosing this parameter care-
fully removes the small spurious components as well
as the noisy incomplete portions of the patient heart
models. Figure 5 shows the result of this step.

After this step we have a weaker annotation of the
parts of the patient specific heart models - the ones
which are stable and can be used for correlation with
the atlas; and the ones which are either spurious or in-
complete. The segments belonging to the second class
can not be used for building correspondence with the
template parts.

3 TEMPLATE PREPARATION
The patient specific imaging data is often incomplete
and contains topologically inconsistent and spurious
components. We rectify such anomalies by inheri-
tance of topology from the template heart model. In
order to do so, we first process the template geome-
try and annotate it following the heart anatomy. We
call the template geometry T , which has two distinct
components - Tout and Tin. The analog of Tin in the
patient data is the inner wall of the heart which inter-
faces with the blood being circulated and the analog
of Tout is the outer boundary where the heart is em-
bedded among soft tissues and muscles. Below we de-
scribe the major steps in processing the solid bounded
by Tin, and construct a segmented 3D map of the tem-
plate geometry which is key to inherit the topological
and anatomical information into the patient specific
imaging data.

3.1 Geometry Segmentation
Given Tin, we decompose it into 4 connected compo-
nents -

1. Left Atrium - TLA

2. Left Ventricle - TLV

3. Right Atrium - TRA

4. Right Ventricle - TRV

Left and right ventricles are additionally segmented
into the valves and aortic arches.

The key ingredient in this segmentation process is
the careful analysis of the critical points of the dis-
tance function induced by each T∗.

Given any shape S, one can define a distance func-
tion hS : R

3
→ R which assigns to every point in

the three dimensional space its distance to the near-
est point on the object S. The function hS can be ap-
proximated by a similar function hP when S is known
only via a finite set of points P sampled from S. This
function, which is popularly known as distance func-
tion has a rich history of application and especially
the critical point structure of this function encodes a
lot of information about the shape attributes of S. For

a list of prior work, and especially on the topologi-
cal invariants of the critical point structure, see (Bajaj,
Bernardini, and Xu 1995; Edelsbrunner 2002; Giesen
and John 2003).

For the purpose of segmentation, we use the par-
tition of space by gradient uniformity which is oth-
erwise known as the stable manifold of the critical
points. The stable manifolds are computed efficiently
via the Voronoi-Delaunay diagram of the pointset
P . Details are given in (Dey, Giesen, and Goswami
2003).

(a) (b) (c) (d)

(e)

Figure 6: (a) Template model of human heart. The in-
ner boundary is shown inside the transparent outer
boundary of heart. (b) A cross section through the
middle that is colored according to the value of the
Signed Distance Function. (c) The skeleton of all four
chambers (colored cyan). (d) Only the skeleton to
help visualize the connectivity structure. (e) Complete
segmented template 3D map.

3.2 Annotation
In the context of shape attributes, it is often required
to annotate the decomposed parts as tubular or flat
or blobby. Such annotation also can be performed via
careful analysis of the critical point structure of hP .
The key ingredient to achieve this is a construct analo-
gous to stable manifold, unstable manifold. These are
partitions of space in accordance with negated gradi-
ent uniformity. It was shown in (Goswami, Dey, and
Bajaj 2006), that unstable manifold of the index 1 and
2 saddle points reveal the flat and tubular features re-
spectively. For our purpose, we apply the annotation
process on every decomposed part.

As the Figure 6 (c,d) shows, the unstable manifold
of the index 2 saddle points additionally produces the
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skeleton of the object. For tubular regions, the skele-
tons are particularly useful as they can be used to fit
a NURBS model as was done previously by (Zhang,
Bazilevs, Goswami, Bajaj, and Hughes 2006).

3.3 Template Segmented 3D Map Creation
The process of segmentation and feature annotation
create a complete description of the template which
we call a Template Segmented 3D Map. This seg-
mented 3D Map has different components of the
model heart properly decomposed and tagged with
domain knowledge of heart anatomy as to which com-
ponent corresponds to which ventricle or aortic arch
or atrium etc. We show the prepared atlas in Figure 6.

Once the template map is created, we build a cor-
respondence table as to which part of the segmented
patient data should be matched with which part of the
segmented template. Figure 7 shows the correspon-
dence.

Figure 7: Correspondence between the informative
components of the patient specific heart (green) and
the template model (red). Every green part from the
initial patient model is matched with the red part of
the template.

4 CONCLUSION AND FUTURE WORK
In this paper, we have presented our current status of
ongoing work on creating a patient specific model of
heart from high resolution CT imaging data. We have
developed a pipeline and described the steps that con-
stitute the pipeline.

The remaining step is to fit the solids from the
template atlas to the pruned components of the pa-
tient heart flexibly without violating the topological
invariants of the template that conform with the heart
anatomy. The template provides the invariant which,
after the flexible fitting is performed, shall help fill up
the missing information in the image and also remove
the extraneous components from the model faithfully.
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